1
|
Bondarev NA, Bagaeva DF, Bazhenov SV, Buben MM, Bulushova NV, Ryzhykau YL, Okhrimenko IS, Zagryadskaya YA, Maslov IV, Anisimova NY, Sokolova DV, Kuklin AI, Pokrovsky VS, Manukhov IV. Methionine gamma lyase fused with S3 domain VGF forms octamers and adheres to tumor cells via binding to EGFR. Biochem Biophys Res Commun 2024; 691:149319. [PMID: 38042033 DOI: 10.1016/j.bbrc.2023.149319] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 12/04/2023]
Abstract
Methods for targeting enzymes exhibiting anticancer properties, such as methionine γ-lyase (MGL), have not yet been sufficiently developed. Here, we present the data describing the physico-chemical properties and cytotoxic effect of fusion protein MGL-S3 - MGL from Clostridium sporogenes translationally fused to S3 domain of the viral growth factor of smallpox. MGL-S3 has methioninase activity comparable to native MGL. In solution, MGL-S3 protein primarily forms octamers, whereas native MGL, on the contrary, usually forms tetramers. MGL-S3 binds to the surface of the neuroblastoma SH-SY5Y and epidermoid carcinoma A431 cells and, unlike native MGL, remains there and retains its cytotoxic effect after media removal. In HEK293T cells lacking EGFRs, no adhesion was recorded. Confocal fluorescence microscopy confirms the preferential adhesion of MGL-S3 to tumor cells, while it avoids getting into lysosomes. Both MGL and MGL-S3 arrest cell cycle of SH-SY5Y cells mainly in the G1 phase, while only MGL-S3 retains this ability after washing the cells.
Collapse
Affiliation(s)
- N A Bondarev
- Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russia
| | - D F Bagaeva
- Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russia
| | - S V Bazhenov
- Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russia
| | - M M Buben
- Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russia
| | - N V Bulushova
- National Research Center Kurchatov Institute, Kurchatov Genomic Center, Moscow, 123182, Russia
| | - Yu L Ryzhykau
- Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russia; Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, 141980, Dubna, Russia
| | - I S Okhrimenko
- Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russia
| | - Yu A Zagryadskaya
- Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russia
| | - I V Maslov
- Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russia
| | - N Yu Anisimova
- Department of Biochemistry, Patrice Lumumba People's Friendship University (RUDN University), Moscow, 117198, Russia; N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation (N.N. Blokhin NMRCO), Moscow, 115478, Russia
| | - D V Sokolova
- Department of Biochemistry, Patrice Lumumba People's Friendship University (RUDN University), Moscow, 117198, Russia; N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation (N.N. Blokhin NMRCO), Moscow, 115478, Russia; Center of Life Sciences, Sirius University of Science and Technology, Sochi, 354340, Russia
| | - A I Kuklin
- Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russia; Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, 141980, Dubna, Russia
| | - V S Pokrovsky
- Department of Biochemistry, Patrice Lumumba People's Friendship University (RUDN University), Moscow, 117198, Russia; N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation (N.N. Blokhin NMRCO), Moscow, 115478, Russia; Center of Life Sciences, Sirius University of Science and Technology, Sochi, 354340, Russia
| | - I V Manukhov
- Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russia.
| |
Collapse
|
2
|
Morgis RA, Haan K, Schrey JM, Zimmerman RM, Hersperger AR. The epidermal growth factor ortholog of ectromelia virus activates EGFR/ErbB1 and demonstrates mitogenic function in vitro. Virology 2021; 564:1-12. [PMID: 34560573 DOI: 10.1016/j.virol.2021.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 11/27/2022]
Abstract
Many poxviruses produce proteins that are related to epidermal growth factor (EGF). Prior genome sequencing of ectromelia virus revealed a gene predicted to produce a protein with homology to EGF, which we refer to as ectromelia growth factor (ECGF). ECGF is truncated relative to vaccinia growth factor (VGF) because the former lacks a transmembrane domain. We show these proteins can experience differential N-linked glycosylation. Despite these differences, both proteins maintain the six conserved cysteine residues important for the function of EGF. Since ECGF has not been characterized, our objective was to determine if it can act as a growth factor. We added ECGF to cultured cells and found that the EGF receptor becomes activated, S-phase was induced, doubling time decreased, and in vitro wound healing occurred faster compared to untreated cells. In summary, we demonstrate that ECGF can act as a mitogen in a similar manner as VGF.
