1
|
Zheng Y, Young ND, Wang T, Chang BCH, Song J, Gasser RB. Systems biology of Haemonchus contortus - Advancing biotechnology for parasitic nematode control. Biotechnol Adv 2025; 81:108567. [PMID: 40127743 DOI: 10.1016/j.biotechadv.2025.108567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/19/2025] [Accepted: 03/21/2025] [Indexed: 03/26/2025]
Abstract
Parasitic nematodes represent a substantial global burden, impacting animal health, agriculture and economies worldwide. Of these worms, Haemonchus contortus - a blood-feeding nematode of ruminants - is a major pathogen and a model for molecular and applied parasitology research. This review synthesises some key advances in understanding the molecular biology, genetic diversity and host-parasite interactions of H. contortus, highlighting its value for comparative studies with the free-living nematode Caenorhabditis elegans. Key themes include recent developments in genomic, transcriptomic and proteomic technologies and resources, which are illuminating critical molecular pathways, including the ubiquitination pathway, protease/protease inhibitor systems and the secretome of H. contortus. Some of these insights are providing a foundation for identifying essential genes and exploring their potential as targets for novel anthelmintics or vaccines, particularly in the face of widespread anthelmintic resistance. Advanced bioinformatic tools, such as machine learning (ML) algorithms and artificial intelligence (AI)-driven protein structure prediction, are enhancing annotation capabilities, facilitating and accelerating analyses of gene functions, and biological pathways and processes. This review also discusses the integration of these tools with cutting-edge single-cell sequencing and spatial transcriptomics to dissect host-parasite interactions at the cellular level. The discussion emphasises the importance of curated databases, improved culture systems and functional genomics platforms to translate molecular discoveries into practical outcomes, such as novel interventions. New research findings and resources not only advance research on H. contortus and related nematodes but may also pave the way for innovative solutions to the global challenges with anthelmintic resistance.
Collapse
Affiliation(s)
- Yuanting Zheng
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Neil D Young
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Tao Wang
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Bill C H Chang
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jiangning Song
- Faculty of IT, Department of Data Science and AI, Monash University, Victoria, Australia; Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria, Australia; Monash Data Futures Institute, Monash University, Victoria, Australia
| | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
2
|
Kalmobe J, Vildina JD, Boursou D, Menga HNT, Kouam SF, Ndjonka D. Anthelmintic activity of crude and separated extract of Aloe vera (Xanthorrhoeaceae) against bovine adults parasites of Onchocerca ochengi and infected larvae of drug resistant strains of the free-living nematode Caenorhabditis elegans. J Parasit Dis 2024; 48:891-903. [PMID: 39493485 PMCID: PMC11527861 DOI: 10.1007/s12639-024-01701-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/17/2024] [Indexed: 11/05/2024] Open
Abstract
Human onchocerciasis is caused by the filarial worm. Onchocerca volvulus is a parasite that forms nodules under the skin. The aim of this work was to assess the nematicidal activities of Aloe vera on Onchocerca ochengi and Caenorahbditis elegans and to determine the phytochemical compounds. Nodules were collected from the umbilical region of infected cattle, dissected and male worms were cultured in RPMI-1640. Worms were incubated with different concentrations of A. vera extracts in RPMI-1640 and M9-buffer. Polyphenol, tannin and flavonoid contents of extract were determined by using gallic acid and rutin as standards. The anthelmintic effect of A. vera extract against O. ochengi was concentration dependent with LC50 of 20.71 µg/mL and 11.75 µg/mL after 48 and 72 h respectively. A. vera extract exerted concentration dependent lethal effects (LC50 = 2747 and LC50 = 31,937 µg/mL) against C. elegans (Wild Type). Methanolic-methylene chloride (MeOH-CH2Cl2) of A. vera extract exhibited high DPPH activity with an IC50 value of 15 µg/mL and 9 µg/mL for ascorbic acid. The highest activity in adult worms was observed with the MeOH (100: 0) and AcOEtMeOH fractions with LC50 values of 12.82 and 15.50 µg/mL respectively. EcOEtMeOH (8:2 v/v) was more effective (LC50 = 250 µg/mL) on WT of C. elegans. A. vera contains polyphenols (1015.05 and AcOEtMeOH = 893.60), flavonoids (25.35 and MeOH = 225.76) and tannins (401.37 and Hex = 788.89). A. vera showed in vitro nematicidal activity against O. ochengi and C. elegans. A. vera could be used as an alternative anthelmintic for onchocerciasis treatment.
Collapse
Affiliation(s)
- Justin Kalmobe
- Department of Biological Sciences, University of Ngaoundere, P.O. Box 454, Ngaoundere, Cameroon
- Department of Parasitology and Parasitic Pathology, University of Ngaoundere, P.O. Box 454, Ngaoundere, Cameroon
| | - Jacqueline Dikti Vildina
- Department of Biological Sciences, University of Ngaoundere, P.O. Box 454, Ngaoundere, Cameroon
- Department of Biomedical Sciences, University of Ngaoundere, P.O. Box 454, Ngaoundere, Cameroon
| | - Djafsia Boursou
- Department of Biological Sciences, University of Ngaoundere, P.O. Box 454, Ngaoundere, Cameroon
- Department of Microbiology, Parasitology, Hematology and Infectious Diseases, University of Garoua, P.O. Box 346, Garoua, Cameroon
| | - Honore Ndouwe Tissebe Menga
- Department of Biological Sciences, University of Ngaoundere, P.O. Box 454, Ngaoundere, Cameroon
- Department of Microbiology, Parasitology, Hematology and Infectious Diseases, University of Garoua, P.O. Box 346, Garoua, Cameroon
| | - Simeon Fogue Kouam
- Department of Chemistry, Higher Teacher Training College, University of Yaounde 1, P.O. Box 47, Yaounde, Cameroon
| | - Dieudonne Ndjonka
- Department of Biological Sciences, University of Ngaoundere, P.O. Box 454, Ngaoundere, Cameroon
| |
Collapse
|
3
|
Coke MC, Bell CA, Urwin PE. The Use of Caenorhabditis elegans as a Model for Plant-Parasitic Nematodes: What Have We Learned? ANNUAL REVIEW OF PHYTOPATHOLOGY 2024; 62:157-172. [PMID: 38848590 DOI: 10.1146/annurev-phyto-021622-113539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Nematoda is a diverse phylum that is estimated to contain more than a million species. More than 4,100 of these species have the ability to parasitize plants and cause agricultural losses estimated at US $173 billion annually. This has led to considerable research into their biology to minimize crop losses via control methods. At the infancy of plant-parasitic nematode molecular biology, researchers compared nematode genomes, genes, and biological processes to the model nematode species Caenorhabditis elegans, which is a free-living bacterial feeder. This well-annotated and researched model nematode assisted the molecular biology research, e.g., with genome assemblies, of plant-parasitic nematodes. However, as research into these plant parasites progressed, the necessity of relying on the free-living relative as a reference has reduced. This is partly driven by revealing the considerable divergence between the two types of nematodes both genomically and anatomically, forcing comparisons to be redundant as well as the increased quality of molecular plant nematology proposing more suitable model organisms for this clade of nematode. The major irregularity between the two types of nematodes is the unique anatomical structure and effector repertoire that plant nematodes utilize to establish parasitism, which C. elegans lacks, therefore reducing its value as a heterologous system to investigate parasitic processes. Despite this, C. elegans remains useful for investigating conserved genes via its utility as an expression system because of the current inability to transform plant-parasitic nematodes. Unfortunately, owing to the expertise that this requires, it is not a common and/or accessible tool. Furthermore, we believe that the application of C. elegans as an expression system for plant nematodes will be redundant once tools are established for stable reverse-genetics in these plant parasites. This will remove the restraints on molecular plant nematology and allow it to excel on par with the capabilities of C. elegans research.
Collapse
Affiliation(s)
- Mirela C Coke
- School of Biology, University of Leeds, Leeds, United Kingdom;
| | | | - P E Urwin
- School of Biology, University of Leeds, Leeds, United Kingdom;
| |
Collapse
|
4
|
Ranasinghe S, Armson A, Lymbery AJ, Zahedi A, Ash A. Medicinal plants as a source of antiparasitics: an overview of experimental studies. Pathog Glob Health 2023; 117:535-553. [PMID: 36805662 PMCID: PMC10392325 DOI: 10.1080/20477724.2023.2179454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
Despite advances in modern human and veterinary medicine, gastrointestinal (GI) parasitic infections remain a significant health issue worldwide, mainly in developing countries. Increasing evidence of the multi-drug resistance of these parasites and the side effects of currently available synthetic drugs have led to increased research on alternative medicines to treat parasitic infections. The exploration of potential botanical antiparasitics, which are inexpensive and abundant, may be a promising alternative in this context. This study summarizes the in vitro/in vivo antiparasitic efficacy of different medicinal plants and their components against GI parasites. Published literature from 1990-2020 was retrieved from Google Scholar, Web of Science, PubMed and Scopus. A total of 68 plant species belonging to 32 families have been evaluated as antiparasitic agents against GI parasites worldwide. The majority of studies (70%) were conducted in vitro. Most plants were from the Fabaceae family (53%, n = 18). Methanol (37%, n = 35) was the most used solvent. Leaf (22%, n = 16) was the most used plant part, followed by seed and rhizome (each 12%, n = 9). These studies suggest that herbal medicines hold a great scope for new drug discoveries against parasitic diseases and that the derivatives of these plants are useful structures for drug synthesis and bioactivity optimization.
Collapse
Affiliation(s)
- Sandamalie Ranasinghe
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Perth, Western Australia, Australia
| | - Anthony Armson
- Exercise Science and Chiropractic, College of Science, Health, Engineering and Education, Murdoch University, Perth, Western Australia, Australia
| | - Alan J. Lymbery
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Perth, Western Australia, Australia
| | - Alireza Zahedi
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Perth, Western Australia, Australia
| | - Amanda Ash
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Perth, Western Australia, Australia
| |
Collapse
|
5
|
Zhuang XM, Guo ZY, Zhang M, Chen YH, Qi FN, Wang RQ, Zhang L, Zhao PJ, Lu CJ, Zou CG, Ma YC, Xu J, Zhang KQ, Cao YR, Liang LM. Ethanol mediates the interaction between Caenorhabditis elegans and the nematophagous fungus Purpureocillium lavendulum. Microbiol Spectr 2023; 11:e0127023. [PMID: 37560934 PMCID: PMC10580998 DOI: 10.1128/spectrum.01270-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/26/2023] [Indexed: 08/11/2023] Open
Abstract
Accurately recognizing pathogens by the host is vital for initiating appropriate immune response against infecting microorganisms. Caenorhabditis elegans has no known receptor to recognize pathogen-associated molecular pattern. However, recent studies showed that nematodes have a strong specificity for transcriptomes infected by different pathogens, indicating that they can identify different pathogenic microorganisms. However, the mechanism(s) for such specificity remains largely unknown. In this study, we showed that the nematophagous fungus Purpureocillium lavendulum can infect the intestinal tract of the nematode C. elegans and the infection led to the accumulation of reactive oxygen species (ROS) in the infected intestinal tract, which suppressed fungal growth. Co-transcriptional analysis revealed that fungal genes related to anaerobic respiration and ethanol production were up-regulated during infection. Meanwhile, the ethanol dehydrogenase Sodh-1 in C. elegans was also up-regulated. Together, these results suggested that the infecting fungi encounter hypoxia stress in the nematode gut and that ethanol may play a role in the host-pathogen interaction. Ethanol production in vitro during fungal cultivation in hypoxia conditions was confirmed by gas chromatography-mass spectrometry. Direct treatment of C. elegans with ethanol elevated the sodh-1 expression and ROS accumulation while repressing a series of immunity genes that were also repressed during fungal infection. Mutation of sodh-1 in C. elegans blocked ROS accumulation and increased the nematode's susceptibility to fungal infection. Our study revealed a new recognition and antifungal mechanism in C. elegans. The novel mechanism of ethanol-mediated interaction between the fungus and nematode provides new insights into fungal pathogenesis and for developing alternative biocontrol of pathogenic nematodes by nematophagous fungi. IMPORTANCE Nematodes are among the most abundant animals on our planet. Many of them are parasites in animals and plants and cause human and animal health problems as well as agricultural losses. Studying the interaction of nematodes and their microbial pathogens is of great importance for the biocontrol of animal and plant parasitic nematodes. In this study, we found that the model nematode Caenorhabditis elegans can recognize its fungal pathogen, the nematophagous fungus Purpureocillium lavendulum, through fungal-produced ethanol. Then the nematode elevated the reactive oxygen species production in the gut to inhibit fungal growth in an ethanol dehydrogenase-dependent manner. With this mechanism, novel biocontrol strategies may be developed targeting the ethanol receptor or metabolic pathway of nematodes. Meanwhile, as a volatile organic compound, ethanol should be taken seriously as a vector molecule in the microbial-host interaction in nature.
Collapse
Affiliation(s)
- Xue-Mei Zhuang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and The Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, China
| | - Zhi-Yi Guo
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and The Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, China
| | - Meng Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and The Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, China
| | - Yong-Hong Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and The Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, China
| | - Feng-Na Qi
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and The Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, China
| | - Ren-Qiao Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and The Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, China
| | - Ling Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and The Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, China
| | - Pei-Ji Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and The Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, China
| | - Chao-Jun Lu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and The Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, China
| | - Cheng-Gang Zou
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and The Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, China
| | - Yi-Cheng Ma
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and The Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, China
| | - Jianping Xu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and The Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, China
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and The Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, China
| | - Yan-Ru Cao
- College of Agriculture and Life Sciences, Kunming University, Kunming, China
| | - Lian-Ming Liang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and The Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, China
| |
Collapse
|
6
|
Greiffer L, Liebau E, Herrmann FC, Spiegler V. Condensed tannins act as anthelmintics by increasing the rigidity of the nematode cuticle. Sci Rep 2022; 12:18850. [PMID: 36344622 PMCID: PMC9640668 DOI: 10.1038/s41598-022-23566-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
Tannins and tanniferous plant extracts have been discussed as sustainable means for helminth control in the past two decades in response to a dramatic increase of resistances towards standard anthelmintics. While their bioactivities have been broadly investigated in vitro and in vivo, less is known about their mode of action in nematodes, apart from their protein binding properties. In the current study we therefore investigated the impact of a phytochemically well characterized plant extract from Combretum mucronatum, known to contain procyanidins as the active compounds, on the model organism Caenorhabditis elegans. By different microscopic techniques, the cuticle was identified as the main binding site for tannins, whereas underlying tissues did not seem to be affected. In addition to disruptions of the cuticle structure, molting defects occurred at all larval stages. Finally, an increased rigidity of the nematodes' cuticle due to binding of tannins was confirmed by force spectroscopic measurements. This could be a key finding to explain several anthelmintic activities reported for tannins, especially impairment of molting or exsheathment as well as locomotion.
