1
|
Jiang S, Li F, Li L, Wang X, Wei D, Wu W, Xu Q. The Construction of a Molecular Model for the Ternary Protein Complex of Intrinsic Coagulation Pathway Factors Provides Novel Insights for the Pathogenesis of Cross-Reactive Material Positive Coagulation Factor Mutations. Int J Mol Sci 2025; 26:5191. [PMID: 40508000 PMCID: PMC12155561 DOI: 10.3390/ijms26115191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 05/26/2025] [Accepted: 05/26/2025] [Indexed: 06/16/2025] Open
Abstract
The human coagulation pathway orchestrates a complex series of events vital for maintaining vascular integrity, in which the intrinsic pathway plays a pivotal role in amplifying and propagating the coagulation response. Dysregulation of this pathway can lead to various bleeding disorders and thrombotic complications, posing significant health risks. In this pathway, the activation of Factor (F) X zymogen is catalyzed by the FVIIIa-FIXa binary complex, but knowledge about this is still incomplete. Understanding the structural and functional intricacies of the FVIIIa-FIXa-FX (zymogen) complex is imperative for unraveling the molecular mechanisms underlying coagulation regulation and guiding the development of targeted therapeutic interventions. In this study, utilizing Alphafold-Multimer and molecular dynamics (MD) simulations, we provide insights into factor interactions within the ternary complex and propose novel functional mechanisms contributing to the functional defects inflicted by their cross-reactive material (CRM) positive mutations. The amino acid residue replacement impairs the coagulation function by interfering with structure elements, including the following: (1) a knot-like structure between Arg-562 of FVIIIa's 558-Loop (residue 555-571) and the 333-Loop of FIXa (residue 333-346) contributes to FVIIIa-FIXa binding; (2) the a2 region of FVIIIa (residue 716-740) opens the lid of active site (FIXa's 266-Loop, residue 256-270) and facilitates substrate binding; (3) the activation peptide (AP) of FX zymogen (residue 143-194) not only assists in the activation of itself but also adheres the interface of the three factors like a double-sided tape. Our work provides novel insights for the pathogenesis of a number of reported clinical CRM-positive mutations and may lay the groundwork for the structure-based development of therapeutic interventions.
Collapse
Affiliation(s)
- Shifeng Jiang
- State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (S.J.); (F.L.); (D.W.)
| | - Fang Li
- State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (S.J.); (F.L.); (D.W.)
| | - Lei Li
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (L.L.); (X.W.)
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xuefeng Wang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (L.L.); (X.W.)
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Dongqing Wei
- State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (S.J.); (F.L.); (D.W.)
| | - Wenman Wu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (L.L.); (X.W.)
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qin Xu
- State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (S.J.); (F.L.); (D.W.)
| |
Collapse
|
2
|
Takeyama M, Furukawa S, Sasai K, Horiuchi K, Nogami K. Factor VIII A3 domain residues 1793-1795 represent a factor IXa-interactive site in the tenase complex. Biochim Biophys Acta Gen Subj 2023; 1867:130381. [PMID: 37207906 DOI: 10.1016/j.bbagen.2023.130381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND Factor (F)VIII functions as a cofactor in the tenase complex responsible for conversion of FX to FXa by FIXa. Earlier studies indicated that one of the FIXa-binding sites is located in residues 1811-1818 (crucially F1816) of the FVIII A3 domain. A putative, three-dimensional structure model of the FVIIIa molecule suggested that residues 1790-1798 form a V-shaped loop, and juxtapose residues 1811-1818 on the extended surface of FVIIIa. AIM To examine FIXa molecular interactions in the clustered acidic sites of FVIII including residues 1790-1798. METHODS AND RESULTS Specific ELISA's demonstrated that the synthetic peptides, encompassing residues 1790-1798 and 1811-1818, competitively inhibited the binding of FVIII light chain to active-site-blocked Glu-Gly-Arg-FIXa (EGR-FIXa) (IC50; 19.2 and 42.9 μM, respectively), in keeping with a possible role for the 1790-1798 in FIXa interactions. Surface plasmon resonance-based analyses demonstrated that variants of FVIII, in which the clustered acidic residues (E1793/E1794/D1793) or F1816 contained substituted alanine, bound to immobilized biotin labeled-Phe-Pro-Arg-FIXa (bFPR-FIXa) with a 1.5-2.2-fold greater KD compared to wild-type FVIII (WT). Similarly, FXa generation assays indicated that E1793A/E1794A/D1795A and F1816A mutants increased the Km by 1.6-2.8-fold relative to WT. Furthermore, E1793A/E1794A/D1795A/F1816A mutant showed that the Km was increased by 3.4-fold and the Vmax was decreased by 0.75-fold, compared to WT. Molecular dynamics simulation analyses revealed the subtle changes between WT and E1793A/E1794A/D1795A mutant, supportive of the contribution of these residues for FIXa interaction. CONCLUSION The 1790-1798 region in the A3 domain, especially clustered acidic residues E1793/E1794/D1795, contains a FIXa-interactive site.
Collapse
Affiliation(s)
- Masahiro Takeyama
- Department of Pediatrics, Nara Medical University, Kashihara, Nara 634-8522, Japan.
| | - Shoko Furukawa
- Department of Pediatrics, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Kana Sasai
- Department of Pediatrics, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Kaoru Horiuchi
- Department of Pediatrics, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Keiji Nogami
- Department of Pediatrics, Nara Medical University, Kashihara, Nara 634-8522, Japan
| |
Collapse
|
3
|
Childers KC, Peters SC, Spiegel PC. Structural insights into blood coagulation factor VIII: Procoagulant complexes, membrane binding, and antibody inhibition. J Thromb Haemost 2022; 20:1957-1970. [PMID: 35722946 DOI: 10.1111/jth.15793] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 06/10/2022] [Accepted: 06/16/2022] [Indexed: 11/28/2022]
Abstract
Advances in structural studies of blood coagulation factor VIII (FVIII) have provided unique insight into FVIII biochemistry. Atomic detail models of the B domain-deleted FVIII structure alone and in complex with its circulatory partner, von Willebrand factor (VWF), provide a structure-based rationale for hemophilia A-associated mutations which impair FVIII stability and increase FVIII clearance rates. In this review, we discuss the findings from these studies and their implications toward the design of a recombinant FVIII with improved circulatory half-life. Additionally, we highlight recent structural studies of FVIII bound to inhibitory antibodies that have refined our understanding of FVIII binding to activated platelet membranes and formation of the intrinsic tenase complex. The combination of bioengineering and structural efforts to understand FVIII biochemistry will improve therapeutics for treating hemophilia A, either through FVIII replacement therapeutics, immune tolerance induction, or gene therapy approaches.
Collapse
Affiliation(s)
- Kenneth C Childers
- Chemistry Department, Western Washington University, Bellingham, Washington, USA
| | - Shaun C Peters
- Chemistry Department, Western Washington University, Bellingham, Washington, USA
| | - Paul Clint Spiegel
- Chemistry Department, Western Washington University, Bellingham, Washington, USA
| |
Collapse
|
4
|
Childers KC, Peters SC, Lollar P, Spencer HT, Doering CB, Spiegel PC. SAXS analysis of the intrinsic tenase complex bound to a lipid nanodisc highlights intermolecular contacts between factors VIIIa/IXa. Blood Adv 2022; 6:3240-3254. [PMID: 35255502 PMCID: PMC9198903 DOI: 10.1182/bloodadvances.2021005874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 02/27/2022] [Indexed: 11/20/2022] Open
Abstract
The intrinsic tenase (Xase) complex, formed by factors (f) VIIIa and fIXa, forms on activated platelet surfaces and catalyzes the activation of factor X to Xa, stimulating thrombin production in the blood coagulation cascade. The structural organization of the membrane-bound Xase complex remains largely unknown, hindering our understanding of the structural underpinnings that guide Xase complex assembly. Here, we aimed to characterize the Xase complex bound to a lipid nanodisc with biolayer interferometry (BLI), Michaelis-Menten kinetics, and small-angle X-ray scattering (SAXS). Using immobilized lipid nanodiscs, we measured binding rates and nanomolar affinities for fVIIIa, fIXa, and the Xase complex. Enzyme kinetic measurements demonstrated the assembly of an active enzyme complex in the presence of lipid nanodiscs. An ab initio molecular envelope of the nanodisc-bound Xase complex allowed us to computationally model fVIIIa and fIXa docked onto a flexible lipid membrane and identify protein-protein interactions. Our results highlight multiple points of contact between fVIIIa and fIXa, including a novel interaction with fIXa at the fVIIIa A1-A3 domain interface. Lastly, we identified hemophilia A/B-related mutations with varying severities at the fVIIIa/fIXa interface that may regulate Xase complex assembly. Together, our results support the use of SAXS as an emergent tool to investigate the membrane-bound Xase complex and illustrate how mutations at the fVIIIa/fIXa dimer interface may disrupt or stabilize the activated enzyme complex.
Collapse
Affiliation(s)
- Kenneth C Childers
- Department of Chemistry, Western Washington University, Bellingham, WA; and
| | - Shaun C Peters
- Department of Chemistry, Western Washington University, Bellingham, WA; and
| | - Pete Lollar
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University, Atlanta, GA
| | - Harold Trent Spencer
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University, Atlanta, GA
| | - Christopher B Doering
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University, Atlanta, GA
| | - Paul C Spiegel
- Department of Chemistry, Western Washington University, Bellingham, WA; and
| |
Collapse
|
5
|
Lopes TJS, Rios R, Nogueira T, Mello RF. Protein residue network analysis reveals fundamental properties of the human coagulation factor VIII. Sci Rep 2021; 11:12625. [PMID: 34135429 PMCID: PMC8209229 DOI: 10.1038/s41598-021-92201-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/08/2021] [Indexed: 11/09/2022] Open
Abstract
Hemophilia A is an X-linked inherited blood coagulation disorder caused by the production and circulation of defective coagulation factor VIII protein. People living with this condition receive either prophylaxis or on-demand treatment, and approximately 30% of patients develop inhibitor antibodies, a serious complication that limits treatment options. Although previous studies performed targeted mutations to identify important residues of FVIII, a detailed understanding of the role of each amino acid and their neighboring residues is still lacking. Here, we addressed this issue by creating a residue interaction network (RIN) where the nodes are the FVIII residues, and two nodes are connected if their corresponding residues are in close proximity in the FVIII protein structure. We studied the characteristics of all residues in this network and found important properties related to disease severity, interaction to other proteins and structural stability. Importantly, we found that the RIN-derived properties were in close agreement with in vitro and clinical reports, corroborating the observation that the patterns derived from this detailed map of the FVIII protein architecture accurately capture the biological properties of FVIII.