Collapse
Affiliation(s)
| | - Kaylyn Haan
- Department of Biology, Albright College, Reading, PA, USA
| | - Julie M Schrey
- Department of Biology, Albright College, Reading, PA, USA
| | | | | |
Collapse
|
3
|
Enhanced anticancer effect of MAP30–S3 by cyclosproin A through endosomal escape. Anticancer Drugs 2018; 29:736-747. [DOI: 10.1097/cad.0000000000000649] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Abstract
Receptor tyrosine kinases (RTKs) are essential components of cell communication pathways utilized from the embryonic to adult stages of life. These transmembrane receptors bind polypeptide ligands, such as growth factors, inducing signalling cascades that control cellular processes such as proliferation, survival, differentiation, motility and inflammation. Many viruses have acquired homologs of growth factors encoded by the hosts that they infect. Production of growth factors during infection allows viruses to exploit RTKs for entry and replication in cells, as well as for host and environmental dissemination. This review describes the genetic diversity amongst virus-derived growth factors and the mechanisms by which RTK exploitation enhances virus survival, then highlights how viral ligands can be used to further understanding of RTK signalling and function during embryogenesis, homeostasis and disease scenarios.
Collapse
Affiliation(s)
- Zabeen Lateef
- a Department of Pharmacology and Toxicology, School of Biomedical Sciences , University of Otago , Dunedin , New Zealand
| | - Lyn M Wise
- a Department of Pharmacology and Toxicology, School of Biomedical Sciences , University of Otago , Dunedin , New Zealand
| |
Collapse
|
5
|
Cao XW, Yang XZ, Du X, Fu LY, Zhang TZ, Shan HW, Zhao J, Wang FJ. Structure optimisation to improve the delivery efficiency and cell selectivity of a tumour-targeting cell-penetrating peptide. J Drug Target 2018; 26:777-792. [PMID: 29303375 DOI: 10.1080/1061186x.2018.1424858] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cell-penetrating peptide (CPP) is used for the delivery of biomacromolecules across the cell membrane and is limited in cancer therapy due to the lack of cell selectivity. Epidermal growth factor receptor (EGFR) has been widely used in clinical targeted therapy for tumours. Here, we reported a novel tumour targeting cell-penetrating peptide (TCPP), EHB (ELBD-C6H) with 20-fold and 3000-fold greater transmembrane ability and tumour cell selectivity than our previously reported S3-HBD and classic CPP TAT, respectively. In this new TCPP, a specific alpha helix structure was inserted into a repeated amino acid (AA) sequence formed by tandem multiple selected key AA residues of vaccinia growth factor (VGF), and this sequence was then fused to a tailored heparin binding domain sequence (C6H) derived from heparin-binding epidermal growth factor-like growth factor to intensify its targeting delivery ability. EHB could carry anticancer proteins such as MAP30 (Momordica Antiviral Protein 30 kDa) into EGFR-overexpressing cancer cell and inhibit cell growth, but it had a greatly reduced interaction with normal cells. These results indicated that EHB, as a novel efficient TCPP for the selective delivery of drug molecules into cancer cells, would help to improve the efficacy and safety of anti-tumour drugs.
Collapse
Affiliation(s)
- Xue-Wei Cao
- a State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , Shanghai , PR China
| | - Xu-Zhong Yang
- b Zhejiang Reachall Pharmaceutical Co. Ltd , Zhejiang , PR China
| | - Xuan Du
- a State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , Shanghai , PR China
| | - Long-Yun Fu
- b Zhejiang Reachall Pharmaceutical Co. Ltd , Zhejiang , PR China
| | - Tao-Zhu Zhang
- b Zhejiang Reachall Pharmaceutical Co. Ltd , Zhejiang , PR China
| | - Han-Wen Shan
- b Zhejiang Reachall Pharmaceutical Co. Ltd , Zhejiang , PR China
| | - Jian Zhao
- a State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , Shanghai , PR China
| | - Fu-Jun Wang
- b Zhejiang Reachall Pharmaceutical Co. Ltd , Zhejiang , PR China.,c Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine , Shanghai , PR China
| |
Collapse
|
6
|
Bonjardim CA. Viral exploitation of the MEK/ERK pathway - A tale of vaccinia virus and other viruses. Virology 2017; 507:267-275. [PMID: 28526201 DOI: 10.1016/j.virol.2016.12.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 12/07/2016] [Accepted: 12/09/2016] [Indexed: 12/14/2022]
Abstract
The VACV replication cycle is remarkable in the sense that it is performed entirely in the cytoplasmic compartment of vertebrate cells, due to its capability to encode enzymes required either for regulating the macromolecular precursor pool or the biosynthetic processes. Although remarkable, this gene repertoire is not sufficient to confer the status of a free-living microorganism to the virus, and, consequently, the virus relies heavily on the host to successfully generate its progeny. During the complex virus-host interaction, viruses must deal not only with the host pathways to accomplish their temporal demands but also with pathways that counteract viral infection, including the inflammatory, innate and acquired immune responses. This review focuses on VACV and other DNA or RNA viruses that stimulate the MEK (MAPK - Mitogen Activated Protein Kinase)/ERK- Extracellular signal-Regulated Kinase) pathway as part of their replication cycle.
