1
|
Matikainen N, Pekkarinen T, Ryhänen EM, Schalin-Jäntti C. Physiology of Calcium Homeostasis: An Overview. Endocrinol Metab Clin North Am 2021; 50:575-590. [PMID: 34774235 DOI: 10.1016/j.ecl.2021.07.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Calcium plays a key role in skeletal mineralization and several intracellular and extracellular homeostatic networks. It is an essential element that is only available to the body through dietary sources. Daily acquisition of calcium depends, in addition to the actual intake, on the hormonally regulated state of calcium homeostasis through three main mechanisms: bone turnover, intestinal absorption, and renal reabsorption. These procedures are regulated by a group of interacting circulating hormones and their key receptors. This includes parathyroid hormone (PTH), PTH-related peptide, 1,25-dihydroxyvitamin D, calcitonin, fibroblast growth factor 23, the prevailing calcium concentration itself, the calcium-sensing receptor, as well as local processes in the bones, gut, and kidneys.
Collapse
Affiliation(s)
- Niina Matikainen
- Endocrinology, Abdominal Center, Helsinki University Hospital and University of Helsinki, PB 340, 00029 HUS, Helsinki, Finland
| | - Tuula Pekkarinen
- Endocrinology, Abdominal Center, Helsinki University Hospital and University of Helsinki, PB 340, 00029 HUS, Helsinki, Finland
| | - Eeva M Ryhänen
- Endocrinology, Abdominal Center, Helsinki University Hospital and University of Helsinki, PB 340, 00029 HUS, Helsinki, Finland
| | - Camilla Schalin-Jäntti
- Endocrinology, Abdominal Center, Helsinki University Hospital and University of Helsinki, PB 340, 00029 HUS, Helsinki, Finland.
| |
Collapse
|
2
|
Sanada J, Kamei S, Shimoda M, Tatsumi F, Kimura T, Obata A, Kohara K, Nakanishi S, Kaku K, Mune T, Kaneto H. Amelioration of hypercalcemia by cinacalcet treatment in a subject with relapsing acquired hypocalciuric hypercalcemia: A case report. Medicine (Baltimore) 2021; 100:e27579. [PMID: 34678905 PMCID: PMC8542107 DOI: 10.1097/md.0000000000027579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/07/2021] [Indexed: 01/05/2023] Open
Abstract
RATIONALE Hypocalciuric hypercalcemia is classified as acquired hypocalciuric hypercalcemia (AHH) and familial hypocalciuric hypercalcemia (FHH). While FHH is inherited as an autosomal dominant trait, AHH is one of the rare acquired diseases and is usually treated with prednisolone. Here, we report a case with relapsing AHH which was well controlled with cinacalcet therapy. PATIENT CONCERN A 68-year-old Japanese man was referred to our institution because of hypercalcemia. Despite such hypercalcemia, he was almost asymptomatic. DIAGNOSTICS We diagnosed him as AHH due to the following reason. First, the ratio of calcium (Ca)/creatinine clearance was very low which met the criteria. Second, there was no overt family history of hypercalcemia. Third, his serum Ca level was within the normal range 3 years before. Fourth, despite hypercalcemia, he was almost asymptomatic and had no evidence of primary hyperparathyroidism. INTERVENTIONS Although it is known that steroid therapy is useful for AHH, optimal treatment remains unknown and cinacalcet therapy is very much limited for the treatment of AHH. In this subject, we introduced cinacalcet therapy for the treatment of relapsing AHH. OUTCOMES Serum Ca and parathyroid hormone levels were normalized after such therapy with cinacalcet. CONCLUSIONS We should bear in mind that cinacalcet treatment is effective for the treatment of relapsing AHH.
Collapse
|
3
|
Hui Q, Zhao X, Lu P, Liu S, Nyachoti M, O K, Yang C. Molecular distribution and localization of extracellular calcium-sensing receptor (CaSR) and vitamin D receptor (VDR) at three different laying stages in laying hens (Gallus gallus domesticus). Poult Sci 2021; 100:101060. [PMID: 33752067 PMCID: PMC8010884 DOI: 10.1016/j.psj.2021.101060] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 11/02/2020] [Accepted: 02/11/2021] [Indexed: 01/06/2023] Open
Abstract
The extracellular calcium-sensing receptor (CaSR) and vitamin D receptor (VDR) play important roles in regulating calcium mobilization, calcium absorption, and calcium homeostasis, and they could be potential therapeutic targets to osteoporosis in laying hens. The present study investigated the molecular distribution of CaSR and VDR and the localization of CaSR in the kidney, proventriculus (true stomach), duodenum, jejunum, ileum, colon, cecum, shell gland, and tibia of laying hens at 3 different laying stages (19, 40, and 55 wk). The results showed that the relative mRNA abundance of CaSR in the kidney, ileum, proventriculus, duodenum, and colon was higher (P < 0.05) than the other tissues at 40 and 55 wk. The relative mRNA abundance of CaSR in the tibia was higher (P < 0.05) at 55 wk than at 40 wk. However, there were no significant differences in the relative protein abundance of CaSR among all tested tissues at peak production or in each tissue at the 3 different laying stages (P > 0.05). The relative mRNA abundance of VDR was higher (P < 0.05) in the small intestine (duodenum, jejunum, and ileum) when compared with other tissues at the 3 different laying stages. The relative protein abundance of VDR in the duodenum was higher (P < 0.05) than that in the proventriculus, colon, and cecum. There were no significant differences in the VDR expression among the tested tissues at the 3 different laying stages (P > 0.05). The immunohistochemical results showed that the positive staining was found widely in each tissue. Moreover, different laying stages did not affect the localization of CaSR except for the tibia tissue. In conclusion, similar to VDR, CaSR was widely expressed not only in the gut but also in the tibia and shell gland in laying hens. The expression level of CaSR and VDR in all tested tissues was unchanged at the different laying stages.
Collapse
Affiliation(s)
- Qianru Hui
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Xiaoya Zhao
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Peng Lu
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Shangxi Liu
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Martin Nyachoti
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Karmin O
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada; CCARM, St. Boniface Hospital Research Centre, Winnipeg, Manitoba R2H 2A6, Canada
| | - Chengbo Yang
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada.
| |
Collapse
|
4
|
Engevik AC, Kaji I, Goldenring JR. The Physiology of the Gastric Parietal Cell. Physiol Rev 2020; 100:573-602. [PMID: 31670611 PMCID: PMC7327232 DOI: 10.1152/physrev.00016.2019] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 10/10/2019] [Accepted: 10/13/2019] [Indexed: 12/11/2022] Open
Abstract
Parietal cells are responsible for gastric acid secretion, which aids in the digestion of food, absorption of minerals, and control of harmful bacteria. However, a fine balance of activators and inhibitors of parietal cell-mediated acid secretion is required to ensure proper digestion of food, while preventing damage to the gastric and duodenal mucosa. As a result, parietal cell secretion is highly regulated through numerous mechanisms including the vagus nerve, gastrin, histamine, ghrelin, somatostatin, glucagon-like peptide 1, and other agonists and antagonists. The tight regulation of parietal cells ensures the proper secretion of HCl. The H+-K+-ATPase enzyme expressed in parietal cells regulates the exchange of cytoplasmic H+ for extracellular K+. The H+ secreted into the gastric lumen by the H+-K+-ATPase combines with luminal Cl- to form gastric acid, HCl. Inhibition of the H+-K+-ATPase is the most efficacious method of preventing harmful gastric acid secretion. Proton pump inhibitors and potassium competitive acid blockers are widely used therapeutically to inhibit acid secretion. Stimulated delivery of the H+-K+-ATPase to the parietal cell apical surface requires the fusion of intracellular tubulovesicles with the overlying secretory canaliculus, a process that represents the most prominent example of apical membrane recycling. In addition to their unique ability to secrete gastric acid, parietal cells also play an important role in gastric mucosal homeostasis through the secretion of multiple growth factor molecules. The gastric parietal cell therefore plays multiple roles in gastric secretion and protection as well as coordination of physiological repair.
Collapse
Affiliation(s)
- Amy C Engevik
- Departments of Surgery and of Cell and Developmental Biology and the Epithelial Biology Center, Vanderbilt University School of Medicine, Vanderbilt University Medical Center and the Nashville VA Medical Center, Nashville, Tennessee
| | - Izumi Kaji
- Departments of Surgery and of Cell and Developmental Biology and the Epithelial Biology Center, Vanderbilt University School of Medicine, Vanderbilt University Medical Center and the Nashville VA Medical Center, Nashville, Tennessee
| | - James R Goldenring
- Departments of Surgery and of Cell and Developmental Biology and the Epithelial Biology Center, Vanderbilt University School of Medicine, Vanderbilt University Medical Center and the Nashville VA Medical Center, Nashville, Tennessee
| |
Collapse
|
5
|
Lysyy T, Lalani AS, Olek EA, Diala I, Geibel JP. The calcium-sensing receptor: A novel target for treatment and prophylaxis of neratinib-induced diarrhea. Pharmacol Res Perspect 2019; 7:e00521. [PMID: 31523434 PMCID: PMC6743423 DOI: 10.1002/prp2.521] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 06/17/2019] [Accepted: 06/23/2019] [Indexed: 11/08/2022] Open
Abstract
Diarrhea is one of the most commonly reported adverse effect of hemotherapy and targeted cancer therapies, such as tyrosine kinase inhibitors (TKI), which often significantly impact patient quality of life, morbidity, and mortality. Neratinib is an oral, irreversible pan-HER tyrosine kinase inhibitor, which is clinically active in HER2-positive breast cancer. Diarrhea is the most common side effect of this potent anticancer drug and the reasons for this adverse effect are still largely unclear. We have recently shown that activation of the calcium-sensing Receptor (CaSR) can inhibit secretagogue-induced diarrhea in the colon, therefore we hypothesized that CaSR activation may also mitigate neratinib-induced diarrhea. Using an established ex vivo model of isolated intestinal segments, we investigated neratinib-induced fluid secretion and the ability of CaSR activation to abate the secretion. In our study, individual segments of the rat intestine (proximal, middle, distal small intestine, and colon) were procured and perfused intraluminally with various concentrations of neratinib (10, 50, 100 nmol L-1). In a second set of comparison experiments, intraluminal calcium concentration was modulated (from 1.0 to 5.0 or 7.0 mmol L-1), both pre- and during neratinib exposure. In a separate series of experiments R-568, a known calcimimetic was used CaSR activation and effect was compared to elevated Ca2+ concentration (5.0 and 7.0 mmol L-1). As a result, CaSR activation with elevated Ca2+ concentration (5.0 and 7.0 mmol L-1) or R-568 markedly reduced neratinib-induced fluid secretion in a dose-dependent manner. Pre-exposure to elevated luminal calcium solutions (5.0 and 7.0 mmol L-1) also prevented neratinib-induced fluid secretion. In conclusion, exposure to luminal neratinib resulted in a pronounced elevation in fluid secretion in the rat intestine. Increasing luminal calcium inhibits the neratinib-associated fluid secretion in a dose-dependent manner. These results suggest that CaSR activation may be a potent therapeutic target to reduce chemotherapy-associated diarrhea.