Collapse
Affiliation(s)
- Luise Greiffer
- Institute for Pharmaceutical Biology and Phytochemistry, University of Münster, Münster, Germany
| | - Eva Liebau
- Institute of Integrative Cell Biology and Physiology, University of Münster, Münster, Germany
| | - Fabian C Herrmann
- Institute for Pharmaceutical Biology and Phytochemistry, University of Münster, Münster, Germany
| | - Verena Spiegler
- Institute for Pharmaceutical Biology and Phytochemistry, University of Münster, Münster, Germany.
| |
Collapse
|
7
|
Nguyen VT, Park AR, Duraisamy K, Vo DD, Kim JC. Elucidation of the nematicidal mode of action of grammicin on Caenorhabditis elegans. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 188:105244. [PMID: 36464355 DOI: 10.1016/j.pestbp.2022.105244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 06/17/2023]
Abstract
Grammicin (Gra) is derived from the endophytic fungus Xylaria grammica EL000614 and shows nematicidal activity against the devastating root-knot nematode Meloidogyne incognita in-vitro, in planta, and in-field experiments. However, the mechanism of the nematicidal action of Gra remains unclear. In this study, Gra exposure to the model genetic organism Caenorhabditis elegans affected its L1, L2/3, L4, and young adult stages. In addition, Gra treatment increased the intracellular reactive oxygen species (ROS) levels of C. elegans and M. incognita. Molecular docking interaction analysis indicated that Gra could bind and interact with GCS-1, GST-4, and DAF-16a in order of low binding energy, followed by SOD-3, SKN-1, and DAF-16b. This implies that the anthelmintic action of Gra is related to the oxidative stress response. To validate this mechanism, we examined the expression of the genes involved in the oxidative stress responses following treatment with Gra using transgenic C. elegans strains such as the TJ356 strain zIs356 [daf-16p::daf-16a/b::GFP + rol-6 (su1006)], LD1 ldIs7 [skn-1p::skn-1b/c::GFP + rol-6 (su1006)], LD1171 ldIs3 [gcs-1p::GFP + rol-6 (su1006)], CL2166 dvIs19 [(pAF15) gst-4p::GFP::NLS], and CF1553 strain muIs84 [(pAD76) sod-3p::GFP + rol-6 (su1006)]. Gra treatment caused nuclear translocation of DAF-16/FoxO and enhanced gst-4::GFP expression, but it had no change in sod-3::GFP expression. These results indicate that Gra induces oxidative stress response via phase II detoxification without reduced cellular redox machinery. Gra treatment also inhibited the nuclear localization of SKN-1::GFP in the intestine, which may lead to a condition in which oxidative stress tolerance is insufficient to protect C. elegans by the inactivation of SKN-1, thus inducing nematode lethality. Furthermore, Gra caused the mortality of two mutant strains of C. elegans, CB113 and DA1316, which are resistant to aldicarb and ivermectin, respectively. This indicates that the mode of action of Gra is different from the traditional nematicides currently in use, suggesting that it could help develop novel approaches to control plant-parasitic nematodes.
Collapse
Affiliation(s)
- Van Thi Nguyen
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Ae Ran Park
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Kalaiselvi Duraisamy
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Duc Duy Vo
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, SE-75124 Uppsala, Sweden
| | - Jin-Cheol Kim
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
8
|
Cadd LC, Crooks B, Marks NJ, Maule AG, Mousley A, Atkinson LE. The Strongyloides bioassay toolbox: A unique opportunity to accelerate functional biology for nematode parasites. Mol Biochem Parasitol 2022; 252:111526. [PMID: 36240960 DOI: 10.1016/j.molbiopara.2022.111526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/04/2022] [Accepted: 10/10/2022] [Indexed: 12/31/2022]
Abstract
Caenorhabditis elegans is a uniquely powerful tool to aid understanding of fundamental nematode biology. While C. elegans boasts an unrivalled array of functional genomics tools and phenotype bioassays the inherent differences between free-living and parasitic nematodes underscores the need to develop these approaches in tractable parasite models. Advances in functional genomics approaches, including RNA interference and CRISPR/Cas9 gene editing, in the parasitic nematodes Strongyloides ratti and Strongyloides stercoralis provide a unique and timely opportunity to probe basic parasite biology and reveal novel anthelmintic targets in species that are both experimentally and therapeutically relevant pathogens. While Strongyloides functional genomics tools have progressed rapidly, the complementary range of bioassays required to elucidate phenotypic outcomes post-functional genomics remain more limited in scope. To adequately support the exploitation of functional genomic pipelines for studies of gene function in Strongyloides a comprehensive set of species- and parasite-specific quantitative bioassays are required to assess nematode behaviours post-genetic manipulation. Here we review the scope of the current Strongyloides bioassay toolbox, how established Strongyloides bioassays have advanced knowledge of parasite biology, opportunities for Strongyloides bioassay development and, the need for investment in tractable model parasite platforms such as Strongyloides to drive the discovery of novel targets for parasite control.
Collapse
Affiliation(s)
- Luke C Cadd
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK
| | - Bethany Crooks
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK
| | - Nikki J Marks
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK
| | - Aaron G Maule
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK
| | - Angela Mousley
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK
| | - Louise E Atkinson
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK.
| |
Collapse
|
9
|
Zheng Y, Ma G, Wang T, Hofmann A, Song J, Gasser RB, Young ND. Ubiquitination pathway model for the barber's pole worm - Haemonchus contortus. Int J Parasitol 2022; 52:581-590. [PMID: 35853501 DOI: 10.1016/j.ijpara.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 11/29/2022]
Abstract
The ubiquitin-mediated pathway has been comprehensively explored in the free-living nematode Caenorhabditis elegans, but very little is known about this pathway in parasitic nematodes. Here, we inferred the ubiquitination pathway for an economically significant and pathogenic nematode - Haemonchus contortus - using abundant resources available for C. elegans. We identified 215 genes encoding ubiquitin (Ub; n = 3 genes), ubiquitin-activating enzyme (E1; one), -conjugating enzymes (E2s; 21), ligases (E3s; 157) and deubiquitinating enzymes (DUBs; 33). With reference to C. elegans, Ub, E1 and E2 were relatively conserved in sequence and structure, and E3s and DUBs were divergent, likely reflecting functional and biological uniqueness in H. contortus. Most genes encoding ubiquitination pathway components exhibit high transcription in the egg compared with other stages, indicating marked protein homeostasis in this early developmental stage. The ubiquitination pathway model constructed for H. contortus provides a foundation to explore the ubiquitin-proteasome system, crosstalk between autophagy and the proteasome system, and the parasite-host interactions. Selected E3 and DUB proteins which are very divergent in sequence and structure from host homologues or entirely unique to H. contortus and related parasitic nematodes may represent possible anthelmintic targets.
Collapse
Affiliation(s)
- Yuanting Zheng
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
| | - Guangxu Ma
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia; College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Tao Wang
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
| | - Andreas Hofmann
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia; Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Kulmbach, Germany
| | - Jiangning Song
- Department of Data Science and AI, Faculty of IT, Monash University, Victoria, Australia; Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria, Australia; Monash Data Futures Institute, Monash University, Victoria, Australia
| | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia.
| | - Neil D Young
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
10
|
Lok JB, Kliewer SA, Mangelsdorf DJ. The 'nuclear option' revisited: Confirmation of Ss-daf-12 function and therapeutic potential in Strongyloides stercoralis and other parasitic nematode infections. Mol Biochem Parasitol 2022; 250:111490. [PMID: 35697206 DOI: 10.1016/j.molbiopara.2022.111490] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/19/2022] [Accepted: 06/07/2022] [Indexed: 10/18/2022]
Abstract
Mechanisms governing morphogenesis and development of infectious third-stage larvae (L3i) of parasitic nematodes have been likened to those regulating dauer development in Caenorhabditis elegans. Dauer regulatory signal transduction comprises initial G protein-coupled receptor (GPCR) signaling in chemosensory neurons of the amphidial complex that regulates parallel insulin- and TGFβ-like signaling in the tissues. Insulin- and TGFβ-like signals converge to co-regulate steroid signaling through the nuclear receptor (NR) DAF-12. Discovery of the steroid ligands of DAF-12 opened a new avenue of small molecule physiology in C. elegans. These signaling pathways are conserved in parasitic nematodes and an increasing body of evidence supports their function in formation and developmental regulation of L3i during the infectious process in soil transmitted species. This review presents these lines of evidence for G protein-coupled receptor (GPCR), insulin- and TGFβ-like signaling in brief and focuses primarily on signaling through parasite orthologs of DAF-12. We discuss in some depth the deployment of sensitive analytical techniques to identify Δ7-dafachronic acid as the natural ligand of DAF-12 homologs in Strongyloides stercoralis and Haemonchus contortus and of targeted mutagenesis by CRISPR/Cas9 to assign dauer-like regulatory function to the NR Ss-DAF-12, its coactivator Ss-DIP-1 and the key ligand biosynthetic enzyme Ss-CYP-22a9. Finally, we present published evidence of the potential of Ss-DAF-12 signaling as a chemotherapeutic target in human strongyloidiasis.
Collapse
Affiliation(s)
- James B Lok
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA, USA.
| | - Steven A Kliewer
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - David J Mangelsdorf
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX USA
| |
Collapse
|
11
|
Sun WW, Yan XM, Qiao AJ, Zhang YJ, Yang L, Huang HC, Shi HF, Yan BL. Upregulated galectin-1 in Angiostrongylus cantonensis L5 reduces body fat and increases oxidative stress tolerance. Parasit Vectors 2022; 15:46. [PMID: 35123560 PMCID: PMC8817484 DOI: 10.1186/s13071-022-05171-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 01/20/2022] [Indexed: 11/30/2022] Open
Abstract
Background Angiostrongylus cantonensis L5, parasitizing human cerebrospinal fluid, causes eosinophilic meningitis, which is attributed to tissue inflammatory responses caused primarily by the high percentage of eosinophils. Eosinophils are also involved in killing helminths, using the peroxidative oxidation and hydrogen peroxide (H2O2) generated by dismutation of superoxide produced during respiratory burst. In contrast, helminthic worms have evolved to attenuate eosinophil-mediated tissue inflammatory responses for their survival. In previous study, we demonstrated the extracellular function of Acan-Gal-1 in inducing the apoptosis of macrophages. Here, the intracellular functions of Acan-Gal-1 were investigated, aiming to further reveal the mechanism involved in A. cantonensis L5 worms surviving inflammatory responses in the human central nervous system. Methods In this study, a model organism, Caenorhabditis elegans, was used as a surrogate to investigate the intracellular functions of Acan-Gal-1 in protecting the worm from its host’s immune attacks. First, structural characterization of Acan-Gal-1 was analyzed using bioinformatics; second, qRT-PCR was used to monitor the stage specificity of Acan-gal-1 expression in A. cantonensis. Microinjections were performed to detect the tissue specificity of lec-1 expression, the homolog of Acan-gal-1 in C. elegans. Third, microinjection was performed to develop Acan-gal-1::rfp transgenic worms. Then, oxidative stress assay and Oil Red O fat staining were used to determine the functions of Acan-Gal-1 in C. elegans. Results The results of detecting the stage specificity of Acan-gal-1 expression showed that Acan-Gal-1 was upregulated in both L5 and adult worms. Detection of the tissue specificity showed that the homolog of Acan-gal-1 in C. elegans, lec-1 was expressed ubiquitously and mainly localized in cuticle. Investigating the intracellular functions of Acan-Gal-1 in the surrogate C. elegans showed that N2 worms expressing pCe-lec-1::Acan-gal-1::rfp, with lipid deposition reduced, were significantly resistant to oxidative stress; lec-1 mutant worms, where lipid deposition increased, showed susceptible to oxidative stress, and this phenotype could be rescued by expressing pCe-lec-1::Acan-gal-1::rfp. Expressing pCe-lec-1::Acan-gal-1::rfp or lec-1 RNAi in fat-6;fat-7 double-mutant worms, where fat stores were reduced, had no significant effect on the oxidative stress tolerance. Conclusion In C. elegans worms, upregulated Acan-Gal-1 plays a defensive role against damage due to oxidative stress for worm survival by reducing fat deposition. This might indicate the mechanism by which A. cantonensis L5 worms, with upregulated Acan-Gal-1, survive the immune attack of eosinophils in the human central nervous system. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05171-4.
Collapse
|
12
|
A Review of Ethnoveterinary Knowledge, Biological Activities and Secondary Metabolites of Medicinal Woody Plants Used for Managing Animal Health in South Africa. Vet Sci 2021; 8:vetsci8100228. [PMID: 34679058 PMCID: PMC8537377 DOI: 10.3390/vetsci8100228] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 09/30/2021] [Accepted: 10/08/2021] [Indexed: 11/17/2022] Open
Abstract
Globally, the use of ethnoveterinary medicine as remedies for animal health among different ethnic groups justify the need for a systematic exploration to enhance their potential. In addition, the increasing popularity and utilisation of woody plants remain common in traditional medicine, which may be attributed to their inherent benefits. The current review was aimed at analysing ethnoveterinary surveys, biological activities, and secondary metabolites/phytochemical profiles of the woody plants of South Africa. Eligible literature (period: 2000 to 2020) were retrieved from different databases such as Google Scholar, PubMed, Sabinet, and Science Direct. Based on the inclusion and exclusion criteria, 20 ethnoveterinary surveys were eligible and were subjected to further analysis. We identified 104 woody plant species from 44 plant families that are used in the treatment of different diseases in animals, particularly cattle (70%) and goats (20%). The most mentioned (with six citations) woody plants were Terminalia sericea Burch. ex DC and Ziziphus mucronata Willd., which were followed by plants with five (Cussonia spicata Thunb., Pterocarpus angolensis DC and Vachellia karroo (Hayne) Banfi & Galasso) or four (Acokanthera oppositifolia (Lam.) Codd, Cassia abbreviata Oliv., and Strychnos henningsii Gilg) individual mentions. The most dominant families were Fabaceae (19%), Apocynaceae (5.8%), Rubiaceae (5.8%), Anacardiaceae (4.8%), Combretaceae (4.8%), Euphorbiaceae (4.8%), Malvaceae (4.8%), Rhamnaceae (4.8%), and Celastraceae (3.8%). Bark (33%), leaves (29%), and roots (19%) were the plant parts dominantly used to prepare remedies for ethnoveterinary medicine. An estimated 20% of woody plants have been screened for antimicrobial, anthelmintic, antioxidant, and cytotoxicity effects. Phytochemical profiles established a rich pool of valuable secondary metabolites (phenolic, flavonoids and condensed tannins) that may be responsible for the exerted biological activities. Overall, the significant portion of woody plants lacking empirical evidence on their biological effects indicates a major knowledge gap that requires more research efforts.
