1
|
Li Z, Liu X, Li Y, Wang W, Wang N, Xiao F, Gao H, Guo H, Li H, Wang S. Chicken C/EBPζ gene: Expression profiles, association analysis, and identification of functional variants for abdominal fat. Domest Anim Endocrinol 2021; 76:106631. [PMID: 33979717 DOI: 10.1016/j.domaniend.2021.106631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 04/06/2021] [Accepted: 04/06/2021] [Indexed: 10/21/2022]
Abstract
CCAAT enhancer binding protein ζ (C/EBPζ) plays an important role in adipose proliferation and differentiation in humans. However, very little is known about the effect of C/EBPζ on the growth and development of adipose tissues in domesticated animals. The present study attempted to investigate the mRNA expression profiles of chicken C/EBPζ in a variety of tissues; analyze the association of its variants with abdominal fat; and identify the functional variants for abdominal fat. The tissue expression profiles revealed that C/EBPζ was highly expressed in 19 tissues obtained from broilers. The expression level of C/EBPζ in fat broilers was significantly lower than that in lean broilers in the duodenum, ileum, cecum, kidney, pectoral muscle, and liver (P < 0.05). Among 170 polymorphic loci of C/EBPζ, 9 single nucleotide polymorphisms (SNPs) demonstrated a significant association with chicken abdominal fat traits (P < 0.05) as well as significant discrepancies in their allelic frequencies between fat and lean birds. Particularly, only C/EBPζ g.7085A>C exhibited significant correlation with abdominal fat traits (P < 0.00015) using the Bonferroni method. The results revealed that, in preadipocyte immortalized cells (ICPI), the luciferase activity of the A allele of g.7085A>C locus was remarkably stronger than that of the C allele (P < 0.05). In silico analysis showed that g.7085A>C locus was located in the binding region of the transcription factor SOX5, which possesses the ability to transform C/EBPζ transcription efficiency through binding with SOX5. In summary, the data obtained from this study suggested that C/EBPζ is a potential candidate gene responsible for abdominal fat deposition in chicken and that g.7085A>C is a functional SNP that can be promisingly leveraged for marker assisted selection (MAS) in future chicken breeding programs.
Collapse
Affiliation(s)
- Z Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - X Liu
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Y Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - W Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - N Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - F Xiao
- Fujian Sunnzer Biotechnology Development Co., Ltd, 354100, Guangze, Fujian Province, China
| | - H Gao
- Fujian Sunnzer Biotechnology Development Co., Ltd, 354100, Guangze, Fujian Province, China
| | - H Guo
- Fujian Sunnzer Biotechnology Development Co., Ltd, 354100, Guangze, Fujian Province, China
| | - H Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - S Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
2
|
Wang J, Hu B, Zhao Z, Zhang H, Zhang H, Zhao Z, Ma X, Shen B, Sun B, Huang X, Hou J, Xia Q. Intracellular XBP1-IL-24 axis dismantles cytotoxic unfolded protein response in the liver. Cell Death Dis 2020; 11:17. [PMID: 31907348 PMCID: PMC6944701 DOI: 10.1038/s41419-019-2209-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/19/2019] [Accepted: 10/22/2019] [Indexed: 12/17/2022]
Abstract
Endoplasmic reticulum (ER) stress-associated cell death is prevalent in various liver diseases. However, the determinant mechanism how hepatocytes survive unresolved stress was still unclear. Interleukin-24 (IL-24) was previously found to promote ER stress-mediated cell death, and yet its expression and function in the liver remained elusive. Here we identified an antiapoptotic role of IL-24, which transiently accumulated within ER-stressed hepatocytes in a X-box binding protein 1 (XBP1)-dependent manner. Disruption of IL-24 increased cell death in the CCL4- or APAP-challenged mouse liver or Tm-treated hepatocytes. In contrast, pharmaceutical blockade of eukaryotic initiation factor 2α (eIF2α) or genetical ablation of C/EBP homologous protein (CHOP) restored hepatocyte function in the absence of IL-24. In a clinical setting, patients with acute liver failure manifested a profound decrease of hepatic IL-24 expression, which was associated with disease progression. In conclusion, intrinsic hepatocyte IL-24 maintains ER homeostasis by restricting the eIF2α-CHOP pathway-mediated stress signal, which might be exploited as a bio-index for prognosis or therapeutic intervention in patients with liver injury.