Collapse
Affiliation(s)
- Taras Lysyy
- Department of SurgeryYale University School of MedicineNew HavenCTUSA
| | | | | | | | - John P. Geibel
- Department of SurgeryYale University School of MedicineNew HavenCTUSA
- Department of Cellular and Molecular PhysiologyYale University School of MedicineNew HavenCTUSA
| |
Collapse
|
6
|
Zhao X, Schindell B, Li W, Ni L, Liu S, Wijerathne CUB, Gong J, Nyachoti CM, O K, Yang C. Distribution and localization of porcine calcium sensing receptor in different tissues of weaned piglets1. J Anim Sci 2019; 97:2402-2413. [PMID: 30887022 PMCID: PMC6541828 DOI: 10.1093/jas/skz096] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/18/2019] [Indexed: 02/06/2023] Open
Abstract
Taste receptors including calcium sensing receptor (CaSR) are expressed in various animal tissues, and CaSR plays important roles in nutrient sensing and the physiology, growth, and development of animals. However, molecular distribution of porcine CaSR (pCaSR) in different tissues, especially along the longitudinal axis of the digestive tract in weaned piglets, is still unknown. In the present study, we investigated the distribution and localization of pCaSR in the different tissues including intestinal segments of weaned piglets. Six male pigs were anesthetized and euthanized. Different tissues such as intestinal segments were collected. The pCaSR mRNA abundance, protein abundance, and localization were measured by real-time PCR, Western blotting, and immunohistochemistry, respectively. The mRNA and protein of pCaSR were detected in the kidney, lung, liver, stomach, duodenum, jejunum, ileum, and colon. The pCaSR mRNA was much higher (five to 180 times) in the kidney when compared with other tissues (P < 0.05). The ileum had higher pCaSR mRNA and protein abundances than the stomach, duodenum, jejunum, and colon (P < 0.05). Immunohistochemical staining results indicated that the pCaSR protein was mostly located in the epithelia of the stomach, duodenum, jejunum, ileum, and colon. These results demonstrate that pCaSR is widely expressed in different tissues including intestinal segments in weaned piglets and the ileum has a higher expression level of pCaSR. Further research is needed to confirm the expression of CaSR in the different types of epithelial cells isolated from weaned piglets and characterize the functions of pCaSR, its potential ligands and cell signaling pathways related to CaSR activation in enteroendocrine cells and potentially in enterocytes.
Collapse
Affiliation(s)
- Xiaoya Zhao
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| | - Brayden Schindell
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| | - Weiqi Li
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| | - Liju Ni
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
- Shanghai Lab-Animal Research Center, Shanghai, China
| | - Shangxi Liu
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| | - Charith U B Wijerathne
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
- CCARM, St. Boniface Hospital Research Centre, Winnipeg, MB, Canada
| | - Joshua Gong
- Guelph Research and Development Centre, Agriculture Agri-Food Canada, Guelph, ON, Canada
| | - C Martin Nyachoti
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| | - Karmin O
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
- CCARM, St. Boniface Hospital Research Centre, Winnipeg, MB, Canada
| | - Chengbo Yang
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
7
|
Xian Y, Zhao X, Wang C, Kang C, Ding L, Zhu W, Hang S. Phenylalanine and tryptophan stimulate gastrin and somatostatin secretion and H +-K +-ATPase activity in pigs through calcium-sensing receptor. Gen Comp Endocrinol 2018; 267:1-8. [PMID: 29782837 DOI: 10.1016/j.ygcen.2018.05.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/28/2018] [Accepted: 05/17/2018] [Indexed: 11/20/2022]
Abstract
In rodents and humans, aromatic amino acids increase gut hormone secretion and H+-K+-ATPase activity by modulating calcium-sensing receptor (CaSR). However, the role of CaSR and its related signaling molecules in amino acid-induced gut hormone secretion in swine has not been investigated. Here, we examined whether a CaSR-dependent pathway modulated gastrin and somatostatin (SS) secretion and H+-K+-ATPase activity in pigs. Perfusion of pig stomach tissues in the presence of extracellular 80 mM l-phenylalanine (Phe) or 20 mM l-tryptophan (Trp) and a CaSR agonist cinacalcet triggered gastrin and SS secretion and H+-K+-ATPase activity (P < 0.05) and increased CaSR expression (P < 0.05). This effect of Phe and Trp was dependent on Ca2+ (P < 0.05) and was abolished after treatment with NPS 2143, an inhibitor of CaSR, and 2-aminoethyl diphenyl borinate, an inhibitor of CaSR downstream signaling molecule inositol 1,4,5-triphosphate receptor (IP3R). These findings indicate that Phe and Trp induce Ca2+-dependent gastrin and SS secretion and H+-K+-ATPase activity through CaSR and its downstream signaling molecule IP3R.
Collapse
Affiliation(s)
- Yihan Xian
- Laboratory of Gastrointestinal Microbiology, Nanjing Agriculture University, Nanjing, Jiangsu 210095, China
| | - Xiuying Zhao
- Laboratory of Gastrointestinal Microbiology, Nanjing Agriculture University, Nanjing, Jiangsu 210095, China
| | - Chao Wang
- Laboratory of Gastrointestinal Microbiology, Nanjing Agriculture University, Nanjing, Jiangsu 210095, China
| | - Cuicui Kang
- Laboratory of Gastrointestinal Microbiology, Nanjing Agriculture University, Nanjing, Jiangsu 210095, China
| | - Liren Ding
- Laboratory of Gastrointestinal Microbiology, Nanjing Agriculture University, Nanjing, Jiangsu 210095, China
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, Nanjing Agriculture University, Nanjing, Jiangsu 210095, China
| | - Suqin Hang
- Laboratory of Gastrointestinal Microbiology, Nanjing Agriculture University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
8
|
Calcium-sensing receptor in nutrient sensing: an insight into the modulation of intestinal homoeostasis. Br J Nutr 2018; 120:881-890. [DOI: 10.1017/s0007114518002088] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AbstractThe animal gut effectively prevents the entry of hazardous substances and microbes while permitting the transfer of nutrients, such as water, electrolytes, vitamins, proteins, lipids, carbohydrates, minerals and microbial metabolites, which are intimately associated with intestinal homoeostasis. The gut maintains biological functions through its nutrient-sensing receptors, including the Ca-sensing receptor (CaSR), which activates a variety of signalling pathways, depending on cellular context. CaSR coordinates food digestion and nutrient absorption, promotes cell proliferation and differentiation, regulates energy metabolism and immune response, stimulates hormone secretion, mitigates secretory diarrhoea and enhances intestinal barrier function. Thus, CaSR is crucial to the maintenance of gut homoeostasis and protection of intestinal health. In this review, we focused on the emerging roles of CaSR in the modulation of intestinal homoeostasis including related underlying mechanisms. By elucidating the relationship between CaSR and animal gut homoeostasis, effective and inexpensive methods for treating intestinal health imbalance through nutritional manipulation can be developed. This article is expected to provide experimental data of the effects of CaSR on animal or human health.
Collapse
|
9
|
Petersen KU. Pepsin and Its Importance for Functional Dyspepsia: Relic, Regulator or Remedy? Dig Dis 2017; 36:98-105. [PMID: 28982106 DOI: 10.1159/000481399] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 09/06/2017] [Indexed: 02/02/2023]
Abstract
BACKGROUND Functional dyspepsia is a heterogeneous disorder lacking an established therapeutic strategy. Historical treatment attempts with pepsin products were shrugged off, as a simple calculation shows that quantitative substitution is pointless. However, such attempts might have been right for the wrong reason. SUMMARY Today, the role of pepsins is primarily seen in the provision of signalling amino acids (especially phenylalanine and tryptophan) and peptides, which initiate processes promoting digestion. Proteolysis benefits from pepsin variants showing, contrary to common belief, activities of up to a pH value of 5.0. Non-clinical and clinical studies support the view that liberated amino acids produce a variety of direct and indirect effects. Signal chains stimulated by (mostly aromatic) amino acids lead to secretion of gastrin and cholecystokinin (CCK), mediated, respectively, by CCK2 (gastrin) and Ca2+-sensing receptors in the parietal cell, and Ca2+-sensing receptors in the antral and duodenal mucosa. Thus, CCK effects such as secretion of pancreatic enzymes and promotion of gastric accommodation are (also) consequential to peptic liberation of amino acids. Key Message: As functional dyspepsia represents a heterogeneous disorder, it may be intriguing to view pepsin as a potential (although still to be proven) treatment modality, distinguished by a diversity of pro-digestive effects.
Collapse
|
10
|
Kitay AM, Geibel JP. Stomach and Bone. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1033:97-131. [DOI: 10.1007/978-3-319-66653-2_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Ishibashi-Shiraishi I, Shiraishi S, Fujita S, Ogawa S, Kaneko M, Suzuki M, Tanaka T. L-Arginine L-Glutamate Enhances Gastric Motor Function in Rats and Dogs and Improves Delayed Gastric Emptying in Dogs. J Pharmacol Exp Ther 2016; 359:238-246. [PMID: 27535977 DOI: 10.1124/jpet.116.234658] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 08/16/2016] [Indexed: 12/20/2022] Open
Abstract
Amino acids are not only constituents of proteins, but also have multiple physiologic functions. Recent findings have revealed that ingested amino acids either activate luminal receptors or are metabolized, causing physiologic reactions in the gastrointestinal (GI) tract. We examined the effect of oral L-arginine L-glutamate (ArgGlu), a pharmaceutical amino acid salt used i.v. for the treatment of hyperammonemia, on gastric motor function in rats and dogs. Gastric emptying was determined using phenol red and 13C-breath test methods, whereas gastric relaxation was determined using the barostat method. ArgGlu (10-30 mg/kg, p.o.) dose-dependently promoted gastric emptying in rats. This effect was dependent on vagus nerve activation and comparable to that of the prokinetic mosapride. Intragastric ArgGlu (3-30 mg/kg intragastrically) also dose-dependently enhanced adaptive relaxation of rat stomachs, which was negated not by vagotomy of gastric branches, but by pretreatment with N omega-nitro-L-arginine methyl ester (20 mg/kg i.v.), a nitric oxide synthase inhibitor. Its relaxing effect on the stomach was also confirmed in dogs and was equally as efficacious as treatment with sumatriptan (1-3 mg/kg s.c.). ArgGlu (30 mg/kg p.o.) significantly reduced the half gastric emptying time in clonidine-induced delayed gastric emptying of solids in dogs, and its effect was comparable to that of cisapride (3 mg/kg p.o.). This study demonstrated that the pharmaceutical ingredient ArgGlu, currently used i.v., enhanced gastric motor function when administered orally, suggesting that it could be a new oral medicine indicated for treatment of upper GI hypofunction or dysfunction like functional dyspepsia.