Collapse
Affiliation(s)
- Tiago J S Lopes
- Department of Reproductive Biology, Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan.
| | - Ricardo Rios
- Department of Computer Science, Federal University of Bahia, Salvador, Brazil.,Institute of Mathematics and Computer Science, University of São Paulo, São Paulo, Brazil
| | - Tatiane Nogueira
- Department of Computer Science, Federal University of Bahia, Salvador, Brazil.,Institute of Mathematics and Computer Science, University of São Paulo, São Paulo, Brazil
| | - Rodrigo F Mello
- Institute of Mathematics and Computer Science, University of São Paulo, São Paulo, Brazil.,Itaú Unibanco, Av. Eng. Armando de Arruda Pereira, 707, Jabaquara, São Paulo, 04309-010, Brazil
| |
Collapse
|
6
|
Lopes TJS, Rios R, Nogueira T, Mello RF. Prediction of hemophilia A severity using a small-input machine-learning framework. NPJ Syst Biol Appl 2021; 7:22. [PMID: 34035274 PMCID: PMC8149871 DOI: 10.1038/s41540-021-00183-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 04/25/2021] [Indexed: 12/27/2022] Open
Abstract
Hemophilia A is a relatively rare hereditary coagulation disorder caused by a defective F8 gene resulting in a dysfunctional Factor VIII protein (FVIII). This condition impairs the coagulation cascade, and if left untreated, it causes permanent joint damage and poses a risk of fatal intracranial hemorrhage in case of traumatic events. To develop prophylactic therapies with longer half-lives and that do not trigger the development of inhibitory antibodies, it is essential to have a deep understanding of the structure of the FVIII protein. In this study, we explored alternative ways of representing the FVIII protein structure and designed a machine-learning framework to improve the understanding of the relationship between the protein structure and the disease severity. We verified a close agreement between in silico, in vitro and clinical data. Finally, we predicted the severity of all possible mutations in the FVIII structure – including those not yet reported in the medical literature. We identified several hotspots in the FVIII structure where mutations are likely to induce detrimental effects to its activity. The combination of protein structure analysis and machine learning is a powerful approach to predict and understand the effects of mutations on the disease outcome.
Collapse
Affiliation(s)
- Tiago J S Lopes
- Department of Reproductive Biology, National Center for Child Health and Development Research Institute, Tokyo, Japan.
| | - Ricardo Rios
- Department of Computer Science, Federal University of Bahia, Salvador, Brazil.,Institute of Mathematics and Computer Science, University of São Paulo, São Carlos, Brazil
| | - Tatiane Nogueira
- Department of Computer Science, Federal University of Bahia, Salvador, Brazil.,Institute of Mathematics and Computer Science, University of São Paulo, São Carlos, Brazil
| | - Rodrigo F Mello
- Institute of Mathematics and Computer Science, University of São Paulo, São Carlos, Brazil.,Itaú Unibanco, Av. Eng. Armando de Arruda Pereira, São Paulo, Brazil
| |
Collapse
|
7
|
Abstract
The formation of membrane-bound complexes between specific coagulation factors at different cell surfaces is required for effective blood clotting. The most important of these complexes, the intrinsic Tenase and Prothrombinase complexes, are formed on the activated platelet surface during the propagation phase of coagulation. These two complexes are highly specific in their assembly mechanism and function modulated by anionic membranes, thus offering desirable targets for pharmaceutical interventions. Factor V (FV) and factor VIII (FVIII) are highly homologous non-enzymatic proteins. In their active state, FVa and FVIIIa serve as cofactors for the respective serine proteases factor Xa (FXa) and factor IXa (FIXa), significantly increasing their catalytic activity. This is achieved by forming well organized membrane-bound complexes at the phosphatidylserine rich activated platelet membrane in the presence of Ca2+ ions. The tenase (FVIIIa/FIXa) complex, catalyzes the proteolytic conversion of FX to FXa. Subsequently the prothrombinase (FVa/FXa) complex catalyzes the conversion of prothrombin to thrombin, required for efficient blood clotting. Although significant knowledge of FV and FVIII biochemistry and regulation has been achieved, the molecular mechanisms of their function are yet to be defined. Understanding the geometric assembly of the tenase and prothrombinase complexes is paramount in defining the structural basis of bleeding and thrombotic disorders. Such knowledge will enable the design of efficient pro- and anticoagulant therapies critical for regulating abnormal hemostasis. In this chapter, we will summarize the findings to date, showing our achievement in the field and outlining the future findings required to grasp the complexity of these proteins.
Collapse
Affiliation(s)
- Svetla Stoilova-McPhie
- Center for Nanoscale Systems (CNS), Laboratory For Integrated Sciences and Engineering (LISE), Faculty of Art and Sciences (FAS), Harvard University, 11 Oxford Street, Cambridge, MA, 02138, England, UK.
| |
Collapse
|
8
|
van Galen J, Freato N, Przeradzka MA, Ebberink EHTM, Boon-Spijker M, van der Zwaan C, van den Biggelaar M, Meijer AB. Hydrogen-Deuterium Exchange Mass Spectrometry Identifies Activated Factor IX-Induced molecular Changes in Activated Factor VIII. Thromb Haemost 2020; 121:594-602. [PMID: 33302303 DOI: 10.1055/s-0040-1721422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Hydrogen-deuterium exchange mass spectrometry (HDX-MS) was employed to gain insight into the changes in factor VIII (FVIII) that occur upon its activation and assembly with activated factor IX (FIXa) on phospholipid membranes. HDX-MS analysis of thrombin-activated FVIII (FVIIIa) revealed a marked increase in deuterium incorporation of amino acid residues along the A1-A2 and A2-A3 interface. Rapid dissociation of the A2 domain from FVIIIa can explain this observation. In the presence of FIXa, enhanced deuterium incorporation at the interface of FVIIIa was similar to that of FVIII. This is compatible with the previous finding that FIXa contributes to A2 domain retention in FVIIIa. A2 domain region Leu631-Tyr637, which is not part of the interface between the A domains, also showed a marked increase in deuterium incorporation in FVIIIa compared with FVIII. Deuterium uptake of this region was decreased in the presence of FIXa beyond that observed in FVIII. This implies that FIXa alters the conformation or directly interacts with this region in FVIIIa. Replacement of Val634 in FVIII by alanine using site-directed mutagenesis almost completely impaired the ability of the activated cofactor to enhance the activity of FIXa. Surface plasmon resonance analysis revealed that the rates of A2 domain dissociation from FVIIIa and FVIIIa-Val634Ala were indistinguishable. HDX-MS analysis showed, however, that FIXa was unable to retain the A2 domain in FVIIIa-Val634Ala. The combined results of this study suggest that the local structure of Leu631-Tyr637 is altered by FIXa and that this region contributes to the cofactor function of FVIII.
Collapse
Affiliation(s)
- Josse van Galen
- Department of Molecular and Cellular Hemostasis, Sanquin Research, Amsterdam, The Netherlands
| | - Nadia Freato
- Department of Molecular and Cellular Hemostasis, Sanquin Research, Amsterdam, The Netherlands
| | - Małgorzata A Przeradzka
- Department of Molecular and Cellular Hemostasis, Sanquin Research, Amsterdam, The Netherlands
| | - Eduard H T M Ebberink
- Department of Molecular and Cellular Hemostasis, Sanquin Research, Amsterdam, The Netherlands
| | - Mariëtte Boon-Spijker
- Department of Molecular and Cellular Hemostasis, Sanquin Research, Amsterdam, The Netherlands
| | - Carmen van der Zwaan
- Department of Molecular and Cellular Hemostasis, Sanquin Research, Amsterdam, The Netherlands
| | | | - Alexander B Meijer
- Department of Molecular and Cellular Hemostasis, Sanquin Research, Amsterdam, The Netherlands.,Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
9
|
Molecular mechanisms of missense mutations that generate ectopic N-glycosylation sites in coagulation factor VIII. Biochem J 2018; 475:873-886. [PMID: 29444815 DOI: 10.1042/bcj20170884] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/07/2018] [Accepted: 02/14/2018] [Indexed: 11/17/2022]
Abstract
N-glycosylation is a common posttranslational modification of secreted and membrane proteins, catalyzed by the two enzymatic isoforms of the oligosaccharyltransferase, STT3A and STT3B. Missense mutations are the most common mutations in inherited diseases; however, missense mutations that generate extra, non-native N-glycosylation sites have not been well characterized. Coagulation factor VIII (FVIII) contains five consensus N-glycosylation sites outside its functionally dispensable B domain. We developed a computer program that identified hemophilia A mutations in FVIII that can potentially create ectopic glycosylation sites. We determined that 18 of these ectopic sites indeed become N-glycosylated. These sites span the domains of FVIII and are primarily associated with a severe disease phenotype. Using STT3A and STT3B knockout cells, we determined that ectopic glycosylation exhibited different degrees of dependence on STT3A and STT3B. By separating the effects of ectopic N-glycosylation from those due to underlying amino acid changes, we showed that ectopic glycans promote the secretion of some mutants, but impair the secretion of others. However, ectopic glycans that enhanced secretion could not functionally replace a native N-glycan in the same domain. Secretion-deficient mutants, but not mutants with elevated secretion levels, show increased association with the endoplasmic reticulum chaperones BiP (immunoglobulin heavy chain-binding protein) and calreticulin. Though secreted to different extents, all studied mutants exhibited lower relative activity than wild-type FVIII. Our results reveal differential impacts of ectopic N-glycosylation on FVIII folding, trafficking and activity, which highlight complex disease-causing mechanisms of FVIII missense mutations. Our findings are relevant to other secreted and membrane proteins with mutations that generate ectopic N-glycans.
Collapse
|
10
|
Dalm D, Galaz-Montoya JG, Miller JL, Grushin K, Villalobos A, Koyfman AY, Schmid MF, Stoilova-McPhie S. Dimeric Organization of Blood Coagulation Factor VIII bound to Lipid Nanotubes. Sci Rep 2015; 5:11212. [PMID: 26082135 PMCID: PMC4469981 DOI: 10.1038/srep11212] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 05/05/2015] [Indexed: 11/09/2022] Open
Abstract
Membrane-bound Factor VIII (FVIII) has a critical function in blood coagulation as the pro-cofactor to the serine-protease Factor IXa (FIXa) in the FVIIIa-FIXa complex assembled on the activated platelet membrane. Defects or deficiency of FVIII cause Hemophilia A, a mild to severe bleeding disorder. Despite existing crystal structures for FVIII, its membrane-bound organization has not been resolved. Here we present the dimeric FVIII membrane-bound structure when bound to lipid nanotubes, as determined by cryo-electron microscopy. By combining the structural information obtained from helical reconstruction and single particle subtomogram averaging at intermediate resolution (15-20 Å), we show unambiguously that FVIII forms dimers on lipid nanotubes. We also demonstrate that the organization of the FVIII membrane-bound domains is consistently different from the crystal structure in solution. The presented results are a critical step towards understanding the mechanism of the FVIIIa-FIXa complex assembly on the activated platelet surface in the propagation phase of blood coagulation.
