1
|
Trout AL, Rutkai I, Biose IJ, Bix GJ. Review of Alterations in Perlecan-Associated Vascular Risk Factors in Dementia. Int J Mol Sci 2020; 21:E679. [PMID: 31968632 PMCID: PMC7013765 DOI: 10.3390/ijms21020679] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/09/2020] [Accepted: 01/16/2020] [Indexed: 01/10/2023] Open
Abstract
Perlecan is a heparan sulfate proteoglycan protein in the extracellular matrix that structurally and biochemically supports the cerebrovasculature by dynamically responding to changes in cerebral blood flow. These changes in perlecan expression seem to be contradictory, ranging from neuroprotective and angiogenic to thrombotic and linked to lipid retention. This review investigates perlecan's influence on risk factors such as diabetes, hypertension, and amyloid that effect Vascular contributions to Cognitive Impairment and Dementia (VCID). VCID, a comorbidity with diverse etiology in sporadic Alzheimer's disease (AD), is thought to be a major factor that drives the overall clinical burden of dementia. Accordingly, changes in perlecan expression and distribution in response to VCID appears to be injury, risk factor, location, sex, age, and perlecan domain dependent. While great effort has been made to understand the role of perlecan in VCID, additional studies are needed to increase our understanding of perlecan's role in health and in cerebrovascular disease.
Collapse
Affiliation(s)
- Amanda L. Trout
- Department of Neurology, University of Kentucky, Lexington, KY 40536, USA;
| | - Ibolya Rutkai
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA 70112, USA; (I.R.); (I.J.B.)
- Tulane Brain Institute, Tulane University, New Orleans, LA 70118, USA
| | - Ifechukwude J. Biose
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA 70112, USA; (I.R.); (I.J.B.)
| | - Gregory J. Bix
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA 70112, USA; (I.R.); (I.J.B.)
- Tulane Brain Institute, Tulane University, New Orleans, LA 70118, USA
| |
Collapse
|
2
|
Abstract
The aim of this chapter is to provide an overview of non-anticoagulant effects of heparins and their potential use in new therapeutic applications. Heparin and heparin derivatives have been tested in inflammatory, pulmonary and reproductive diseases, in cardiovascular, nephro- and neuro-tissue protection and repair, but also as agents against angiogenesis, atheroschlerosis, metastasis, protozoa and viruses. Targeting and inhibition of specific mediators involved in the inflammatory process, promoting some of the above mentioned pathologies, are reported along with recent studies of heparin conjugates and oral delivery systems. Some reports from the institute of the authors, such as those devoted to glycol-split heparins are also included. Among the members and derivatives of this class, several are undergoing clinical trials as antimetastatic and antimalarial agents and for the treatment of labour pain and severe hereditary anaemia. Other heparins, whose therapeutic targets are non-anticoagulant such as nephropathies, retinopathies and cystic fibrosis are also under investigation.
Collapse
Affiliation(s)
| | - Annamaria Naggi
- Istituto di Ricerche Chimiche e Biochimiche G Ronzoni, Milan, Italy.
| |
Collapse
|
3
|
Farwell SLN, Kanyi D, Hamel M, Slee JB, Miller EA, Cipolle MD, Lowe-Krentz LJ. Heparin Decreases in Tumor Necrosis Factor α (TNFα)-induced Endothelial Stress Responses Require Transmembrane Protein 184A and Induction of Dual Specificity Phosphatase 1. J Biol Chem 2016; 291:5342-54. [PMID: 26769965 DOI: 10.1074/jbc.m115.681288] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Indexed: 11/06/2022] Open
Abstract
Despite the large number of heparin and heparan sulfate binding proteins, the molecular mechanism(s) by which heparin alters vascular cell physiology is not well understood. Studies with vascular smooth muscle cells (VSMCs) indicate a role for induction of dual specificity phosphatase 1 (DUSP1) that decreases ERK activity and results in decreased cell proliferation, which depends on specific heparin binding. The hypothesis that unfractionated heparin functions to decrease inflammatory signal transduction in endothelial cells (ECs) through heparin-induced expression of DUSP1 was tested. In addition, the expectation that the heparin response includes a decrease in cytokine-induced cytoskeletal changes was examined. Heparin pretreatment of ECs resulted in decreased TNFα-induced JNK and p38 activity and downstream target phosphorylation, as identified through Western blotting and immunofluorescence microscopy. Through knockdown strategies, the importance of heparin-induced DUSP1 expression in these effects was confirmed. Quantitative fluorescence microscopy indicated that heparin treatment of ECs reduced TNFα-induced increases in stress fibers. Monoclonal antibodies that mimic heparin-induced changes in VSMCs were employed to support the hypothesis that heparin was functioning through interactions with a receptor. Knockdown of transmembrane protein 184A (TMEM184A) confirmed its involvement in heparin-induced signaling as seen in VSMCs. Therefore, TMEM184A functions as a heparin receptor and mediates anti-inflammatory responses of ECs involving decreased JNK and p38 activity.