Collapse
|
13
|
Li-Leger E, Feichtinger R, Flibotte S, Holzkamp H, Schnabel R, Moerman DG. Identification of essential genes in Caenorhabditis elegans through whole genome sequencing of legacy mutant collections. G3-GENES GENOMES GENETICS 2021; 11:6373896. [PMID: 34550348 PMCID: PMC8664450 DOI: 10.1093/g3journal/jkab328] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/27/2021] [Indexed: 01/23/2023]
Abstract
It has been estimated that 15%–30% of the ∼20,000 genes in C. elegans are essential, yet many of these genes remain to be identified or characterized. With the goal of identifying unknown essential genes, we performed whole-genome sequencing on complementation pairs from legacy collections of maternal-effect lethal and sterile mutants. This approach uncovered maternal genes required for embryonic development and genes with apparent sperm-specific functions. In total, 58 putative essential genes were identified on chromosomes III–V, of which 52 genes are represented by novel alleles in this collection. Of these 52 genes, 19 (40 alleles) were selected for further functional characterization. The terminal phenotypes of embryos were examined, revealing defects in cell division, morphogenesis, and osmotic integrity of the eggshell. Mating assays with wild-type males revealed previously unknown male-expressed genes required for fertilization and embryonic development. The result of this study is a catalog of mutant alleles in essential genes that will serve as a resource to guide further study toward a more complete understanding of this important model organism. As many genes and developmental pathways in C. elegans are conserved and essential genes are often linked to human disease, uncovering the function of these genes may also provide insight to further our understanding of human biology.
Collapse
Affiliation(s)
- Erica Li-Leger
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | - Richard Feichtinger
- Department of Developmental Genetics, Institute of Genetics, Technische Universität Braunschweig, 38106, Germany
| | - Stephane Flibotte
- UBC/LSI Bioinformatics Facility, University of British Columbia, Vancouver, British Columbia, Canada
| | - Heinke Holzkamp
- Department of Developmental Genetics, Institute of Genetics, Technische Universität Braunschweig, 38106, Germany
| | - Ralf Schnabel
- Department of Developmental Genetics, Institute of Genetics, Technische Universität Braunschweig, 38106, Germany
| | - Donald G Moerman
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| |
Collapse
|
14
|
Wit J, Rodriguez BC, Andersen EC. Natural variation in Caenorhabditis elegans responses to the anthelmintic emodepside. Int J Parasitol Drugs Drug Resist 2021; 16:1-8. [PMID: 33878514 PMCID: PMC8079822 DOI: 10.1016/j.ijpddr.2021.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 11/19/2022]
Abstract
Treatment of parasitic nematode infections depends primarily on the use of anthelmintics. However, this drug arsenal is limited, and resistance against most anthelmintics is widespread. Emodepside is a new anthelmintic drug effective against gastrointestinal and filarial nematodes. Nematodes that are resistant to other anthelmintic drug classes are susceptible to emodepside, indicating that the emodepside mode of action is distinct from previous anthelmintics. The laboratory-adapted Caenorhabditis elegans strain N2 is sensitive to emodepside, and genetic selection and in vitro experiments implicated slo-1, a large K+ conductance (BK) channel gene, in emodepside mode of action. In an effort to understand how natural populations will respond to emodepside, we measured brood sizes and developmental rates of wild C. elegans strains after exposure to the drug and found natural variation across the species. Some of the observed variation in C. elegans emodepside responses correlates with amino acid substitutions in slo-1, but genetic mechanisms other than slo-1 coding variants likely underlie emodepside resistance in wild C. elegans strains. Additionally, the assayed strains have higher offspring production in low concentrations of emodepside (a hormetic effect). We find that natural variation affects emodepside sensitivity, supporting the suitability of C. elegans as a model system to study emodepside responses across natural nematode populations.
Collapse
Affiliation(s)
- Janneke Wit
- Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA
| | - Briana C Rodriguez
- Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA
| | - Erik C Andersen
- Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
15
|
Sun WW, Yan XM, Shi Q, Zhang YJ, Huang JT, Huang HC, Shi HF, Yan BL. Downregulated RPS-30 in Angiostrongylus cantonensis L5 plays a defensive role against damage due to oxidative stress. Parasit Vectors 2020; 13:617. [PMID: 33298148 PMCID: PMC7724845 DOI: 10.1186/s13071-020-04495-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/19/2020] [Indexed: 01/21/2023] Open
Abstract
Background Eosinophilic meningitis, caused by fifth-stage larvae of the nematode (roundworm) Angiostrongylus cantonensis, is mainly attributed to the contribution of eosinophils to tissue inflammatory responses in helminthic infections. Eosinophils are associated with the killing of helminths via peroxidative oxidation and hydrogen peroxide generated by the dismutation of superoxide produced during respiratory bursts. In contrast, when residing in the host with high level of eosinophils, helminthic worms have evolved to attenuate eosinophil-mediated tissue inflammatory responses for their survival in the hosts. In a previous study we demonstrated that the expression of the A. cantonensis RPS 30 gene (Acan-rps-30) was significantly downregulated in A. cantonensis L5 roundworms residing in cerebrospinal fluid with a high level of eosinophils. Acan-RPS-30 is a protein homologous to the human Fau protein that plays a pro-apoptotic regulatory role and may function in protecting worms from oxidative stress. Methods The isolation and structural characterization of Acan-RPS-30 were performed using rapid amplification of cDNA ends (RACE), genome walking and bioinformatics. Quantitative real-time-PCR and microinjection were used to detect the expression patterns of Acan-rps-30. Feeding RNA interference (RNAi) was used to knockdown the apoptosis gene ced-3. Microinjection was performed to construct transgenic worms. An oxidative stress assay was used to determine the functions of Acan-RPS-30. Results Our results showed that Acan-RPS-30 consisted of 130 amino acids. It was grouped into clade V with C. elegans in the phylogenetic analysis. It was expressed ubiquitously in worms and was downregulated in both L5 larvae and adult A. cantonensis. Worms expressing pCe-rps30::Acan-rps-30::rfp, with the refractile “button-like” apoptotic corpses, were susceptible to oxidative stress. Apoptosis genes ced-3 and ced-4 were both upregulated in the transgenic worms. The phenotype susceptible to oxidative stress could be converted with a ced-3 defective mutation and RNAi. rps-30−/− mutant worms were resistant to oxidative stress, with ced-3 and ced-4 both downregulated. The oxidative stress-resistant phenotype could be rescued and inhibited by through the expression of pCe-rps30::Acan-rps-30::rfp in rps-3−/− mutant worms. Conclusion In C. elegans worms, downregulated RPS-30 plays a defensive role against damage due to oxidative stress, facilitating worm survival by regulating downregulated ced-3. This observation may indicate the mechanism by which A. cantonensis L5 worms, with downregulated Acan-RPS-30, survive in the central nervous system of humans from the immune response of eosinophils. Graphic abstract ![]()
Collapse
Affiliation(s)
- Wei-Wei Sun
- Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, PR China
| | - Xiu-Mei Yan
- Department of Pediatric Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Qing Shi
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, PR China
| | - Yuan-Jiao Zhang
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, PR China
| | - Jun-Ting Huang
- School of First Clinic Medicine, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, PR China
| | - Hui-Cong Huang
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, PR China.
| | - Hong-Fei Shi
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, China-UK-NYNU-RRes Joint Laboratory of Insect Biology, Nanyang Normal University, Nanyang, 473061, PR China.
| | - Bao-Long Yan
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, PR China.
| |
Collapse
|
16
|
Lehmann S, Herrmann F, Kleemann K, Spiegler V, Liebau E, Hensel A. Extract and the quassinoid ailanthone from Ailanthus altissima inhibit nematode reproduction by damaging germ cells and rachis in the model organism Caenorhabditis elegans. Fitoterapia 2020; 146:104651. [DOI: 10.1016/j.fitote.2020.104651] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/27/2020] [Accepted: 05/27/2020] [Indexed: 12/16/2022]
|
17
|
Maj P, Mori M, Sobich J, Markowicz J, Uram Ł, Zieliński Z, Quaglio D, Calcaterra A, Cau Y, Botta B, Rode W. Alvaxanthone, a Thymidylate Synthase Inhibitor with Nematocidal and Tumoricidal Activities. Molecules 2020; 25:molecules25122894. [PMID: 32586022 PMCID: PMC7356228 DOI: 10.3390/molecules25122894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/15/2020] [Accepted: 06/19/2020] [Indexed: 11/16/2022] Open
Abstract
With the aim to identify novel inhibitors of parasitic nematode thymidylate synthase (TS), we screened in silico an in-house library of natural compounds, taking advantage of a model of nematode TS three-dimensional (3D) structure and choosing candidate compounds potentially capable of enzyme binding/inhibition. Selected compounds were tested as (i) inhibitors of the reaction catalyzed by TSs of different species, (ii) agents toxic to a nematode parasite model (C. elegans grown in vitro), (iii) inhibitors of normal human cell growth, and (iv) antitumor agents affecting human tumor cells grown in vitro. The results pointed to alvaxanthone as a relatively strong TS inhibitor that causes C. elegans population growth reduction with nematocidal potency similar to the anthelmintic drug mebendazole. Alvaxanthone also demonstrated an antiproliferative effect in tumor cells, associated with a selective toxicity against mitochondria observed in cancer cells compared to normal cells.
Collapse
Affiliation(s)
- Piotr Maj
- Nencki Institute of Experimental Biology, 3 Pasteur Street, 02-093 Warsaw, Poland; (P.M.); (J.S.); (Z.Z.)
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Mattia Mori
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, via Aldo Moro 2, 53100 Siena, Italy; (M.M.); (Y.C.)
| | - Justyna Sobich
- Nencki Institute of Experimental Biology, 3 Pasteur Street, 02-093 Warsaw, Poland; (P.M.); (J.S.); (Z.Z.)
| | - Joanna Markowicz
- Faculty of Chemistry, Rzeszów University of Technology, 6 Powstańców Warszawy Ave, 35-959 Rzeszów, Poland; (J.M.); (Ł.U.)
| | - Łukasz Uram
- Faculty of Chemistry, Rzeszów University of Technology, 6 Powstańców Warszawy Ave, 35-959 Rzeszów, Poland; (J.M.); (Ł.U.)
| | - Zbigniew Zieliński
- Nencki Institute of Experimental Biology, 3 Pasteur Street, 02-093 Warsaw, Poland; (P.M.); (J.S.); (Z.Z.)
| | - Deborah Quaglio
- Department of Chemistry and Technology of Drugs, Department of Excellence 2018–2022, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (D.Q.); (A.C.); (B.B.)
| | - Andrea Calcaterra
- Department of Chemistry and Technology of Drugs, Department of Excellence 2018–2022, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (D.Q.); (A.C.); (B.B.)
| | - Ylenia Cau
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, via Aldo Moro 2, 53100 Siena, Italy; (M.M.); (Y.C.)
| | - Bruno Botta
- Department of Chemistry and Technology of Drugs, Department of Excellence 2018–2022, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (D.Q.); (A.C.); (B.B.)
| | - Wojciech Rode
- Nencki Institute of Experimental Biology, 3 Pasteur Street, 02-093 Warsaw, Poland; (P.M.); (J.S.); (Z.Z.)
- Correspondence: ; Tel.: +48-608-351-155; Fax: +48-22-822-5342
| |
Collapse
|
18
|
Stevens L, Rooke S, Falzon LC, Machuka EM, Momanyi K, Murungi MK, Njoroge SM, Odinga CO, Ogendo A, Ogola J, Fèvre EM, Blaxter M. The Genome of Caenorhabditis bovis. Curr Biol 2020; 30:1023-1031.e4. [PMID: 32109387 DOI: 10.1016/j.cub.2020.01.074] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/10/2019] [Accepted: 01/23/2020] [Indexed: 11/26/2022]
Abstract
The free-living nematode Caenorhabditis elegans is a key laboratory model for metazoan biology. C. elegans has also become a model for parasitic nematodes despite being only distantly related to most parasitic species. All of the ∼65 Caenorhabditis species currently in culture are free-living, with most having been isolated from decaying plant or fungal matter. Caenorhabditis bovis is a particularly unusual species that has been isolated several times from the inflamed ears of Zebu cattle in Eastern Africa, where it is associated with the disease bovine parasitic otitis. C. bovis is therefore of particular interest to researchers interested in the evolution of nematode parasitism. However, as C. bovis is not in laboratory culture, it remains little studied. Here, by sampling livestock markets and slaughterhouses in Western Kenya, we successfully reisolated C. bovis from the ear of adult female Zebu. We sequenced the genome of C. bovis using the Oxford Nanopore MinION platform in a nearby field laboratory and used the data to generate a chromosome-scale draft genome sequence. We exploited this draft genome sequence to reconstruct the phylogenetic relationships of C. bovis to other Caenorhabditis species and reveal the changes in genome size and content that have occurred during its evolution. We also identified expansions in several gene families that have been implicated in parasitism in other nematode species. The high-quality draft genome and our analyses thereof represent a significant advancement in our understanding of this unusual Caenorhabditis species.