Collapse
Affiliation(s)
- Daniela Dalm
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jesus G Galaz-Montoya
- 1] Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA [2] National Center for Macromolecular Imaging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jaimy L Miller
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Kirill Grushin
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Alex Villalobos
- School of Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Alexey Y Koyfman
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Michael F Schmid
- 1] Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA [2] National Center for Macromolecular Imaging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Svetla Stoilova-McPhie
- 1] Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA [2] Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
11
|
Roualdes O, Nougier C, Fretigny M, Talagrand E, Durand B, Negrier C, Vinciguerra C. Usefulness of anin vitrocellular expression model for haemophilia A carrier diagnosis: illustration with five novel mutations in theF8gene in women with isolated factor VIII:C deficiency. Haemophilia 2015; 21:e202-e209. [DOI: 10.1111/hae.12651] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2015] [Indexed: 11/29/2022]
Affiliation(s)
- O. Roualdes
- Hospices Civils de Lyon; Hôpital Edouard Herriot; Service d'Hématologie Biologique; Lyon
- EAM 4174 Hémostase; Inflammation et Sepsis; Université Claude Bernard Lyon 1; Lyon
| | - C. Nougier
- Hospices Civils de Lyon; Hôpital Edouard Herriot; Service d'Hématologie Biologique; Lyon
- EAM 4174 Hémostase; Inflammation et Sepsis; Université Claude Bernard Lyon 1; Lyon
| | - M. Fretigny
- Hospices Civils de Lyon; Hôpital Edouard Herriot; Service d'Hématologie Biologique; Lyon
| | - E. Talagrand
- Hospices Civils de Lyon; Hôpital Edouard Herriot; Service d'Hématologie Biologique; Lyon
| | - B. Durand
- Hospices Civils de Lyon; Hôpital de la Croix Rousse; Laboratoire d'Hématologie Biologique; Lyon
| | - C. Negrier
- Hospices Civils de Lyon; Hôpital Edouard Herriot; Service d'Hématologie Biologique; Lyon
- EAM 4174 Hémostase; Inflammation et Sepsis; Université Claude Bernard Lyon 1; Lyon
| | - C. Vinciguerra
- Hospices Civils de Lyon; Hôpital Edouard Herriot; Service d'Hématologie Biologique; Lyon
- EAM 4174 Hémostase; Inflammation et Sepsis; Université Claude Bernard Lyon 1; Lyon
| |
Collapse
|
12
|
Lebreton A, Simon N, Moreau V, Demolombe V, Cayzac C, Nguyen C, Schved JF, Granier C, Lavigne-Lissalde G. Computer-predicted peptides that mimic discontinuous epitopes on the A2 domain of factor VIII. Haemophilia 2014; 21:e193-e201. [PMID: 25422151 DOI: 10.1111/hae.12575] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2014] [Indexed: 12/21/2022]
Abstract
Development of antibodies (Abs) against factor VIII (FVIII) is a severe complication of haemophilia A treatment. Recent publications suggest that domain specificity of anti-FVIII antibodies, particularly during immune tolerance induction (ITI), might be related to the outcome of the treatment. Obtaining suitable tools for a fine mapping of discontinuous epitopes could thus be helpful. The aim of this study was to map discontinuous epitopes on FVIII A2 domain using a new epitope prediction functionality of the PEPOP bioinformatics tool and a peptide inhibition assay based on the Luminex technology. We predicted, selected and synthesized 40 peptides mimicking discontinuous epitopes on the A2 domain of FVIII. A new inhibition assays using Luminex technology was performed to identify peptides able to inhibit the binding of anti-A2 Abs to A2 domain. We identified two peptides (IFKKLYHVWTKEVG and LYSRRLPKGVKHFD) able to block the binding of anti-A2 allo-antibodies to this domain. The three-dimensional representation of these two peptides on the A2 domain revealed that they are localized on a limited region of A2. We also confirmed that residues 484-508 of the A2 domain define an antigenic site. We suggest that dissection of the antibody response during ITI using synthetic peptide epitopes could provide important information for the management of patients with inhibitors.
Collapse
Affiliation(s)
- A Lebreton
- UMR 3145 SysDiag CNRS/Bio-Rad, Parc Euromédecine, Montpellier, France; CHU Clermont-Ferrand, Service d'Hématologie Biologique, Clermont-Ferrand, France
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Christopherson PW, Bacek LM, King KB, Boudreaux MK. Two novel missense mutations associated with hemophilia A in a family of Boxers, and a German Shepherd dog. Vet Clin Pathol 2014; 43:312-6. [PMID: 25040606 DOI: 10.1111/vcp.12172] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Hemophilia A is an X-linked disorder caused by a deficiency in coagulation factor VIII. Over 2300 unique mutations in the gene-encoding factor VIII have been documented in people, but limited information is known in dogs. An 11-week-old male Boxer and a 5-year-old male German Shepherd were diagnosed with hemophilia A based on diminished factor VIII activity. OBJECTIVE The purpose of the study was to identify genetic mutations associated with hemophilia A in both dogs. METHODS Genomic DNA was isolated from EDTA blood samples from the affected German Shepherd and Boxer, the Boxer's dam, 3 female siblings, and one asymptomatic male sibling. Primers were designed in noncoding regions to amplify the 26 exons of the factor VIII gene via PCR. RESULTS The affected Boxer sequence revealed a single nucleotide change, cytosine to guanine, at nucleotide position 1412 (1412C>G) in exon 10. The change is predicted to result in the substitution of arginine for proline at amino acid 471 (P471R) in the A2 domain of factor VIII. The dam and female siblings were carriers, the male sibling did not have the mutation. The German Shepherd dog had a single nucleotide change of a guanine to adenine at position 1643 (1643G>A) in exon 11, predicting the substitution of tyrosine for cysteine at amino acid 548 (C548Y) in the A2 domain. CONCLUSIONS Here we document 2 mutations associated with canine hemophilia A associated with < 1% factor VIII activity, similar to that in people. Another related Boxer with the P471R mutation was later identified.
Collapse
Affiliation(s)
- Pete W Christopherson
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | | | | | | |
Collapse
|
14
|
Wakabayashi H, Wintermute JM, Fay PJ. Combining mutations that modulate inter-subunit interactions and proteolytic inactivation enhance the stability of factor VIIIa. Thromb Haemost 2014; 112:43-52. [PMID: 24599523 DOI: 10.1160/th13-10-0918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 01/17/2014] [Indexed: 11/05/2022]
Abstract
FVIIIa is labile due to the dissociation of A2 subunit. Previously, we introduced hydrophobic mutations at select A1/A2/A3 subunit interfaces yielding more stable FVIII(a) variants. Separately we showed that altering the sequence flanking the primary FXa cleavage site in FVIIIa (Arg336) yielded reduced rates of proteolytic inactivation of FVIIIa. In this study we prepared the FXa-cleavage resistant mutant (336(P4-P3')562) combined with mutations of Ala108Ile, Asp519Val/Glu665Val or Ala108Ile/Asp519Val/Glu665Val and examined the effects of these combinations relative to FVIII thermal stability, rates of FVIIIa decay and proteolytic inactivation of FVIIIa by FXa. Thermal decay rates for 336(P4-P3')562/Ala108Ile, 336(P4-P3')562/Asp519Val/Glu665Val, and 336(P4-P3')562/Ala108Ile/Asp519Val/Glu665Val variants were reduced by ~2- to 5-fold as compared with wild-type (WT) primarily reflecting the effects of the A domain interface mutations. FVIIIa decay rates for 336(P4-P3')562/Asp519Val/Glu665Val and 336(P4-P3')562/Ala108Ile/Asp519Val/Glu665Val variants were reduced by ~25 fold, indicating greater stability than the control Asp519Val/Glu665Val variant (~14-fold). Interestingly, 336(P4-P3')562/Asp519Val/Glu665Val and 336(P4-P3')562/Ala108Ile/Asp519Val/Glu665Val variants showed reduced FXa-inactivation rates compared with the 336(P4-P3')562 control (~4-fold), suggesting A2 subunit destabilisation is a component of proteolytic inactivation. Thrombin generation assays using the combination variants were similar to the Asp519Val/Glu665Val control. These results indicate that combining multiple gain-of-function FVIII mutations yields FVIII variants with increased stability relative to a single type of mutation.
Collapse
Affiliation(s)
| | | | - P J Fay
- Philip J. Fay, P.O. Box 712, Department of Biochemistry and Biophysics, 601 Elmwood Ave., Rochester, NY 14642, USA, Tel.: +1 585 275 6576, Fax: +1 585 275 6007, E-mail:
| |
Collapse
|
15
|
Wakabayashi H, Wintermute JM, Fay PJ. Combining mutations that modulate inter-subunit interactions and proteolytic inactivation enhance the stability of factor VIIIa. Thromb Haemost 2014. [DOI: 10.1160/th13-10-0887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
16
|
Anastasopoulos C, Sarigiannis Y, Stavropoulos G. Cyclic peptide analogs of 558–565 epitope of A2 subunit of Factor VIII prolong aPTT. Toward a novel synthesis of anticoagulants. Amino Acids 2014; 46:1087-96. [DOI: 10.1007/s00726-014-1673-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 01/08/2014] [Indexed: 11/30/2022]
|
17
|
Bloem E, Meems H, van den Biggelaar M, Mertens K, Meijer AB. A3 domain region 1803-1818 contributes to the stability of activated factor VIII and includes a binding site for activated factor IX. J Biol Chem 2013; 288:26105-26111. [PMID: 23884417 DOI: 10.1074/jbc.m113.500884] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A recent chemical footprinting study in our laboratory suggested that region 1803-1818 might contribute to A2 domain retention in activated factor VIII (FVIIIa). This site has also been implicated to interact with activated factor IX (FIXa). Asn-1810 further comprises an N-linked glycan, which seems incompatible with a role of the amino acids 1803-1818 for FIXa or A2 domain binding. In the present study, FVIIIa stability and FIXa binding were evaluated in a FVIII-N1810C variant, and two FVIII variants in which residues 1803-1810 and 1811-1818 are replaced by the corresponding residues of factor V (FV). Enzyme kinetic studies showed that only FVIII/FV 1811-1818 has a decreased apparent binding affinity for FIXa. Flow cytometry analysis indicated that fluorescent FIXa exhibits impaired complex formation with only FVIII/FV 1811-1818 on lipospheres. Site-directed mutagenesis revealed that Phe-1816 contributes to the interaction with FIXa. To evaluate FVIIIa stability, the FVIII/FV chimeras were activated by thrombin, and the decline in cofactor function was followed over time. FVIII/FV 1803-1810 and FVIII/FV 1811-1818 but not FVIII-N1810C showed a decreased FVIIIa half-life. However, when the FVIII variants were activated in presence of FIXa, only FVIII/FV 1811-1818 demonstrated an enhanced decline in cofactor function. Surface plasmon resonance analysis revealed that the FVIII variants K1813A/K1818A, E1811A, and F1816A exhibit enhanced dissociation after activation. The results together demonstrate that the glycan at 1810 is not involved in FVIII cofactor function, and that Phe-1816 of region 1811-1818 contributes to FIXa binding. Both regions 1803-1810 and 1811-1818 contribute to FVIIIa stability.