Collapse
Affiliation(s)
- Sara Lynn N Farwell
- From the Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania 18015
| | - Daniela Kanyi
- From the Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania 18015, the Department of Chemistry, Lehigh University, Allentown, Pennsylvania 18103
| | - Marianne Hamel
- From the Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania 18015
| | - Joshua B Slee
- From the Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania 18015, the Department of Natural Sciences, DeSales University, Center Valley, Pennsylvania 18034
| | - Elizabeth A Miller
- From the Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania 18015
| | - Mark D Cipolle
- the Department of Surgery, Lehigh Valley Hospital Center, Allentown, Pennsylvania 18103, and
| | - Linda J Lowe-Krentz
- From the Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania 18015,
| |
Collapse
|
4
|
Abstract
Heparin has been recognized as a valuable anticoagulant and antithrombotic for several decades and is still widely used in clinical practice for a variety of indications. The anticoagulant activity of heparin is mainly attributable to the action of a specific pentasaccharide sequence that acts in concert with antithrombin, a plasma coagulation factor inhibitor. This observation has led to the development of synthetic heparin mimetics for clinical use. However, it is increasingly recognized that heparin has many other pharmacological properties, including but not limited to antiviral, anti-inflammatory, and antimetastatic actions. Many of these activities are independent of its anticoagulant activity, although the mechanisms of these other activities are currently less well defined. Nonetheless, heparin is being exploited for clinical uses beyond anticoagulation and developed for a wide range of clinical disorders. This article provides a "state of the art" review of our current understanding of the pharmacology of heparin and related drugs and an overview of the status of development of such drugs.
Collapse
Affiliation(s)
- Barbara Mulloy
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., C.P.P.); National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom (J.H., E.G.); and University College London School of Pharmacy, London, United Kingdom (R.L.)
| | - John Hogwood
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., C.P.P.); National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom (J.H., E.G.); and University College London School of Pharmacy, London, United Kingdom (R.L.)
| | - Elaine Gray
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., C.P.P.); National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom (J.H., E.G.); and University College London School of Pharmacy, London, United Kingdom (R.L.)
| | - Rebecca Lever
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., C.P.P.); National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom (J.H., E.G.); and University College London School of Pharmacy, London, United Kingdom (R.L.)
| | - Clive P Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., C.P.P.); National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom (J.H., E.G.); and University College London School of Pharmacy, London, United Kingdom (R.L.)