Collapse
Affiliation(s)
- Lewis Stevens
- Institute of Evolutionary Biology, Ashworth Laboratories, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, UK.
| | - Stefan Rooke
- Usher Institute, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh EH9 3JT, UK
| | - Laura C Falzon
- Institute of Infection and Global Health, University of Liverpool, 8 West Derby Street, Liverpool L69 7BE, UK; International Livestock Research Institute, Old Naivasha Road, PO Box 30709 00100, Nairobi, Kenya
| | - Eunice M Machuka
- Biosciences, Eastern and Central Africa, International Livestock Research Institute (BecA-ILRI) Hub, Old Naivasha Road, PO Box 30709 00100, Nairobi, Kenya
| | - Kelvin Momanyi
- International Livestock Research Institute, Old Naivasha Road, PO Box 30709 00100, Nairobi, Kenya
| | - Maurice K Murungi
- International Livestock Research Institute, Old Naivasha Road, PO Box 30709 00100, Nairobi, Kenya
| | - Samuel M Njoroge
- International Livestock Research Institute, Old Naivasha Road, PO Box 30709 00100, Nairobi, Kenya; Centre for Microbiology Research, Kenya Medical Research Institute, KNH Grounds, PO Box 54840 00200, Nairobi, Kenya
| | - Christian O Odinga
- International Livestock Research Institute, Old Naivasha Road, PO Box 30709 00100, Nairobi, Kenya
| | - Allan Ogendo
- Veterinary Department, Busia County Government, PO Box Private Bag 50400, Busia, Kenya
| | - Joseph Ogola
- Veterinary Department, Bungoma County Government, PO Box 2489 50200, Bungoma, Kenya
| | - Eric M Fèvre
- Institute of Infection and Global Health, University of Liverpool, 8 West Derby Street, Liverpool L69 7BE, UK; International Livestock Research Institute, Old Naivasha Road, PO Box 30709 00100, Nairobi, Kenya
| | - Mark Blaxter
- Institute of Evolutionary Biology, Ashworth Laboratories, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, UK
| |
Collapse
|
19
|
Elucidating the molecular and developmental biology of parasitic nematodes: Moving to a multiomics paradigm. ADVANCES IN PARASITOLOGY 2020; 108:175-229. [PMID: 32291085 DOI: 10.1016/bs.apar.2019.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In the past two decades, significant progress has been made in the sequencing, assembly, annotation and analyses of genomes and transcriptomes of parasitic worms of socioeconomic importance. This progress has somewhat improved our knowledge and understanding of these pathogens at the molecular level. However, compared with the free-living nematode Caenorhabditis elegans, the areas of functional genomics, transcriptomics, proteomics and metabolomics of parasitic nematodes are still in their infancy, and there are major gaps in our knowledge and understanding of the molecular biology of parasitic nematodes. The information on signalling molecules, molecular pathways and microRNAs (miRNAs) that are known to be involved in developmental processes in C. elegans and the availability of some molecular resources (draft genomes, transcriptomes and some proteomes) for selected parasitic nematodes provide a basis to start exploring the developmental biology of parasitic nematodes. Indeed, some studies have identified molecules and pathways that might associate with developmental processes in related, parasitic nematodes, such as Haemonchus contortus (barber's pole worm). However, detailed information is often scant and 'omics resources are limited, preventing a proper integration of 'omic data sets and comprehensive analyses. Moreover, little is known about the functional roles of pheromones, hormones, signalling pathways and post-transcriptional/post-translational regulations in the development of key parasitic nematodes throughout their entire life cycles. Although C. elegans is an excellent model to assist molecular studies of parasitic nematodes, its use is limited when it comes to explorations of processes that are specific to parasitism within host animals. A deep understanding of parasitic nematodes, such as H. contortus, requires substantially enhanced resources and the use of integrative 'omics approaches for analyses. The improved genome and well-established in vitro larval culture system for H. contortus provide unprecedented opportunities for comprehensive studies of the transcriptomes (mRNA and miRNA), proteomes (somatic, excretory/secretory and phosphorylated proteins) and lipidomes (e.g., polar and neutral lipids) of this nematode. Such resources should enable in-depth explorations of its developmental biology at a level, not previously possible. The main aims of this review are (i) to provide a background on the development of nematodes, with a particular emphasis on the molecular aspects involved in the dauer formation and exit in C. elegans; (ii) to critically appraise the current state of knowledge of the developmental biology of parasitic nematodes and identify key knowledge gaps; (iii) to cover salient aspects of H. contortus, with a focus on the recent advances in genomics, transcriptomics, proteomics and lipidomics as well as in vitro culturing systems; (iv) to review recent advances in our knowledge and understanding of the molecular and developmental biology of H. contortus using an integrative multiomics approach, and discuss the implications of this approach for detailed explorations of signalling molecules, molecular processes and pathways likely associated with nematode development, adaptation and parasitism, and for the identification of novel intervention targets against these pathogens. Clearly, the multiomics approach established recently is readily applicable to exploring a wide range of interesting and socioeconomically significant parasitic worms (including also trematodes and cestodes) at the molecular level, and to elucidate host-parasite interactions and disease processes.
Collapse
|
20
|
Markowicz J, Uram Ł, Sobich J, Mangiardi L, Maj P, Rode W. Antitumor and anti-nematode activities of α-mangostin. Eur J Pharmacol 2019; 863:172678. [PMID: 31542481 DOI: 10.1016/j.ejphar.2019.172678] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/12/2019] [Accepted: 09/18/2019] [Indexed: 12/11/2022]
Abstract
α-Mangostin, one of the major xanthones isolated from pericarp of mangosteen (Garcinia mangostana Linn), exhibits a wide range of pharmacological activities, including antioxidant, anti-inflammatory, antimicrobial as well as anticancer, both in in vitro and in vivo studies. In the present study, α-mangostin' anti-cancer and anti-parasitic properties were tested in vitro against three human cell lines, including squamous carcinoma (SCC-15) and glioblastoma multiforme (U-118 MG), compared to normal skin fibroblasts (BJ), and in vivo against Caenorhabditis elegans. The drug showed cytotoxic activity, manifested by decrease of cell viability, inhibition of proliferation, induction of apoptosis and reduction of adhesion at concentrations lower than 10 μM (the IC50 values were 6.43, 9.59 and 8.97 μM for SCC-15, U-118 MG and BJ, respectively). The toxicity, causing cell membrane disruption and mitochondria impairment, was selective against squamous carcinoma with regard to normal cells. Moreover, for the first time anti-nematode activity of α-mangostin toward C. elegans was described (the LC50 = 3.8 ± 0.5 μM), with similar effect exerted by mebendazole, a well-known anthelmintic drug.
Collapse
Affiliation(s)
- Joanna Markowicz
- Faculty of Chemistry, Rzeszów University of Technology, 6 Powstańców Warszawy Ave, 35-959, Rzeszów, Poland.
| | - Łukasz Uram
- Faculty of Chemistry, Rzeszów University of Technology, 6 Powstańców Warszawy Ave, 35-959, Rzeszów, Poland
| | - Justyna Sobich
- Nencki Institute of Experimental Biology, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Laura Mangiardi
- Center for Life NanoScience, CLNS@Sapienza, Italian Institute of Technology (IIT), Viale Regina Elena 291, 00161 Rome, Italy and Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Piotr Maj
- Nencki Institute of Experimental Biology, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Wojciech Rode
- Faculty of Chemistry, Rzeszów University of Technology, 6 Powstańców Warszawy Ave, 35-959, Rzeszów, Poland; Nencki Institute of Experimental Biology, 3 Pasteur Street, 02-093, Warsaw, Poland
| |
Collapse
|
21
|
Similarities and differences in the biotransformation and transcriptomic responses of Caenorhabditis elegans and Haemonchus contortus to five different benzimidazole drugs. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2019; 11:13-29. [PMID: 31542693 PMCID: PMC6796749 DOI: 10.1016/j.ijpddr.2019.09.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 09/05/2019] [Accepted: 09/08/2019] [Indexed: 01/07/2023]
Abstract
We have undertaken a detailed analysis of the biotransformation of five of the most therapeutically important benzimidazole anthelmintics - albendazole (ABZ), mebendazole (MBZ), thiabendazole (TBZ), oxfendazole (OxBZ) and fenbendazole (FBZ) - in Caenorhabditis elegans and the ruminant parasite Haemonchus contortus. Drug metabolites were detected by LC-MS/MS analysis in supernatants of C. elegans cultures with a hexose conjugate, most likely glucose, dominating for all five drugs. This work adds to a growing body of evidence that glucose conjugation is a major pathway of xenobiotic metabolism in nematodes and may be a target for enhancement of anthelmintic potency. Consistent with this, we found that biotransformation of albendazole by C. elegans reduced drug potency. Glucose metabolite production by C. elegans was reduced in the presence of the pharmacological inhibitor chrysin suggesting that UDP-glucuronosyl/glucosyl transferase (UGT) enzymes may catalyze benzimidazole glucosidation. Similar glucoside metabolites were detected following ex vivo culture of adult Haemonchus contortus. As a step towards identifying nematode enzymes potentially responsible for benzimidazole biotransformation, we characterised the transcriptomic response to each of the benzimidazole drugs using the C. elegans resistant strain CB3474 ben-1(e1880)III. In the case of albendazole, mebendazole, thiabendazole, and oxfendazole the shared transcriptomic response was dominated by the up-regulation of classical xenobiotic response genes including a shared group of UGT enzymes (ugt-14/25/33/34/37/41/8/9). In the case of fenbendazole, a much greater number of genes were up-regulated, as well as developmental and brood size effects suggesting the presence of secondary drug targets in addition to BEN-1. The transcriptional xenobiotic response of a multiply resistant H. contortus strain UGA/2004 was essentially undetectable in the adult stage but present in the L3 infective stage, albeit more muted than C. elegans. This suggests that xenobiotic responses may be less efficient in stages of parasitic nematodes that reside in the host compared with the free-living stages. C. e. & H. c. display hexose conjugation (likely glucose) and excretion of 5 BZs. C. elegans (C.e.) biotransformation of ABZ reduces drug potency. UGT inhibitor chrysin reduces ABZ biotransformation by C. elegans. Transcriptomic response of C. e. (ben-1) to 5 BZs dominated by xenobiotic response and additional targets for FBZ. Minimal transcriptomic response of H. contortus to ABZ exposure.
Collapse
|
22
|
Roberts Buceta PM, Romanelli-Cedrez L, Babcock SJ, Xun H, VonPaige ML, Higley TW, Schlatter TD, Davis DC, Drexelius JA, Culver JC, Carrera I, Shepherd JN, Salinas G. The kynurenine pathway is essential for rhodoquinone biosynthesis in Caenorhabditis elegans. J Biol Chem 2019; 294:11047-11053. [PMID: 31177094 PMCID: PMC6635453 DOI: 10.1074/jbc.ac119.009475] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/06/2019] [Indexed: 12/12/2022] Open
Abstract
A key metabolic adaptation of some species that face hypoxia as part of their life cycle involves an alternative electron transport chain in which rhodoquinone (RQ) is required for fumarate reduction and ATP production. RQ biosynthesis in bacteria and protists requires ubiquinone (Q) as a precursor. In contrast, Q is not a precursor for RQ biosynthesis in animals such as parasitic helminths, and most details of this pathway have remained elusive. Here, we used Caenorhabditis elegans as a model animal to elucidate key steps in RQ biosynthesis. Using RNAi and a series of C. elegans mutants, we found that arylamine metabolites from the kynurenine pathway are essential precursors for RQ biosynthesis de novo Deletion of kynu-1, encoding a kynureninase that converts l-kynurenine (KYN) to anthranilic acid (AA) and 3-hydroxykynurenine (3HKYN) to 3-hydroxyanthranilic acid (3HAA), completely abolished RQ biosynthesis but did not affect Q levels. Deletion of kmo-1, which encodes a kynurenine 3-monooxygenase that converts KYN to 3HKYN, drastically reduced RQ but not Q levels. Knockdown of the Q biosynthetic genes coq-5 and coq-6 affected both Q and RQ levels, indicating that both biosynthetic pathways share common enzymes. Our study reveals that two pathways for RQ biosynthesis have independently evolved. Unlike in bacteria, where amination is the last step in RQ biosynthesis, in worms the pathway begins with the arylamine precursor AA or 3HAA. Because RQ is absent in mammalian hosts of helminths, inhibition of RQ biosynthesis may have potential utility for targeting parasitic infections that cause important neglected tropical diseases.
Collapse
Affiliation(s)
| | - Laura Romanelli-Cedrez
- Laboratorio de Biologća de Gusanos, Unidad Mixta, Departamento de Biociencias, Facultad de Qućmica, Universidad de la República-Institut Pasteur de Montevideo, 11400 Montevideo, Uruguay
| | - Shannon J Babcock
- Department of Chemistry and Biochemistry, Gonzaga University, Spokane, Washington 99258 and
| | - Helen Xun
- Department of Chemistry and Biochemistry, Gonzaga University, Spokane, Washington 99258 and
| | - Miranda L VonPaige
- Department of Chemistry and Biochemistry, Gonzaga University, Spokane, Washington 99258 and
| | - Thomas W Higley
- Department of Chemistry and Biochemistry, Gonzaga University, Spokane, Washington 99258 and
| | - Tyler D Schlatter
- Department of Chemistry and Biochemistry, Gonzaga University, Spokane, Washington 99258 and
| | - Dakota C Davis
- Department of Chemistry and Biochemistry, Gonzaga University, Spokane, Washington 99258 and
| | - Julia A Drexelius
- Department of Chemistry and Biochemistry, Gonzaga University, Spokane, Washington 99258 and
| | - John C Culver
- Department of Chemistry and Biochemistry, Gonzaga University, Spokane, Washington 99258 and
| | - Inés Carrera
- Laboratorio de Biologća de Gusanos, Unidad Mixta, Departamento de Biociencias, Facultad de Qućmica, Universidad de la República-Institut Pasteur de Montevideo, 11400 Montevideo, Uruguay
| | - Jennifer N Shepherd
- Department of Chemistry and Biochemistry, Gonzaga University, Spokane, Washington 99258 and.
| | - Gustavo Salinas
- Laboratorio de Biologća de Gusanos, Unidad Mixta, Departamento de Biociencias, Facultad de Qućmica, Universidad de la República-Institut Pasteur de Montevideo, 11400 Montevideo, Uruguay.
| |
Collapse
|
23
|
Josende ME, Nunes SM, Müller L, Ferreira-Cravo M, Monserrat JM, Ventura-Lima J. Circular Estimate Method (CEM) - a Simple Method to Estimate Caenorhabditis elegans Culture Densities in Liquid Medium. Biol Proced Online 2019; 21:1. [PMID: 30675134 PMCID: PMC6334471 DOI: 10.1186/s12575-018-0089-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 12/28/2018] [Indexed: 11/10/2022] Open
Abstract
Background Nematodes are used in many different fields of science, including environmental and biomedical research. Counting and/or estimating nematode numbers is required during research. Although being one of the most common procedures, this apparently simple task is a time-consuming process, prone to errors and concerns regarding procedure, reliability, and accuracy. When an estimate is necessary, there is a traditional manual counting procedure that in this study it will be called as "drop method" (DM). This popular method that extrapolates an animal count from a small drop of fluid shows a high coefficient of variation. To solve this problem, the present study used the free-living nematode Caenorhabditis elegans to develop a new estimation procedure that was based on a relationship between area and volume of a larger sample. Results The new method showed a low coefficient of variation and a close relationship between estimated and real counts of the total number of nematodes in large C. elegans suspensions. Reactive oxygen concentration was measured as an example of method application and to allow comparison between methods. Conclusion The proposed method is accurate, facile and reproducible, requiring simple, inexpensive materials that make it an excellent alternative to the DM manual counting procedure. Although the DM is faster, its estimates are not as accurate or as precise as those of the new proposed method.