Collapse
Affiliation(s)
- Jianye Wang
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Bian Hu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zhicong Zhao
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Haiyan Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - He Zhang
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Department of Surgery, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Zhenjun Zhao
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xiong Ma
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, and Shanghai Institute of Digestive Disease, Shanghai, China
| | - Bin Shen
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Beicheng Sun
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Xingxu Huang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| | - Jiajie Hou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.
| |
Collapse
|
3
|
Liu Z, Liu W, Huang Y, Guo J, Zhao R, Yang X. Lipopolysaccharide significantly influences the hepatic triglyceride metabolism in growing pigs. Lipids Health Dis 2015; 14:64. [PMID: 26121977 PMCID: PMC4495945 DOI: 10.1186/s12944-015-0064-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 06/22/2015] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND In the practical commercial pig farms, inflammation is a perennial problem, yet most of studies on inflammation are focused on immune response. Actually, inflammation can induce body metabolism disorder which will finally influence animals' growth. In this study, we investigated the effect of acute inflammation on the triglyceride (TG) metabolism in the liver of growing pigs and the possible underlying mechanisms. METHODS Twelve male growing pigs were randomly divided into two groups, a control group (received saline) and a LPS group (intramuscular injected with 15 μg/kg LPS). Six hours after LPS injection, the pigs were euthanized and sampled. Biochemical indexes, inflammation factors, lipid metabolism related parameters and mitochondrial function were evaluated. The relationship between glucocorticoid receptor (GR) and the key enzymes of de novo lipogenesis were also investigated by chromatin immunoprecipitation assay (ChIP). RESULTS LPS induced a serious inflammation in the liver of growing pigs proved by liver morphologic changes, the up-regulated plasma cortisol, tumor necrosis factor-α (TNF-α) content and gene expression of inflammation related genes in liver. For de novo lipogenesis, LPS significantly decreased the gene expression of fatty acid synthase (FAS), Acetyl-CoA carboxylase-1 (ACC-1) and Stearoyl-CoA desaturase-1 (SCD-1), and the protein expression of ACC-1 and SCD-1. For lipolysis, only the gene expression of adipose triglyceride lipase (ATGL) was decreased. LPS did nothing to the gene expression of hormone-sensitive lipase (HSL) and the lipolytic enzymes activities. For β-oxidation, LPS significantly increased the protein expression of CPT-1α, but the gene expression of mitochondrial DNA-encoded genes and the activities of mitochondrial complex IV and V demonstrated no obviously changes. Furthermore, ChIP results showed that LPS significantly decreased the level of GR binding to ACC-1 promoter. CONCLUSION LPS infection has a profound impact on hepatic TG metabolism. This impact is mainly demonstrated by the significantly deceased de novo lipogenesis, and GR may involve in its regulation.
Collapse
Affiliation(s)
- Zhiqing Liu
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| | - Weifeng Liu
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| | - Yanping Huang
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| | - Jun Guo
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| | - Ruqian Zhao
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| | - Xiaojing Yang
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
4
|
Mueller K, Sunami Y, Stuetzle M, Guldiken N, Kucukoglu O, Mueller S, Kulaksiz H, Schwarz P, Strnad P. CHOP-mediated hepcidin suppression modulates hepatic iron load. J Pathol 2013; 231:532-42. [PMID: 23749468 DOI: 10.1002/path.4221] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 05/16/2013] [Accepted: 06/05/2013] [Indexed: 12/22/2022]
Abstract
The liver is the central regulator of iron metabolism and accordingly, chronic liver diseases often lead to systemic iron overload due to diminished expression of the iron-regulatory hormone hepcidin. To study the largely unknown regulation of iron metabolism in the context of hepatic disease, we used two established models of chronic liver injury, ie repeated carbon tetrachloride (CCl(4)) or thioacetamide (TAA) injections. To determine the impact of CCAAT/enhancer-binding protein (C/EBP)-homologous protein (CHOP) on hepcidin production, the effect of a single TAA injection was determined in wild-type and CHOP knockout mice. Furthermore, CHOP and hepcidin expression was assessed in control subjects and patients with alcoholic liver disease. Both chronic injury models developed a distinct iron overload in macrophages. TAA-, but not CCl(4) - injected mice displayed additional iron accumulation in hepatocytes, resulting in a significant hepatic and systemic iron overload which was due to suppressed hepcidin levels. C/EBPα signalling, a known hepcidin inducer, was markedly inhibited in TAA mice, due to lower C/EBPα levels and overexpression of CHOP, a C/EBPα inhibitor. A single TAA injection resulted in a long-lasting (> 6 days) suppression of hepcidin levels and CHOP knockouts (compared to wild-types) displayed significantly attenuated hepcidin down-regulation in response to acute TAA administration. CHOP mRNA levels increased 5-fold in alcoholic liver disease patients versus controls (p < 0.005) and negatively correlated with hepcidin expression. Our results establish CHOP as an important regulator of hepatic hepcidin expression in chronic liver disease. The differences in iron metabolism between the two widely used fibrosis models likely reflect the differential regulation of hepcidin expression in human liver disease.