| |
Collapse
|
5
|
Glyphosate’s Suppression of Cytochrome P450 Enzymes and Amino Acid Biosynthesis by the Gut Microbiome: Pathways to Modern Diseases. ENTROPY 2013. [DOI: 10.3390/e15041416] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Cheng AC, Wu HL, Shi GY, Tsai IH. A novel heparin-dependent inhibitor of activated protein C that potentiates consumptive coagulopathy in Russell's viper envenomation. J Biol Chem 2012; 287:15739-48. [PMID: 22416129 PMCID: PMC3346151 DOI: 10.1074/jbc.m111.323063] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 02/17/2012] [Indexed: 11/06/2022] Open
Abstract
The activation of coagulation factors V and X by Russell's viper venom (RVV) has been implicated in the development of consumptive coagulopathies in severely envenomed patients. However, factor Va is prone to inactivation by activated protein C (APC), an important serine protease that negatively regulates blood coagulation. It is therefore hypothesized that APC may be down-regulated by some of the venom components. In this study, we managed to isolate a potent Kunitz-type APC inhibitor, named DrKIn-I. Using chromogenic substrate, DrKIn-I dose-dependently inhibited the activity of APC. Heparin potentiated the inhibition and reduced the IC(50) of DrKIn-I by 25-fold. DrKIn-I, together with heparin, also protected factor Va from APC-mediated inactivation. Using surface plasmon resonance, DrKIn-I exhibited fast binding kinetics with APC (association rate constant = 1.7 × 10(7) M(-1) s(-1)). Direct binding assays and kinetic studies revealed that this inhibition (K(i) = 53 pM) is due to the tight binding interactions of DrKIn-I with both heparin and APC. DrKIn-I also effectively reversed the anticoagulant activity of APC and completely restored the thrombin generation in APC-containing plasma. Furthermore, although the injection of either DrKIn-I or RVV-X (the venom factor X-activator) into ICR mice did not significantly deplete the plasma fibrinogen concentration, co-administration of DrKIn-I with RVV-X resulted in complete fibrinogen consumption and the deposition of fibrin thrombi in the glomerular capillaries. Our results provide new insights into the pathogenesis of RVV-induced coagulopathies and indicate that DrKIn-I is a novel APC inhibitor that is associated with potentially fatal thrombotic complications in Russell's viper envenomation.
Collapse
Affiliation(s)
- An-Chun Cheng
- From the Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Hua-Lin Wu
- the Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
- the Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan, and
| | - Guey-Yueh Shi
- the Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
- the Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan, and
| | - Inn-Ho Tsai
- From the Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
- the Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
7
|
Abstract
Heparin has long been known to possess biological effects that are unrelated to its anticoagulant activity. In particular, much emphasis has been placed upon heparin, or novel agents based upon the heparin template, as potential anti-inflammatory agents. Moreover, heparin has been reported to possess clinical benefit in humans, including in chronic inflammatory diseases and cancer, that are over and above the expected effects on blood coagulation and which in many cases are entirely separable from this role. This chapter aims to provide an overview of the non-anticoagulant effects that have been ascribed to heparin, from those involving the binding and inhibition of specific mediators involved in the inflammatory process to effects in whole system models of disease, with reference to the effects of heparin that have been reported to date in human diseases.
Collapse
Affiliation(s)
- Rebecca Lever
- The School of Pharmacy, University of London, London, UK.
| | | |
Collapse
|
8
|
Abstract
IMPORTANCE TO THE FIELD Omalizumab is of proven efficacy in the treatment of severe allergic bronchial asthma and works through inhibiting the activity of IgE and the allergic immune mechanism IgE mediates. It has been demonstrated to be efficacious in children with asthma but is not approved by the FDA for use in children below 12 years of age. AREAS COVERED IN THIS REVIEW Omalizumab is a 95% humanized monoclonal antibody that binds to circulating IgE at the same site on the Fc domain as the high-affinity IgE receptor, FcϵRI. This blocks the interaction between IgE and mast cells and basophils, thereby preventing the release of inflammatory mediators that cause allergic signs and symptoms. WHAT THE READER WILL GAIN From the review of the literatures and statements from the FDA, Genentec and Novartis, the reader will gain a better appreciation of the value of omalizumab in treatment of severe asthma and the current status of its reported side effects. TAKE HOME MESSAGE Omalizumab is of proven efficacy in adults and children with severe asthma and allows a markedly reduced dependence on oral and inhaled corticosteroids and decreased hospitalizations. A potential mechanism of omalizumab's effect on thrombus formation and cardiovascular effect is postulated.