Collapse
Affiliation(s)
| | - Seiji Shiraishi
- Research Institute, EA Pharma (formerly known as Ajinomoto Pharmaceuticals), Kanagawa, Japan
| | - Shinichi Fujita
- Research Institute, EA Pharma (formerly known as Ajinomoto Pharmaceuticals), Kanagawa, Japan
| | - Saori Ogawa
- Research Institute, EA Pharma (formerly known as Ajinomoto Pharmaceuticals), Kanagawa, Japan
| | - Masahiko Kaneko
- Research Institute, EA Pharma (formerly known as Ajinomoto Pharmaceuticals), Kanagawa, Japan
| | - Manabu Suzuki
- Research Institute, EA Pharma (formerly known as Ajinomoto Pharmaceuticals), Kanagawa, Japan
| | - Tatsuro Tanaka
- Research Institute, EA Pharma (formerly known as Ajinomoto Pharmaceuticals), Kanagawa, Japan
| |
Collapse
|
12
|
Tang L, Cheng CY, Sun X, Pedicone AJ, Mohamadzadeh M, Cheng SX. The Extracellular Calcium-Sensing Receptor in the Intestine: Evidence for Regulation of Colonic Absorption, Secretion, Motility, and Immunity. Front Physiol 2016; 7:245. [PMID: 27458380 PMCID: PMC4914593 DOI: 10.3389/fphys.2016.00245] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 06/03/2016] [Indexed: 12/14/2022] Open
Abstract
Different from other epithelia, the intestinal epithelium has the complex task of providing a barrier impeding the entry of toxins, food antigens, and microbes, while at the same time allowing for the transfer of nutrients, electrolytes, water, and microbial metabolites. These molecules/organisms are transported either transcellularly, crossing the apical and basolateral membranes of enterocytes, or paracellularly, passing through the space between enterocytes. Accordingly, the intestinal epithelium can affect energy metabolism, fluid balance, as well as immune response and tolerance. To help accomplish these complex tasks, the intestinal epithelium has evolved many sensing receptor mechanisms. Yet, their roles and functions are only now beginning to be elucidated. This article explores one such sensing receptor mechanism, carried out by the extracellular calcium-sensing receptor (CaSR). In addition to its established function as a nutrient sensor, coordinating food digestion, nutrient absorption, and regulating energy metabolism, we present evidence for the emerging role of CaSR in the control of intestinal fluid homeostasis and immune balance. An additional role in the modulation of the enteric nerve activity and motility is also discussed. Clearly, CaSR has profound effects on many aspects of intestinal function. Nevertheless, more work is needed to fully understand all functions of CaSR in the intestine, including detailed mechanisms of action and specific pathways involved. Considering the essential roles CaSR plays in gastrointestinal physiology and immunology, research may lead to a translational opportunity for the development of novel therapies that are based on CaSR's unique property of using simple nutrients such as calcium, polyamines, and certain amino acids/oligopeptides as activators. It is possible that, through targeting of intestinal CaSR with a combination of specific nutrients, oral solutions that are both inexpensive and practical may be developed to help in conditioning the gut microenvironment and in maintaining digestive health.
Collapse
Affiliation(s)
- Lieqi Tang
- Department of Pediatrics, Gastroenterology, Hepatology, and Nutrition, University of Florida Gainesville, FL, USA
| | - Catherine Y Cheng
- Department of Pediatrics, Gastroenterology, Hepatology, and Nutrition, University of Florida Gainesville, FL, USA
| | - Xiangrong Sun
- Department of Pediatrics, Gastroenterology, Hepatology, and Nutrition, University of Florida Gainesville, FL, USA
| | - Alexandra J Pedicone
- Department of Pediatrics, Gastroenterology, Hepatology, and Nutrition, University of Florida Gainesville, FL, USA
| | - Mansour Mohamadzadeh
- Department of Medicine, Center for Inflammation and Mucosal Immunology, University of Florida Gainesville, FL, USA
| | - Sam X Cheng
- Department of Pediatrics, Gastroenterology, Hepatology, and Nutrition, University of Florida Gainesville, FL, USA
| |
Collapse
|
13
|
The calcium-sensing receptor and the hallmarks of cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1398-407. [DOI: 10.1016/j.bbamcr.2015.11.017] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 11/17/2015] [Accepted: 11/18/2015] [Indexed: 02/07/2023]
|
14
|
Tae CH, Shim KN, Kim HI, Joo YH, Lee JH, Cho MS, Moon CM, Kim SE, Jung HK, Jung SA. Significance of calcium-sensing receptor expression in gastric cancer. Scand J Gastroenterol 2016; 51:67-72. [PMID: 26153034 DOI: 10.3109/00365521.2015.1064993] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE The calcium-sensing receptor (CaSR) is known to have differential expression in various carcinomas and normal tissues. It has been shown to be involved in carcinogenesis or tumor suppression. However, its role in gastric cancer remains unknown. This study was performed to determine the CaSR expression level in gastric cancer and non-tumor gastric tissues and to examine the related clinicopathological factors. MATERIALS AND METHODS Thirty-one pairs of gastric cancer tissues and matched non-tumor gastric tissues were obtained from surgical tissues after gastrectomy. Using real-time polymerase chain reaction, we measured CaSR mRNA expression. We evaluated the association between CaSR mRNA expression and clinicopathological variables based on the downregulation or upregulation of CaSR mRNA expression in gastric cancer tissues compared to those of matched non-tumor gastric tissues. By immunohistochemistry, we confirmed CaSR expression levels in gastric cancer tissues. RESULTS Downregulation of CaSR mRNA was observed in 77.4% of gastric cancer tissues compared to their matched normal tissues. Downregulated CaSR was associated with a tendency for deeper invasion into the proper muscle (p = 0.028) and more advanced stage (II-IV; p = 0.012). CONCLUSION We conclude that downregulation of CaSR may contribute to the prevention or suppression of tumor outgrowth.
Collapse
Affiliation(s)
- Chung Hyun Tae
- a 1 Department of Health Promotion Medicine, Ewha Womans University School of Medicine, Ewha Medical Research Institute , Seoul, Korea
| | - Ki-Nam Shim
- b 2 Department of Internal Medicine, Ewha Womans University School of Medicine, Ewha Medical Research Institute , Seoul, Korea
| | - Hye In Kim
- b 2 Department of Internal Medicine, Ewha Womans University School of Medicine, Ewha Medical Research Institute , Seoul, Korea
| | - Yang-Hee Joo
- b 2 Department of Internal Medicine, Ewha Womans University School of Medicine, Ewha Medical Research Institute , Seoul, Korea
| | - Joo-Ho Lee
- c 3 Department of Surgery, Ewha Womans University School of Medicine, Ewha Medical Research Institute , Seoul, Korea
| | - Min-Sun Cho
- d 4 Department of Pathology, Ewha Womans University School of Medicine, Ewha Medical Research Institute , Seoul, Korea
| | - Chang Mo Moon
- b 2 Department of Internal Medicine, Ewha Womans University School of Medicine, Ewha Medical Research Institute , Seoul, Korea
| | - Seong-Eun Kim
- b 2 Department of Internal Medicine, Ewha Womans University School of Medicine, Ewha Medical Research Institute , Seoul, Korea
| | - Hye-Kyung Jung
- b 2 Department of Internal Medicine, Ewha Womans University School of Medicine, Ewha Medical Research Institute , Seoul, Korea
| | - Sung-Ae Jung
- b 2 Department of Internal Medicine, Ewha Womans University School of Medicine, Ewha Medical Research Institute , Seoul, Korea
| |
Collapse
|
15
|
Egerod KL, Engelstoft MS, Lund ML, Grunddal KV, Zhao M, Barir-Jensen D, Nygaard EB, Petersen N, Holst JJ, Schwartz TW. Transcriptional and Functional Characterization of the G Protein-Coupled Receptor Repertoire of Gastric Somatostatin Cells. Endocrinology 2015; 156:3909-23. [PMID: 26181106 DOI: 10.1210/en.2015-1388] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In the stomach, somatostatin (SST) acts as a general paracrine negative regulator of exocrine secretion of gastric acid and pepsinogen and endocrine secretion of gastrin, ghrelin, and histamine. Using reporter mice expressing red fluorescent protein (RFP) under control of the SST promotor, we have characterized the G protein-coupled receptors expressed in gastric Sst-RFP-positive cells and probed their effects on SST secretion in primary cell cultures. Surprisingly, besides SST, amylin and PYY were also highly enriched in the SST cells. Several receptors found to regulate SST secretion were highly expressed and/or enriched. 1) The metabolite receptors calcium-sensing receptor and free fatty acid receptor 4 (GPR120) functioned as positive and negative regulators, respectively. 2) Among the neurotransmitter receptors, adrenergic receptors α1a, α2a, α2b, and β1 were all highly expressed, with norepinephrine and isoproterenol acting as positive regulators. The muscarinic receptor M3 acted as a positive regulator, whereas M4 was conceivably a negative regulator. 3) Of the hormone receptors, the GLP-1 and GIP receptors, CCKb (stimulated by both CCK and gastrin) and surprisingly the melanocortin MC1 receptor were all positive regulators. 4) The neuropeptide receptors for calcitonin gene-related peptide, adrenomedullin, and vasoactive intestinal peptide acted as positive regulators, no effect was observed using galanin and nociceptin although transcripts for the corresponding receptors appeared highly expressed. 5) The SST receptors 1 and 2 functioned in an autocrine negative feedback loop. Thus, the article provides a comprehensive map of receptors through which SST secretion is regulated by hormones, neurotransmitters, neuropeptides and metabolites that act directly on the SST cells in the gastric mucosa.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Gastric Mucosa/cytology
- Gastric Mucosa/metabolism
- Glucagon-Like Peptide-1 Receptor/genetics
- Glucagon-Like Peptide-1 Receptor/metabolism
- Humans
- In Situ Hybridization
- Islet Amyloid Polypeptide/genetics
- Islet Amyloid Polypeptide/metabolism
- Luminescent Proteins/genetics
- Luminescent Proteins/metabolism
- Male
- Mice, Knockout
- Mice, Transgenic
- Microscopy, Confocal
- Peptide YY/genetics
- Peptide YY/metabolism
- Receptors, Adrenergic/genetics
- Receptors, Adrenergic/metabolism
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Muscarinic/genetics
- Receptors, Muscarinic/metabolism
- Receptors, Neuropeptide/genetics
- Receptors, Neuropeptide/metabolism
- Receptors, Somatostatin/genetics
- Receptors, Somatostatin/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Somatostatin/genetics
- Somatostatin/metabolism
- Somatostatin-Secreting Cells/metabolism
- Stomach/cytology
- Transcriptome
- Red Fluorescent Protein