Collapse
Affiliation(s)
- Esther Bloem
- From the Department of Plasma Proteins, Sanquin Research, 1066 CX Amsterdam, The Netherlands and
| | - Henriet Meems
- From the Department of Plasma Proteins, Sanquin Research, 1066 CX Amsterdam, The Netherlands and
| | | | - Koen Mertens
- From the Department of Plasma Proteins, Sanquin Research, 1066 CX Amsterdam, The Netherlands and; Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 1066 CX Amsterdam, The Netherlands
| | - Alexander B Meijer
- From the Department of Plasma Proteins, Sanquin Research, 1066 CX Amsterdam, The Netherlands and; Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 1066 CX Amsterdam, The Netherlands.
| |
Collapse
|
18
|
Rosset C, Vieira IA, Sinigaglia M, Gorziza RP, Salzano FM, Bandinelli E. Detection of new mutations and molecular pathology of mild and moderate haemophilia A patients from southern Brazil. Haemophilia 2013; 19:773-81. [DOI: 10.1111/hae.12172] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2013] [Indexed: 01/17/2023]
Affiliation(s)
- C. Rosset
- Genetics Department; Biosciences Institute; Federal University of Rio Grande do Sul; Porto Alegre; RS; Brazil
| | - I. A. Vieira
- Genetics Department; Biosciences Institute; Federal University of Rio Grande do Sul; Porto Alegre; RS; Brazil
| | - M. Sinigaglia
- Genetics Department; Biosciences Institute; Federal University of Rio Grande do Sul; Porto Alegre; RS; Brazil
| | - R. P. Gorziza
- Genetics Department; Biosciences Institute; Federal University of Rio Grande do Sul; Porto Alegre; RS; Brazil
| | - F. M. Salzano
- Genetics Department; Biosciences Institute; Federal University of Rio Grande do Sul; Porto Alegre; RS; Brazil
| | - E. Bandinelli
- Genetics Department; Biosciences Institute; Federal University of Rio Grande do Sul; Porto Alegre; RS; Brazil
| |
Collapse
|
19
|
Griffiths AE, Rydkin I, Fay PJ. Factor VIIIa A2 subunit shows a high affinity interaction with factor IXa: contribution of A2 subunit residues 707-714 to the interaction with factor IXa. J Biol Chem 2013; 288:15057-64. [PMID: 23580639 DOI: 10.1074/jbc.m113.456467] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Factor (F) VIIIa forms a number of contacts with FIXa in assembling the FXase enzyme complex. Surface plasmon resonance was used to examine the interaction between immobilized biotinylated active site-modified FIXa, and FVIII and FVIIIa subunits. The FVIIIa A2 subunit bound FIXa with high affinity (Kd = 3.9 ± 1.6 nm) that was similar to the A3C1C2 subunit (Kd = 3.6 ± 0.6 nm). This approach was used to evaluate a series of baculovirus-expressed, isolated A2 domain (bA2) variants where alanine substitutions were made for individual residues within the sequence 707-714, the C-terminal region of A2 thought to be FIXa interactive. Three of six bA2 variants examined displayed 2- to 4-fold decreased affinity for FIXa as compared with WT bA2. The variant bA2 proteins were also tested in two reconstitution systems to determine activity and affinity parameters in forming FXase and FVIIIa. Vmax values for all variants were similar to the WT values, indicating that these residues do not affect cofactor function. All variants showed substantially greater increases in apparent Kd relative to WT in reconstituting the FXase complex (8- to 26-fold) compared with reconstituting FVIIIa (1.3- to 6-fold) suggesting that the mutations altered interaction with FIXa. bA2 domain variants with Ala replacing Lys(707), Asp(712), and Lys(713) demonstrated the greatest increases in apparent Kd (17- to 26-fold). These results indicate a high affinity interaction between the FVIIIa A2 subunit and FIXa and show a contribution of several residues within the 707-714 sequence to this binding.
Collapse
Affiliation(s)
- Amy E Griffiths
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | | | | |
Collapse
|
20
|
Abstract
Approximately 30% of patients with severe hemophilia A develop inhibitory anti-factor VIII (fVIII) antibodies (Abs). We characterized 29 anti-human A2 monoclonal Abs (mAbs) produced in a murine hemophilia A model. A basis set of nonoverlapping mAbs was defined by competition enzyme-linked immunosorbent assay, producing 5 major groups. The overlapping epitopes covered nearly the entire A2 surface when mapped by homolog-scanning mutagenesis. Most group A mAbs recognized a previously described epitope bounded by Arg484-Ile508 in the N-terminal A2 subdomain, resulting in binding to activated fVIII and noncompetitive inhibition of the intrinsic fXase complex. Group B and C mAbs displayed little or no inhibitory activity. Group D and E mAbs recognized epitopes in the C-terminal A2 subdomain. A subset of group D mAbs inhibited the activation of fVIII by interfering with thrombin-catalyzed cleavage at Arg372 at the A1-A2 domain junction. Other group D mAbs displayed indeterminate or no inhibitory activity despite inhibiting cleavage at Arg740 at the A2-B domain junction. Group E mAbs inhibited fVIII light-chain cleavage at Arg1689. Inhibition of cleavages at Arg372 and Arg1689 represent novel mechanisms of inhibitor function and, along with the extensive epitope spectrum identified in this study, reveal hitherto unrecognized complexity in the immune response to fVIII.
Collapse
|
21
|
A novel approach in potential anticoagulants from peptides epitope 558-565 of A2 subunit of factor VIII. Amino Acids 2013; 44:1159-65. [PMID: 23299973 DOI: 10.1007/s00726-012-1448-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 12/14/2012] [Indexed: 10/27/2022]
Abstract
Factor VIII, a human blood plasma protein, plays an important role during the intrinsic pathway of blood coagulation cascade after its activation by thrombin. The activated form of FVIII acts as cofactor to the serine protease Factor IXa, in the conversion of the zymogen Factor X to the active enzyme Factor Xa. The Ser558-Gln565 region of the A2 subunit of Factor VIII has been shown to be crucial for FVIIIa-FIXa interaction. Based on this, a series of linear peptides, analogs of the 558-565 loop of the A2 subunit of the heavy chain of Factor VIII were synthesized using the acid labile 2-chlorotrityl chloride resin and biologically evaluated in vitro by measuring the chronic delay of activated partial thromboplastin time and the inhibition of Factor VIII activity, as potential anticoagulants.
Collapse
|
22
|
Abstract
Hemostasis encompasses the tightly regulated processes of blood clotting, platelet activation, and vascular repair. After wounding, the hemostatic system engages a plethora of vascular and extravascular receptors that act in concert with blood components to seal off the damage inflicted to the vasculature and the surrounding tissue. The first important component that contributes to hemostasis is the coagulation system, while the second important component starts with platelet activation, which not only contributes to the hemostatic plug, but also accelerates the coagulation system. Eventually, coagulation and platelet activation are switched off by blood-borne inhibitors and proteolytic feedback loops. This review summarizes new concepts of activation of proteases that regulate coagulation and anticoagulation, to give rise to transient thrombin generation and fibrin clot formation. It further speculates on the (patho)physiological roles of intra- and extravascular receptors that operate in response to these proteases. Furthermore, this review provides a new framework for understanding how signaling and adhesive interactions between endothelial cells, leukocytes, and platelets can regulate thrombus formation and modulate the coagulation process. Now that the key molecular players of coagulation and platelet activation have become clear, and their complex interactions with the vessel wall have been mapped out, we can also better speculate on the causes of thrombosis-related angiopathies.
Collapse
Affiliation(s)
- Henri H. Versteeg
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands; Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands; and Department of Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Johan W. M. Heemskerk
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands; Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands; and Department of Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Marcel Levi
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands; Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands; and Department of Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Pieter H. Reitsma
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands; Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands; and Department of Medicine, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
23
|
DeAngelis JP, Wakabayashi H, Fay PJ. Sequences flanking Arg336 in factor VIIIa modulate factor Xa-catalyzed cleavage rates at this site and cofactor function. J Biol Chem 2012; 287:15409-17. [PMID: 22411993 DOI: 10.1074/jbc.m111.333948] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Factor (F)VIII can be activated to FVIIIa by FXa following cleavages at Arg(372), Arg(740), and Arg(1689). FXa also cleaves FVIII/FVIIIa at Arg(336) and Arg(562) resulting in inactivation of the cofactor. These inactivating cleavages occur on a slower time scale than the activating ones. We assessed the contributions to cleavage rate and cofactor function of residues flanking Arg(336), the primary site yielding FVIII(a) inactivation, following replacement of these residues with those flanking the faster-reacting Arg(740) and Arg(372) sites and the slower-reacting Arg(562) site. Replacing P4-P3' residues flanking Arg(336) with those from Arg(372) or Arg(740) resulted in ∼4-6-fold increases in rates of FXa-catalyzed inactivation of FVIIIa, which paralleled the rates of proteolysis at Arg(336). Examination of partial sequence replacements showed a predominant contribution of prime residues flanking the scissile bonds to the enhanced rates. Conversely, replacement of this sequence with residues flanking the slow-reacting Arg(562) site yielded inactivation and cleavage rates that were ∼40% that of the WT values. The capacity for FXa to activate FVIII variants where cleavage at Arg(336) was accelerated due to flanking sequence replacement showed marked reductions in peak activity, whereas reducing the cleavage rate at this site enhanced peak activity. Furthermore, plasma-based thrombin generation assays employing the variants revealed significant reductions in multiple parameter values with acceleration of Arg(336) cleavage suggesting increased down-regulation of FXase. Overall, these results are consistent with a model of competition for activating and inactivating cleavages catalyzed by FXa that is modulated in large part by sequences flanking the scissile bonds.