Collapse
Affiliation(s)
- Robert G Townley
- Division of Asthma, Creighton University Medical Center, 601 N, 30th ST, Suite 3M100, Omaha, NE 68131, USA.
| | | | | |
Collapse
|
9
|
HDL composition regulates displacement of cell surface-bound hepatic lipase. Lipids 2008; 43:793-804. [PMID: 18670796 DOI: 10.1007/s11745-008-3214-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Accepted: 07/08/2008] [Indexed: 10/21/2022]
Abstract
HDL is able to displace cell surface-bound hepatic lipase (HL) and stimulate vascular triglyceride (TG) hydrolysis, much like heparin. Displacement appears to be a result of a high-affinity association of HL and apoA-I. HDL varies in its ability to displace HL, and therefore experiments were undertaken to evaluate the impact of HDL composition and structure on HL displacement from cell surface proteoglycans. HDL apolipoprotein and lipid composition directly affect HL displacement. ApoA-II and apoC-I significantly increase HL displacement from the cell surface. While changes in HDL cholesteryl ester and fatty acid content have no effect on HL displacement, increases in HDL phospholipid and TG content significantly inhibit HL displacement. HDL fractions from hyperlipidemic patients are unable to displace HL from the cell surface. These results indicate that the structure and composition of HDL particles in plasma are central to regulation of HL displacement and the hydrolytic activity of HL.
Collapse
|
10
|
Tran-Lundmark K, Tran PK, Paulsson-Berne G, Fridén V, Soininen R, Tryggvason K, Wight TN, Kinsella MG, Borén J, Hedin U. Heparan sulfate in perlecan promotes mouse atherosclerosis: roles in lipid permeability, lipid retention, and smooth muscle cell proliferation. Circ Res 2008; 103:43-52. [PMID: 18596265 DOI: 10.1161/circresaha.108.172833] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Heparan sulfate (HS) has been proposed to be antiatherogenic through inhibition of lipoprotein retention, inflammation, and smooth muscle cell proliferation. Perlecan is the predominant HS proteoglycan in the artery wall. Here, we investigated the role of perlecan HS chains using apoE null (ApoE0) mice that were cross-bred with mice expressing HS-deficient perlecan (Hspg2(Delta3/Delta3)). Morphometry of cross-sections from aortic roots and en face preparations of whole aortas revealed a significant decrease in lesion formation in ApoE0/Hspg2(Delta3/Delta3) mice at both 15 and 33 weeks. In vitro, binding of labeled mouse triglyceride-rich lipoproteins and human LDL to total extracellular matrix, as well as to purified proteoglycans, prepared from ApoE0/Hspg2(Delta3/Delta3) smooth muscle cells was reduced. In vivo, at 20 minutes influx of human (125)I-LDL or mouse triglyceride-rich lipoproteins into the aortic wall was increased in ApoE0/Hspg2(Delta3/Delta3) mice compared to ApoE0 mice. However, at 72 hours accumulation of (125)I-LDL was similar in ApoE0/Hspg2(Delta3/Delta3) and ApoE0 mice. Immunohistochemistry of lesions from ApoE0/Hspg2(Delta3/Delta3) mice showed decreased staining for apoB and increased smooth muscle alpha-actin content, whereas accumulation of CD68-positive inflammatory cells was unchanged. We conclude that the perlecan HS chains are proatherogenic in mice, possibly through increased lipoprotein retention, altered vascular permeability, or other mechanisms. The ability of HS to inhibit smooth muscle cell growth may also influence development as well as instability of lesions.
Collapse
Affiliation(s)
- Karin Tran-Lundmark
- Department of Molecular Medicine and Surgery, Karolinska University Hospital, Karolinska Institutet, SE-17176 Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Tran-Lundmark K, Tran PK, Paulsson-Berne G, Fridén V, Soininen R, Tryggvason K, Wight TN, Kinsella MG, Borén J, Hedin U. Heparan Sulfate in Perlecan Promotes Mouse Atherosclerosis. Circ Res 2008. [DOI: 10.1161/circresaha.107.172833] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Heparan sulfate (HS) has been proposed to be antiatherogenic through inhibition of lipoprotein retention, inflammation, and smooth muscle cell proliferation. Perlecan is the predominant HS proteoglycan in the artery wall. Here, we investigated the role of perlecan HS chains using apoE null (ApoE0) mice that were cross-bred with mice expressing HS-deficient perlecan (
Hspg2
Δ3/Δ3
). Morphometry of cross-sections from aortic roots and en face preparations of whole aortas revealed a significant decrease in lesion formation in ApoE0/
Hspg2
Δ3/Δ3
mice at both 15 and 33 weeks. In vitro, binding of labeled mouse triglyceride-rich lipoproteins and human LDL to total extracellular matrix, as well as to purified proteoglycans, prepared from ApoE0/
Hspg2
Δ3/Δ3
smooth muscle cells was reduced. In vivo, at 20 minutes influx of human
125
I-LDL or mouse triglyceride-rich lipoproteins into the aortic wall was increased in ApoE0/
Hspg2
Δ3/Δ3
mice compared to ApoE0 mice. However, at 72 hours accumulation of
125
I-LDL was similar in ApoE0/
Hspg2
Δ3/Δ3
and ApoE0 mice. Immunohistochemistry of lesions from ApoE0/
Hspg2
Δ3/Δ3
mice showed decreased staining for apoB and increased smooth muscle α-actin content, whereas accumulation of CD68-positive inflammatory cells was unchanged. We conclude that the perlecan HS chains are proatherogenic in mice, possibly through increased lipoprotein retention, altered vascular permeability, or other mechanisms. The ability of HS to inhibit smooth muscle cell growth may also influence development as well as instability of lesions.