Collapse
Affiliation(s)
- Kristoffer L Egerod
- Novo Nordisk Foundation Center for Basic Metabolic Research (K.L.E., M.S.E., M.L.L., K.V.G., M.Z., D.B.-J., E.B.N., N.P., J.J.H., T.W.S.), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Laboratory for Molecular Pharmacology (K.L.E., M.S.E., M.L.L., K.V.G., M.Z., D.B.-J., E.B.N., N.P., T.W.S.), Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Danish Diabetes Academy (M.S.E.), 5000 Odense, Denmark; and Department of Biomedical Sciences (J.J.H.), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Maja S Engelstoft
- Novo Nordisk Foundation Center for Basic Metabolic Research (K.L.E., M.S.E., M.L.L., K.V.G., M.Z., D.B.-J., E.B.N., N.P., J.J.H., T.W.S.), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Laboratory for Molecular Pharmacology (K.L.E., M.S.E., M.L.L., K.V.G., M.Z., D.B.-J., E.B.N., N.P., T.W.S.), Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Danish Diabetes Academy (M.S.E.), 5000 Odense, Denmark; and Department of Biomedical Sciences (J.J.H.), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Mari L Lund
- Novo Nordisk Foundation Center for Basic Metabolic Research (K.L.E., M.S.E., M.L.L., K.V.G., M.Z., D.B.-J., E.B.N., N.P., J.J.H., T.W.S.), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Laboratory for Molecular Pharmacology (K.L.E., M.S.E., M.L.L., K.V.G., M.Z., D.B.-J., E.B.N., N.P., T.W.S.), Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Danish Diabetes Academy (M.S.E.), 5000 Odense, Denmark; and Department of Biomedical Sciences (J.J.H.), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Kaare V Grunddal
- Novo Nordisk Foundation Center for Basic Metabolic Research (K.L.E., M.S.E., M.L.L., K.V.G., M.Z., D.B.-J., E.B.N., N.P., J.J.H., T.W.S.), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Laboratory for Molecular Pharmacology (K.L.E., M.S.E., M.L.L., K.V.G., M.Z., D.B.-J., E.B.N., N.P., T.W.S.), Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Danish Diabetes Academy (M.S.E.), 5000 Odense, Denmark; and Department of Biomedical Sciences (J.J.H.), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Mirabella Zhao
- Novo Nordisk Foundation Center for Basic Metabolic Research (K.L.E., M.S.E., M.L.L., K.V.G., M.Z., D.B.-J., E.B.N., N.P., J.J.H., T.W.S.), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Laboratory for Molecular Pharmacology (K.L.E., M.S.E., M.L.L., K.V.G., M.Z., D.B.-J., E.B.N., N.P., T.W.S.), Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Danish Diabetes Academy (M.S.E.), 5000 Odense, Denmark; and Department of Biomedical Sciences (J.J.H.), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Dominique Barir-Jensen
- Novo Nordisk Foundation Center for Basic Metabolic Research (K.L.E., M.S.E., M.L.L., K.V.G., M.Z., D.B.-J., E.B.N., N.P., J.J.H., T.W.S.), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Laboratory for Molecular Pharmacology (K.L.E., M.S.E., M.L.L., K.V.G., M.Z., D.B.-J., E.B.N., N.P., T.W.S.), Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Danish Diabetes Academy (M.S.E.), 5000 Odense, Denmark; and Department of Biomedical Sciences (J.J.H.), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Eva B Nygaard
- Novo Nordisk Foundation Center for Basic Metabolic Research (K.L.E., M.S.E., M.L.L., K.V.G., M.Z., D.B.-J., E.B.N., N.P., J.J.H., T.W.S.), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Laboratory for Molecular Pharmacology (K.L.E., M.S.E., M.L.L., K.V.G., M.Z., D.B.-J., E.B.N., N.P., T.W.S.), Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Danish Diabetes Academy (M.S.E.), 5000 Odense, Denmark; and Department of Biomedical Sciences (J.J.H.), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Natalia Petersen
- Novo Nordisk Foundation Center for Basic Metabolic Research (K.L.E., M.S.E., M.L.L., K.V.G., M.Z., D.B.-J., E.B.N., N.P., J.J.H., T.W.S.), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Laboratory for Molecular Pharmacology (K.L.E., M.S.E., M.L.L., K.V.G., M.Z., D.B.-J., E.B.N., N.P., T.W.S.), Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Danish Diabetes Academy (M.S.E.), 5000 Odense, Denmark; and Department of Biomedical Sciences (J.J.H.), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jens J Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research (K.L.E., M.S.E., M.L.L., K.V.G., M.Z., D.B.-J., E.B.N., N.P., J.J.H., T.W.S.), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Laboratory for Molecular Pharmacology (K.L.E., M.S.E., M.L.L., K.V.G., M.Z., D.B.-J., E.B.N., N.P., T.W.S.), Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Danish Diabetes Academy (M.S.E.), 5000 Odense, Denmark; and Department of Biomedical Sciences (J.J.H.), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Thue W Schwartz
- Novo Nordisk Foundation Center for Basic Metabolic Research (K.L.E., M.S.E., M.L.L., K.V.G., M.Z., D.B.-J., E.B.N., N.P., J.J.H., T.W.S.), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Laboratory for Molecular Pharmacology (K.L.E., M.S.E., M.L.L., K.V.G., M.Z., D.B.-J., E.B.N., N.P., T.W.S.), Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Danish Diabetes Academy (M.S.E.), 5000 Odense, Denmark; and Department of Biomedical Sciences (J.J.H.), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
16
|
Alfadda TI, Saleh AMA, Houillier P, Geibel JP. Calcium-sensing receptor 20 years later. Am J Physiol Cell Physiol 2014; 307:C221-31. [PMID: 24871857 PMCID: PMC4121584 DOI: 10.1152/ajpcell.00139.2014] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 05/23/2014] [Indexed: 12/19/2022]
Abstract
The calcium-sensing receptor (CaSR) has played an important role as a target in the treatment of a variety of disease states over the past 20 plus years. In this review, we give an overview of the receptor at the cellular level and then provide details as to how this receptor has been targeted to modulate cellular ion transport mechanisms. As a member of the G protein-coupled receptor (GPCR) family, it has a high degree of homology with a variety of other members in this class, which could explain why this receptor has been identified in so many different tissues throughout the body. This diversity of locations sets it apart from other members of the family and may explain how the receptor interacts with so many different organ systems in the body to modulate the physiology and pathophysiology. The receptor is unique in that it has two large exofacial lobes that sit in the extracellular environment and sense changes in a wide variety of environmental cues including salinity, pH, amino acid concentration, and polyamines to name just a few. It is for this reason that there has been a great deal of research associated with normal receptor physiology over the past 20 years. With the ongoing research, in more recent years a focus on the pathophysiology has emerged and the effects of receptor mutations on cellular and organ physiology have been identified. We hope that this review will enhance and update the knowledge about the importance of this receptor and stimulate future potential investigations focused around this receptor in cellular, organ, and systemic physiology and pathophysiology.
Collapse
Affiliation(s)
- Tariq I Alfadda
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut
| | - Ahmad M A Saleh
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut
| | - Pascal Houillier
- INSERM UMR_S1138, Paris, France; Paris Descartes University, Paris, France; Assistance Publique-Hopitaux de Paris, Hopital Europeen Georges Pompidou, Paris, France
| | - John P Geibel
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut; Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut; and
| |
Collapse
|
17
|
XIE RUI, TANG BO, YONG XIN, LUO GANG, YANG SHIMING. Roles of the calcium sensing receptor in digestive physiology and pathophysiology (Review). Int J Oncol 2014; 45:1355-62. [DOI: 10.3892/ijo.2014.2560] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 04/30/2014] [Indexed: 11/06/2022] Open
|
18
|
Emerging roles of the extracellular calcium-sensing receptor in nutrient sensing: control of taste modulation and intestinal hormone secretion. Br J Nutr 2014; 111 Suppl 1:S16-22. [PMID: 24382107 DOI: 10.1017/s0007114513002250] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The extracellular Ca-sensing receptor (CaSR) is a sensor for a number of key nutrients within the body, including Ca ions (Ca²⁺) and L-amino acids. The CaSR is expressed in a number of specialised cells within the gastrointestinal (GI) tract, and much work has been done to examine CaSR's role as a nutrient sensor in this system. This review article examines two emerging roles for the CaSR within the GI tract--as a mediator of kokumi taste modulation in taste cells and as a regulator of dietary hormone release in response to L-amino acids in the intestine.
Collapse
|
19
|
Epithelial calcium-sensing receptor activation by eosinophil granule protein analog stimulates collagen matrix contraction. Pediatr Res 2013; 73:414-9. [PMID: 23269116 PMCID: PMC4321999 DOI: 10.1038/pr.2012.198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Eosinophils reside in normal gastrointestinal tracts and increase during disease states. Receptors for eosinophil-derived granule proteins (EDGPs) have not been identified, but highly cationic molecules, similar to eosinophil proteins, bind extracellular calcium-sensing receptors (CaSRs). We hypothesized that stimulation of CaSRs by eosinophil proteins activates epithelial cells. METHODS Caco2 intestinal epithelial cells, AML14.3D10 eosinophils, wild-type (WT) human embryonic kidney 293 (HEK293) cells not expressing CaSRs (HEK-WT), and CaSR-transfected HEK293 cells (HEK-CaSR) were stimulated with an eosinophil protein analog poly-L-arginine (PA) and phosphorylated extracellular signal-regulated kinase (pERK)1 and pERK2 were measured. Functional activation was measured with collagen lattice contraction assays. RESULTS Coculture of Caco2 cells with AML14.3D10 eosinophils augmented lattice contraction as compared with lattices containing Caco2 cells alone. PA stimulation of Caco2 lattices augmented contraction. HEK-CaSR stimulation with PA or Ca(2+) resulted in greater pERK activation than that of stimulated HEK-WT cells. PA stimulated greater HEK-CaSR lattice contraction than unstimulated lattices. Contraction of PA-stimulated and PA-unstimulated HEK-WT lattices did not differ. CONCLUSION Exposure of intestinal epithelia to the EDGP analog PA stimulates CaSR-dependent ERK phosphorylation and epithelial-mediated collagen lattice contraction. We speculate that EDGP release within the epithelial layers activates the CaSR receptor, leading to matrix contraction and tissue fibrosis.