Collapse
Affiliation(s)
- Jennifer P DeAngelis
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | | | | |
Collapse
|
24
|
Plantier JL, Saboulard D, Pellequer JL, Négrier C, Delcourt M. Functional mapping of the A2 domain from human factor VIII. Thromb Haemost 2012; 107:315-27. [PMID: 22234396 DOI: 10.1160/th11-07-0492] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 11/24/2011] [Indexed: 11/05/2022]
Abstract
Coagulation factor VIII (FVIII) is a multidomain glycoprotein in which the FVIII A2 domain is a key structural element. We aimed at identifying residues within FVIII A2 domain that are crucial for the maintenance of the cofactor function. A high number (n=206) of mutants were generated by substituting original residues with alanine. The mutants were expressed in COS-1 cells and their antigen levels and procoagulant activities were measured. The residues were classified in three categories: those with a non-detrimental alteration of their activities (activity >50 % of control FVIII; n=98), those with a moderate alteration (15 %<activity<50%; n=45) and those that were severely affected (activity<15%; n=63). The mutants sensitive to mutation were retrieved in the HAMSTeRS database with a higher percentage than those that were not affected (58.8% vs. 9.2%). The results revealed the existence of clusters of residues that are sensitive (Arg418-Phe436, Thr459-Ile475, Ser535-Gly549, Asn618-Ala635) or not (Leu398-Arg418, Pro485-Asp500, Gly506-Gly520, Pro596-Asp605) to mutations. The stretches of residues sensitive to mutations were buried within the molecule suggesting that these amino acids participate in the maintenance of the A2 domain structure. In contrast, residues resistant to mutations formed external loops without well- defined structures suggesting that these loops were not crucial for the process of factor X activation. This study provided a detailed map of the FVIII A2 domain between residues 371 and 649, identifying residues crucial for maintaining FVIII function and residues that can be mutated without jeopardising the coagulant activity.
Collapse
Affiliation(s)
- Jean-Luc Plantier
- Laboratoire d’Hémobiologie EA4174-IFR62 Faculté de Médecine RTH Laennec, Université de Lyon, Lyon, France.
| | | | | | | | | |
Collapse
|
25
|
DeAngelis JP, Varfaj F, Wakabayashi H, Fay PJ. The role of P4-P3' residues flanking Arg336 in facilitating activated protein C-catalyzed cleavage and inactivation of factor VIIIa. Thromb Res 2011; 128:470-6. [PMID: 21470668 PMCID: PMC3202615 DOI: 10.1016/j.thromres.2011.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 03/02/2011] [Accepted: 03/09/2011] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Activated protein C (APC) inactivates factor VIIIa (FVIIIa) through cleavages at Arg336 in the A1 subunit and Arg562 in the A2 subunit. Proteolysis at Arg336 occurs 25-fold faster than at Arg562. Replacing residues flanking Arg336 en bloc with the corresponding residues surrounding Arg562 markedly reduced the rate of cleavage at Arg336, indicating a role for these residues in the catalysis mechanism. MATERIALS AND METHODS To assess the contributions of individual P4-P3' residues flanking the Arg336 site to cleavage efficiency, point mutations were made based upon those flanking Arg562 of FVIIIa (Pro333Val, Gln334Asp, Leu335Gln, Met337Gly, Lys338Asn, Asn339Gln) and selected residues flanking Arg506 of FVa (Leu335Arg, and Lys338Ile). APC-catalyzed inactivation of the FVIII variants and cleavage of FVIIIa subunits were monitored by FXa generation assays and Western blotting. RESULTS Specific activity values of the variants were 60-135% of the wild type (WT) value. APC-catalyzed rates of cleavage at Arg336 remained similar to WT for the Pro333Val and Lys338Ile variants and was modestly increased for the Asn339Gln variant; while rates were reduced ~2-3-fold for the Gln334Asp, Leu335Gln, Leu335Arg, and Lys338Asn variants, and 5-fold for the Met337Gly variant. Rates for cofactor inactivation paralleled cleavage at the A1 site. APC slowly cleaves Arg372 in FVIII, a site responsible for procofactor activation. Using FVIII as substrate for APC, the Met337Gly variant yielded significantly greater activation compared with WT FVIII. CONCLUSIONS These results show that individual P4-P3' residues surrounding Arg336 are in general more favorable to cleavage than those surrounding the Arg562 site.
Collapse
Affiliation(s)
- Jennifer P DeAngelis
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine, Rochester, NY 14642, USA
| | | | | | | |
Collapse
|
26
|
Griffiths AE, Wang W, Hagen FK, Fay PJ. Use of affinity-directed liquid chromatography-mass spectrometry to map the epitopes of a factor VIII inhibitor antibody fraction. J Thromb Haemost 2011; 9:1534-40. [PMID: 21668738 PMCID: PMC3154976 DOI: 10.1111/j.1538-7836.2011.04397.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Neutralizing factor (F) VIII antibodies develop in approximately 30% of individuals with hemophilia A and show specificity to multiple sites in the FVIII protein. METHODS Reactive epitopes to an immobilized IgG fraction prepared from a high-titer, FVIII inhibitor plasma were determined after immuno-precipitation (IP) of tryptic and chymotryptic peptides derived from digests of the A1 and A2 subunits of FVIIIa and FVIII light chain. Peptides were detected and identified using highly sensitive liquid chromatography-mass spectrometry (LC-MS). RESULTS Coverage maps of the A1 subunit, A2 subunit and light chain represented 79%, 69% and 90%, respectively, of the protein sequences. Dot blots indicated that the inhibitor IgG reacted with epitopes contained within each subunit of FVIIIa. IP coupled with LC-MS identified 19 peptides representing epitopes from all FVIII A and C domains. The majority of peptides (10) were derived from the A2 domain. Three peptides mapped to the C2 domain, while two mapped to the A1 and A3 domains, and single peptides mapped to the a1 segment and C1 domain. Epitopes were typically defined by peptide sequences of < 12 residues. CONCLUSIONS IP coupled with LC-MS identified extensive antibody reactivity at high resolution over the entire functional FVIII molecule and yielded sequence lengths of < 15 residues. A number of the peptides identified mapped to known sequences involved in functionally important protein-protein and protein-membrane interactions.
Collapse
Affiliation(s)
- Amy E. Griffiths
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine, Rochester, NY 14642 USA
| | - Wensheng Wang
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine, Rochester, NY 14642 USA
| | - Fred K. Hagen
- Proteomics Center, University of Rochester School of Medicine, Rochester, NY 14642 USA
| | - Philip J. Fay
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine, Rochester, NY 14642 USA
| |
Collapse
|
27
|
Abstract
Factor VIII functions as a cofactor for Factor IXa in a membrane-bound enzyme complex. Membrane binding accelerates the activity of the Factor VIIIa-Factor IXa complex approx. 100000-fold, and the major phospholipid-binding motif of Factor VIII is thought to be on the C2 domain. In the present study, we prepared an fVIII-C2 (Factor VIII C2 domain) construct from Escherichia coli, and confirmed its structural integrity through binding of three distinct monoclonal antibodies. Solution-phase assays, performed with flow cytometry and FRET (fluorescence resonance energy transfer), revealed that fVIII-C2 membrane affinity was approx. 40-fold lower than intact Factor VIII. In contrast with the similarly structured C2 domain of lactadherin, fVIII-C2 membrane binding was inhibited by physiological NaCl. fVIII-C2 binding was also not specific for phosphatidylserine over other negatively charged phospholipids, whereas a Factor VIII construct lacking the C2 domain retained phosphatidyl-L-serine specificity. fVIII-C2 slightly enhanced the cleavage of Factor X by Factor IXa, but did not compete with Factor VIII for membrane-binding sites or inhibit the Factor Xase complex. Our results indicate that the C2 domain in isolation does not recapitulate the characteristic membrane binding of Factor VIII, emphasizing that its role is co-operative with other domains of the intact Factor VIII molecule.
Collapse
|
28
|
A membrane-interactive surface on the factor VIII C1 domain cooperates with the C2 domain for cofactor function. Blood 2011; 117:3181-9. [DOI: 10.1182/blood-2010-08-301663] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Factor VIII binds to phosphatidylserine (PS)-containing membranes through its tandem, lectin-homology, C1 and C2 domains. However, the details of C1 domain membrane binding have not been delineated. We prepared 4 factor VIII C1 mutations localized to a hypothesized membrane-interactive surface (Arg2090Ala/Gln2091Ala, Lys2092Ala/Phe2093Ala, Gln2042Ala/Tyr2043Ala, and Arg2159Ala). Membrane binding and cofactor activity were measured using membranes with 15% PS, mimicking platelets stimulated by thrombin plus collagen, and 4% PS, mimicking platelets stimulated by thrombin. All mutants had at least 10-fold reduced affinities for membranes of 4% PS, and 3 mutants also had decreased apparent affinity for factor X. Monoclonal antibodies against the C2 domain produced different relative impairment of mutants compared with wild-type factor VIII. Monoclonal antibody ESH4 decreased the Vmax for all mutants but only the apparent membrane affinity for wild-type factor VIII. Monoclonal antibody BO2C11 decreased the Vmax of wild-type factor VIII by 90% but decreased the activity of 3 mutants more than 98%. These results identify a membrane-binding face of the factor VIII C1 domain, indicate an influence of the C1 domain on factor VIII binding to factor X, and indicate that cooperation between the C1 and C2 domains is necessary for full activity of the factor Xase complex.
Collapse
|
29
|
Soeda T, Nogami K, Matsumoto T, Ogiwara K, Shima M. Mechanisms of factor VIIa-catalyzed activation of factor VIII. J Thromb Haemost 2010; 8:2494-503. [PMID: 20735721 DOI: 10.1111/j.1538-7836.2010.04042.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND Factor (F)VIIa, complexed with tissue factor (TF), is a primary trigger of blood coagulation, and has extremely restricted substrate specificity. The complex catalyzes limited proteolysis of FVIII, but these mechanisms are poorly understood. OBJECTIVES In the present study, we investigated the precise mechanisms of FVIIa/TF-catalyzed FVIII activation. RESULTS FVIII activity increased ~4-fold within 30 s in the presence of FVIIa/TF, and then decreased to initial levels within 20 min. FVIIa (0.1 nM), at concentrations present physiologically in plasma, activated FVIII in the presence of TF, and this activation was more rapid than that induced by thrombin. The heavy chain (HCh) of FVIII was proteolyzed at Arg(740) and Arg(372) more rapidly by FVIIa/TF than by thrombin, consistent with the enhanced activation of FVIII. Cleavage at Arg(336) was evident at ~1 min, whilst little cleavage of the light chain (LCh) was observed. Cleavage of the HCh by FVIIa/TF was governed by the presence of the LCh. FVIII bound to Glu-Gly-Arg-active-site-modified FVIIa (K(d), ~0.8 nM) with a higher affinity for the HCh than for the LCh (K(d), 5.9 and 18.9 nm). Binding to the A2 domain was particularly evident. Von Willebrand factor (VWF) modestly inhibited FVIIa/TF-catalyzed FVIII activation, in keeping with the concept that VWF could moderate FVIIa/TF-mediated reactions. CONCLUSIONS The results demonstrated that this activation mechanism was distinct from those mediated by thrombin, and indicated that FVIIa/TF functions through a 'priming' mechanism for the activation of FVIII in the initiation phase of coagulation.