Collapse
Affiliation(s)
- Katrin Mueller
- Department of Internal Medicine I, University Hospital Ulm, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
CHOP is a critical regulator of acetaminophen-induced hepatotoxicity. J Hepatol 2013; 59:495-503. [PMID: 23665281 DOI: 10.1016/j.jhep.2013.04.024] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Revised: 04/16/2013] [Accepted: 04/19/2013] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS The liver is a major site of drug metabolism and elimination and as such is susceptible to drug toxicity. Drug induced liver injury is a leading cause of acute liver injury, of which acetaminophen (APAP) is the most frequent causative agent. APAP toxicity is initiated by its toxic metabolite NAPQI. However, downstream mechanisms underlying APAP induced cell death are still unclear. Endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) have recently emerged as major regulators of metabolic homeostasis. UPR regulation of the transcription repressor CHOP promotes cell death. We analyzed the role of UPR and CHOP in mediating APAP hepatotoxicity. METHODS A toxic dose of APAP was orally administered to wild type (wt) and CHOP knockout (KO) mice and damage mechanisms were assessed. RESULTS CHOP KO mice were protected from APAP induced damage and exhibited decreased liver necrosis and increased survival. APAP metabolism in CHOP KO mice was undisturbed and glutathione was depleted at similar kinetics to wt. ER stress and UPR activation were overtly seen 12h following APAP administration, a time that coincided with strong upregulation of CHOP. Remarkably, CHOP KO but not wt mice exhibited hepatocyte proliferation at sites of necrosis. In vitro, large T immortalized CHOP KO hepatocytes were protected from APAP toxicity in comparison to wt control cells. CONCLUSIONS CHOP upregulation during APAP induced liver injury compromises hepatocyte survival in various mechanisms, in part by curtailing the regeneration phase following liver damage. Thus, CHOP plays a pro-damage role in response to APAP intoxication.
Collapse
|
6
|
Baban B, Liu JY, Mozaffari MS. Endoplasmic reticulum stress response and inflammatory cytokines in type 2 diabetic nephropathy: Role of indoleamine 2,3-dioxygenase and programmed death-1. Exp Mol Pathol 2013; 94:343-51. [DOI: 10.1016/j.yexmp.2012.11.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 11/27/2012] [Accepted: 11/27/2012] [Indexed: 12/29/2022]
|
7
|
Baban B, Liu JY, Mozaffari MS. Pressure overload regulates expression of cytokines, γH2AX, and growth arrest- and DNA-damage inducible protein 153 via glycogen synthase kinase-3β in ischemic-reperfused hearts. Hypertension 2012; 61:95-104. [PMID: 23108649 DOI: 10.1161/hypertensionaha.111.00028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The growth arrest- and DNA-damage inducible protein 153 (GADD153) regulates both apoptosis and inflammatory response. Importantly, glycogen synthase kinase-3β (GSK-3β) may provide a mechanistic link for cellular expression of GADD153, inflammatory response, and cell death. We previously showed that pressure overload exacerbates myocardial ischemia reperfusion injury associated with significant reduction in phosphorylated (inactive) GSK-3β. This raises the possibility that pressure overload, through a GSK-3β-dependent mechanism, increases GADD153 expression, thereby upregulating inflammatory cytokine production and contributing to worsening of myocardial ischemia reperfusion injury. Accordingly, Langendorff-perfused rat hearts were subjected to global ischemia reperfusion protocol in the absence or presence of the GSK-3β inhibitor, lithium chloride (1 mmol/L), with perfusion pressure set at 80 or 160 cmH(2)O; normoxic hearts served as controls. Compared with normoxia, an ischemia reperfusion insult increased expressions of proinflammatory cytokines, γH2AX, and GADD153 in association with increased cell death. In the ischemic-reperfused hearts, pressure overload did the following: (1) reduced interleukin-10 but increased interleukin-17 (cardiomyocytes), without affecting interleukin-23; (2) increased expressions of γH2AX and GADD153; (3) decreased 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolylcarbocyanine iodide (JC-1) aggregates but increased JC-1 monomers (suggestive of reduced mitochondrial membrane potential, ψ(m)); and (4) increased annexin V immunostaining as well as apoptotic and necrotic cell death. Treatment with lithium chloride caused a robust increase in interleukin-10, preserved ψ(m), and markedly decreased all other parameters with the effect being most prominent for hearts perfused at the high pressure. In conclusion, pressure overload, via a GSK-3β-dependent mechanism, exacerbates cell death in the isolated ischemic-reperfused heart involving regulation of inflammatory response, DNA injury, and GADD153 expression.