Collapse
|
20
|
Kopic S, Geibel JP. Gastric acid, calcium absorption, and their impact on bone health. Physiol Rev 2013; 93:189-268. [PMID: 23303909 DOI: 10.1152/physrev.00015.2012] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Calcium balance is essential for a multitude of physiological processes, ranging from cell signaling to maintenance of bone health. Adequate intestinal absorption of calcium is a major factor for maintaining systemic calcium homeostasis. Recent observations indicate that a reduction of gastric acidity may impair effective calcium uptake through the intestine. This article reviews the physiology of gastric acid secretion, intestinal calcium absorption, and their respective neuroendocrine regulation and explores the physiological basis of a potential link between these individual systems.
Collapse
Affiliation(s)
- Sascha Kopic
- Department of Surgery and Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
21
|
Karohl C, Raggi P. Cinacalcet: will it play a role in reducing cardiovascular events? Future Cardiol 2012; 8:357-70. [PMID: 22420327 DOI: 10.2217/fca.11.82] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Secondary hyperparathyroidism is a common complication of chronic kidney disease and it is associated with high morbidity and mortality. It is characterized by high parathyroid hormone levels and bone turnover leading to bone pain, deformity and fragility. Furthermore, secondary hyperparathyroidism adversely affects the cardiovascular system and has been associated with cardiovascular calcification and cardiomyopathy. Cinacalcet, a type II calcimimetic, is an effective and well-tolerated oral therapy for the management of secondary hyperparathyroidism. It is an allosteric activator of the calcium-sensing receptor enhancing sensitivity of parathyroid cells to extracellular calcium, which leads to inhibition of parathyroid hormone secretion. The calcium-sensing receptor expression in cardiomyocytes, endothelial cells and vascular smooth muscle cells raises the possibility that this receptor may be implicated in the pathophysiology of cardiovascular disease and constitute a potential therapeutic target. This article reviews the role of the calcimimetic agent cinacalcet in the prevention and progression of cardiovascular calcification and uremic cardiomyopathy in the chronic kidney disease setting.
Collapse
Affiliation(s)
- Cristina Karohl
- Division of Cardiology & Department of Medicine, Emory University, 1365 Clifton Rd NE, AT-504, Atlanta, GA 30322, USA
| | | |
Collapse
|
22
|
Abstract
The calcium-sensing receptor (CaR) is the key controller of extracellular calcium (Ca(2+)(o)) homeostasis via its regulation of parathyroid hormone (PTH) secretion and renal Ca(2+) reabsorption. The CaR-selective calcimimetic drug Cinacalcet stimulates the CaR to suppress PTH secretion in chronic kidney disease and represents the world's first clinically available receptor positive allosteric modulator (PAM). Negative CaR allosteric modulators (NAMs), known as calcilytics, can increase PTH secretion and are being investigated as possible bone anabolic treatments against age-related osteoporosis. Here we address the current state of development and clinical use of a series of positive and negative CaR modulators. In addition, clinical CaR mutations and transgenic mice carrying tissue-specific CaR deletions have provided a novel understanding of the relative functional importance of CaR in both calciotropic tissues and those elsewhere in the body. The development of CaR-selective modulators and signalling reagents have provided us with a more detailed appreciation of how the CaR signals in vivo. Thus, both of these areas of CaR research will be reviewed.
Collapse
Affiliation(s)
- Donald T Ward
- Faculty of Life Sciences, The University of ManchesterManchester, UK
| | | |
Collapse
|
23
|
Chia PW, Brennan SC, Slawin AMZ, Riccardi D, O'Hagan D. Allosteric agonists of the calcium receptor (CaR): fluorine and SF5 analogues of cinacalcet. Org Biomol Chem 2012; 10:7922-7. [DOI: 10.1039/c2ob26402a] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
24
|
Nutrient sensing receptors in gastric endocrine cells. J Mol Histol 2011; 42:355-64. [PMID: 21750971 DOI: 10.1007/s10735-011-9339-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 07/05/2011] [Indexed: 10/18/2022]
Abstract
Sensing protein breakdown products in the luminal content is of particular importance for the regulation of digestive activities in the stomach which are mainly governed by gastric hormones. The molecular basis for tuning the release of hormones according to the protein content is still elusive. In this study we have analysed the murine stomach for candidate nutrient receptors. As a promising candidate we have concentrated on the broadly tuned amino acid receptor GPRC6A. Expression of GPRC6A could be demonstrated in different regions of the murine stomach; especially in the gastric antrum. Using immunohistochemical approaches, a large cell population of GPRC6A-positive cells was visualized in the basal half of the antral gastric mucosa. Molecular phenotyping of GPRC6A-immunoreactive cells revealed that most of them contained the peptide hormone gastrin. A small population turned out to be immunoreactive for somatostatin. In search for additional amino acid receptors in antral gastric mucosa, we obtained evidence for expression of the gustatory amino acid receptor subunit T1R3 and the calcium-sensing receptor CaSR. Many CaSR-cells were found in the gastric antrum and most of them also contained gastrin; very similar to GPRC6A-cells. In contrast, T1R3 was found only in a small population of gastrin-negative cells. The finding that GPRC6A-and CaSR-receptors are both expressed in many if not all gastrin cells strongly suggests that both receptor types are co-expressed in the same cells, where they could form heterodimers providing a unique response spectrum of these cells.
Collapse
|
25
|
Abstract
Acid-related disorders represent a major healthcare concern. In recent years, our understanding of the physiologic processes underlying gastric acid secretion has improved notably. The identity of several apical ion transport proteins, which are necessary for acid secretion to take place, has been resolved. The recent developments have uncovered potential therapeutic targets for the treatment of acid-related disorders. This brief review provides an update on the mechanisms of gastric acid secretion, with a particular focus on apical ion transport.
Collapse
Affiliation(s)
- Sascha Kopic
- Departments of Surgery and Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| | | |
Collapse
|
26
|
Calcium-sensing receptor is a physiologic multimodal chemosensor regulating gastric G-cell growth and gastrin secretion. Proc Natl Acad Sci U S A 2010; 107:17791-6. [PMID: 20876097 DOI: 10.1073/pnas.1009078107] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The calcium-sensing receptor (CaR) is the major sensor and regulator of extracellular Ca(2+), whose activity is allosterically regulated by amino acids and pH. Recently, CaR has been identified in the stomach and intestinal tract, where it has been proposed to function in a non-Ca(2+) homeostatic capacity. Luminal nutrients, such as Ca(2+) and amino acids, have been recognized for decades as potent stimulants for gastrin and acid secretion, although the molecular basis for their recognition remains unknown. The expression of CaR on gastrin-secreting G cells in the stomach and their shared activation by Ca(2+), amino acids, and elevated pH suggest that CaR may function as the elusive physiologic sensor regulating gastrin and acid secretion. The genetic and pharmacologic studies presented here comparing CaR-null mice and wild-type littermates support this hypothesis. Gavage of Ca(2+), peptone, phenylalanine, Hepes buffer (pH 7.4), and CaR-specific calcimimetic, cinacalcet, stimulated gastrin and acid secretion, whereas the calcilytic, NPS 2143, inhibited secretion only in the wild-type mouse. Consistent with known growth and developmental functions of CaR, G-cell number was progressively reduced between 30 and 90 d of age by more than 65% in CaR-null mice. These studies of nutrient-regulated G-cell gastrin secretion and growth provide definitive evidence that CaR functions as a physiologically relevant multimodal sensor. Medicinals targeting diseases of Ca(2+) homeostasis should be reviewed for effects outside traditional Ca(2+)-regulating tissues in view of the broader distribution and function of CaR.
Collapse
|
27
|
Xing W, Li G, Xi Y, Guo J, Li H, Li H, Zhang W, Zhang L, Wu L, Wang R, Xu C. The functional expression of calcium-sensing receptors in BRL cells and related signal transduction pathway responsible for intracellular calcium elevation. Mol Cell Biochem 2010; 343:13-9. [DOI: 10.1007/s11010-010-0493-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 05/05/2010] [Indexed: 11/29/2022]
|
28
|
Khan MA, Conigrave AD. Mechanisms of multimodal sensing by extracellular Ca(2+)-sensing receptors: a domain-based survey of requirements for binding and signalling. Br J Pharmacol 2010; 159:1039-50. [PMID: 20136834 DOI: 10.1111/j.1476-5381.2009.00603.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In this article we consider the molecular basis of sensing and signalling by the extracellular calcium-sensing receptor. We consider the nature of its ligands and sensing modalities, the identities of its major protein domains and their roles in sensing, signalling and trafficking as well as the significance of receptor homo- and hetero-dimerization. Finally, we consider the current, incomplete, state of knowledge regarding the requirements for ligand-specific signalling.
Collapse
|
29
|
Abstract
The parietal cell is responsible for secreting concentrated hydrochloric acid into the gastric lumen. To fulfill this task, it is equipped with a broad variety of functionally coupled apical and basolateral ion transport proteins. The concerted scientific effort over the last years by a variety of researchers has provided us with the molecular identity of many of these transport mechanisms, thereby contributing to the clarification of persistent controversies in the field. This article will briefly review the current model of parietal cell physiology and ion transport in particular and will update the existing models of apical and basolateral transport in the parietal cell.