Collapse
Affiliation(s)
- Karin Tran-Lundmark
- From the Department of Molecular Medicine and Surgery (K.T.-L., P.-K.T., U.H.), Karolinska Institutet, Stockholm, Sweden; the Center for Molecular Medicine (G.P.-B.), Karolinska Institutet, Stockholm, Sweden; Sahlgrenska Center for Cardiovascular and Metabolic Research/Wallenberg Laboratory, Department of Molecular and Clinical Medicine (V.F., J.B.), Göteborg University, Gothenburg, Sweden; the Department of Medical Biochemistry and Molecular Biology (R.S.), Biocenter Oulu, University of Oulu,
| | - Phan-Kiet Tran
- From the Department of Molecular Medicine and Surgery (K.T.-L., P.-K.T., U.H.), Karolinska Institutet, Stockholm, Sweden; the Center for Molecular Medicine (G.P.-B.), Karolinska Institutet, Stockholm, Sweden; Sahlgrenska Center for Cardiovascular and Metabolic Research/Wallenberg Laboratory, Department of Molecular and Clinical Medicine (V.F., J.B.), Göteborg University, Gothenburg, Sweden; the Department of Medical Biochemistry and Molecular Biology (R.S.), Biocenter Oulu, University of Oulu,
| | - Gabrielle Paulsson-Berne
- From the Department of Molecular Medicine and Surgery (K.T.-L., P.-K.T., U.H.), Karolinska Institutet, Stockholm, Sweden; the Center for Molecular Medicine (G.P.-B.), Karolinska Institutet, Stockholm, Sweden; Sahlgrenska Center for Cardiovascular and Metabolic Research/Wallenberg Laboratory, Department of Molecular and Clinical Medicine (V.F., J.B.), Göteborg University, Gothenburg, Sweden; the Department of Medical Biochemistry and Molecular Biology (R.S.), Biocenter Oulu, University of Oulu,
| | - Vincent Fridén
- From the Department of Molecular Medicine and Surgery (K.T.-L., P.-K.T., U.H.), Karolinska Institutet, Stockholm, Sweden; the Center for Molecular Medicine (G.P.-B.), Karolinska Institutet, Stockholm, Sweden; Sahlgrenska Center for Cardiovascular and Metabolic Research/Wallenberg Laboratory, Department of Molecular and Clinical Medicine (V.F., J.B.), Göteborg University, Gothenburg, Sweden; the Department of Medical Biochemistry and Molecular Biology (R.S.), Biocenter Oulu, University of Oulu,
| | - Raija Soininen
- From the Department of Molecular Medicine and Surgery (K.T.-L., P.-K.T., U.H.), Karolinska Institutet, Stockholm, Sweden; the Center for Molecular Medicine (G.P.-B.), Karolinska Institutet, Stockholm, Sweden; Sahlgrenska Center for Cardiovascular and Metabolic Research/Wallenberg Laboratory, Department of Molecular and Clinical Medicine (V.F., J.B.), Göteborg University, Gothenburg, Sweden; the Department of Medical Biochemistry and Molecular Biology (R.S.), Biocenter Oulu, University of Oulu,
| | - Karl Tryggvason
- From the Department of Molecular Medicine and Surgery (K.T.-L., P.-K.T., U.H.), Karolinska Institutet, Stockholm, Sweden; the Center for Molecular Medicine (G.P.-B.), Karolinska Institutet, Stockholm, Sweden; Sahlgrenska Center for Cardiovascular and Metabolic Research/Wallenberg Laboratory, Department of Molecular and Clinical Medicine (V.F., J.B.), Göteborg University, Gothenburg, Sweden; the Department of Medical Biochemistry and Molecular Biology (R.S.), Biocenter Oulu, University of Oulu,
| | - Thomas N. Wight
- From the Department of Molecular Medicine and Surgery (K.T.-L., P.-K.T., U.H.), Karolinska Institutet, Stockholm, Sweden; the Center for Molecular Medicine (G.P.-B.), Karolinska Institutet, Stockholm, Sweden; Sahlgrenska Center for Cardiovascular and Metabolic Research/Wallenberg Laboratory, Department of Molecular and Clinical Medicine (V.F., J.B.), Göteborg University, Gothenburg, Sweden; the Department of Medical Biochemistry and Molecular Biology (R.S.), Biocenter Oulu, University of Oulu,
| | - Michael G. Kinsella