Collapse
Affiliation(s)
- Marcelo Estrella Josende
- 1Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande - FURG, Av. Itália km 8, Rio Grande, RS 96203-900 Brazil.,Programa de Pós-Graduação em Ciências Fisiológicas (PPGCF) - FURG, Rio Grande, Brazil
| | - Silvana Manske Nunes
- 1Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande - FURG, Av. Itália km 8, Rio Grande, RS 96203-900 Brazil.,Programa de Pós-Graduação em Ciências Fisiológicas (PPGCF) - FURG, Rio Grande, Brazil
| | - Larissa Müller
- 1Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande - FURG, Av. Itália km 8, Rio Grande, RS 96203-900 Brazil.,Programa de Pós-Graduação em Ciências Fisiológicas (PPGCF) - FURG, Rio Grande, Brazil
| | - Marlize Ferreira-Cravo
- 1Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande - FURG, Av. Itália km 8, Rio Grande, RS 96203-900 Brazil
| | - José Marìa Monserrat
- 1Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande - FURG, Av. Itália km 8, Rio Grande, RS 96203-900 Brazil.,Programa de Pós-Graduação em Ciências Fisiológicas (PPGCF) - FURG, Rio Grande, Brazil
| | - Juliane Ventura-Lima
- 1Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande - FURG, Av. Itália km 8, Rio Grande, RS 96203-900 Brazil.,Programa de Pós-Graduação em Ciências Fisiológicas (PPGCF) - FURG, Rio Grande, Brazil
| |
Collapse
|
24
|
Ma G, Wang T, Korhonen PK, Ang CS, Williamson NA, Young ND, Stroehlein AJ, Hall RS, Koehler AV, Hofmann A, Gasser RB. Molecular alterations during larval development of Haemonchus contortus in vitro are under tight post-transcriptional control. Int J Parasitol 2018; 48:763-772. [PMID: 29792880 DOI: 10.1016/j.ijpara.2018.03.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/20/2018] [Accepted: 03/26/2018] [Indexed: 12/23/2022]
Abstract
In this study, we explored the molecular alterations in the developmental switch from the L3 to the exsheathed L3 (xL3) and to the L4 stage of Haemonchus contortus in vitro using an integrated transcriptomic, proteomic and bioinformatic approach. Totals of 9,754 mRNAs, 88 microRNAs (miRNAs) and 1,591 proteins were identified, and 6,686 miRNA-mRNA pairs inferred in all larval stages studied. Approximately 16% of transcripts in the combined transcriptome (representing all three larval stages) were expressed as proteins, and there were positive correlations (r = 0.39-0.44) between mRNA transcription and protein expression in the three distinct developmental stages of the parasite. Of the predicted targets, 1,019 (27.0%) mRNA transcripts were expressed as proteins, and there was a negative correlation (r = -0.60 to -0.50) in the differential mRNA transcription and protein expression between developmental stages upon pairwise comparison. The changes in transcription (mRNA and miRNA) and protein expression from the free-living to the parasitic life cycle phase of H. contortus related to enrichments in biological pathways associated with metabolism (e.g., carbohydrate and lipid degradation, and amino acid metabolism), environmental information processing (e.g., signal transduction, signalling molecules and interactions) and/or genetic information processing (e.g., transcription and translation). Specifically, fatty acid degradation, steroid hormone biosynthesis and the Rap1 signalling pathway were suppressed, whereas transcription, translation and protein processing in the endoplasmic reticulum were upregulated during the transition from the free-living L3 to the parasitic xL3 and L4 stages of the nematode in vitro. Dominant post-transcriptional regulation was inferred to elicit these changes, and particular miRNAs (e.g., hco-miR-34 and hco-miR-252) appear to play roles in stress responses and/or environmental adaptations during developmental transitions of H. contortus. Taken together, these integrated results provide a comprehensive insight into the developmental biology of this important parasite at the molecular level in vitro. The approach applied here to H. contortus can be readily applied to other parasitic nematodes.
Collapse
Affiliation(s)
- Guangxu Ma
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Tao Wang
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Pasi K Korhonen
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ching-Seng Ang
- The Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Nicholas A Williamson
- The Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Neil D Young
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Andreas J Stroehlein
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ross S Hall
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Anson V Koehler
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Andreas Hofmann
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia; Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
25
|
Anthelmintic efficacy of glycolipid biosurfactant produced by Pseudomonas plecoglossicida: an insight from mutant and transgenic forms of Caenorhabditis elegans. Biodegradation 2018; 30:203-214. [PMID: 29663166 DOI: 10.1007/s10532-018-9831-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/12/2018] [Indexed: 12/15/2022]
Abstract
The current research focuses on the production and characterization of glycolipid biosurfactant (GB) from Pseudomonas plecoglossicida and its anthelmintic activity against Caenorhabditis elegans. The GB was purified and characterized by Fourier Transform Infrared Spectroscopy (FTIR) and Gas Chromatography and Mass Spectrometry (GC-MS) analysis. Anthelmintic activity of GB was studied at six different pharmacological doses from 10 to 320 µg/mL on C. elegans. Exposure of different developmental stages (L1, L2, L3, L4 and adult) of C. elegans to the GB reduced the survivability of worms in a dose and time-dependent manner. Adult and L4 worms were least susceptible, while L1, L2 and L3 were more susceptible to GB when compared to the untreated control. An increased exposure period drastically reduced the survival rate of worms and reduction in LC50 value. The GB significantly inhibited the development of C. elegans with an IC50 value of 53.14 µg/mL and even reduced the adult body length and egg hatching. Fecundity rate of the worms treated with GB at 20, 40 and 80 µg/mL decreased from 261.90 ± 3.21 to 239.70 ± 5.58, 164.20 ± 5.94 and 44.80 ± 6.22 eggs per worm, respectively. Besides the toxicological effects, prolonged exposure to GB significantly decreased (p ≤ 0.0001) the lifespan of wild type worms under standard laboratory conditions. Additionally, GB was found to be lethal towards ivermectin and albendazole resistant C. elegans strains. Overall, the data indicated that the GB extracted from P. plecoglossicida could be utilized for the control of non-susceptible and resistant gastrointestinal nematodes towards broad spectrum anthelmintic drugs, ivermectin and albendazole.
Collapse
|
26
|
Winton VJ, Justen AM, Deng H, Kiessling LL. Deleterious Consequences of UDP-Galactopyranose Mutase Inhibition for Nematodes. ACS Chem Biol 2017; 12:2354-2361. [PMID: 28732158 DOI: 10.1021/acschembio.7b00487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Parasitic nematodes pose a serious threat to agriculture, livestock, and human health. Increasing resistance to antiparasitic agents underscores the need to replenish our anthelmintic arsenal. The nonpathogenic Caenorhabditis elegans, which serves as an effective model of parasitic helminths, has been used to search for new anthelmintic leads. We previously reported small-molecule inhibitors of the essential C. elegans protein UDP-galactopyranose mutase (UGM or Glf). This enzyme is required for the generation of galactofuranose (Galf)-containing glycans and is needed in nematodes for proper cuticle formation. Though our first-generation inhibitors were effective in vitro, they elicited no phenotypic effects. These findings are consistent with the known difficulty of targeting nematodes. C. elegans is recalcitrant to pharmacological modulation; typically, less than 0.02% of small molecules elicit a phenotypic effect, even at 40 μM. We postulated that the lack of activity of the UGM inhibitors was due to their carboxylic acid group, which can be exploited by nematodes for detoxification. We therefore tested whether replacement of the carboxylate with an N-acylsulfonamide surrogate would result in active compounds. UGM inhibitors with the carboxylate mimetic can phenocopy the deleterious consequences of UGM depletion in C. elegans. These findings support the use of UGM inhibitors as anthelmintic agents. They also outline a strategy to render small-molecule carboxylates more effective against nematodes.
Collapse
Affiliation(s)
- Valerie J. Winton
- Department
of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706-1322, United States
| | - Alexander M. Justen
- Department
of Biochemistry, University of Wisconsin—Madison, 433 Babcock Drive, Madison, Wisconsin 53706-1544, United States
| | - Helen Deng
- Department
of Biochemistry, University of Wisconsin—Madison, 433 Babcock Drive, Madison, Wisconsin 53706-1544, United States
| | - Laura L. Kiessling
- Department
of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706-1322, United States
- Department
of Biochemistry, University of Wisconsin—Madison, 433 Babcock Drive, Madison, Wisconsin 53706-1544, United States
| |
Collapse
|
27
|
Wang C, Li F, Zhang Z, Yang X, Ahmad AA, Li X, Du A, Hu M. Recent Research Progress in China on Haemonchus contortus. Front Microbiol 2017; 8:1509. [PMID: 28883809 PMCID: PMC5574212 DOI: 10.3389/fmicb.2017.01509] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 07/27/2017] [Indexed: 11/23/2022] Open
Abstract
Haemonchus contortus is one of the most important parasites of ruminants with worldwide distribution that can bring huge economic losses to the breeding industry of cattle, sheep, and goats. In recent 20 years, studies on H. contortus in China mainly focused on the epidemiology, population genetics, anthelmintic resistance, structural and functional studies of important genes regulating the development of this parasite, interaction between parasite molecules and host cells and vaccine development against haemonchosis, and achieved good progress. However, there is no systematic review about the studies by Chinese researchers on H. contortus in China. The purpose of this review is to bring together the findings from the studies on H. contortus in China in order to obtain the knowledge gained from the recent studies in China and provide foundation for identifying future research directions to establish novel diagnostic methods, discover new drug targets and vaccine candidates for use in preventing and controlling H. contortus in China.
Collapse
Affiliation(s)
- Chunqun Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Fangfang Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Zongze Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Xin Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Awais A. Ahmad
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Xiangrui Li
- College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China
| | - Aifang Du
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang UniversityHangzhou, China
| | - Min Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| |
Collapse
|
28
|
Kalmobé J, Ndjonka D, Boursou D, Vildina JD, Liebau E. Phytochemical analysis and in vitro anthelmintic activity of Lophira lanceolata (Ochnaceae) on the bovine parasite Onchocerca ochengi and on drug resistant strains of the free-living nematode Caenorhabditis elegans. Altern Ther Health Med 2017; 17:404. [PMID: 28806951 PMCID: PMC5557511 DOI: 10.1186/s12906-017-1904-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 08/02/2017] [Indexed: 01/24/2023]
Abstract
Background Onchocerciasis is one of the tropical neglected diseases (NTDs) caused by the nematode Onchocerca volvulus. Control strategies currently in use rely on mass administration of ivermectin, which has marked activity against microfilariae. Furthermore, the development of resistance to ivermectin was observed. Since vaccine and safe macrofilaricidal treatment against onchocerciasis are still lacking, there is an urgent need to discover novel drugs. This study was undertaken to investigate the anthelmintic activity of Lophira lanceolata on the cattle parasite Onchocerca ochengi and the anthelmintic drug resistant strains of the free living nematode Caenorhabditis elegans and to determine the phytochemical profiles of the extracts and fractions of the plants. Methods Plant was extracted in ethanol or methanol-methylene chloride. O. ochengi, C. elegans wild-type and C. elegans drug resistant strains were cultured in RPMI-1640 and NGM-agar respectively. Drugs diluted in dimethylsulphoxide/RPMI or M9-Buffer were added in assays and monitored at 48 h and 72 h. Worm viability was determined by using the MTT/formazan colorimetric method. Polyphenol, tannin and flavonoid contents were determined by dosage of gallic acid and rutin. Acute oral toxicity was evaluated using Swiss albino mice. Results Ethanolic and methanolic-methylene chloride extracts killed O. ochengi with LC50 values of 9.76, 8.05, 6.39 μg/mL and 9.45, 7.95, 6.39 μg/mL respectively for leaves, trunk bark and root bark after 72 h. The lowest concentrations required to kill 50% of the wild-type of C. elegans were 1200 and 1890 μg/mL with ethanolic crude extract, 1000 and 2030 μg/mL with MeOH-CH2Cl2 for root bark and trunk bark of L. lanceolata, respectively after 72 h. Leave extracts of L. lanceolata are lethal to albendazole and ivermectin resistant strains of C. elegans after 72 h. Methanol/methylene chloride extracted more metabolites. Additionally, extracts could be considered relatively safe. Conclusion Ethanolic and methanolic-methylene chloride crude extracts and fractions of L. lanceolata showed in vitro anthelmintic activity. The extracts and fractions contained polyphenols, tannins, flavonoids and saponins. The mechanism of action of this plant could be different from that of albendazole and ivermectin. These results confirm the use of L. lanceolata by traditional healers for the treatment of worm infections. Electronic supplementary material The online version of this article (doi:10.1186/s12906-017-1904-z) contains supplementary material, which is available to authorized users.
Collapse
|
29
|
Jarmuła A, Wilk P, Maj P, Ludwiczak J, Dowierciał A, Banaszak K, Rypniewski W, Cieśla J, Dąbrowska M, Frączyk T, Bronowska AK, Jakowiecki J, Filipek S, Rode W. Crystal structures of nematode (parasitic T. spiralis and free living C. elegans), compared to mammalian, thymidylate synthases (TS). Molecular docking and molecular dynamics simulations in search for nematode-specific inhibitors of TS. J Mol Graph Model 2017; 77:33-50. [PMID: 28826032 DOI: 10.1016/j.jmgm.2017.08.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/05/2017] [Accepted: 08/07/2017] [Indexed: 01/01/2023]
Abstract
Three crystal structures are presented of nematode thymidylate synthases (TS), including Caenorhabditis elegans (Ce) enzyme without ligands and its ternary complex with dUMP and Raltitrexed, and binary complex of Trichinella spiralis (Ts) enzyme with dUMP. In search of differences potentially relevant for the development of species-specific inhibitors of the nematode enzyme, a comparison was made of the present Ce and Ts enzyme structures, as well as binary complex of Ce enzyme with dUMP, with the corresponding mammalian (human, mouse and rat) enzyme crystal structures. To complement the comparison, tCONCOORD computations were performed to evaluate dynamic behaviors of mammalian and nematode TS structures. Finally, comparative molecular docking combined with molecular dynamics and free energy of binding calculations were carried out to search for ligands showing selective affinity to T. spiralis TS. Despite an overall strong similarity in structure and dynamics of nematode vs mammalian TSs, a pool of ligands demonstrating predictively a strong and selective binding to TsTS has been delimited. These compounds, the E63 family, locate in the dimerization interface of TsTS where they exert species-specific interactions with certain non-conserved residues, including hydrogen bonds with Thr174 and hydrophobic contacts with Phe192, Cys191 and Tyr152. The E63 family of ligands opens the possibility of future development of selective inhibitors of TsTS and effective agents against trichinellosis.