Collapse
Affiliation(s)
- T Soeda
- Department of Pediatrics, Nara Medical University, Kashihara, Nara, Japan
| | | | | | | | | |
Collapse
|
30
|
Plantier JL, Rolli V, Ducasse C, Dargaud Y, Enjolras N, Boukerche H, Négrier C. Activated factor X cleaves factor VIII at arginine 562, limiting its cofactor efficiency. J Thromb Haemost 2010; 8:286-93. [PMID: 19874476 DOI: 10.1111/j.1538-7836.2009.03675.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Factor VIII (FVIII) and its activated form (FVIIIa) are subject to proteolysis that dampens their cofactor function. Among the proteases that attack FVIII (activated factor X (FXa), activated protein C (APC) and plasmin), only APC cleaves within the FVIII A2 domain at R562 to fully abolish FVIII activity. OBJECTIVES We investigated the possible involvement of the FXa cleavage at R562 within the A2 domain in the process of FVIII inactivation. METHODS An antibody (GMA012/R8B12) that recognizes the carboxy-terminus extremity of the A2 domain (A2C) was used to evaluate FXa action. A molecule mutated at R562 was also generated to assess the functional role of this particular residue. RESULTS AND CONCLUSIONS The appearance of the A2C domain as a function of time evidenced the identical cleavage within the A2 domain of FVIII and FVIIIa by FXa. This cleavage required phospholipids and occurred within minutes. In contrast, the isolated A2 domain was not cleaved by FXa. Von Willebrand factor and activated FIX inhibited the cleavage in a dose-dependent manner. Mutation R562K increased both the FVIII specific activity and the generation of FXa due to an increase in FVIII catalytic efficiency. Moreover, A2C fragment could not be identified from FVIII-R562K cleavage. In summary, this study defines a new mechanism for A2 domain-mediated FVIII degradation by FXa and implicates the bisecting of the A2 domain at R562.
Collapse
Affiliation(s)
- J L Plantier
- Laboratoire d'hémobiologie EA4174, Faculté RTH Laennec, Université de Lyon, Université Lyon 1, Lyon, France.
| | | | | | | | | | | | | |
Collapse
|
31
|
Jagannathan I, Ichikawa HT, Kruger T, Fay PJ. Identification of residues in the 558-loop of factor VIIIa A2 subunit that interact with factor IXa. J Biol Chem 2009; 284:32248-55. [PMID: 19801661 DOI: 10.1074/jbc.m109.050781] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Factor VIIIa is comprised of A1, A2, and A3C1C2 subunits. Several lines of evidence have identified the A2 558-loop as interacting with factor IXa. The contributions of individual residues within this region to inter-protein affinity and cofactor activity were assessed following alanine scanning mutagenesis of residues 555-571 that border or are contained within the loop. Variants were expressed as isolated A2 domains in Sf9 cells using a baculovirus construct and purified to >90%. Two reconstitution assays were employed to determine affinity and activity parameters. The first assay reconstituted factor Xase using varying concentrations of A2 mutant and fixed levels of A1/A3C1C2 dimer purified from wild type (WT), baby hamster kidney cell-expressed factor VIII, factor IXa, and phospholipid vesicles to determine the inter-molecular K(d) for A2. The second assay determined the K(d) for A2 in factor VIIIa by reconstituting various A2 and fixed levels of A1/A3C1C2. Parameter values were determined by factor Xa generation assays. WT A2 expressed in insect cells yielded similar K(d) and k(cat) values following reconstitution as WT A2 purified from baby hamster kidney cell-expressed factor VIII. All A2 variants exhibited modest if any increases in K(d) values for factor VIIIa assembly. However, variants S558A, V559A, D560A, G563A, and I566A showed >9-fold increases in K(d) for factor Xase assembly, implicating these residues in stabilizing A2 association with factor IXa. Furthermore, variants Y555A, V559A, D560A, G563A, I566A, and D569A showed >80% reduction in k(cat) for factor Xa generation. These results identify residues in the 558-loop critical to interaction with factor IXa in Xase.
Collapse
Affiliation(s)
- Indu Jagannathan
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | | | | | | |
Collapse
|
32
|
Factor VIII C1 domain residues Lys 2092 and Phe 2093 contribute to membrane binding and cofactor activity. Blood 2009; 114:3938-46. [PMID: 19687511 DOI: 10.1182/blood-2009-01-197707] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Binding of factor VIII to membranes containing phosphatidyl-L-serine (Ptd-L-Ser) is mediated, in part, by a motif localized to the C2 domain. We evaluated a putative membrane-binding role of the C1 domain using an anti-C1 antibody fragment, KM33(scFv), and factor VIII mutants with an altered KM33 epitope. We prepared a dual mutant Lys2092/Phe2093 --> Ala/Ala (fVIII(YFP 2092/93)) and 2 single mutants Lys2092 --> Ala and Phe2093 --> Ala. KM33(scFv) inhibited binding of fluorescein-labeled factor VIII to synthetic membranes and inhibited at least 95% of factor Xase activity. fVIII(YFP 2092/93) had 3-fold lower affinity for membranes containing 15% Ptd-L-Ser but more than 10-fold reduction in affinity for membranes with 4% Ptd-L-Ser. In a microtiter plate, KM33(scFv) was additive with an anti-C2 antibody for blocking binding to vesicles of 15% Ptd-L-Ser, whereas either antibody blocked binding to vesicles of 4% Ptd-L-Ser. KM33(scFv) inhibited binding to platelets and fVIII(YFP 2092/93) had reduced binding to A23187-stimulated platelets. fVIII(YFP 2092) exhibited normal activity at various Ptd-L-Ser concentrations, whereas fVIII(YFP 2093) showed a reduction of activity with Ptd-L-Ser less than 12%. fVIII(YFP 2092/93) had a greater reduction of activity than either single mutant. These results indicate that Lys 2092 and Phe 2093 are elements of a membrane-binding motif on the factor VIII C1 domain.
Collapse
|
33
|
Newell JL, Fay PJ. Cleavage at Arg-1689 influences heavy chain cleavages during thrombin-catalyzed activation of factor VIII. J Biol Chem 2009; 284:11080-9. [PMID: 19240027 DOI: 10.1074/jbc.m900234200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The procofactor, factor VIII, is activated by thrombin or factor Xa-catalyzed cleavage at three P1 residues: Arg-372, Arg-740, and Arg-1689. The catalytic efficiency for thrombin cleavage at Arg-740 is greater than at either Arg-1689 or Arg-372 and influences reaction rates at these sites. Because cleavage at Arg-372 appears rate-limiting and dependent upon initial cleavage at Arg-740, we investigated whether cleavage at Arg-1689 influences catalysis at this step. Recombinant B-domainless factor VIII mutants, R1689H and R1689Q were prepared and stably expressed to slow and eliminate cleavage, respectively. Specific activity values for the His and Gln mutations were approximately 50 and approximately 10%, respectively, that of wild type. Thrombin activation of the R1689H variant showed an approximately 340-fold reduction in the rate of Arg-1689 cleavage, whereas the R1689Q variant was resistant to thrombin cleavage at this site. Examination of heavy chain cleavages showed approximately 4- and 11-fold reductions in A2 subunit generation and approximately 3- and 7-fold reductions in A1 subunit generation for the R1689H and R1689Q mutants, respectively. These results suggest a linkage between light chain cleavage and cleavages in heavy chain. Results obtained evaluating proteolysis of the factor VIII mutants by factor Xa revealed modest rate reductions (<5-fold) in generating A2 and A1 subunits and in cleaving light chain at Arg-1721 from either variant, suggesting little dependence upon prior cleavage at residue 1689 as compared with thrombin. Overall, these results are consistent with a competition between heavy and light chains for thrombin exosite binding and subsequent proteolysis with binding of the former chain preferred.
Collapse
Affiliation(s)
- Jennifer L Newell
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | | |
Collapse
|
34
|
|
35
|
Takeyama M, Nogami K, Saenko EL, Soeda T, Nishiya K, Ogiwara K, Yoshioka A, Shima M. Protein S down-regulates factor Xase activity independent of activated protein C: specific binding of factor VIII(a) to protein S inhibits interactions with factor IXa. Br J Haematol 2008; 143:409-20. [DOI: 10.1111/j.1365-2141.2008.07366.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
|
37
|
Crystal structure of human factor VIII: implications for the formation of the factor IXa-factor VIIIa complex. Structure 2008; 16:597-606. [PMID: 18400180 DOI: 10.1016/j.str.2008.03.001] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2008] [Revised: 02/27/2008] [Accepted: 03/01/2008] [Indexed: 11/24/2022]
Abstract
Factor VIII is a procofactor that plays a critical role in blood coagulation, and is missing or defective in hemophilia A. We determined the X-ray crystal structure of B domain-deleted human factor VIII. This protein is composed of five globular domains and contains one Ca(2+) and two Cu(2+) ions. The three homologous A domains form a triangular heterotrimer where the A1 and A3 domains serve as the base and interact with the C2 and C1 domains, respectively. The structurally homologous C1 and C2 domains reveal membrane binding features. Based on biochemical studies, a model of the factor IXa-factor VIIIa complex was constructed by in silico docking. Factor IXa wraps across the side of factor VIII, and an extended interface spans the factor VIII heavy and light chains. This model provides insight into the activation of factor VIII and the interaction of factor VIIIa with factor IXa on the membrane surface.
Collapse
|
38
|
Steen M, Tran S, Autin L, Villoutreix BO, Tholander AL, Dahlbäck B. Mapping of the factor Xa binding site on factor Va by site-directed mutagenesis. J Biol Chem 2008; 283:20805-12. [PMID: 18502757 DOI: 10.1074/jbc.m802703200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activated coagulation factor V functions as a cofactor to factor Xa in the conversion of prothrombin to thrombin. Based on the introduction of extra carbohydrate side chains in recombinant factor V, we recently proposed several regions in factor Va to be important for factor Xa binding. To further define which residues are important for factor Xa binding, we prepared fifteen recombinant factor V variants in which clusters of charged amino acid residues were mutated, mainly to alanines. The factor V variants were expressed in COS-1 cells, and their functional properties evaluated in a prothrombinase-based assay, as well as in a direct binding test. Four of the factor V variants, 501A/510A/511D, 501A/510A/511D/513A, 513A/577A/578A, and 501A/510A/511D/513A/577A/578A exhibited markedly reduced factor Xa-cofactor activity tested in the prothrombinase assay, and reduced binding affinity as judged by the direct binding assay. These factor Va variants were normally cleaved at Arg-506 by activated protein C, and the interaction between the factor Xa-factor Va complex and prothrombin was unaffected by the introduced mutations. Based on the integration of all available data, we propose a key factor Xa binding surface to be centered on Arg-501, Arg-510, Ala-511, Asp-513, Asp-577, and Asp-578 in the factor Va A2 domain. These residues form an elongated charged factor Xa binding cluster on the factor Va surface.