Collapse
Affiliation(s)
- Babak Baban
- Department of Oral Biology, College of Dental Medicine, Georgia Health Sciences University, Augusta, GA 30912, USA.
| | | | | |
Collapse
|
8
|
The transcription factor C/EBP delta has anti-apoptotic and anti-inflammatory roles in pancreatic beta cells. PLoS One 2012; 7:e31062. [PMID: 22347430 PMCID: PMC3275575 DOI: 10.1371/journal.pone.0031062] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 01/01/2012] [Indexed: 12/31/2022] Open
Abstract
In the course of Type 1 diabetes pro-inflammatory cytokines (e.g., IL-1β, IFN-γ and TNF-α) produced by islet-infiltrating immune cells modify expression of key gene networks in β-cells, leading to local inflammation and β-cell apoptosis. Most known cytokine-induced transcription factors have pro-apoptotic effects, and little is known regarding “protective” transcription factors. To this end, we presently evaluated the role of the transcription factor CCAAT/enhancer binding protein delta (C/EBPδ) on β-cell apoptosis and production of inflammatory mediators in the rat insulinoma INS-1E cells, in purified primary rat β-cells and in human islets. C/EBPδ is expressed and up-regulated in response to the cytokines IL-1β and IFN-γ in rat β-cells and human islets. Small interfering RNA-mediated C/EBPδ silencing exacerbated IL-1β+IFN-γ-induced caspase 9 and 3 cleavage and apoptosis in these cells. C/EBPδ deficiency increased the up-regulation of the transcription factor CHOP in response to cytokines, enhancing expression of the pro-apoptotic Bcl-2 family member BIM. Interfering with C/EBPδ and CHOP or C/EBPδ and BIM in double knockdown approaches abrogated the exacerbating effects of C/EBPδ deficiency on cytokine-induced β-cell apoptosis, while C/EBPδ overexpression inhibited BIM expression and partially protected β-cells against IL-1β+IFN-γ-induced apoptosis. Furthermore, C/EBPδ silencing boosted cytokine-induced production of the chemokines CXCL1, 9, 10 and CCL20 in β-cells by hampering IRF-1 up-regulation and increasing STAT1 activation in response to cytokines. These observations identify a novel function of C/EBPδ as a modulatory transcription factor that inhibits the pro-apoptotic and pro-inflammatory gene networks activated by cytokines in pancreatic β-cells.