Collapse
Affiliation(s)
- Adam Jarmuła
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warszawa, Poland.
| | - Piotr Wilk
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warszawa, Poland; Macromolecular Crystallography (BESSY-MX), Berlin, Germany
| | - Piotr Maj
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warszawa, Poland
| | - Jan Ludwiczak
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warszawa, Poland; Centre of New Technologies, University of Warsaw, Warszawa, Poland
| | - Anna Dowierciał
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warszawa, Poland
| | - Katarzyna Banaszak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Wojciech Rypniewski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Joanna Cieśla
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warszawa, Poland
| | - Magdalena Dąbrowska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warszawa, Poland
| | - Tomasz Frączyk
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warszawa, Poland
| | | | | | | | - Wojciech Rode
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warszawa, Poland
| |
Collapse
|
30
|
Angiostrongylus cantonensis daf-2 regulates dauer, longevity and stress in Caenorhabditis elegans. Vet Parasitol 2017; 240:1-10. [PMID: 28576337 DOI: 10.1016/j.vetpar.2017.04.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 04/19/2017] [Accepted: 04/23/2017] [Indexed: 11/22/2022]
Abstract
The insulin-like signaling (IIS) pathway is considered to be significant in regulating fat metabolism, dauer formation, stress response and longevity in Caenorhabditis elegans. "Dauer hypothesis" indicates that similar IIS transduction mechanism regulates dauer development in free-living nematode C. elegans and the development of infective third-stage larvae (iL3) in parasitic nematodes, and this is bolstered by a few researches on structures and functions of the homologous genes in the IIS pathway cloned from several parasitic nematodes. In this study, we identified the insulin-like receptor encoding gene, Acan-daf-2, from the parasitic nematode Angiostrongylus cantonensis, and determined the genomic structures, transcripts and functions far more thorough in longevity, stress resistance and dauer formation. The sequence of Acan-DAF-2, consisting of 1413 amino acids, contained all of the characteristic domains of insulin-like receptors from other taxa. The expression patterns of Acan-daf-2 in the C. elegans surrogate system showed that pAcan-daf-2:gfp was only expressed in intestine, compared with the orthologue in C. elegans, Ce-daf-2 in both intestine and neurons. In addition to the similar genomic organization to Ce-daf-2, Acan-DAF-2 could also negatively regulate Ce-DAF-16A through nuclear/cytosolic translocation and partially restore the C. elegans daf-2(e1370) mutation in longevity, dauer formation and stress resistance. These findings provided further evidence of the functional conservation of DAF-2 between parasitic nematodes and the free-living nematode C. elegans, and might be significant in understanding the developmental biology of nematode parasites, particularly in the infective process and the host-specificity.
Collapse
|
31
|
Luo X, Shi X, Yuan C, Ai M, Ge C, Hu M, Feng X, Yang X. Genome-wide SNP analysis using 2b-RAD sequencing identifies the candidate genes putatively associated with resistance to ivermectin in Haemonchus contortus. Parasit Vectors 2017; 10:31. [PMID: 28095895 PMCID: PMC5240194 DOI: 10.1186/s13071-016-1959-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 12/27/2016] [Indexed: 01/15/2023] Open
Abstract
Background The excessive and uncontrolled use of anthelmintics, e.g. ivermectin (IVM) for the treatment of livestock parasites has led to widespread resistance in gastrointestinal nematodes, such as Haemonchus contortus. There is an urgent need for better management of drug-use in nematode control and development of novel anthelmintics. Discovery and identification of anthelmintic resistance-associate molecules/markers can provide a basis for rational anthelmintics-use and development of novel drugs. Recent studies have shown that ivermectin resistance in H. contortus is likely to be multi-genic in nature except for several genes coding for IVM target and efflux pump. However, no other IVM resistance-associated genes were characterized by conventional methods or strategies. In the present study we adopted a new strategy, i.e. using genome-wide single nucleotide polymorphism (SNP) analysis based on 2b-RAD sequencing, for discovering SNPs markers across the genomes in both IVM susceptible and resistant isolates of H. contortus and identifying potential IVM resistance-associated genes. Results We discovered 2962 and 2667 SNPs within both susceptible and resistant strains of H. contortus, respectively. A relative lower and similar genetic variations were observed within both resistant and susceptible strains (average π values were equal to 0.1883 and 0.1953, respectively); whereas a high genetic variation was found across both strains (average π value was equal to 0.3899). A significant differentiation across 2b-RAD tags nucleotide sites was also observed between the two strains (average FST value was equal to 0.3076); the larger differences in average FST were observed at SNPs loci between coding and noncoding (including intronic) regions. Comparison between resistant and susceptible strains revealed that 208 SNPs loci exhibited significantly elevated FST values, 24 SNPs of those loci were located in the CDS regions of the nine genes and were likely to have signature of IVM directional selection. Seven of the nine candidate genes were predicted to code for some functional proteins such as potential IVM target and/or efflux pump proteins, component proteins of receptor complex in membrane on neuromuscular cells, and transcriptional regulation proteins. Those genes might be involved in resistance to IVM. Conclusions Our data suggest that candidate genes putatively associated with resistance to IVM in H. contortus may be identified by genome-wide SNP analysis using 2b-RAD sequencing. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1959-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaoping Luo
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, 200241, People's Republic of China.,College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010010, Inner Mongolia Nationality Autonomous, People's Republic of China
| | - Xiaona Shi
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, 200241, People's Republic of China.,College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 250014, People's Republic of China
| | - Chunxiu Yuan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, 200241, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu Province, People's Republic of China
| | - Min Ai
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, 200241, People's Republic of China
| | - Cheng Ge
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, 200241, People's Republic of China.,College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 250014, People's Republic of China
| | - Min Hu
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Xingang Feng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, 200241, People's Republic of China.
| | - Xiaoye Yang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010010, Inner Mongolia Nationality Autonomous, People's Republic of China.
| |
Collapse
|
32
|
Structural and functional characterisation of FOXO/Acan-DAF-16 from the parasitic nematode Angiostrongylus cantonensis. Acta Trop 2016; 164:125-136. [PMID: 27619188 DOI: 10.1016/j.actatropica.2016.09.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 09/08/2016] [Accepted: 09/09/2016] [Indexed: 12/15/2022]
Abstract
Fork head box transcription factors subfamily O (FoxO) is regarded to be significant in cell-cycle control, cell differentiation, ageing, stress response, apoptosis, tumour formation and DNA damage repair. In the free-living nematode Caenorhabditis elegans, the FoxO transcription factor is encoded by Ce-daf-16, which is negatively regulated by insulin-like signaling (IIS) and involved in promoting dauer formation through bringing about its hundreds of downstream genes expression. In nematode parasites, orthologues of daf-16 from several species have been identified, with functions in rescue of dauer phenotypes determined in a surrogate system C. elegans. In this study, we identified the FoxO encoding gene, Acan-daf-16, from the parasitic nematode Angiostrongylus cantonensis, and determined the genomic structures, transcripts and functions far more thorough in longevity, stress resistance and dauer formation. Acan-daf-16 encodes two proteins, Acan-DAF-16A and Acan-DAF-16B, consisting of 555 and 491 amino acids, respectively. Both isoforms possess the highly conserved fork head domains. Acan-daf-16A and Acan-daf-16B are expressed from distinct promoters. The expression patterns of Acan-daf-16 isoforms in the C. elegans surrogate system showed that p Acan-daf-16a:gfp was expressed in all cells of C. elegans, including the pharynx, and the expression of p Acan-daf-16b:gfp was restricted to the pharynx. In addition to the same genomic organization to the orthologue in C. elegans, Ce-daf-16, both Acan-DAF-16 isoforms could restore the C. elegans daf-16(mg54) mutation in longevity, dauer formation and stress resistance, in spite of the partial complementation of Acan-DAF-16B isoform in longevity. These findings provide further evidence of the functional conservation of DAF-16s between parasitic nematodes and the free-living nematode C. elegans.
Collapse
|
33
|
Abstract
The static levels of proteins are the net results of their production and clearance regulated by the activities of proteins involved in their synthesis, degradation, and transportation. Therefore, the information on the rates of protein synthesis and clearance is needed to understand the underlying dynamic nature of a proteome. In this chapter, the experimental technique, we use in our laboratory for monitoring the synthesis of individual proteins in Caenorhabditis elegans (C. elegans) is described. The technique utilizes a preisotopically labeled amino acid (13C6-Lys) as a precursor for protein synthesis and monitors the kinetics of the precursor incorporation into the newly synthesized proteins. C. elegans is a powerful animal model in various fields of biomedical science such as aging, developmental biology, and neurobiology. The experimental technique would, therefore, be useful for research laboratories using C. elegans as an animal model.
Collapse
Affiliation(s)
- M Miyagi
- Center for Proteomics and Bioinformatics, Cleveland, OH, United States; Case Western Reserve University, Cleveland, OH, United States.
| |
Collapse
|
34
|
Zamanian M, Andersen EC. Prospects and challenges of CRISPR/Cas genome editing for the study and control of neglected vector-borne nematode diseases. FEBS J 2016; 283:3204-21. [PMID: 27300487 PMCID: PMC5053252 DOI: 10.1111/febs.13781] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/05/2016] [Accepted: 06/13/2016] [Indexed: 01/19/2023]
Abstract
Neglected tropical diseases caused by parasitic nematodes inflict an immense health and socioeconomic burden throughout much of the developing world. Current estimates indicate that more than two billion people are infected with nematodes, resulting in the loss of 14 million disability-adjusted life years per annum. Although these parasites cause significant mortality, they primarily cause chronic morbidity through a wide range of severe clinical ailments. Treatment options for nematode infections are restricted to a small number of anthelmintic drugs, and the rapid expansion of anthelmintic mass drug administration raises concerns of drug resistance. Preservation of existing drugs is necessary, as well as the development of new treatment options and methods of control. We focus this review on how the democratization of CRISPR/Cas9 genome editing technology can be enlisted to improve our understanding of the biology of nematode parasites and our ability to treat the infections they cause. We will first explore how this robust method of genome manipulation can be used to newly exploit the powerful model nematode Caenorhabditis elegans for parasitology research. We will then discuss potential avenues to develop CRISPR/Cas9 editing protocols in filarial nematodes. Lastly, we will propose potential ways in which CRISPR/Cas9 can be used to engineer gene drives that target the transmission of mosquito-borne filarial nematodes.
Collapse
Affiliation(s)
- Mostafa Zamanian
- Department of Molecular BiosciencesNorthwestern UniversityEvanstonILUSA
| | - Erik C. Andersen
- Department of Molecular BiosciencesNorthwestern UniversityEvanstonILUSA
| |
Collapse
|
35
|
Gasser RB, Schwarz EM, Korhonen PK, Young ND. Understanding Haemonchus contortus Better Through Genomics and Transcriptomics. ADVANCES IN PARASITOLOGY 2016; 93:519-67. [PMID: 27238012 DOI: 10.1016/bs.apar.2016.02.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Parasitic roundworms (nematodes) cause substantial mortality and morbidity in animals globally. The barber's pole worm, Haemonchus contortus, is one of the most economically significant parasitic nematodes of small ruminants worldwide. Although this and related nematodes can be controlled relatively well using anthelmintics, resistance against most drugs in common use has become a major problem. Until recently, almost nothing was known about the molecular biology of H. contortus on a global scale. This chapter gives a brief background on H. contortus and haemonchosis, immune responses, vaccine research, chemotherapeutics and current problems associated with drug resistance. It also describes progress in transcriptomics before the availability of H. contortus genomes and the challenges associated with such work. It then reviews major progress on the two draft genomes and developmental transcriptomes of H. contortus, and summarizes their implications for the molecular biology of this worm in both the free-living and the parasitic stages of its life cycle. The chapter concludes by considering how genomics and transcriptomics can accelerate research on Haemonchus and related parasites, and can enable the development of new interventions against haemonchosis.
Collapse
Affiliation(s)
- R B Gasser
- The University of Melbourne, Parkville, VIC, Australia
| | - E M Schwarz
- The University of Melbourne, Parkville, VIC, Australia; Cornell University, Ithaca, NY, United States
| | - P K Korhonen
- The University of Melbourne, Parkville, VIC, Australia
| | - N D Young
- The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
36
|
Somvanshi VS, Gahoi S, Banakar P, Thakur PK, Kumar M, Sajnani M, Pandey P, Rao U. A transcriptomic insight into the infective juvenile stage of the insect parasitic nematode, Heterorhabditis indica. BMC Genomics 2016; 17:166. [PMID: 26931371 PMCID: PMC4774024 DOI: 10.1186/s12864-016-2510-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 02/22/2016] [Indexed: 01/02/2023] Open
Abstract
Background Nematodes are the most numerous animals in the soil. Insect parasitic nematodes of the genus Heterorhabditis are capable of selectively seeking, infecting and killing their insect-hosts in the soil. The infective juvenile (IJ) stage of the Heterorhabditis nematodes is analogous to Caenorhabditis elegans dauer juvenile stage, which remains in ‘arrested development’ till it finds and infects a new insect-host in the soil. H. indica is the most prevalent species of Heterorhabditis in India. To understand the genes and molecular processes that govern the biology of the IJ stage, and to create a resource to facilitate functional genomics and genetic exploration, we sequenced the transcriptome of H. indica IJs. Results The de-novo sequence assembly using Velvet-Oases pipeline resulted in 13,593 unique transcripts at N50 of 1,371 bp, of which 53 % were annotated by blastx. H. indica transcripts showed higher orthology with parasitic nematodes as compared to free living nematodes. In-silico expression analysis showed 30 % of transcripts expressing with ≥100 FPKM value. All the four canonical dauer formation pathways like cGMP-PKG, insulin, dafachronic acid and TGF-β were active in the IJ stage. Several other signaling pathways were highly represented in the transcriptome. Twenty-four orthologs of C. elegans RNAi pathway effector genes were discovered in H. indica, including nrde-3 that is reported for the first time in any of the parasitic nematodes. An ortholog of C. elegans tol-1 was also identified. Further, 272 kinases belonging to 137 groups, and several previously unidentified members of important gene classes were identified. Conclusions We generated high-quality transcriptome sequence data from H. indica IJs for the first time. The transcripts showed high similarity with the parasitic nematodes, M. hapla, and A. suum as opposed to C. elegans, a species to which H. indica is more closely related. The high representation of transcripts from several signaling pathways in the IJs indicates that despite being a developmentally arrested stage; IJs are a hotbed of signaling and are actively interacting with their environment. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2510-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vishal S Somvanshi
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Shachi Gahoi
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Prakash Banakar
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Prasoon Kumar Thakur
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Mukesh Kumar
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Manisha Sajnani
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Priyatama Pandey
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Uma Rao
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| |
Collapse
|
37
|
Mohandas N, Hu M, Stroehlein AJ, Young ND, Sternberg PW, Lok JB, Gasser RB. Reconstruction of the insulin-like signalling pathway of Haemonchus contortus. Parasit Vectors 2016; 9:64. [PMID: 26842675 PMCID: PMC4741068 DOI: 10.1186/s13071-016-1341-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 01/26/2016] [Indexed: 01/13/2023] Open
Abstract
Background In the present study, we reconstructed the insulin/insulin-like growth factor 1 signalling (IIS) pathway for Haemonchus contortus, which is one of the most important eukaryotic pathogens of livestock worldwide and is related to the free-living nematode Caenorhabditis elegans. Methods We curated full-length open-reading frames from assembled transcripts, defined the complement of genes that encode proteins involved in this pathway and then investigated the transcription profiles of these genes for all key developmental stages of H. contortus. Results The core components of the IIS pathway are similar to their respective homologs in C. elegans. However, there is considerable variation in the numbers of isoforms between H. contortus and C. elegans and an absence of AKT-2 and DDL-2 homologs from H. contortus. Interestingly, DAF-16 has a single isoform in H. contortus compared with 12 in C. elegans, suggesting novel functional roles in the parasitic nematode. Some IIS proteins, such as DAF-18 and SGK-1, vary in their functional domains, indicating distinct roles from their homologs in C. elegans. Conclusions This study paves the way for the further characterization of key signalling pathways in other socioeconomically important parasites and should help understand the complex mechanisms involved in developmental processes. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1341-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Namitha Mohandas
- The University of Melbourne, Faculty of Veterinary and Agricultural Sciences, Parkville, VIC, Australia.