Collapse
Affiliation(s)
- Cláudio A Bonjardim
- Signal Transduction Group/Viruses Laboratory, Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, CEP: 31.270-901, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
7
|
Enhancing tumor-specific intracellular delivering efficiency of cell-penetrating peptide by fusion with a peptide targeting to EGFR. Amino Acids 2015; 47:997-1006. [PMID: 25655386 DOI: 10.1007/s00726-015-1928-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 01/23/2015] [Indexed: 10/24/2022]
Abstract
Cell-penetrating peptides (CPPs) are well known as intracellular delivery vectors. However, unsatisfactory delivery efficiency and poor specificity are challenging barriers to CPP applications at the clinical trial stage. Here, we showed that S3, an EGFR-binding domain derived from vaccinia virus growth factor, when fused to a CPP such as HBD or TAT can substantially enhance its internalization efficiency and tumor selectivity. The uptake of S3-HBD (S3H) recombinant molecule by tumor cells was nearly 80 folds increased compared to HBD alone. By contrast, the uptake of S3H by non-neoplastic cells still remained at a low level. The specific recognition between S3 and its receptor, EGFR, as well as between HBD and heparan sulfate proteoglycans on the cell surface was essential for these improvements, suggesting a syngeneic effect between the two functional domains in conjugation. This syngeneic effect is likely similar to that of the heparin-binding epidermal growth factor, which is highly abundant particularly in metastatic tumors. The process that S3H entered cells was dependent on time, dosage, and energy, via macropinocytosis pathway. With excellent cell-penetrating efficacy and a novel tumor-targeting ability, S3H appears as a promising candidate vector for targeted anti-cancer drug delivery.
Collapse
|
8
|
The tanapoxvirus 15L protein is a virus-encoded neuregulin that promotes viral replication in human endothelial cells. J Virol 2012; 87:3018-26. [PMID: 23269801 DOI: 10.1128/jvi.02112-12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Studies on large double-stranded DNA (dsDNA) viruses such as poxviruses have been helpful in identifying a number of viral and cellular growth factors that contribute to our broad understanding of virus-host interaction. Orthopoxviruses and leporipoxviruses are among the most studied viruses in this aspect. However, tanapoxvirus (TPV), a member of the genus Yatapoxvirus, still remains largely unexplored, as the only known hosts for this virus are humans and monkeys. Here, we describe the initial characterization of an epidermal growth factor (EGF)-like growth factor mimicking human neuregulin from TPV, expressed by the TPV-15L gene. Assays using a baculovirus-expressed and tagged TPV-15L protein demonstrated the ability to phosphorylate neuregulin receptors. Neuregulins represent a large family of EGF-like growth factors that play important roles in embryonic endocardium development, Schwann and oligodendrocyte survival and differentiation, localized acetylcholine receptor expression at the neuromuscular junction, and epithelial morphogenesis. Interestingly, certain neuregulin molecules are able to target specific tissues through interactions with heparin sulfate proteoglycans via an immunoglobulin (Ig)-like domain. Analyses of TPV-15L revealed no Ig-like domain, but it retains the ability to bind heparin and phosphorylate neuregulin receptors, providing compelling evidence that TPV-15L is a functional mimetic of neuregulin. TPV-15L knockout virus experiments demonstrate that the virus replicates in human umbilical vein endothelial cells less efficiently than wild-type TPV-Kenya, indicating that this is a nonessential protein for virus viability but can serve a stimulatory role for replication in some cultured cells. However, the precise role of this protein in host-virus interaction still remains to be deduced.