- From the Department of Molecular Medicine and Surgery (K.T.-L., P.-K.T., U.H.), Karolinska Institutet, Stockholm, Sweden; the Center for Molecular Medicine (G.P.-B.), Karolinska Institutet, Stockholm, Sweden; Sahlgrenska Center for Cardiovascular and Metabolic Research/Wallenberg Laboratory, Department of Molecular and Clinical Medicine (V.F., J.B.), Göteborg University, Gothenburg, Sweden; the Department of Medical Biochemistry and Molecular Biology (R.S.), Biocenter Oulu, University of Oulu,
| | - Jan Borén
- From the Department of Molecular Medicine and Surgery (K.T.-L., P.-K.T., U.H.), Karolinska Institutet, Stockholm, Sweden; the Center for Molecular Medicine (G.P.-B.), Karolinska Institutet, Stockholm, Sweden; Sahlgrenska Center for Cardiovascular and Metabolic Research/Wallenberg Laboratory, Department of Molecular and Clinical Medicine (V.F., J.B.), Göteborg University, Gothenburg, Sweden; the Department of Medical Biochemistry and Molecular Biology (R.S.), Biocenter Oulu, University of Oulu,
| | - Ulf Hedin
- From the Department of Molecular Medicine and Surgery (K.T.-L., P.-K.T., U.H.), Karolinska Institutet, Stockholm, Sweden; the Center for Molecular Medicine (G.P.-B.), Karolinska Institutet, Stockholm, Sweden; Sahlgrenska Center for Cardiovascular and Metabolic Research/Wallenberg Laboratory, Department of Molecular and Clinical Medicine (V.F., J.B.), Göteborg University, Gothenburg, Sweden; the Department of Medical Biochemistry and Molecular Biology (R.S.), Biocenter Oulu, University of Oulu,
| |
Collapse
|
12
|
Doran AC, Meller N, McNamara CA. Role of smooth muscle cells in the initiation and early progression of atherosclerosis. Arterioscler Thromb Vasc Biol 2008; 28:812-9. [PMID: 18276911 DOI: 10.1161/atvbaha.107.159327] [Citation(s) in RCA: 613] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The initiation of atherosclerosis results from complex interactions of circulating factors and various cell types in the vessel wall, including endothelial cells, lymphocytes, monocytes, and smooth muscle cells (SMCs). Recent reviews highlight the role of activated endothelium and inflammatory cell recruitment in the initiation of and progression of early atherosclerosis. Yet, human autopsy studies, in vitro mechanistic studies, and in vivo correlative data suggest an important role for SMCs in the initiation of atherosclerosis. SMCs are the major producers of extracellular matrix within the vessel wall and in response to atherogenic stimuli can modify the type of matrix proteins produced. In turn, the type of matrix present can affect the lipid content of the developing plaque and the proliferative index of the cells that are adherent to it. SMCs are also capable of functions typically attributed to other cell types. Like macrophages, SMCs can express a variety of receptors for lipid uptake and can form foam-like cells, thereby participating in the early accumulation of plaque lipid. Like endothelial cells, SMCs can also express a variety of adhesion molecules such as vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 to which monocytes and lymphocytes can adhere and migrate into the vessel wall. In addition, through these adhesion molecules, SMCs can also stabilize these cells against apoptosis, thus contributing to the early cellularity of the lesion. Like many cells within the developing plaque, SMCs also produce many cytokines such as PDGF, transforming growth factor-beta, IFNgamma, and MCP-1, all of which contribute to the initiation and propagation of the inflammatory response to lipid. Recent advances in SMC-specific gene modulation have enhanced our ability to determine the role of SMCs in early atherogenesis.