Collapse
Affiliation(s)
- Sascha Kopic
- Department of Surgery, Yale University, School of Medicine, New Haven, Connecticut
| | - Michael Murek
- Department of Surgery, Yale University, School of Medicine, New Haven, Connecticut
| | - John P. Geibel
- Department of Surgery, Yale University, School of Medicine, New Haven, Connecticut
| |
Collapse
|
30
|
AMP-activated protein kinase: a physiological off switch for murine gastric acid secretion. Pflugers Arch 2009; 459:39-46. [DOI: 10.1007/s00424-009-0698-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Revised: 06/11/2009] [Accepted: 06/30/2009] [Indexed: 10/20/2022]
|
31
|
Geibel JP, Hebert SC. The Functions and Roles of the Extracellular Ca2+–Sensing Receptor along the Gastrointestinal Tract. Annu Rev Physiol 2009; 71:205-17. [DOI: 10.1146/annurev.physiol.010908.163128] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- John P. Geibel
- Department of Surgery, Yale University School of Medicine, New Haven, Connecticut 06520;
| | - Steven C. Hebert
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520
| |
Collapse
|
32
|
Khropycheva R, Uneyama H, Torii K, Zolotarev V. Dietary monosodium glutamate enhances gastric secretion. THE JOURNAL OF MEDICAL INVESTIGATION 2009; 56 Suppl:218-23. [DOI: 10.2152/jmi.56.218] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Raisa Khropycheva
- Laboratory of Physiology of Digestion, Pavlov Institute of Physiology of the Russian Academy of Sciences
| | - Hisayuki Uneyama
- Physiology and Nutrition Group, Institute of Life Sciences, Ajinomoto Co., Inc
| | - Kunio Torii
- Physiology and Nutrition Group, Institute of Life Sciences, Ajinomoto Co., Inc
| | - Vasiliy Zolotarev
- Laboratory of Physiology of Digestion, Pavlov Institute of Physiology of the Russian Academy of Sciences
| |
Collapse
|
33
|
San Gabriel A, Uneyama H, Maekawa T, Torii K. The calcium-sensing receptor in taste tissue. Biochem Biophys Res Commun 2008; 378:414-8. [PMID: 19056349 DOI: 10.1016/j.bbrc.2008.11.060] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Accepted: 11/08/2008] [Indexed: 10/21/2022]
Abstract
Calcium is an essential nutrient that induces a distinctive taste quality, but the sensing mechanism of calcium in the tongue is poorly understood. A recent study linked calcium to T1R3 receptor. Here, we propose another system for calcium taste involving the extracellular calcium-sensing receptor (CaSR). This G protein-coupled receptor that responds to calcium and magnesium cations is involved in calcium homeostasis regulating parathyroid and kidney functions. In this study, CaSR was found in isolated taste buds from rats and mice. It was expressed in a subset of cells in circumvallate and foliate papillae, with fewer cells in the fungiform papillae. This is the first evidence in mammals that locates CaSR in gustatory tissue and provides the basis for better understanding not only calcium taste but also the taste of multiple CaSR agonists.
Collapse
Affiliation(s)
- Ana San Gabriel
- Institute of Life Sciences, Ajinomoto Co. Inc., Suzuki-cho 1-1, Kawasaki-ku, Kawasaki 210-8681, Japan
| | | | | | | |
Collapse
|
34
|
Davies SL, Gibbons CE, Steward MC, Ward DT. Extracellular calcium- and magnesium-mediated regulation of passive calcium transport across Caco-2 monolayers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:2318-24. [DOI: 10.1016/j.bbamem.2008.05.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Revised: 05/28/2008] [Accepted: 05/29/2008] [Indexed: 01/09/2023]
|
35
|
Conigrave AD, Brown EM, Rizzoli R. Dietary Protein and Bone Health: Roles of Amino Acid–Sensing Receptors in the Control of Calcium Metabolism and Bone Homeostasis. Annu Rev Nutr 2008; 28:131-55. [DOI: 10.1146/annurev.nutr.28.061807.155328] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- A. D. Conigrave
- School of Molecular and Microbial Biosciences, University of Sydney, NSW 2006, Australia;
| | - E. M. Brown
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Boston, Massachusetts
| | - R. Rizzoli
- Service of Bone Diseases, WHO Collaborating Center for Osteoporosis Prevention, Department of Rehabilitation and Geriatrics, University Hospital of Geneva, Switzerland
| |
Collapse
|
36
|
Justinich CJ, Mak N, Pacheco I, Mulder D, Wells RW, Blennerhassett MG, MacLeod RJ. The extracellular calcium-sensing receptor (CaSR) on human esophagus and evidence of expression of the CaSR on the esophageal epithelial cell line (HET-1A). Am J Physiol Gastrointest Liver Physiol 2008; 294:G120-9. [PMID: 17962359 DOI: 10.1152/ajpgi.00226.2006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Gastrointestinal reflux disease and eosinophilic esophagitis are characterized by basal cell hyperplasia. The extracellular calcium-sensing receptor (CaSR), a G protein-coupled receptor, which may be activated by divalent agonists, is expressed throughout the gastrointestinal system. The CaSR may regulate proliferation or differentiation, depending on cell type and tissue. The current experiments demonstrate the expression of the CaSR on a human esophageal epithelial cell line (HET-1A) and the location and expression of the CaSR in the human esophagus. CaSR immunoreactivity was seen in the basal layer of normal human esophagus. CaSR expression was confirmed in HET-1A cells by RT-PCR, immunocytochemistry, and Western blot analysis. CaSR stimulation by extracellular calcium or agonists, such as spermine or Mg(2+), caused ERK1 and 2 activation, intracellular calcium concentration ([Ca(2+)](i)) mobilization (as assessed by microspecfluorometry using Fluo-4), and secretion of the multifunctional cytokine IL-8 (CX-CL8). HET-1A cells transiently transfected with small interfering (si)RNA duplex against the CaSR manifested attenuated responses to Ca(2+) stimulation of phospho- (p)ERK1 and 2, [Ca(2+)](i) mobilization, and IL-8 secretion, whereas responses to acetylcholine (ACh) remained sustained. An inhibitor of phosphatidylinositol-specific phospholipase C (PI-PLC) (U73122) blocked CaSR-stimulated [Ca(2+)](i) release. We conclude that the CaSR is present on basal cells of the human esophagus and is present in a functional manner on the esophageal epithelial cell line, HET-1A.
Collapse
|
37
|
Dawson-Hughes B, Harris SS, Rasmussen HM, Dallal GE. Comparative effects of oral aromatic and branched-chain amino acids on urine calcium excretion in humans. Osteoporos Int 2007; 18:955-61. [PMID: 17252311 DOI: 10.1007/s00198-006-0320-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Accepted: 12/20/2006] [Indexed: 10/23/2022]
Abstract
UNLABELLED In 30 adults, increasing intake of aromatic amino acids increased calcium excretion and serum IGF-1, but not indices of bone turnover, when compared with similar increases in intake of branched-chain amino acids. The mechanisms involved are not certain but these findings suggest a role for the calcium sensor receptor. INTRODUCTION In contrast to branched-chain amino acids (BCAAs), aromatic amino acids (AAAs) bind to the calcium sensing receptor (CaR) and thus have an increased potential to affect calcium homeostasis. In this study we compare the effects of increased intake of AAAs versus BCAAs on calcium excretion, serum IGF-1, markers of bone turnover, and 4-hr calcium excretion after an oral calcium load. METHODS After two weeks on low-protein metabolic diets, 30 healthy subjects were randomized to a fivefold increase in intake of AAAs or BCAAs for two weeks. Changes in calcium excretion and other measures were compared in the two groups. RESULTS With the increase in amino acid intake, 24-hr calcium excretion (P = 0.027), IGF-1 (P = 0.022), and 4-hr calcium excretion after an oral load (P = 0.023) increased significantly in the AAA relative to the BCAA group. Group changes in turnover markers did not differ significantly. CONCLUSION In comparison with BCAAs, AAAs promoted calcium excretion. The calciuria does not appear to result from increases in bone resorption and may occur by increasing calcium absorption. The AAAs also increased circulating levels of IGF-1. Collectively these findings raise the possibility that AAAs may selectively influence calcium homeostasis through their interactions with the CaR.
Collapse
Affiliation(s)
- B Dawson-Hughes
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111, USA.
| | | | | | | |
Collapse
|
38
|
Kosiek O, Busque SM, Föller M, Shcheynikov N, Kirchhoff P, Bleich M, Muallem S, Geibel JP. SLC26A7 can function as a chloride-loading mechanism in parietal cells. Pflugers Arch 2007; 454:989-98. [PMID: 17404755 DOI: 10.1007/s00424-007-0254-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Revised: 03/07/2007] [Accepted: 03/13/2007] [Indexed: 01/23/2023]
Abstract
To date three potential candidates for parietal cell basolateral Cl(-) entry have been described: the highly 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS)-sensitive Cl(-)/HCO(3)(-) exchanger AE2, the HCO(3)(-) and lowly DIDS-sensitive SLC26A7 protein, and the Na(+)-2Cl(-)K(+) cotransporter (NKCC1). In this study we investigate the contribution of these pathways to secretagogue stimulated acid secretion. Individually hand-dissected rat gastric glands were microfluorimetrically monitored for Cl(-) influx and pH(i) changes. Transporter activity was determined by varying ion content and through the use of pharmacological inhibitors. Expression of SLC26A7 in rat parietal cells was shown by immunohistochemistry and Western blot. SLC26A7 was inhibited by 5-Nitro-2-(3-phenylpropyl-amino)benzoic acid (NPPB) (100 microM) in the Xenopus laevis oocyte expression system. Cl(-) influx in parietal cells was enhanced by histamine, depended partially on endogenous HCO(3)(-) synthesis and completely on extracellular Na(+). Removal and subsequent readdition of Cl(-) revealed a low and a high DIDS-sensitive HCO(3)(-) extrusion system contributing to Cl(-) uptake. At acidic pH(i), however, H(+) extrusion via the H(+),K(+)-ATPase depending on Cl(-) uptake was abolished only in the presence of 100 microM (NPPB) and at high (250 microM) DIDS concentration. There was no effect of the NKCC inhibitor bumetanide on stimulated H(+) extrusion. These results would be compatible with SLC26A7 as a Cl(-) uptake system under histamine stimulation.
Collapse
Affiliation(s)
- Ortrud Kosiek
- Department of Surgery, Yale University School of Medicine, BML 265, 310 Cedar Street, New Haven, CT, 06520, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Sidani SM, Kirchhoff P, Socrates T, Stelter L, Ferreira E, Caputo C, Roberts KE, Bell RL, Egan ME, Geibel JP. ΔF508 Mutation Results in Impaired Gastric Acid Secretion. J Biol Chem 2007; 282:6068-74. [PMID: 17178714 DOI: 10.1074/jbc.m608427200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is recognized as a multifunctional protein that is involved in Cl(-) secretion, as well as acting as a regulatory protein. In order for acid secretion to take place a complex interaction of transport proteins and channels must occur at the apical pole of the parietal cell. Included in this process is at least one K(+) and Cl(-) channel, allowing for both recycling of K(+) for the H,K-ATPase, and Cl(-) secretion, necessary for the generation of concentrated HCl in the gastric gland lumen. We have previously shown that an ATP-sensitive potassium channel (K(ATP)) is expressed in parietal cells. In the present study we measured secretagogue-induced acid secretion from wild-type and DeltaF508-deficient mice in isolated gastric glands and whole stomach preparations. Secretagogue-induced acid secretion in wild-type mouse gastric glands could be significantly reduced with either glibenclamide or the specific inhibitor CFTR-inh172. In DeltaF508-deficient mice, however, histamine-induced acid secretion was significantly less than in wild-type mice. Furthermore, immunofluorescent localization of sulfonylurea 1 and 2 failed to show expression of a sulfonylurea receptor in the parietal cell, thus further implicating CFTR as the ATP-binding cassette transporter associated with the K(ATP) channels. These results demonstrate a regulatory role for the CFTR protein in normal gastric acid secretion.