Collapse
|
9
|
Chalisova NI, Kontsevaya EA, Voytsehovskaya MA, Komashnya AV. The regulatory effects of coded amino acids on basic cellular processes in young and old animals. ADVANCES IN GERONTOLOGY 2012. [DOI: 10.1134/s2079057012010067] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
10
|
Wang J, Liu X, Li T, Liu C, Zhao Y. Increased hepatic Igf2 gene expression involves C/EBPβ in TCDD-induced teratogenesis in rats. Reprod Toxicol 2011; 32:313-21. [DOI: 10.1016/j.reprotox.2011.06.117] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 05/24/2011] [Accepted: 06/14/2011] [Indexed: 10/18/2022]
|
11
|
Luan X, Ito Y, Zhang Y, Diekwisch TGH. Characterization of the mouse CP27 promoter and NF-Y mediated gene regulation. Gene 2010; 460:8-19. [PMID: 20388536 DOI: 10.1016/j.gene.2010.03.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Revised: 03/26/2010] [Accepted: 03/27/2010] [Indexed: 01/02/2023]
Abstract
The cp27 gene is a highly conserved and unique gene with important roles related to craniofacial organogenesis. The present study is a first analysis of the CP27 promoter and its regulation. Here, we have cloned the promoter of the mouse cp27 gene, examined its transcriptional activity, and identified transcription factor binding sites in the proximal promoter region. Two major transcription start sites were mapped adjacent to exon 1. Promoter function analysis of the 5' flanking region by progressive 5' deletion mutations localized transcription repression elements between -1993bp and -969bp and several positive elements between -968bp and the preferred transcription start site. EMSA and functional studies indicated two function-cooperative CCAAT boxes and identified the NF-Y transcription factor as the CCAAT activator controlling transactivation of the CP27 promoter. In addition, this study demonstrated that for its effective binding and function, NF-Y required not only the minimal DNA segment length identified by deletion studies, but also a defined nucleotide sequence in the distal 3' flanking region of the CP27 proximal promoter CCAAT box. These results provide a basis for our understanding of the specific regulation of the cp27 gene in the NF-Y-mediated gene transcription network.
Collapse
Affiliation(s)
- Xianghong Luan
- Brodie Laboratory for Craniofacial Genetics, University of Illinois at Chicago, 801 South Paulina Street, Chicago, IL 60612, USA
| | | | | | | |
Collapse
|
12
|
Chaveroux C, Lambert-Langlais S, Cherasse Y, Averous J, Parry L, Carraro V, Jousse C, Maurin AC, Bruhat A, Fafournoux P. Molecular mechanisms involved in the adaptation to amino acid limitation in mammals. Biochimie 2010; 92:736-45. [PMID: 20188139 DOI: 10.1016/j.biochi.2010.02.020] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Accepted: 02/16/2010] [Indexed: 12/15/2022]
Abstract
In mammals, metabolic adaptations are required to cope with episodes of protein deprivation and malnutrition. Consequently, mammals have to adjust physiological functions involved in the adaptation to amino acid availability. Part of this regulation involves the modulation of the expression of numerous genes. In particular, it has been shown that amino acids by themselves can modify the expression of target genes. This review describes the regulation of amino acids homeostasis and the their role as signal molecules. The recent advances in the understanding of the molecular mechanisms involved in the control of mammalian gene expression in response to amino acid limitation will be described.
Collapse
Affiliation(s)
- Cédric Chaveroux
- Unité de Nutrition Humaine, UMR 1019, INRA de Theix, 63122 Saint Genès Champanelle, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Bento C, Andersson MK, Aman P. DDIT3/CHOP and the sarcoma fusion oncoprotein FUS-DDIT3/TLS-CHOP bind cyclin-dependent kinase 2. BMC Cell Biol 2009; 10:89. [PMID: 20017906 PMCID: PMC2804592 DOI: 10.1186/1471-2121-10-89] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Accepted: 12/17/2009] [Indexed: 11/10/2022] Open
Abstract
Background The DDIT3 gene encodes a transcription factor belonging to the CCAAT/enhancer binding protein (C/EBP) family. It is normally expressed at very low levels but is activated by cellular stress conditions and induces G1 arrest and, in some cell types, apoptosis. DDIT3 is found as a part of the fusion oncogene FUS-DDIT3 that is causal for the development of myxoid/round-cell liposarcomas (MLS/RCLS). Results In the present study, we searched for putative interaction partners of DDIT3 and the oncogenic FUS-DDIT3 among G1 cyclins and cyclin-dependent kinases. We found that FUS-DDIT3 and the normal DDIT3 bind CDK2. In addition, CDK2 showed an increased affinity for cytoskeletal proteins in cells expressing FUS-DDIT3 and DDIT3. Conclusions We conclude that DDIT3 binds CDK2 and that many of the observed biological effects of DDIT3 may involve interaction with CDK2.