Collapse
Affiliation(s)
- Mårten Steen
- Department of Laboratory Medicine, Division of Clinical Chemistry, Lund University, The Wallenberg Laboratory, MAS, SE-205 02 Malmö, Sweden
| | | | | | | | | | | |
Collapse
|
39
|
Gale AJ, Cramer TJ, Rozenshteyn D, Cruz JR. Detailed mechanisms of the inactivation of factor VIIIa by activated protein C in the presence of its cofactors, protein S and factor V. J Biol Chem 2008; 283:16355-62. [PMID: 18424440 DOI: 10.1074/jbc.m708985200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Factor VIIIa is inactivated by a combination of two mechanisms. Activation of factor VIII by thrombin results in a heterotrimeric factor VIIIa that spontaneously inactivates due to dissociation of the A2 subunit. Additionally, factor VIIIa is cleaved by the anticoagulant serine protease, activated protein C, at two cleavage sites, Arg(336) in the A1 subunit and Arg(562) in the A2 subunit. We previously characterized an engineered variant of factor VIII which contains a disulfide bond between the A2 and the A3 subunits that prevents the spontaneous dissociation of the A2 subunit following thrombin activation. Thus, in the absence of activated protein C, this variant has stable activity following activation by thrombin. To isolate the effects of the individual activated protein C cleavage sites on factor VIIIa, we engineered mutations of the activated protein C cleavage sites into the disulfide bond-cross-linked factor VIII variant. Arg(336) cleavage is 6-fold faster than Arg(562) cleavage, and the Arg(336) cleavage does not fully inactivate factor VIIIa when A2 subunit dissociation is blocked. Protein S enhances both cleavage rates but enhances Arg(562) cleavage more than Arg(336) cleavage. Factor V also enhances both cleavage rates when protein S is present. Factor V enhances Arg(562) cleavage more than Arg(336) cleavage as well. As a result, in the presence of both activated protein C cofactors, Arg(336) cleavage is only twice as fast as Arg(562) cleavage. Therefore, both cleavages contribute significantly to factor VIIIa inactivation.
Collapse
Affiliation(s)
- Andrew J Gale
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA.
| | | | | | | |
Collapse
|
40
|
Varfaj F, Wakabayashi H, Fay PJ. Residues Surrounding Arg336 and Arg562 Contribute to the Disparate Rates of Proteolysis of Factor VIIIa Catalyzed by Activated Protein C. J Biol Chem 2007; 282:20264-72. [PMID: 17519239 DOI: 10.1074/jbc.m701327200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activated Protein C (APC) inactivates factor VIIIa by cleavage at Arg(336) and Arg(562) within the A1 and A2 subunits, respectively, with reaction at the former site occurring at a rate approximately 25-fold faster than the latter. Recombinant factor VIII variants possessing mutations within the P4-P3' sequences were used to determine the contributions of these residues to the disparate cleavage rates at the two P1 sites. Specific activity values for 336(P4-P3')562, 336(P4-P2)562, and 336(P1'-P3')562 mutants, where indicated residues surrounding the Arg(336) site were replaced with those surrounding Arg(562), were similar to wild type (WT) factor VIII; whereas 562(P4-P3')336 and 562(P4-P2)336 mutants showed specific activity values <1% the WT value. Inactivation rates for the 336 site mutants were reduced approximately 6-11-fold compared with WT factor VIIIa, and approached values attributed to cleavage at Arg(562). Cleavage rates at Arg(336) were reduced approximately 100-fold for 336(P4-P3')562, and approximately 9-16-fold for 336(P4-P2)562 and 336(P1'-P3')562 mutants. Inhibition kinetics revealed similar affinities of APC for WT factor VIIIa and 336(P4-P3')562 variant. Alternatively, the 562(P4-P3')336 variant showed a modest increase in cleavage rate ( approximately 4-fold) at Arg(562) compared with WT, whereas these rates were increased by approximately 27- and 6-fold for 562(P4-P3')336 and 562(P4-P2)336, respectively, using the factor VIII procofactor form as substrate. Thus the P4-P3' residues surrounding Arg(336) and Arg(562) make significant contributions to proteolysis rates at each site, apparently independent of binding affinity. Efficient cleavage at Arg(336) by APC is attributed to favorable P4-P3' residues at this site, whereas cleavage at Arg(562) can be accelerated following replacement with more optimal P4-P3' residues.
Collapse
Affiliation(s)
- Fatbardha Varfaj
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | | | | |
Collapse
|
41
|
Newell JL, Fay PJ. Proteolysis at Arg740 facilitates subsequent bond cleavages during thrombin-catalyzed activation of factor VIII. J Biol Chem 2007; 282:25367-75. [PMID: 17595160 DOI: 10.1074/jbc.m703433200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thrombin activates factor VIII by proteolysis at three P1 residues: Arg372, Arg740, and Arg1689. Cleavage at Arg372 and Arg1689 are essential for procofactor activation; however cleavage at Arg740 has not been rigorously studied. To evaluate the role for cleavage at Arg740, we prepared and stably expressed two recombinant B-domainless factor VIII mutants, R740H and R740Q to slow and eliminate, respectively, cleavage at this site. Specific activity values for the variants were approximately 50 and 20%, respectively, that of wild-type factor VIII. Activation of factor VIII R740H by thrombin showed an approximately 40-fold reduction in the rate of A2 subunit generation, which reflected an approximately 20-fold reduction in cleavage rate at Arg372. Similarly, a approximately 40-fold rate reduction in cleavage at Arg1689 and consequent generation of the A3-C1-C2 subunit were observed. Rate values for A2 and A3-C1-C2 subunit generation were reduced by >700-fold and approximately 140-fold, respectively, in the R740Q variant. These results suggest that initial cleavage at Arg740 affects cleavage at both Arg372 and Arg1689 sites. Results obtained evaluating proteolysis of the factor VIII mutants by factor Xa revealed more modest rate reductions (<10-fold) in generating A2 and A3-C1-C2 subunits from either variant, suggesting that factor Xa-catalyzed activation of factor VIII was significantly less dependent upon prior cleavage at residue 740 than thrombin. Overall, these results support a model whereby cleavage of factor VIII by thrombin is an ordered pathway with cleavage at Arg740 facilitating cleavages at Arg372 and Arg1689, which result in procofactor activation.
Collapse
Affiliation(s)
- Jennifer L Newell
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | | |
Collapse
|
42
|
Gale AJ, Yegneswaran S, Xu X, Pellequer JL, Griffin JH. Characterization of a factor Xa binding site on factor Va near the Arg-506 activated protein C cleavage site. J Biol Chem 2007; 282:21848-55. [PMID: 17553804 DOI: 10.1074/jbc.m702192200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prothrombin is proteolytically activated by the prothrombinase complex comprising the serine protease Factor (F) Xa complexed with its cofactor, FVa. Based on inhibition of the prothrombinase complex by synthetic peptides, FVa residues 493-506 were proposed as a FXa binding site. FVa is homologous to FVIIIa, the cofactor for the FIXa protease, in the FX-activating complex, and FVIIIa residues 555-561 (homologous to FVa residues 499-506) are recognized as a FIXa binding sequence. To test the hypothesis that FVa residues 499-505 contribute to FXa binding, we created the FVa loop swap mutant (designated 499-505(VIII) FV) with residues 499-505 replaced by residues 555-561 of FVIIIa, which differ at five of seven positions. Based on kinetic measurements and spectroscopic titrations, this FVa loop swap mutant had significantly reduced affinity for FXa. The fully formed prothrombinase complex containing this FVa mutant had fairly normal kinetic parameters (k(cat) and K(m)) for cleavage of prothrombin at Arg-320. However, small changes in both Arg-320 and Arg-271 cleavage rates result together in a moderate change in the pathway of prothrombin activation. Although residues 499-505 directly precede the Arg-506 cleavage site for activated protein C (APC), the 499-505(VIII) FVa mutant was inactivated entirely normally by APC. These results suggest that this A2 domain sequence of the FVa and FVIIIa cofactors evolved to have different specificity for binding FXa and FIXa while retaining compatibility as substrate for APC. In an updated three-dimensional model for the FVa structure, residues 499-505, along with Arg-506, Arg-306, and other previously suggested FXa binding sequences, delineate a continuous surface on the A2 domain that is strongly implicated as an extended FXa binding surface in the prothrombinase complex.
Collapse
Affiliation(s)
- Andrew J Gale
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | | | | | |
Collapse
|
43
|
Fang H, Wang L, Wang H. The protein structure and effect of factor VIII. Thromb Res 2007; 119:1-13. [PMID: 16487577 DOI: 10.1016/j.thromres.2005.12.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2005] [Revised: 11/06/2005] [Accepted: 12/26/2005] [Indexed: 11/23/2022]
Abstract
Factor VIII (FVIII) is a key component of the fluid phase of the blood coagulation system. The proteases efficiently cleave FVIII at three sites, two within the heavy and one within the light chain resulting in alteration of its covalent structure and conformation and yielding the active cofactor, FVIIIa. FVIIIa is a trimer composed of A1, A2 and A3-C1-C2 subunits. The role of FVIIIa is to markedly increase the catalytic efficiency of factor IXa in the activation of factor X. Variants of these factors frequently also lead to severe bleeding disorders.
Collapse
Affiliation(s)
- Hong Fang
- Department of Cardiology, Tongji Hospital, Tongji University, Shanghai 200065, China.
| | | | | |
Collapse
|
44
|
Autin L, Steen M, Dahlbäck B, Villoutreix BO. Proposed structural models of the prothrombinase (FXa-FVa) complex. Proteins 2006; 63:440-50. [PMID: 16437549 DOI: 10.1002/prot.20848] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Activated coagulation factor V (FVa) functions as a cofactor to factor Xa (FXa) in the conversion of prothrombin (PT) to thrombin. This essential procoagulant reaction, despite being the subject of extensive investigation, is not fully understood structurally and functionally. To elucidate the structure of the FXa-FVa complex, we have performed protein:protein (Pr:Pr) docking simulation with the pseudo-Brownian Pr:Pr docking ICM package and with the shape-complementarity Pr:Pr docking program PPD. The docking runs were carried out using a new model of full-length human FVa and the X-ray structure of human FXa. Five representative models of the FXa-FVa complex were in overall agreement with some of the available experimental data, but only one model was found to be consistent with almost all of the reported experimental results. The use of hybrid docking approach (theoretical plus experimental) is definitively important to study such large macromolecular complexes. The FXa-FVa model we have created will be instrumental for further investigation of this macromolecular system and will guide future site directed mutagenesis experiments.