Collapse
Affiliation(s)
- Amanda C Doran
- Cardiovascular Division/Department of Medicine, the Cardiovascular Research Center, University of Virginia Health Sciences Center, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|
13
|
Tran PK, Agardh HE, Tran-Lundmark K, Ekstrand J, Roy J, Henderson B, Gabrielsen A, Hansson GK, Swedenborg J, Paulsson-Berne G, Hedin U. Reduced perlecan expression and accumulation in human carotid atherosclerotic lesions. Atherosclerosis 2006; 190:264-70. [PMID: 16620836 DOI: 10.1016/j.atherosclerosis.2006.03.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2005] [Revised: 03/06/2006] [Accepted: 03/09/2006] [Indexed: 12/15/2022]
Abstract
Heparan sulfate in the extracellular matrix of the artery wall has been proposed to possess anti-atherogenic properties by interfering with lipoprotein retention, suppression of inflammation, and inhibition of smooth muscle cell growth. Previously, the amount of heparan sulfate in atherosclerotic lesions from humans and animals has been shown to be reduced but the identity or identities of the heparan sulfate molecules being down regulated in this disease are not known. In this study, atherosclerotic lesions were retrieved from 44 patients undergoing surgery for symptomatic carotid stenosis. Normal iliac arteries from organ donors were used as controls. Analysis of the specimens by gene microarray showed a selective reduction in perlecan gene expression, whereas, expression of the other heparan sulfate proteoglycans in the artery wall, agrin and collagen XVIII, remained unchanged. Expression of the large chondroitin sulfate proteoglycan, versican, also remained unchanged. Real-time PCR confirmed the decrease in perlecan gene expression and the unchanged expression of versican. The findings were supported by immunohistochemical analysis demonstrating a reduced accumulation of both perlecan core protein and heparan sulfate in carotid lesions. The study demonstrates a reduction of perlecan mRNA-expression and protein deposition in human atherosclerosis, which in part explains the low levels of heparan sulfate in this disease.
Collapse
Affiliation(s)
- Phan-Kiet Tran
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, SE-171 76 Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Duan W, Paka L, Pillarisetti S. Distinct effects of glucose and glucosamine on vascular endothelial and smooth muscle cells: evidence for a protective role for glucosamine in atherosclerosis. Cardiovasc Diabetol 2005; 4:16. [PMID: 16207378 PMCID: PMC1277831 DOI: 10.1186/1475-2840-4-16] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Accepted: 10/05/2005] [Indexed: 11/12/2022] Open
Abstract
Accelerated atherosclerosis is one of the major vascular complications of diabetes. Factors including hyperglycemia and hyperinsulinemia may contribute to accelerated vascular disease. Among the several mechanisms proposed to explain the link between hyperglycemia and vascular dysfunction is the hexosamine pathway, where glucose is converted to glucosamine. Although some animal experiments suggest that glucosamine may mediate insulin resistance, it is not clear whether glucosamine is the mediator of vascular complications associated with hyperglycemia. Several processes may contribute to diabetic atherosclerosis including decreased vascular heparin sulfate proteoglycans (HSPG), increased endothelial permeability and increased smooth muscle cell (SMC) proliferation. In this study, we determined the effects of glucose and glucosamine on endothelial cells and SMCs in vitro and on atherosclerosis in apoE null mice. Incubation of endothelial cells with glucosamine, but not glucose, significantly increased matrix HSPG (perlecan) containing heparin-like sequences. Increased HSPG in endothelial cells was associated with decreased protein transport across endothelial cell monolayers and decreased monocyte binding to subendothelial matrix. Glucose increased SMC proliferation, whereas glucosamine significantly inhibited SMC growth. The antiproliferative effect of glucosamine was mediated via induction of perlecan HSPG. We tested if glucosamine affects atherosclerosis development in apoE-null mice. Glucosamine significantly reduced the atherosclerotic lesion in aortic root. (P < 0.05) These data suggest that macrovascular disease associated with hyperglycemia is unlikely due to glucosamine. In fact, glucosamine by increasing HSPG showed atheroprotective effects.