Collapse
Affiliation(s)
- Christoffer Bento
- Lundberg Laboratory for Cancer Research, Department of Pathology, University of Gothenburg, Gothenburg, Sweden.
| | | | | |
Collapse
|
14
|
Gao H, Schwartz RC. C/EBPzeta (CHOP/Gadd153) is a negative regulator of LPS-induced IL-6 expression in B cells. Mol Immunol 2009; 47:390-7. [PMID: 19782405 DOI: 10.1016/j.molimm.2009.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Accepted: 09/01/2009] [Indexed: 10/20/2022]
Abstract
C/EBPzeta was originally identified as a gene induced upon DNA damage and growth arrest. It has been shown to be involved in the cellular response to endoplasmic reticulum stress. Because of sequence divergence from other C/EBP family members in its DNA-binding domain and its consequent inability to bind the C/EBP consensus-binding motif, C/EBPzeta can act as a dominant negative inhibitor of other C/EBPs. C/EBP transactivators are essential to the expression of many proinflammatory cytokines and acute phase proteins, but a role for C/EBPzeta in regulating their expression has not been described. We found that expression of C/EBPzeta is induced in response to LPS treatment of B cells at both the mRNA and protein levels. Correlating with the highest levels of C/EBPzeta expression at 48 h after LPS treatment, there is an increased association of C/EBPzeta with C/EBPbeta, and both the abundance of C/EBP DNA-binding species and IL-6 expression are downregulated. Furthermore, ectopic expression of C/EBPzeta inhibited C/EBPbeta-dependent IL-6 expression from both the endogenous IL-6 gene and an IL-6 promoter-reporter. These results suggest that C/EBPzeta functions as negative regulator of IL-6 expression in B cells and that it contributes to the transitory expression of IL-6 that is observed after LPS treatment.
Collapse
Affiliation(s)
- Hongwei Gao
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, United States
| | | |
Collapse
|
15
|
Human TRB3 is upregulated in stressed cells by the induction of translationally efficient mRNA containing a truncated 5′-UTR. Gene 2009; 444:24-32. [DOI: 10.1016/j.gene.2009.06.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Revised: 05/27/2009] [Accepted: 06/02/2009] [Indexed: 11/19/2022]
|
16
|
Bruhat A, Chérasse Y, Chaveroux C, Maurin AC, Jousse C, Fafournoux P. Amino acids as regulators of gene expression in mammals: molecular mechanisms. Biofactors 2009; 35:249-57. [PMID: 19415732 DOI: 10.1002/biof.40] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In mammals, the impact of nutrients on gene expression has become an important area of research. Because amino acids have multiple and important functions, their homeostasis has to be finely maintained. However, amino acidemia can be affected in some nutritional conditions and by various forms of stress. Consequently, mammals have to adjust physiological functions involved in the adaptation to amino acid availability. Part of this regulation involves the modulation of numerous gene expression. It has been shown that amino acids by themselves can modify the expression of target genes. This review focuses on the recent advances in the understanding of the mechanisms involved in the control of mammalian gene expression in response to amino acid limitation.
Collapse
Affiliation(s)
- Alain Bruhat
- UMR 1019, Unité de Nutrition Humaine, INRA de Theix, 63122 Saint Genès Champanelle, France.