| | - Min Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| | - Andreas J Stroehlein
- The University of Melbourne, Faculty of Veterinary and Agricultural Sciences, Parkville, VIC, Australia.
| | - Neil D Young
- The University of Melbourne, Faculty of Veterinary and Agricultural Sciences, Parkville, VIC, Australia.
| | - Paul W Sternberg
- HHMI, Division of Biology, California Institute of Technology, Pasadena, CA, USA.
| | - James B Lok
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA, 19104, USA.
| | - Robin B Gasser
- The University of Melbourne, Faculty of Veterinary and Agricultural Sciences, Parkville, VIC, Australia.
| |
Collapse
|
38
|
Molecular characterization of the Haemonchus contortus phosphoinositide-dependent protein kinase-1 gene (Hc-pdk-1). Parasit Vectors 2016; 9:65. [PMID: 26842781 PMCID: PMC4741024 DOI: 10.1186/s13071-016-1351-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 01/28/2016] [Indexed: 12/22/2022] Open
Abstract
Background Phosphoinositide-dependent protein kinase-1 (PDK-1), which functions downstream of phosphoinositide 3-kinase (AGE-1) and activates protein kinases of the AGC family, plays critical roles in regulating biology processes, such as metabolism, growth, development and survival. In the free-living nematode Caenorhabditis elegans, PDK-1 is a key component of the insulin-like signalling pathway, regulating the entry into and exit from dauer (arrested development). Although it is proposed that similar molecular mechanisms control the transition from the free-living to the parasitic stages of nematodes, nothing is known about PDK-1 in Haemonchus contortus, a socioeconomically important gastric nematode of ruminants. Methods Here, we isolated and characterized the pdk-1 gene (Hc-pdk-1) and its inferred product (Hc-PDK-1) from H. contortus. Using in vitro and in vivo methods, we then studied the transcriptional profiles of Hc-pdk-1 and anatomical gene expression patterns of Hc-PDK-1 in different developmental stages of C. elegans. Results In silico analysis of Hc-PDK-1 displayed conserved functional domains, such as protein kinase and pleckstrin homology (PH) domains and two predicted phosphorylation sites (Thr226/Tyr229), which are crucial for the phosphorylation of downstream signalling. The Hc-pdk-1 gene is transcribed in all of the main developmental stages of H. contortus, with its highest transcription in the infective third-stage larvae (iL3) compared with other stages. Transgene constructs, in which respective promoters were fused to the coding sequence for green fluorescent protein (GFP), were used to transform C. elegans, and to localize and compare the expression of Hc-pdk-1 and Ce-pdk-1. The expression of GFP under the control of the Hc-pdk-1 promoter was localized to the intestine, and head and tail neurons, contrasting somewhat the profile for the C. elegans ortholog, which is expressed in pharynx, intestine and head and tail neurons. Conclusions This is the first characterization of pdk-1/PDK-1 from a trichostrongyloid nematode. Taken together, the findings from this study provide a first glimpse of the involvement of Hc-pdk-1 in the insulin-like signalling pathway in H. contortus. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1351-6) contains supplementary material, which is available to authorized users.
Collapse
|
39
|
Spiegler V, Sendker J, Petereit F, Liebau E, Hensel A. Bioassay-Guided Fractionation of a Leaf Extract from Combretum mucronatum with Anthelmintic Activity: Oligomeric Procyanidins as the Active Principle. Molecules 2015; 20:14810-32. [PMID: 26287140 PMCID: PMC6332176 DOI: 10.3390/molecules200814810] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 08/05/2015] [Accepted: 08/11/2015] [Indexed: 11/16/2022] Open
Abstract
Combretum mucronatum Schumach. & Thonn. is a medicinal plant widely used in West African traditional medicine for wound healing and the treatment of helminth infections. The present study aimed at a phytochemical characterization of a hydroalcoholic leaf extract of this plant and the identification of the anthelmintic compounds by bioassay-guided fractionation. An EtOH-H2O (1:1) extract from defatted leaves was partitioned between EtOAc and H2O. Further fractionation was performed by fast centrifugal partition chromatography, RP18-MPLC and HPLC. Epicatechin (1), oligomeric proanthocyanidins (OPC) 2 to 10 (mainly procyanidins) and flavonoids 11 to 13 were identified as main components of the extract. The hydroalcoholic extract, fractions and purified compounds were tested in vitro for their anthelmintic activity using the model nematode Caenorhabditis elegans. The bioassay-guided fractionation led to the identification of OPCs as the active compounds with a dose-dependent anthelmintic activity ranging from 1 to 1000 μM. Using OPC-clusters with a defined degree of polymerization (DP) revealed that a DP ≥ 3 is necessary for an anthelmintic activity, whereas a DP > 4 does not lead to a further increased inhibitory effect against the helminths. In summary, the findings rationalize the traditional use of C. mucronatum and provide further insight into the anthelmintic activity of condensed tannins.
Collapse
Affiliation(s)
- Verena Spiegler
- Institute for Pharmaceutical Biology and Phytochemistry, University of Münster, Schlossplatz 2, D-48149 Münster, Germany.
| | - Jandirk Sendker
- Institute for Pharmaceutical Biology and Phytochemistry, University of Münster, Schlossplatz 2, D-48149 Münster, Germany.
| | - Frank Petereit
- Institute for Pharmaceutical Biology and Phytochemistry, University of Münster, Schlossplatz 2, D-48149 Münster, Germany.
| | - Eva Liebau
- Institute for Zoophysiology, University of Münster, Schlossplatz 8, D-48143 Münster, Germany.
| | - Andreas Hensel
- Institute for Pharmaceutical Biology and Phytochemistry, University of Münster, Schlossplatz 2, D-48149 Münster, Germany.
| |
Collapse
|
40
|
A new methodology for evaluation of nematode viability. BIOMED RESEARCH INTERNATIONAL 2015; 2015:879263. [PMID: 25866820 PMCID: PMC4383492 DOI: 10.1155/2015/879263] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 02/19/2015] [Indexed: 01/19/2023]
Abstract
Nematodes infections are responsible for debilitating conditions and economic losses in domestic animals as well as livestock and are considered an important public health problem due to the high prevalence in humans. The nematode resistance for drugs has been reported for livestock, highlighting the importance for development of new anthelmintic compounds. The aim of the current study was to apply and compare fluorimetric techniques using Sytox and propidium iodide for evaluating the viability of C. elegans larvae after treatment with anthelmintic drugs. These fluorescent markers were efficient to stain larvae treated with ivermectin and albendazole sulfoxide. We observed that densitometric values were proportional to the concentration of dead larvae stained with both markers. Furthermore, data on motility test presented an inverse correlation with fluorimetric data when ivermectin was used. Our results showed that lower concentrations of drugs were effective to interfere in the processes of cellular transport while higher drugs concentrations were necessary in order to result in any damage to cell integrity. The methodology described in this work might be useful for studies that aim to evaluate the viability of nematodes, particularly for testing of new anthelminthic compounds using an easy, economic, reproducible, and no time-consuming technique.
Collapse
|
41
|
Cantacessi C, Hofmann A, Campbell BE, Gasser RB. Impact of next-generation technologies on exploring socioeconomically important parasites and developing new interventions. Methods Mol Biol 2015; 1247:437-474. [PMID: 25399114 DOI: 10.1007/978-1-4939-2004-4_31] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
High-throughput molecular and computer technologies have become instrumental for systems biological explorations of pathogens, including parasites. For instance, investigations of the transcriptomes of different developmental stages of parasitic nematodes give insights into gene expression, regulation and function in a parasite, which is a significant step to understanding their biology, as well as interactions with their host(s) and disease. This chapter (1) gives a background on some key parasitic nematodes of socioeconomic importance, (2) describes sequencing and bioinformatic technologies for large-scale studies of the transcriptomes and genomes of these parasites, (3) provides some recent examples of applications and (4) emphasizes the prospects of fundamental biological explorations of parasites using these technologies for the development of new interventions to combat parasitic diseases.
Collapse
Affiliation(s)
- Cinzia Cantacessi
- Department of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | | | | | | |
Collapse
|
42
|
Agyare C, Spiegler V, Sarkodie H, Asase A, Liebau E, Hensel A. An ethnopharmacological survey and in vitro confirmation of the ethnopharmacological use of medicinal plants as anthelmintic remedies in the Ashanti region, in the central part of Ghana. JOURNAL OF ETHNOPHARMACOLOGY 2014; 158 Pt A:255-63. [PMID: 25446638 DOI: 10.1016/j.jep.2014.10.029] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 10/15/2014] [Accepted: 10/17/2014] [Indexed: 05/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Infections with helminths are still a big problem in many parts of the world. The majority of the people in West Africa treat such infections with medicinal plants related to the local traditional medicine. The present study aims at identifying medicinal plants traditionally used for worm infections in the Ashanti region, Ghana. In vitro screening of selected extracts from plants on which scientific knowledge is limited was to be performed. MATERIALS AND METHODS Validated questionnaires were administered to 50 traditional healers in the Ashanti region, Ghana. Interviews and structured conversations were used to obtain relevant information. Quantitative and qualitative evaluation was performed additionally to structured cross-referencing of the data using SciFinder(®) data base. Selected plant species were used for in vitro testing on anthelmintic activity against the free-living model nematode Caenorhabditis elegans. RESULTS 35 plant species were recorded for the use in humans and 6 for the use in animals. Plant material most frequently used were the seeds from Carica papaya, mentioned by nearly all healers. The plausibility of most plants used for treatment of infections with helminths was given in most cases by documentation of potential anthelmintic activity in recent scientific literature. 9 species from plants not or scarcely described in literature for this indication were investigated on in vitro activity. A hydroethanolic (1:1) extract of Combretum mucronatum was most active with a survival rate of nematodes of 89% at 0.1mg/mL and 58% at 1mg/mL respectively (levamisole 16%). Extracts of Paullinia pinnata and Phyllanthus urinaria were also assessed to exhibit a minor (85% and 89% respectively at 1mg/mL), but still significant activity. CONCLUSION Traditional use of anthelmintic plants from Ghana can be well rationalized by cross-referencing with published literature and phytochemical/pharmacological plausibility.The in vitro investigations of extracts from Combretum mucronatum, Paullinia pinnata and Phyllanthus urinaria exhibited significant effects against nematodes. The anthelmintic activity of these plants should be investigated in detail for pinpointing the respective lead structures responsible for the activity.
Collapse
Affiliation(s)
- Christian Agyare
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Verena Spiegler
- University of Münster, Institute for Pharmaceutical Biology and Phytochemistry,Corrensstraße 48, D-48149 Münster, Germany
| | - Herbert Sarkodie
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Alex Asase
- Department of Botany, University of Ghana, Legon, Ghana
| | - Eva Liebau
- Institute for Zoophysiology, Schlossplatz 8, D-48143 Münster, Germany
| | - Andreas Hensel
- University of Münster, Institute for Pharmaceutical Biology and Phytochemistry,Corrensstraße 48, D-48149 Münster, Germany.
| |
Collapse
|
43
|
Casper SK, Schoeller SJ, Zgoba DM, Phillips AJ, Morien TJ, Chaffee GR, Sackett PC, Peterson FC, Crossgrove K, Veldkamp CT. The solution structure of the forkhead box-O DNA binding domain of Brugia malayi DAF-16a. Proteins 2014; 82:3490-6. [PMID: 25297652 DOI: 10.1002/prot.24701] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 09/26/2014] [Accepted: 10/04/2014] [Indexed: 11/11/2022]
Abstract
Brugia malayi is a parasitic nematode that causes lymphatic filariasis in humans. Here the solution structure of the forkhead DNA binding domain of Brugia malayi DAF-16a, a putative ortholog of Caenorhabditis elegans DAF-16, is reported. It is believed to be the first structure of a forkhead or winged helix domain from an invertebrate. C. elegans DAF-16 is involved in the insulin/IGF-I signaling pathway and helps control metabolism, longevity, and development. Conservation of sequence and structure with human FOXO proteins suggests that B. malayi DAF-16a is a member of the FOXO family of forkhead proteins.