Collapse
Affiliation(s)
- Wenlan Duan
- Reddy US therapeutics, 3065 Northwoods Circle, Norcross, GA 30071, USA
- Department of Radiation Oncology, North Shore-Long Island Jewish Health System, 350 Community Dr, Manhasset, NY 11030, USA
| | - Latha Paka
- Angion Biomedica, 350 Community Dr, Manhasset, NY 11030
- Department of Radiation Oncology, North Shore-Long Island Jewish Health System, 350 Community Dr, Manhasset, NY 11030, USA
| | - Sivaram Pillarisetti
- Reddy US therapeutics, 3065 Northwoods Circle, Norcross, GA 30071, USA
- Department of Radiation Oncology, North Shore-Long Island Jewish Health System, 350 Community Dr, Manhasset, NY 11030, USA
| |
Collapse
|
15
|
Engelberg H. Pathogenic factors in vascular dementia and Alzheimer's disease. Multiple actions of heparin that probably are beneficial. Dement Geriatr Cogn Disord 2005; 18:278-98. [PMID: 15286460 DOI: 10.1159/000080034] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/04/2004] [Indexed: 12/22/2022] Open
Abstract
The following areas are discussed in this review: atherogenesis; cerebrovascular factors; hypoperfusion; beta-amyloid production; beta-amyloid fibril formation; beta-sheets; metal cations; reactive oxygen species/free radicals; chronic inflammatory factors; endogenous plasma heparin; lipoprotein lipase; polyamines; protein kinase C; casein kinases; phospholipase A2; serine proteases; myeloperoxidase; cyclooxygenase 2; cysteine proteases; caspases; proprotein convertases; aspartic proteases; cyclin proteinases; thrombin; tau hyperphosphorylation; advanced glycosylation end products; activator protein 1; calcium; apolipoprotein E epsilon4; histamine; blood-brain barrier; glutamate; transglutaminase; insulin-like growth factor 1.
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW Smooth muscle cell proliferation has previously been regarded as a central feature in vascular disease. The role of this process has recently been substantially re-evaluated, and we have reconsidered the functional importance of smooth muscle cell proliferation, the origin of proliferating smooth muscle cells in lesions, and the mechanisms whereby smooth muscle cell proliferation is controlled. In this review, we summarize recent progress in the understanding of smooth muscle cell proliferation, with a particular focus on how interactions between the extracellular matrix, smooth muscle cells, and mitogens control critical steps in this process. RECENT FINDINGS Irrespective of the origin of smooth muscle cells in vascular lesions, fundamental interactions between the extracellular matrix and cell surface integrins are necessary in order to initiate a proliferative response in a quiescent smooth muscle cell, in a similar manner to any non-malignant cell. These interactions trigger intracellular signaling and cell cycle entry, which facilitate cell cycle progression and proliferation by mitogens. In addition, extracellular matrix interactions may also control the availability and activity of growth factors such as heparin-binding mitogens, which can be sequestered by heparan sulfate containing extracellular matrix components and regulate smooth muscle cell proliferation. SUMMARY New insights into mechanisms whereby the extracellular matrix takes part in the control of smooth muscle cell proliferation suggest a number of putative targets for future therapies that can be applied to increase plaque stability, prevent the clinical consequences of atherosclerosis and improve outcomes after interventional procedures and organ transplantation.
Collapse
Affiliation(s)
- Ulf Hedin
- Department of Surgical Sciences, Karolinska Hospital, Stockholm, Sweden.
| | | | | |
Collapse
|