| | | | | | | | | | | |
Collapse
|
17
|
Walrand S, Guillet C, Salles J, Tardif N, Maurin AC, Fafournoux P, Cano N, Boirie Y. Acides aminés et signalisation cellulaire. NUTR CLIN METAB 2008. [DOI: 10.1016/j.nupar.2008.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Deprivation of protein or amino acid induces C/EBPbeta synthesis and binding to amino acid response elements, but its action is not an absolute requirement for enhanced transcription. Biochem J 2008; 410:473-84. [PMID: 18052938 DOI: 10.1042/bj20071252] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A nutrient stress signalling pathway is triggered in response to protein or amino acid deprivation, namely the AAR (amino acid response), and previous studies have shown that C/EBPbeta (CCAAT/enhancer-binding protein beta) expression is up-regulated following activation of the AAR. DNA-binding studies, both in vitro and in vivo, have revealed increased C/EBPbeta association with AARE (AAR element) sequences in AAR target genes, but its role is still unresolved. The present results show that in HepG2 human hepatoma cells, the total amount of C/EBPbeta protein, both the activating [LAP* and LAP (liver-enriched activating protein)] and inhibitory [LIP (liver-enriched inhibitory)] isoforms, was increased in histidine-deprived cells. Immunoblotting of subcellular fractions and immunostaining revealed that most of the C/EBPbeta was located in the nucleus. Consistent with these observations, amino acid limitation caused an increase in C/EBPbeta DNA-binding activity in nuclear extracts and chromatin immunoprecipitation revealed an increase in C/EBPbeta binding to the AARE region in vivo, but at a time when transcription from the target gene was declining. A constant fraction of the basal and increased C/EBPbeta protein was phosphorylated on Thr(235) and the phospho-C/EBPbeta did bind to an AARE. Induction of AARE-enhanced transcription was slightly greater in C/EBPbeta-deficient MEFs (mouse embryonic fibroblasts) or C/EBPbeta siRNA (small interfering RNA)-treated HepG2 cells compared with the corresponding control cells. Transient expression of LAP*, LAP or LIP in C/EBPbeta-deficient fibroblasts caused suppression of increased transcription from an AARE-driven reporter gene. Collectively, the results demonstrate that C/EBPbeta is not required for transcriptional activation by the AAR pathway but, when present, acts in concert with ATF3 (activating transcription factor 3) to suppress transcription during the latter stages of the response.
Collapse
|
19
|
Chérasse Y, Maurin AC, Chaveroux C, Jousse C, Carraro V, Parry L, Deval C, Chambon C, Fafournoux P, Bruhat A. The p300/CBP-associated factor (PCAF) is a cofactor of ATF4 for amino acid-regulated transcription of CHOP. Nucleic Acids Res 2007; 35:5954-65. [PMID: 17726049 PMCID: PMC2034469 DOI: 10.1093/nar/gkm642] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
When an essential amino acid is limited, a signaling cascade is triggered that leads to increased translation of the ‘master regulator’, activating transcription factor 4 (ATF4), and resulting in the induction of specific target genes. Binding of ATF4 to the amino acid response element (AARE) is an essential step in the transcriptional activation of CHOP (a CCAAT/enhancer-binding protein-related gene) by amino acid deprivation. We set out to identify proteins that interact with ATF4 and that play a role in the transcriptional activation of CHOP. Using a tandem affinity purification (TAP) tag approach, we identified p300/CBP-associated factor (PCAF) as a novel interaction partner of ATF4 in leucine-starved cells. We show that the N-terminal region of ATF4 is required for a direct interaction with PCAF and demonstrate that PCAF is involved in the full transcriptional response of CHOP by amino acid starvation. Chromatin immunoprecipitation analysis revealed that PCAF is engaged on the CHOP AARE in response to amino acid starvation and that ATF4 is essential for its recruitment. We also show that PCAF stimulates ATF4-driven transcription via its histone acetyltransferase domain. Thus PCAF acts as a coactivator of ATF4 and is involved in the enhancement of CHOP transcription following amino acid starvation.