Collapse
Affiliation(s)
- Sarah K Casper
- Department of Biological Sciences, University of Wisconsin-Whitewater, Whitewater, Wisconsin, 53190; Department of Health Sciences, Blackhawk Technical College, Janesville, Wisconsin, 53545
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Landmann F, Foster JM, Michalski ML, Slatko BE, Sullivan W. Co-evolution between an endosymbiont and its nematode host: Wolbachia asymmetric posterior localization and AP polarity establishment. PLoS Negl Trop Dis 2014; 8:e3096. [PMID: 25165813 PMCID: PMC4148215 DOI: 10.1371/journal.pntd.0003096] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 07/03/2014] [Indexed: 01/07/2023] Open
Abstract
While bacterial symbionts influence a variety of host cellular responses throughout development, there are no documented instances in which symbionts influence early embryogenesis. Here we demonstrate that Wolbachia, an obligate endosymbiont of the parasitic filarial nematodes, is required for proper anterior-posterior polarity establishment in the filarial nematode B. malayi. Characterization of pre- and post-fertilization events in B. malayi reveals that, unlike C. elegans, the centrosomes are maternally derived and produce a cortical-based microtubule organizing center prior to fertilization. We establish that Wolbachia rely on these cortical microtubules and dynein to concentrate at the posterior cortex. Wolbachia also rely on PAR-1 and PAR-3 polarity cues for normal concentration at the posterior cortex. Finally, we demonstrate that Wolbachia depletion results in distinct anterior-posterior polarity defects. These results provide a striking example of endosymbiont-host co-evolution operating on the core initial developmental event of axis determination. Filarial nematodes are responsible for a number of neglected tropical diseases. The vast majority of these human parasites harbor the bacterial endosymbiont Wolbachia. Wolbachia are essential for filarial nematode survival and reproduction, and thus are a promising anti-filarial drug target. Understanding the molecular and cellular basis of Wolbachia-nematode interactions will facilitate the development of a new class of drugs that specifically disrupt these interactions. Here we focus on Wolbachia segregation patterns and interactions with the host cytoskeleton during early embryogenesis. Our studies indicate that centrosomes are maternally inherited in filarial nematodes resulting in a posterior microtubule-organizing center of maternal origin, unique to filarial nematodes. This microtubule-organizing center facilitates the concentration of Wolbachia at the posterior pole. We find that the microtubule motor dynein is required for the proper posterior Wolbachia localization. In addition, we demonstrate that Wolbachia rely on polarity signals in the egg for their preferential localization at the posterior pole. Conversely, Wolbachia are required for normal embryonic axis determination and Wolbachia removal leads to distinct anterior-posterior embryonic polarity defects. To our knowledge, this is the first example of a bacterial endosymbiont required for normal host embryogenesis.
Collapse
Affiliation(s)
- Frederic Landmann
- Department of Molecular, Cell and Developmental Biology, Sinsheimer Labs, University of California, Santa Cruz, California, United States of America
- Centre de Recherche de Biochimie Macromoléculaire, CNRS, Montpellier, France
- * E-mail:
| | - Jeremy M. Foster
- Molecular Parasitology, New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Michelle L. Michalski
- Department of Biology and Microbiology, University of Wisconsin Oshkosh, Oshkosh, Wisconsin, United States of America
| | - Barton E. Slatko
- Molecular Parasitology, New England Biolabs, Ipswich, Massachusetts, United States of America
| | - William Sullivan
- Department of Molecular, Cell and Developmental Biology, Sinsheimer Labs, University of California, Santa Cruz, California, United States of America
| |
Collapse
|
45
|
Li F, Lok JB, Gasser RB, Korhonen PK, Sandeman MR, Shi D, Zhou R, Li X, Zhou Y, Zhao J, Hu M. Hc-daf-2 encodes an insulin-like receptor kinase in the barber's pole worm, Haemonchus contortus, and restores partial dauer regulation. Int J Parasitol 2014; 44:485-96. [PMID: 24727120 PMCID: PMC4516220 DOI: 10.1016/j.ijpara.2014.03.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 03/14/2014] [Accepted: 03/16/2014] [Indexed: 01/25/2023]
Abstract
Infective L3s (iL3s) of parasitic nematodes share common behavioural, morphological and developmental characteristics with the developmentally arrested (dauer) larvae of the free-living nematode Caenorhabditis elegans. It is proposed that similar molecular mechanisms regulate entry into or exit from the dauer stage in C. elegans, and the transition from free-living to parasitic forms of parasitic nematodes. In C. elegans, one of the key factors regulating the dauer transition is the insulin-like receptor (designated Ce-DAF-2) encoded by the gene Ce-daf-2. However, nothing is known about DAF-2 homologues in most parasitic nematodes. Here, using a PCR-based approach, we identified and characterised a gene (Hc-daf-2) and its inferred product (Hc-DAF-2) in Haemonchus contortus (a socioeconomically important parasitic nematode of ruminants). The sequence of Hc-DAF-2 displays significant sequence homology to insulin receptors (IR) in both vertebrates and invertebrates, and contains conserved structural domains. A sequence encoding an important proteolytic motif (RKRR) identified in the predicted peptide sequence of Hc-DAF-2 is consistent with that of the human IR, suggesting that it is involved in the formation of the IR complex. The Hc-daf-2 gene was transcribed in all life stages of H. contortus, with a significant up-regulation in the iL3 compared with other stages. To compare patterns of expression between Hc-daf-2 and Ce-daf-2, reporter constructs fusing the Ce-daf-2 or Hc-daf-2 promoter to sequence encoding GFP were microinjected into the N2 strain of C. elegans, and transgenic lines were established and examined. Both genes showed similar patterns of expression in amphidial (head) neurons, which relate to sensation and signal transduction. Further study by heterologous genetic complementation in a daf-2-deficient strain of C. elegans (CB1370) showed partial rescue of function by Hc-daf-2. Taken together, these findings provide a first insight into the roles of Hc-daf-2/Hc-DAF-2 in the biology and development of H. contortus, particularly in the transition to parasitism.
Collapse
Affiliation(s)
- Facai Li
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, 1 Shizishan Street, Wuhan 430070, Hubei, China
| | - James B Lok
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104, USA
| | - Robin B Gasser
- Faculty of Veterinary Science, The University of Melbourne, Corner of Flemington Road and Park Drive, Parkville, Victoria 3010, Australia; Institute of Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, 16-18 Kaiserswerther Street, Berlin 14195, Germany
| | - Pasi K Korhonen
- Faculty of Veterinary Science, The University of Melbourne, Corner of Flemington Road and Park Drive, Parkville, Victoria 3010, Australia
| | - Mark R Sandeman
- School of Applied Sciences and Engineering, Monash University, Northways Road, Churchill, Victoria 3842, Australia
| | - Deshi Shi
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, 1 Shizishan Street, Wuhan 430070, Hubei, China
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, 1 Shizishan Street, Wuhan 430070, Hubei, China
| | - Xiangrui Li
- College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, Jiangsu, China
| | - Yanqin Zhou
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, 1 Shizishan Street, Wuhan 430070, Hubei, China
| | - Junlong Zhao
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, 1 Shizishan Street, Wuhan 430070, Hubei, China
| | - Min Hu
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, 1 Shizishan Street, Wuhan 430070, Hubei, China.
| |
Collapse
|
46
|
Ahmed R, Chang Z, Younis AE, Langnick C, Li N, Chen W, Brattig N, Dieterich C. Conserved miRNAs are candidate post-transcriptional regulators of developmental arrest in free-living and parasitic nematodes. Genome Biol Evol 2013; 5:1246-60. [PMID: 23729632 PMCID: PMC3730342 DOI: 10.1093/gbe/evt086] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Animal development is complex yet surprisingly robust. Animals may develop alternative phenotypes conditional on environmental changes. Under unfavorable conditions, Caenorhabditis elegans larvae enter the dauer stage, a developmentally arrested, long-lived, and stress-resistant state. Dauer larvae of free-living nematodes and infective larvae of parasitic nematodes share many traits including a conserved endocrine signaling module (DA/DAF-12), which is essential for the formation of dauer and infective larvae. We speculated that conserved post-transcriptional regulatory mechanism might also be involved in executing the dauer and infective larvae fate. We used an unbiased sequencing strategy to characterize the microRNA (miRNA) gene complement in C. elegans, Pristionchus pacificus, and Strongyloides ratti. Our study raised the number of described miRNA genes to 257 for C. elegans, tripled the known gene set for P. pacificus to 362 miRNAs, and is the first to describe miRNAs in a Strongyloides parasite. Moreover, we found a limited core set of 24 conserved miRNA families in all three species. Interestingly, our estimated expression fold changes between dauer versus nondauer stages and infective larvae versus free-living stages reveal that despite the speed of miRNA gene set evolution in nematodes, homologous gene families with conserved “dauer-infective” expression signatures are present. These findings suggest that common post-transcriptional regulatory mechanisms are at work and that the same miRNA families play important roles in developmental arrest and long-term survival in free-living and parasitic nematodes.
Collapse
Affiliation(s)
- Rina Ahmed
- Max Delbrück Center for Molecular Medicine, Berlin Institute for Medical Systems Biology, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Nematodes represent a diverse phylum of both free living and parasitic species. While the species Caenorhabditis elegans is a valuable model organism, parasitic nematodes or helminths pose a serious threat to human health. Indeed, helminths cause many neglected tropical diseases that afflict humans. Nematode glycoconjugates have been implicated in evasive immunomodulation, a hallmark of nematode infections. One monosaccharide residue present in the glycoconjugates of several human pathogens is galactofuranose (Galf). This five-membered ring isomer of galactose has not been detected in mammals, making Galf metabolic enzymes attractive therapeutic targets. The only known pathway for biosynthetic incorporation of Galf into glycoconjugates depends upon generation of the glycosyl donor UDP-Galf by the flavoenzyme uridine 5'-diphosphate (UDP) galactopyranose mutase (UGM or Glf). A putative UGM encoding gene (glf-1) was recently identified in C. elegans. We sought to assess the catalytic activity of the corresponding gene product (CeUGM). CeUGM catalyzes the isomerization of UDP-Galf and UDP-galactopyranose (UDP-Galp). In the presence of enzyme, substrate, and a hydride source, a galactose-N5-FAD adduct was isolated, suggesting the CeUGM flavin adenine dinucleotide (FAD) cofactor serves as a nucleophile in covalent catalysis. Homology modeling and protein variants indicate that CeUGM possesses an active site similar to that of prokaryotic enzymes, despite the low sequence identity (∼15%) between eukaryotic and prokaryotic UGM proteins. Even with the primary sequence differences, heterocyclic UGM inhibitors developed against prokaryotic proteins also inhibit CeUGM activity. We postulate that inhibitors of CeUGM can serve as chemical probes of Galf in nematodes and as anthelmintic leads. The available data suggest that CeUGM facilitates the biosynthetic incorporation of Galf into nematode glycoconjugates through generation of the glycosyl donor UDP-Galf.
Collapse
Affiliation(s)
- Darryl A. Wesener
- Department of Biochemistry, University of Wisconsin–Madison, 433 Babcock Drive, Madison, WI 53706-1544 USA
| | - John F. May
- Department of Biochemistry, University of Wisconsin–Madison, 433 Babcock Drive, Madison, WI 53706-1544 USA
| | - Elizabeth M. Huffman
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, WI 53706-1322 USA
| | - Laura L. Kiessling
- Department of Biochemistry, University of Wisconsin–Madison, 433 Babcock Drive, Madison, WI 53706-1544 USA
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, WI 53706-1322 USA
| |
Collapse
|
48
|
Heizer E, Zarlenga DS, Rosa B, Gao X, Gasser RB, De Graef J, Geldhof P, Mitreva M. Transcriptome analyses reveal protein and domain families that delineate stage-related development in the economically important parasitic nematodes, Ostertagia ostertagi and Cooperia oncophora. BMC Genomics 2013; 14:118. [PMID: 23432754 PMCID: PMC3599158 DOI: 10.1186/1471-2164-14-118] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 02/11/2013] [Indexed: 12/21/2022] Open
Abstract
Background Cooperia oncophora and Ostertagia ostertagi are among the most important gastrointestinal nematodes of cattle worldwide. The economic losses caused by these parasites are on the order of hundreds of millions of dollars per year. Conventional treatment of these parasites is through anthelmintic drugs; however, as resistance to anthelmintics increases, overall effectiveness has begun decreasing. New methods of control and alternative drug targets are necessary. In-depth analysis of transcriptomic data can help provide these targets. Results The assembly of 8.7 million and 11 million sequences from C. oncophora and O. ostertagi, respectively, resulted in 29,900 and 34,792 transcripts. Among these, 69% and 73% of the predicted peptides encoded by C. oncophora and O. ostertagi had homologues in other nematodes. Approximately 21% and 24% were constitutively expressed in both species, respectively; however, the numbers of transcripts that were stage specific were much smaller (~1% of the transcripts expressed in a stage). Approximately 21% of the transcripts in C. oncophora and 22% in O. ostertagi were up-regulated in a particular stage. Functional molecular signatures were detected for 46% and 35% of the transcripts in C. oncophora and O. ostertagi, respectively. More in-depth examinations of the most prevalent domains led to knowledge of gene expression changes between the free-living (egg, L1, L2 and L3 sheathed) and parasitic (L3 exsheathed, L4, and adult) stages. Domains previously implicated in growth and development such as chromo domains and the MADF domain tended to dominate in the free-living stages. In contrast, domains potentially involved in feeding such as the zinc finger and CAP domains dominated in the parasitic stages. Pathway analyses showed significant associations between life-cycle stages and peptides involved in energy metabolism in O. ostertagi whereas metabolism of cofactors and vitamins were specifically up-regulated in the parasitic stages of C. oncophora. Substantial differences were observed also between Gene Ontology terms associated with free-living and parasitic stages. Conclusions This study characterized transcriptomes from multiple life stages from both C. oncophora and O. ostertagi. These data represent an important resource for studying these parasites. The results of this study show distinct differences in the genes involved in the free-living and parasitic life cycle stages. The data produced will enable better annotation of the upcoming genome sequences and will allow future comparative analyses of the biology, evolution and adaptation to parasitism in nematodes.
Collapse
Affiliation(s)
- Esley Heizer
- The Genome Institute, Washington University School of Medicine, St. Louis, MO 63108, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
González-Díaz H, Riera-Fernández P. New Markov-Autocorrelation Indices for Re-evaluation of Links in Chemical and Biological Complex Networks used in Metabolomics, Parasitology, Neurosciences, and Epidemiology. J Chem Inf Model 2012; 52:3331-40. [DOI: 10.1021/ci300321f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Humberto González-Díaz
- Department of Microbiology
and Parasitology,
Faculty of Pharmacy, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain
| | - Pablo Riera-Fernández
- Department of Microbiology
and Parasitology,
Faculty of Pharmacy, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain
| |
Collapse
|
50
|
Ndjonka D, Ajonina-Ekoti I, Djafsia B, Lüersen K, Abladam E, Liebau E. Anogeissus leiocarpus extract on the parasite nematode Onchocerca ochengi and on drug resistant mutant strains of the free-living nematode Caenorhabditis elegans. Vet Parasitol 2012; 190:136-42. [DOI: 10.1016/j.vetpar.2012.05.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 05/25/2012] [Accepted: 05/27/2012] [Indexed: 11/16/2022]
|