Collapse
Affiliation(s)
- Shafik M Sidani
- Department of Surgery, Yale University, New Haven, Connecticut 06520, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Brown EM. Clinical lessons from the calcium-sensing receptor. ACTA ACUST UNITED AC 2007; 3:122-33. [PMID: 17237839 DOI: 10.1038/ncpendmet0388] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Accepted: 07/21/2006] [Indexed: 11/09/2022]
Abstract
The extracellular calcium ion (Ca(2+)(e))-sensing receptor (CaR) enables key tissues that maintain Ca(2+)(e) homeostasis to sense changes in the Ca(2+)(e) concentration. These tissues respond to changes in Ca(2+)(e) with functional alterations that will help restore Ca(2+)(e) to normal. For instance, decreases in Ca(2+)(e) act via the CaR to stimulate secretion of parathyroid hormone-a Ca(2+)(e)-elevating hormone-and to increase renal tubular calcium reabsorption; each response helps promote normalization of Ca(2+)(e) levels. Further work is needed to determine whether the CaR regulates other parameters of renal function (e.g. 1,25-dihydroxyvitamin D(3) synthesis, intestinal absorption of mineral ions, and/or bone turnover). Identification of the CaR has also elucidated the pathogenesis and pathophysiology of inherited disorders of mineral and electrolyte metabolism; moreover, acquired abnormalities of Ca(2+)(e)-sensing can result from autoimmunity to the CaR, and reduced CaR expression in the parathyroid may contribute to the abnormal parathyroid secretory control that is observed in primary and secondary hyperparathyroidism. Finally, calcimimetics-allosteric activators of the CaR-treat secondary hyperparathyroidism effectively in end-stage renal failure.
Collapse
Affiliation(s)
- Edward M Brown
- Division of Endocrinology, Diabetes and Hypertension at Brigham and Women's Hospital in Boston, MA, USA.
| |
Collapse
|
41
|
Walsh BM, Naik HB, Dubach JM, Beshire M, Wieland AM, Soybel DI. Thiol-oxidant monochloramine mobilizes intracellular Ca2+ in parietal cells of rabbit gastric glands. Am J Physiol Cell Physiol 2007; 293:C1687-97. [PMID: 17287368 DOI: 10.1152/ajpcell.00189.2006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In Helicobacter pylori-induced gastritis, oxidants are generated through the interactions of bacteria in the lumen, activated granulocytes, and cells of the gastric mucosa. In this study we explored the ability of one such class of oxidants, represented by monochloramine (NH(2)Cl), to serve as agonists of Ca(2+) accumulation within the parietal cell of the gastric gland. Individual gastric glands isolated from rabbit mucosa were loaded with fluorescent reporters for Ca(2+) in the cytoplasm (fura-2 AM) or intracellular stores (mag-fura-2 AM). Conditions were adjusted to screen out contributions from metal cations such as Zn(2+), for which these reporters have affinity. Exposure to NH(2)Cl (up to 200 microM) led to dose-dependent increases in intracellular Ca(2+) concentration ([Ca(2+)](i)), in the range of 200-400 nM above baseline levels. These alterations were prevented by pretreatment with the oxidant scavenger vitamin C or a thiol-reducing agent, dithiothreitol (DTT), which shields intracellular thiol groups from oxidation by chlorinated oxidants. Introduction of vitamin C during ongoing exposure to NH(2)Cl arrested but did not reverse accumulation of Ca(2+) in the cytoplasm. In contrast, introduction of DTT or N-acetylcysteine permitted arrest and partial reversal of the effects of NH(2)Cl. Accumulation of Ca(2+) in the cytoplasm induced by NH(2)Cl is due to release from intracellular stores, entry from the extracellular fluid, and impaired extrusion. Ca(2+)-handling proteins are susceptible to oxidation by chloramines, leading to sustained increases in [Ca(2+)](i). Under certain conditions, NH(2)Cl may act not as an irritant but as an agent that activates intracellular signaling pathways. Anti-NH(2)Cl strategies should take into account different effects of oxidant scavengers and thiol-reducing agents.
Collapse
Affiliation(s)
- Breda M Walsh
- Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
42
|
Remy C, Kirchhoff P, Hafner P, Busque SM, Müeller MK, Geibel JP, Wagner CA. Stimulatory Pathways of the Calcium-Sensing Receptor on Acid Secretion in Freshly Isolated Human Gastric Glands. Cell Physiol Biochem 2007; 19:33-42. [PMID: 17310098 DOI: 10.1159/000099190] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2006] [Indexed: 11/19/2022] Open
Abstract
Gastric acid secretion is not only stimulated via the classical known neuronal and hormonal pathways but also by the Ca(2+)-Sensing Receptor (CaSR) located at the basolateral membrane of the acid-secretory gastric parietal cell. Stimulation of CaSR with divalent cations or the potent agonist Gd(3+) leads to activation of the H(+)/K(+)-ATPase and subsequently to gastric acid secretion. Here we investigated the intracellular mechanism(s) mediating the effects of the CaSR on H(+)/K(+)-ATPase activity in freshly isolated human gastric glands. Inhibition of heterotrimeric G-proteins (G(i) and G(o)) with pertussis toxin during stimulation of the CaSR with Gd(3+) only partly reduced the observed stimulatory effect. A similar effect was observed with the PLC inhibitor U73122. The reduction of the H(+)/K(+)-ATPase activity measured after incubation of gastric glands with BAPTA-AM, a chelator of intracellular Ca(2+), showed that intracellular Ca(2+) plays an important role in the signalling cascade. TMB-8, a ER Ca(2+)store release inhibitor, prevented the stimulation of H(+)/K(+)-ATPase activity. Also verapamil, an inhibitor of L-type Ca(2+)-channels reduced stimulation suggesting that both the release of intracellular Ca(2+) from the ER as well as Ca(2+) influx into the cell are involved in CaSR-mediated H(+)/K(+)-ATPase activation. Chelerythrine, a general inhibitor of protein kinase C, and Go 6976 which selectively inhibits Ca(2+)-dependent PKC(alpha) and PKC(betaI)-isozymes completely abolished the stimulatory effect of Gd(3+). In contrast, Ro 31-8220, a selective inhibitor of the Ca(2+)-independent PKCepsilon and PKC-delta isoforms reduced the stimulatory effect of Gd(3+) only about 60 %. On the other hand, activation of PKC with DOG led to an activation of H(+)/K(+)-ATPase activity which was only about 60 % of the effect observed with Gd(3+). Incubation of the parietal cells with PD 098059 to inhibit ERK1/2 MAP-kinases showed a significant reduction of the Gd(3+) effect. Thus, in the human gastric parietal cell the CaSR is coupled to pertussis toxin sensitive heterotrimeric G-Proteins and requires calcium to enhance the activity of the proton-pump. PLC, ERK 1/2 MAP-kinases as well as Ca(2+) dependent and Ca(2+)-independent PKC isoforms are part of the down-stream signalling cascade.
Collapse
Affiliation(s)
- Christine Remy
- Institute of Physiology and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zürich, Schweiz
| | | | | | | | | | | | | |
Collapse
|
43
|
Conigrave AD, Hampson DR. Broad-spectrum L-amino acid sensing by class 3 G-protein-coupled receptors. Trends Endocrinol Metab 2006; 17:398-407. [PMID: 17085057 DOI: 10.1016/j.tem.2006.10.012] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Revised: 10/04/2006] [Accepted: 10/24/2006] [Indexed: 01/24/2023]
Abstract
The sensing of nutrients is essential to the control of growth and metabolism. Although the sensing mechanisms responsible for the detection and coordination of metabolic responses to some nutrients, most notably glucose, are well understood, the molecular basis of amino acid sensing by cells and tissues is only now emerging. In this article, we consider evidence that some members of G-protein-coupled receptor class 3 are broad-spectrum amino acid sensors that couple changes in extracellular amino acid levels to the activation of intracellular signaling pathways. In particular, we consider both the molecular basis of specific and broad-spectrum amino acid sensing by different members of class 3 and the physiological significance of broad spectrum amino acid sensing by the extracellular calcium-sensing receptor, heterodimeric taste receptors and the recently "deorphanized" receptor GPRC6A and its goldfish homolog, the 5.24 chemoreceptor.
Collapse
Affiliation(s)
- Arthur D Conigrave
- School of Molecular and Microbial Biosciences, University of Sydney, NSW 2006, Australia.
| | | |
Collapse
|
44
|
Conigrave AD, Brown EM. Taste receptors in the gastrointestinal tract. II. L-amino acid sensing by calcium-sensing receptors: implications for GI physiology. Am J Physiol Gastrointest Liver Physiol 2006; 291:G753-61. [PMID: 17030896 DOI: 10.1152/ajpgi.00189.2006] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The extracellular calcium-sensing receptor (CaR) is a multimodal sensor for several key nutrients, notably Ca2+ ions and L-amino acids, and is expressed abundantly throughout the gastrointestinal tract. While its role as a Ca2+ ion sensor is well recognized, its physiological significance as an L-amino acid sensor and thus, in the gastrointestinal tract, as a sensor of protein ingestion is only now coming to light. This review focuses on the CaR's amino acid sensing properties at both the molecular and cellular levels and considers new and putative physiological roles for the CaR in the amino acid-dependent regulation of gut hormone secretion, epithelial transport, and satiety.
Collapse
Affiliation(s)
- Arthur D Conigrave
- School of Molecular and Microbial Biosciences, University of Sydney, NSW 2006, Australia.
| | | |
Collapse
|
45
|
Ryan ZC, Craig TA, Venyaminov SY, Thompson JR, Kumar R. Biophysical properties of the extra-cellular domain of the calcium-sensing receptor. Biochem Biophys Res Commun 2006; 349:339-44. [PMID: 16938272 DOI: 10.1016/j.bbrc.2006.08.047] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2006] [Accepted: 08/11/2006] [Indexed: 10/24/2022]
Abstract
The Calcium-Sensing Receptor (CaSR) is a G-protein-coupled receptor that regulates calcium homeostasis by altering parathyroid hormone release, and which binds divalent and trivalent cations, amino acids, polyamines, and polycationic ligands. To obtain information about the structural properties of the CaSR, we expressed milligram quantities of a pure, homogeneous, and functional fragment of the human CaSR extracellular domain (residues 20-535). The expressed and purified protein is folded and binds both neomycin and calcium. It forms dimers in the absence of reducing agents such as beta-mercaptoethanol. Thermal denaturation studies show it has enthalpy and entropy values of unfolding equal to DeltaH=-178+/-4 kJ/mol and DeltaS=-535+/-13 J/mol/K. The protein has significant secondary structure with alpha-helical, beta-sheet, beta-turns, and disordered content of 36.6+/-6.7%, 13.3+/-5.3%, 20.2+/-3.3%, and 29.4+/-4.0%, respectively. The described method for the expression and purification of CaSR should prove useful for further structural studies of this physiologically important protein.