Collapse
|
45
|
Varfaj F, Neuberg J, Jenkins P, Wakabayashi H, Fay P. Role of P1 residues Arg336 and Arg562 in the activated-Protein-C-catalysed inactivation of Factor VIIIa. Biochem J 2006; 396:355-62. [PMID: 16503879 PMCID: PMC1462720 DOI: 10.1042/bj20060117] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
APC (activated Protein C) inactivates human Factor VIIIa following cleavage at residues Arg336 and Arg562 within the A1 and A2 subunits respectively. The role of the P1 arginine in APC-catalysed inactivation of Factor VIIIa was examined by employing recombinant Factor VIIIa molecules where residues 336 and 562 were replaced with alanine and/or glutamine. Stably expressed Factor VIII proteins were activated by thrombin and resultant Factor VIIIa was reacted at high concentration with APC to minimize cofactor inactivation due to A2 subunit dissociation. APC cleaved wild-type Factor VIIIa at the A1 site with a rate approximately 25-fold greater than that for the A2 site. A1 mutants R336A and R336Q were inactivated approximately 9-fold slower than wild-type Factor VIIIa, whereas the A2 mutant R562A was inactivated approximately 2-fold slower. No cleavage at the mutated sites was observed. Taken together, these results suggested that cleavage at the A1 site was the dominant mechanism for Factor VIIIa inactivation catalysed by the proteinase. On the basis of cleavage at Arg336, a K(m) value for wild-type Factor VIIIa of 102 nM was determined, and this value was significantly greater than K(i) values (approximately 9-18 nM) obtained for an R336Q/R562Q Factor VIIIa. Furthermore, evaluation of a series of cluster mutants in the C-terminal region of the A1 subunit revealed a role for acidic residues in segment 341-345 in the APC-catalysed proteolysis of Arg336. Thus, while P1 residues contribute to catalytic efficiency, residues removed from these sites make a primary contribution to the overall binding of APC to Factor VIIIa.
Collapse
Affiliation(s)
- Fatbardha Varfaj
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine, 601 Elmwood Avenue, Rochester, NY 14642, U.S.A
| | - Julie Neuberg
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine, 601 Elmwood Avenue, Rochester, NY 14642, U.S.A
| | - P. Vincent Jenkins
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine, 601 Elmwood Avenue, Rochester, NY 14642, U.S.A
| | - Hironao Wakabayashi
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine, 601 Elmwood Avenue, Rochester, NY 14642, U.S.A
| | - Philip J. Fay
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine, 601 Elmwood Avenue, Rochester, NY 14642, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
46
|
Gale AJ, Radtke KP, Cunningham MA, Chamberlain D, Pellequer JL, Griffin JH. Intrinsic stability and functional properties of disulfide bond-stabilized coagulation factor VIIIa variants. J Thromb Haemost 2006; 4:1315-22. [PMID: 16706977 DOI: 10.1111/j.1538-7836.2006.01951.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND The utility of purified coagulation factor (F)VIII for treatment of hemophilia A is limited in part by its instability following activation by thrombin, which is caused by spontaneous dissociation of the A2 domain from the activated FVIII (FVIIIa) heterotrimer. To prevent this A2 domain dissociation in FVIIIa, we previously engineered a cysteine pair (C664-C1826) in recombinant FVIII that formed a disulfide bond cross-linking the A2 domain in the heavy chain to the A3 domain in the light chain. This engineered disulfide bond resulted in a more stable FVIIIa. AIMS Here, we characterize the functional parameters of C664-C1828 FVIII and of a new disulfide bond-stabilized FVIII (C662-C1828 FVIII). METHODS In order to assess whether these FVIII variants might be good candidates for a new therapeutic agent to treat hemophilia A, we investigated a variety of functional parameters that might affect the in vivo properties of the variants, including half-life of disulfide bond-stabilized FVIII and FVIIIa and the potency of these FVIIIa molecules in the FXase complex. RESULTS Both disulfide bond-stabilized variants had improved affinity for von Willebrand factor (VWF). In studies of FX activation by purified FIXa and FVIIIa, C662-C1828 FVIIIa had normal activity while C664-C1826 FVIIIa had reduced activity. Both C664-C1826 FVIIIa and C662-C1828 FVIIIa were inactivated by activated protein C (APC) but the rates of inactivation were different. CONCLUSION Overall, the specific location of the disulfide bridge between the A2 and A3 domains appears to affect functional properties of FVIIIa. In summary, introduction of engineered interdomain disulfides results in FVIIIa variants that resist spontaneous loss of activity while retaining susceptibility to APC proteolytic inactivation and maintaining VWF binding.
Collapse
Affiliation(s)
- A J Gale
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | | | | | | | |
Collapse
|
47
|
Ansong C, Miles SM, Fay PJ. Epitope mapping factor VIII A2 domain by affinity-directed mass spectrometry: residues 497-510 and 584-593 comprise a discontinuous epitope for the monoclonal antibody R8B12. J Thromb Haemost 2006; 4:842-7. [PMID: 16634755 DOI: 10.1111/j.1538-7836.2006.01831.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The murine monoclonal antibody R8B12 recognizes the C-terminal region (residues 563-740) of the A2 subunit of factor VIIIa [J Biol Chem 266: 1991; p. 20139], as judged by Western blotting. However, the location of the epitope within this region is not known. In the present study, we used affinity-directed mass spectrometry to map the epitope. A2 subunit was digested with trypsin or chymotrypsin and then subjected to immunoprecipitation (IP) using R8B12 IgG. Masses of the affinity-selected peptides were determined directly from the immune complexes by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). Proteolysis of A2 with the two proteases generated a pre-IP peptide fingerprint that covered approximately 70% of the A2 domain sequence. Analysis of the post-IP tryptic peptide fingerprint showed two masses, 1309 and 1653 Da representing residues 584-593 and 497-510, respectively, determined from a theoretical database search and confirmed by direct sequencing. Results using a chymotryptic digest yielded a single, weakly reactive fragment consistent with residues 577-586, suggesting the importance of residues Ser584-Tyr586 in forming the epitope. A synthetic peptide to residues 584-593 was immunoprecipitated by the IgG and blocked R8B12-directed blotting to A2 subunit. The 497-510 and 584-593 segments were observed to be adjacent and surface exposed in the A2 domain model, and together with the above results suggest that A2 domain residues 497-510 and 584-593 represent a discontinuous epitope for R8B12. Furthermore, based upon blotting specificity, we speculate that residues 584-593 make a substantially greater contribution to the binding energy for this interaction.
Collapse
Affiliation(s)
- C Ansong
- Department of Biochemistry and Biophysics, University of Rochester, School of Medicine, Rochester, NY 14642, USA
| | | | | |
Collapse
|
48
|
Abstract
Factor VIII, a non-covalent heterodimer comprised of a heavy chain (A1-A2-B domains) and light chain (A3-C1-C2 domains), circulates as an inactive procofactor in complex with von Willebrand factor. Metal ions are critical to the integrity of factor VIII, with Cu and Ca ions stabilizing the heterodimer and generating the active conformation, respectively. Activation of factor VIII catalyzed by thrombin appears dependent upon interactions with both anion-binding exosites I and II, and converts the heterodimer to the active cofactor, factor VIIIa. This protein, comprised of A1, A2, and A3-C1-C2 subunits, is labile due to weak affinity of the A2 subunit. Association of factor VIIIa with factor IXa to form the intrinsic factor Xase complex is membrane-dependent and involves multiple inter-protein contacts that remain poorly characterized. This complex catalyzes the conversion of factor X to factor Xa, a reaction that is essential for the propagation phase of coagulation. The role of factor VIIIa in this complex is to increase the catalytic efficiency for factor Xa generation by several orders of magnitude. Mechanisms for the down-regulation of factor Xase focus upon inactivation of the cofactor and include dissociation of the A2 subunit as well as activated protein C-catalyzed proteolysis.
Collapse
Affiliation(s)
- Philip J Fay
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine, New York 14642, USA.
| |
Collapse
|
49
|
Ori JI, Tanaka I, Kubota Y, Shima M, Matsumoto T, Yoshida K, Sakurai Y, Yoshioka A. Highly Conserved Antigenic Structure of the Factor VIII C2 Domain in Some Mammals. Int J Hematol 2005; 82:351-6. [PMID: 16298830 DOI: 10.1532/ijh97.05081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To elucidate differences in the antigenic structure of factor VIII (FVIII) among mammals, we evaluated cross-reactivities of well-defined antihuman FVIII antibodies with canine and other mammalian FVIII proteins. Monoclonal antibodies against human FVIII recognizing the A1 domain in the heavy chain and the A3 domain in the light chain showed 2.7% and 0% cross-reactivities, respectively, with canine FVIII. The cross-reactivities of 2 alloantibodies and a monoclonal antibody that recognized the A2 domain in the heavy chain were 10%, 38%, and 0%, respectively. On the other hand, 2 kinds of alloantibodies and a monoclonal antibody recognizing the C2 domain in the light chain showed 160%, 390%, and 130% cross-reactivity, respectively, with canine FVIII. The anti-C2 monoclonal antibody (NMC-VIII/5) showed a type 2 inactivating property when tested with canine and human plasma. Moreover, cross-reactivities of NMC-VIII/5 with simian and feline FVIII were 54.5% and 82.8%, respectively, while the cross-reactivities of the anti-A2 monoclonal antibody (JR8) with simian and feline FVIII were 1.3% and 0%, respectively. These findings suggest that the antigenic structure of the C2 epitope has remained relatively conserved throughout mammalian evolution in contrast to the A2 epitope and that a canine model of hemophilia A is useful for FVIII inhibitor experiments.
Collapse
|
50
|
Boekhorst J, Verbruggen B, Lavergne JM, Costa JM, Schoormans SCM, Brons PPT, van Kraaij MGJ, Nováková IRO, van Heerde WL. Thirteen novel mutations in the factor VIII gene in the Nijmegen haemophilia A patient population. Br J Haematol 2005; 131:109-17. [PMID: 16173970 DOI: 10.1111/j.1365-2141.2005.05737.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The development of neutralising antibodies to factor VIII (FVIII) is a major complication of haemophilia A (HA) therapy. We aimed to construct an individual risk profile for the development of inhibitors in HA and started by screening for the causative mutation in our HA patient population. A total of 109 patients and 28 carriers were screened. The analysis revealed 38 different mutations in the FVIII gene, of which 13 have not been described on the Haemophilia A Mutation, Search, Test and Resource Site (HAMSTeRS). Twenty-five mutations have been reported previously and all except two had a similar phenotype to what has been described. Three novel mutations were associated with severe HA: one non-missense mutation, a small insertion in the A2 domain, and two missense mutations, a H256R mutation in the A1 domain and a L2025P substitution in the C1 domain. One novel mutation, Y156C, was associated with moderate HA. Nine novel mutations caused mild HA. The P130R, D167E and V278M mutations are located in the A1 domain. R439C, Y511H, A544G and Q645H in the A2 domain, L1758F in the A3 domain and a S2157R mutation in the C1 domain. In conclusion, the genotypic profile of our HA population was not different from others described and is suitable to study inhibitor formation.
Collapse
Affiliation(s)
- Jorien Boekhorst
- Department of Haematology, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|