Collapse
|
9
|
Garcel A, Crance JM, Drillien R, Garin D, Favier AL. Genomic sequence of a clonal isolate of the vaccinia virus Lister strain employed for smallpox vaccination in France and its comparison to other orthopoxviruses. J Gen Virol 2007; 88:1906-1916. [PMID: 17554021 DOI: 10.1099/vir.0.82708-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Since 1980 there has been global eradication of smallpox due to the success of the vaccination programme using vaccinia virus (VACV). During the eradication period, distinct VACV strains circulated, the Lister strain being the most commonly employed in Europe. Analysis of the safety of smallpox vaccines has suggested that they display significant heterogeneity. To gain a more detailed understanding of the diversity of VACV strains it is important to determine their genomic sequences. Although the sequences of three isolates of the Japanese Lister original strain (VACV-LO) are available, no analysis of the relationship of any Lister sequence compared to other VACV genomes has been reported. Here, we describe the sequence of a representative clonal isolate of the Lister vaccine (VACV-List) used to inoculate the French population. The coding capacity of VACV-List was compared to other VACV strains. The 201 open reading frames (ORFs) were annotated in the VACV-List genome based on protein size, genomic localization and prior characterization of many ORFs. Eleven ORFs were recognized as pseudogenes as they were truncated or fragmented counterparts of larger ORFs in other orthopoxviruses (OPVs). The VACV-List genome also contains several ORFs that have not been annotated in other VACVs but were found in other OPVs. VACV-List and VACV-LO displayed a high level of nucleotide sequence similarity. Compared to the Copenhagen strain of VACV, the VACV-List sequence diverged in three main regions, one of them corresponding to a substitution in VACV-List with coxpox virus GRI-90 strain ORFs, suggestive of prior genetic exchanges. These studies highlight the heterogeneity between VACV strains and provide a basis to better understand differences in safety and efficacy of smallpox vaccines.
Collapse
Affiliation(s)
- Aude Garcel
- Laboratoire de Virologie, CRSSA Emile Pardé, La Tronche, France
| | | | - Robert Drillien
- Université Louis Pasteur, F-67000 Strasbourg, France
- IGBMC, CNRS, UMR 7104, Inserm U 596, F-67400 Illkirch, France
| | - Daniel Garin
- Laboratoire de Virologie, CRSSA Emile Pardé, La Tronche, France
| | | |
Collapse
|
10
|
Tan SL, Nakao H, He Y, Vijaysri S, Neddermann P, Jacobs BL, Mayer BJ, Katze MG. NS5A, a nonstructural protein of hepatitis C virus, binds growth factor receptor-bound protein 2 adaptor protein in a Src homology 3 domain/ligand-dependent manner and perturbs mitogenic signaling. Proc Natl Acad Sci U S A 1999; 96:5533-8. [PMID: 10318918 PMCID: PMC21894 DOI: 10.1073/pnas.96.10.5533] [Citation(s) in RCA: 172] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Although hepatitis C virus (HCV) infection is an emerging global epidemic causing severe liver disorders, the molecular mechanisms of HCV pathogenesis remain elusive. The NS5A nonstructural protein of HCV contains several proline-rich sequences consistent with Src homology (SH) 3-binding sites found in cellular signaling molecules. Here, we demonstrate that NS5A specifically bound to growth factor receptor-bound protein 2 (Grb2) adaptor protein. Immunoblot analysis of anti-Grb2 immune complexes derived from HeLa S3 cells infected with a recombinant vaccinia virus (VV) expressing NS5A revealed an interaction between NS5A and Grb2 in vivo. An inactivating point mutation in the N-terminal SH3 domain, but not in the C-terminal SH3 domain, of Grb2 displayed significant diminished binding to NS5A. However, the same mutation in both SH3 regions completely abrogated Grb2 binding to NS5A, implying that the two SH3 domains bind in cooperative fashion to NS5A. Further, mutational analysis of NS5A assigned the SH3-binding region to a proline-rich motif that is highly conserved among HCV genotypes. Importantly, phosphorylation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) was inhibited in HeLa S3 cells infected with NS5A-expressing recombinant VV but not recombinant VV control. Additionally, HeLa cells stably expressing NS5A were refractory to ERK1/2 phosphorylation induced by exogenous epidermal growth factor. Moreover, the coupling of NS5A to Grb2 in these cells was induced by epidermal growth factor stimulation. Therefore, NS5A may function to perturb Grb2-mediated signaling pathways by selectively targeting the adaptor. These findings highlight a viral interceptor of cellular signaling with potential implications for HCV pathogenesis.