Collapse
Affiliation(s)
- Zachary C Ryan
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | |
Collapse
|
46
|
Abstract
Calcium is an essential ion in both marine and terrestrial organisms, where it plays a crucial role in processes ranging from the formation and maintenance of the skeleton to the regulation of neuronal function. The Ca2+ balance is maintained by three organ systems, including the gastrointestinal tract, bone and kidney.
Since first being cloned in 1993 the Ca2+-sensing receptor has been expressed along the entire gastrointestinal tract, until now the exact function is only partly elucidated. As of this date it still remains to be determined if the Ca2+-sensing receptor is involved in calcium handling by the gastrointestinal tract. However, there are few studies showing physiological effects of the Ca2+-sensing receptor on gastric acid secretion and fluid transport in the colon. In addition, polyamines and amino acids have been shown to activate the Ca2+-sensing receptor and also act as allosteric modifiers to signal nutrient availability to intestinal epithelial cells. Activation of the colonic Ca2+-sensing receptor can abrogate cyclic nucleotide-mediated fluid secretion suggesting a role of the receptor in modifying secretory diarrheas like cholera. For many cell types changes in extracellular Ca2+ concentration can switch the cellular behavior from proliferation to terminal differentiation or quiescence. As cancer remains predominantly a disease of disordered balance between proliferation, termination and apoptosis, disruption in the function of the Ca2+-sensing receptor may contribute to the progression of neoplastic disease. Loss of the growth suppressing effects of elevated extracellular Ca2+ have been demonstrated in colon carcinoma, and have been correlated with changes in the level of CaSR expression.
Collapse
Affiliation(s)
- P Kirchhoff
- Department of Surgery, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | | |
Collapse
|
47
|
Abstract
Gastric acid secretion is a complex process that requires hormonal, neuronal, or calcium-sensing receptor activation for insertion of pumps into the apical surface of the parietal cell. Activation of any or all these pathways causes the parietal cell to secrete concentrated acid with a pH at or close to 1. This acidic fluid combines with enzymes that are secreted from neighbouring chief cells and passes out of the gland up through a mucous gel layer covering the surface of the stomach producing a final intragastric pH of less than 4 during the active phase of acid secretion. Defects in either the mucosal barrier or in the regulatory mechanisms that modulate the secretory pathways will result in erosion of the barrier and ulcerations of the stomach or esophagus. The entire process of acid secretion relies on activation of the catalytic cycle of the gastric H+,K+-ATPase, resulting in the secretion of acid into the parietal cell canaliculus, with K+ being the important and rate-limiting ion in this activation process. In addition to K+ as a rate limiter for acid production, Cl- secretion via an apical channel must also occur. In this review we present a discussion of the mechanics of acid secretion and a discussion of recently identified transporter proteins and receptors. Included is a discussion of some of the recent candidates for the apical K' recycling channel, as well as two recently identified apical proteins (NHE-3, PAT-1), and the newly characterized calcium-sensing receptor (CaSR). We hope that this review will give additional insight into the complex process of acid secretion.
Collapse
Affiliation(s)
- J P Geibel
- Yale University School of Medicine, Department of Surgery, BML 265, New Haven, 06520 CT, USA.
| | | |
Collapse
|
48
|
Dufner MM, Kirchhoff P, Remy C, Hafner P, Müller MK, Cheng SX, Tang LQ, Hebert SC, Geibel JP, Wagner CA. The calcium-sensing receptor acts as a modulator of gastric acid secretion in freshly isolated human gastric glands. Am J Physiol Gastrointest Liver Physiol 2005; 289:G1084-90. [PMID: 16109841 DOI: 10.1152/ajpgi.00571.2004] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Gastric acid secretion is activated by two distinct pathways: a neuronal pathway via the vagus nerve and release of acetylcholine and an endocrine pathway involving gastrin and histamine. Recently, we demonstrated that activation of H(+)-K(+)-ATPase activity in parietal cells in freshly isolated rat gastric glands is modulated by the calcium-sensing receptor (CaSR). Here, we investigated if the CaSR is functionally expressed in freshly isolated gastric glands from human patients undergoing surgery and if the CaSR is influencing histamine-induced activation of H(+)-K(+)-ATPase activity. In tissue samples obtained from patients, immunohistochemistry demonstrated the expression in parietal cells of both subunits of gastric H(+)-K(+)-ATPase and the CaSR. Functional experiments using the pH-sensitive dye 2',7'-bis-(2-carboxyethyl)-5-(and 6)-carboxyfluorescein and measurement of intracellular pH changes allowed us to estimate the activity of H(+)-K(+)-ATPase in single freshly isolated human gastric glands. Under control conditions, H(+)-K(+)-ATPase activity was stimulated by histamine (100 microM) and inhibited by omeprazole (100 microM). Reduction of the extracellular divalent cation concentration (0 Mg(2+), 100 microM Ca(2+)) inactivated the CaSR and reduced histamine-induced activation of H(+)-K(+)-ATPase activity. In contrast, activation of the CaSR with the trivalent cation Gd(3+) caused activation of omeprazole-sensitive H(+)-K(+)-ATPase activity even in the absence of histamine and under conditions of low extracellular divalent cations. This stimulation was not due to release of histamine from neighbouring enterochromaffin-like cells as the stimulation persisted in the presence of the H(2) receptor antagonist cimetidine (100 microM). Furthermore, intracellular calcium measurements with fura-2 and fluo-4 showed that activation of the CaSR by Gd(3+) led to a sustained increase in intracellular Ca(2+) even under conditions of low extracellular divalent cations. These experiments demonstrate the presence of a functional CaSR in the human stomach and show that this receptor may modulate the activity of acid-secreting H(+)-K(+)-ATPase in parietal cells. Furthermore, our results show the viability of freshly isolated human gastric glands and may allow the use of this preparation for experiments investigating the physiological regulation and properties of human gastric glands in vitro.
Collapse
|
49
|
Kirchhoff P, Dave MH, Remy C, Kosiek O, Busque SM, Dufner M, Geibel JP, Verrey F, Wagner CA. An amino acid transporter involved in gastric acid secretion. Pflugers Arch 2005; 451:738-48. [PMID: 16308696 DOI: 10.1007/s00424-005-1507-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2005] [Accepted: 08/04/2005] [Indexed: 11/27/2022]
Abstract
Gastric acid secretion is regulated by a variety of stimuli, in particular histamine and acetyl choline. In addition, dietary factors such as the acute intake of a protein-rich diet and the subsequent increase in serum amino acids can stimulate gastric acid secretion only through partially characterized pathways. Recently, we described in mouse stomach parietal cells the expression of the system L heteromeric amino acid transporter comprised of the LAT2-4F2hc dimer. Here we address the potential role of the system L amino acid transporter in gastric acid secretion by parietal cells in freshly isolated rat gastric glands. RT-PCR, western blotting and immunohistochemistry confirmed the expression of 4F2-LAT2 amino acid transporters in rat parietal cells. In addition, mRNA was detected for the B(0)AT1, ASCT2, and ATB(0+) amino acid transporters. Intracellular pH measurements in parietal cells showed histamine-induced and omeprazole-sensitive H+-extrusion which was enhanced by about 50% in the presence of glutamine or cysteine (1 mM), two substrates of system L amino acid transporters. BCH, a non-metabolizable substrate and a competitive inhibitor of system L amino acid transport, abolished the stimulation of acid secretion by glutamine or cysteine suggesting that this stimulation required the uptake of amino acids by system L. In the absence of histamine glutamine also stimulated H+-extrusion, whereas glutamate did not. Also, phenylalanine was effective in stimulating H+/K+-ATPase activity. Glutamine did not increase intracellular Ca2+ levels indicating that it did not act via the recently described amino acid modulated Ca2+-sensing receptor. These data suggest a novel role for heterodimeric amino acid transporters and may elucidate a pathway by which protein-rich diets stimulate gastric acid secretion.
Collapse
Affiliation(s)
- Philipp Kirchhoff
- Institute of Physiology and Center for Integrative Human Physiology (CIHP), University of Zurich, Winterthurerstr. 190, 8057 Zurich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Busque SM, Kerstetter JE, Geibel JP, Insogna K. L-type amino acids stimulate gastric acid secretion by activation of the calcium-sensing receptor in parietal cells. Am J Physiol Gastrointest Liver Physiol 2005; 289:G664-9. [PMID: 15961860 DOI: 10.1152/ajpgi.00096.2005] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Parietal cells are the primary acid secretory cells of the stomach. We have previously shown that activation of the calcium-sensing receptor (CaSR) by divalent (Ca(2+)) or trivalent (Gd(3+)) ions stimulates acid production in the absence of secretagogues by increasing H(+),K(+)-ATPase activity. When overexpressed in HEK-293 cells, the CaSR can be allosterically activated by L-amino acids in the presence of physiological concentrations of extracellular Ca(2+) (Ca(o)(2+); 1.5-2.5 mM). To determine whether the endogenously expressed parietal cell CaSR is allosterically activated by L-amino acids, we examined the effect of the amino acids L-phenylalanine (L-Phe), L-tryptophan, and L-leucine on acid secretion. In ex vivo whole stomach preparations, exposure to L-Phe resulted in gastric luminal pH significantly lower than controls. Studies using D-Phe (inactive isomer) failed to elicit a response on gastric pH. H(+)-K(+)-ATPase activity was monitored by measuring the intracellular pH (pH(i)) of individual parietal cells in isolated rat gastric glands and calculating the rate of H(+) extrusion. We demonstrated that increasing Ca(o)(2+) in the absence of secretagogues caused a dose-dependent increase in H(+) extrusion. These effects were amplified by the addition of amino acids at various Ca(o)(2+) concentrations. Blocking the histamine-2 receptor with cimetidine or inhibiting system L-amino acid transport with 2-amino-2-norbornane-carboxylic acid did not affect the rate of H(+) extrusion in the presence of L-Phe. These data support the conclusion that amino acids, in conjunction with a physiological Ca(o)(2+) concentration, can induce acid secretion independent of hormonal stimulation via allosteric activation of the stomach CaSR.
Collapse
|