Collapse
Affiliation(s)
- S L Tan
- Department of Microbiology, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Shin SY, Shimizu M, Ohtaki T, Munekata E. Synthesis and biological activity of N-terminal-truncated derivatives of human epidermal growth factor (h-EGF). Peptides 1995; 16:205-10. [PMID: 7784250 DOI: 10.1016/0196-9781(94)00181-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
To investigate the contribution of the N-terminal sequence of h-EGF to its biological activity and the formation of three intramolecular disulfide bonds by oxidative refolding via air oxidation, five derivatives of h-EGF with a single N-terminal amino acid deletion were synthesized by solid-phase synthesis. The homogeneity of the synthetic peptides was confirmed by analytical reversed-phase HPLC, amino acid analysis, and FAB-MS. The pairing of the three disulfide bridges in synthetic peptides was determined by thermolytic digestion. All N-truncated derivatives of h-FGF formed the correct intramolecular three disulfide linkages during oxidative refolding and had equipotent activity in both EGF receptor binding on A-431 epidermoid carcinoma cells and mitogenesis on NIH-3T3 fibroblast cells, compared with authentic h-EGF. The results suggested that the five residues from N-terminal sequence of h-EGF have no effect on the formation of the correct disulfide linkages in h-EGF and do not exert a significant influence on its biological activity.
Collapse
Affiliation(s)
- S Y Shin
- Institute of Applied Biochemistry, University of Tsukuba, Ibaraki, Japan
| | | | | | | |
Collapse
|
12
|
Shin SY, Watanabe M, Kako K, Ohtaki T, Munekata E. Structure-activity relationships of human epidermal growth factor(h-EGF). Life Sci 1994; 55:131-9. [PMID: 8015356 DOI: 10.1016/0024-3205(94)90104-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The 53 amino acid regulatory peptide, human epidermal growth factor (h-EGF), is a potent mitogen that stimulates cellular proliferation and differentiation in a wide variety of cells. To identify the critical residues that elicit the biological activity of h-EGF, peptides were constructed by stepwise solid-phase synthesis using the Boc-HF strategy. These synthetic peptides were characterized by HPLC, FAB-MS, amino acid analysis and thermolytic digestion. The mitogenic activity of these h-EGF analogues was determined by the stimulation of [3H]-thymidine uptake into DNA in NIH-3T3 fibroblast cell lines. Substituting Tyr with Phe at position's 37 and 13 had little effect on the mitogenic activity of h-EGF. In contrast, Ala at these positions resulted in a severe loss of activity (20 and 10(3)-fold). These results indicate that the hydrophobicity of the side chain at positions 13 and 37 of h-EGF is essential for its biological activity. A semiconservative substitution of Leu with Ala at position 15 and a conservative change of Lys at position 41 also drastically reduced mitogenic activity (10(4) and 10(5)-fold). Thus, the bulky hydrophobic side chain at position 15 and the guanidino group at position 41 are indispensable in determining the biological activity of h-EGF.
Collapse
Affiliation(s)
- S Y Shin
- Institute of Applied Biochemistry, University of Tsukuba, Ibaraki, Japan
| | | | | | | | | |
Collapse
|
13
|
Abstract
Epidermal growth factor (EGF) and transforming growth factor alpha (TGF-alpha) are ligands for the EGF-receptor and act as mitogens for a variety of tissues. TGF-alpha, in particular, has been implicated as an autocrine growth factor for several cancer cell lines. Over the last 10 years many groups have examined the structure-function relationships in EGF/TGF-alpha in attempts to develop antagonists or agonists. In this review the results of these studies are summarised and related to the three-dimensional structure of EGF/TGF-alpha. The difficulties associated with the purification and characterisation of analogues of EGF/TGF-alpha and with the biological assays are discussed. It is clear that these difficulties have, in some cases, led to apparently contradicting results. The available binding data indicate that the receptor interaction surface for EGF/TGF-alpha might encompass one complete side of the molecule with a few strong binding determinants, in particular Arg41 and Leu47. The arginine at position 41 is the most critical residue and its full hydrogen-bonding capacity is needed for strong binding of EGF/TGF-alpha to the EGF-receptor. As this side of the molecule consists of residues from both the N- and C-terminal domain, it seems unlikely that agonists or antagonists can be developed on the basis of short peptides taken from the primary sequence. This concept is supported by the available binding and activity data.
Collapse
Affiliation(s)
- L C Groenen
- Ludwig Institute for Cancer Research, PO Royal Melbourne Hospital, Australia
| | | | | |
Collapse
|
14
|
Opgenorth A, Strayer D, Upton C, McFadden G. Deletion of the growth factor gene related to EGF and TGF alpha reduces virulence of malignant rabbit fibroma virus. Virology 1992; 186:175-91. [PMID: 1309274 DOI: 10.1016/0042-6822(92)90072-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The role of the epidermal growth factor homologue in malignant rabbit fibroma virus (MRV) pathogenicity was investigated by constructing a viral growth factor deletion mutant (MRV-GF-). Since MRV is a recombinant virus with a myxoma virus background but possesses some terminal sequences derived from Shope fibroma virus, the growth factor gene in MRV is in fact identical to Shope fibroma growth factor (SFGF). Although no significant differences were detected in the in vitro characteristics of MRV and MRV-GF-, a pronounced attenuation was observed after inoculation of the test rabbits with MRV-GF-. Animals infected with wild-type MRV uniformly developed a fatal syndrome involving disseminated tumors accompanied by purulent conjunctivitis and rhinitis. In contrast, although MRV-GF- recipients developed similar initial signs of the MRV disease syndrome, 75% of these animals completely recovered from the viral and secondary bacterial infections and became immune to subsequent MRV challenge. Tumors in MRV-GF- recipients displayed earlier and more prominent inflammatory reactions than their wild-type MRV counterparts and contained fewer proliferating cells. Squamous metaplasia and hyperplasia of target epithelia were less pronounced in MRV-GF- than in MRV infection. We conclude that SFGF is a major virulence factor in MRV infection and is responsible for at least some of the cellular proliferation observed at tumor sites. In addition, the diminished ability of MRV-GF- to cause hyperplasia in nasal and conjunctival epithelia may decrease the extent of gram negative bacterial overgrowth as compared to the parental virus and hence contribute to the dramatic reduction in the lethality of MRV-GF- infection.
Collapse
Affiliation(s)
- A Opgenorth
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | | | | | | |
Collapse
|
15
|
Tam JP, Lin YZ, Liu W, Wang DX, Ke XH, Zhang JW. Mapping the receptor-recognition site of human transforming growth factor-alpha. INTERNATIONAL JOURNAL OF PEPTIDE AND PROTEIN RESEARCH 1991; 38:204-11. [PMID: 1761367 DOI: 10.1111/j.1399-3011.1991.tb01430.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The receptor-recognition site human transforming growth factor-alpha (TGF alpha), a 50-residue tricyclic peptide with three disulfide bonds, was mapped by a set of 46 peptide analogs consisting of linear, monocyclic, bicyclic, and tricyclic structures representing individual and overlapping subdomains of human TGF alpha. Linear overlapping fragments ranging from 7 to 18 residues and spanning the entire length of TGF alpha as well as monocyclic analogs with one disulfide linkage were found to be inactive in both receptor-binding and mitogenic assays. Bicyclic analogs with two disulfide linkage and representing either the amino or carboxyl two-thirds of TGF alpha showed low activity at 0.1-0.9 mM concentrations. Tricyclic analogs containing all three disulfide linkages but lacking either the amino or carboxyl terminal heptapeptide was, respectively, 3% and 0.1% as active as TGF alpha. These results show that determinants for the receptor binding cannot be represented by a short continuous fragment or a single subdomain, but are located on a discontinuous surface on a folded structure with disulfide restraints. Furthermore, these results when combined with our previous results which shows that the middle subdomain (second disulfide loop) is not involved in the receptor binding suggest that the receptor-binding residues are constituted of three fragments located at the first and third subdomains as well as the external carboxyl peptide.
Collapse
Affiliation(s)
- J P Tam
- Rockefeller University, New York, NY
| | | | | | | | | | | |
Collapse
|