Collapse
Affiliation(s)
- Yoan Chérasse
- UMR 1019 of Human Nutrition and Proteomic core facility, INRA de Theix, 63122 Saint Genès Champanelle, France
| | - Anne-Catherine Maurin
- UMR 1019 of Human Nutrition and Proteomic core facility, INRA de Theix, 63122 Saint Genès Champanelle, France
| | - Cédric Chaveroux
- UMR 1019 of Human Nutrition and Proteomic core facility, INRA de Theix, 63122 Saint Genès Champanelle, France
| | - Céline Jousse
- UMR 1019 of Human Nutrition and Proteomic core facility, INRA de Theix, 63122 Saint Genès Champanelle, France
| | - Valérie Carraro
- UMR 1019 of Human Nutrition and Proteomic core facility, INRA de Theix, 63122 Saint Genès Champanelle, France
| | - Laurent Parry
- UMR 1019 of Human Nutrition and Proteomic core facility, INRA de Theix, 63122 Saint Genès Champanelle, France
| | - Christiane Deval
- UMR 1019 of Human Nutrition and Proteomic core facility, INRA de Theix, 63122 Saint Genès Champanelle, France
| | - Christophe Chambon
- UMR 1019 of Human Nutrition and Proteomic core facility, INRA de Theix, 63122 Saint Genès Champanelle, France
| | - Pierre Fafournoux
- UMR 1019 of Human Nutrition and Proteomic core facility, INRA de Theix, 63122 Saint Genès Champanelle, France
| | - Alain Bruhat
- UMR 1019 of Human Nutrition and Proteomic core facility, INRA de Theix, 63122 Saint Genès Champanelle, France
- *To whom correspondence should be addressed. +33 4 73 62 41 50+33 4 73 62 47 55
| |
Collapse
|
20
|
Singh PP, Voleti B, Agrawal A. A novel RBP-J kappa-dependent switch from C/EBP beta to C/EBP zeta at the C/EBP binding site on the C-reactive protein promoter. THE JOURNAL OF IMMUNOLOGY 2007; 178:7302-9. [PMID: 17513780 PMCID: PMC3831876 DOI: 10.4049/jimmunol.178.11.7302] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Regulation of basal and cytokine (IL-6 and IL-1beta)-induced expression of C-reactive protein (CRP) in human hepatoma Hep3B cells occurs during transcription. A critical transcriptional regulatory element on the CRP promoter is a C/EBP binding site overlapping a NF-kappaB p50 binding site. In response to IL-6, C/EBPbeta and p50 occupy the C/EBP-p50 site on the CRP promoter. The aim of this study was to identify the transcription factors occupying the C/EBP-p50 site in the absence of C/EBPbeta. Accordingly, we treated Hep3B nuclear extract with a C/EBP-binding consensus oligonucleotide to generate an extract lacking active C/EBPbeta. Such treated nuclei contain only C/EBPzeta (also known as CHOP10 and GADD153) because the C/EBP-binding consensus oligonucleotide binds to all C/EBP family proteins except C/EBPzeta. EMSA using this extract revealed formation of a C/EBPzeta-containing complex at the C/EBP-p50 site on the CRP promoter. This complex also contained RBP-Jkappa, a transcription factor known to interact with kappaB sites. RBP-Jkappa was required for the formation of C/EBPzeta-containing complex. The RBP-Jkappa-dependent C/EBPzeta-containing complexes were formed at the C/EBP-p50 site on the CRP promoter in the nuclei of primary human hepatocytes also. In luciferase transactivation assays, overexpressed C/EBPzeta abolished both C/EBPbeta-induced and (IL-6 + IL-1beta)-induced CRP promoter-driven luciferase expression. These results indicate that under basal conditions, C/EBPzeta occupies the C/EBP site, an action that requires RBP-Jkappa. Under induced conditions, C/EBPzeta is replaced by C/EBPbeta and p50. We conclude that the switch between C/EBPbeta and C/EBPzeta participates in regulating CRP transcription. This process uses a novel phenomenon, that is, the incorporation of RBP-Jkappa into C/EBPzeta complexes solely to support the binding of C/EBPzeta to the C/EBP site.
Collapse
Affiliation(s)
| | | | - Alok Agrawal
- Address correspondence and reprint requests to: Dr. Alok Agrawal, Department of Pharmacology, P.O. Box 70577, East Tennessee State University, Johnson City, TN 37614.
| |
Collapse
|
21
|
Lawrence MC, McGlynn K, Naziruddin B, Levy MF, Cobb MH. Differential regulation of CHOP-10/GADD153 gene expression by MAPK signaling in pancreatic beta-cells. Proc Natl Acad Sci U S A 2007; 104:11518-25. [PMID: 17615236 PMCID: PMC1913886 DOI: 10.1073/pnas.0704618104] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
CHOP-10 (GADD153/DDIT-3) is a bZIP protein involved in differentiation and apoptosis. Its expression is induced in response to stresses such as nutrient deprivation, perturbation of the endoplasmic reticulum, redox imbalance, and UV exposure. Here we show that CHOP expression is induced in cultured pancreatic beta-cells maintained in a basal glucose concentration of 5.5 mM and repressed by stimulatory glucose (>or=11 mM). Both induction and repression of CHOP are dependent on the MAPKs ERK1 and ERK2. Two regulatory composite sites containing overlapping MafA response elements (MARE) and CAAT enhancer binding (CEB) elements regulate transcription in an ERK1/2-dependent manner. One site (MARE-CEB), from -320 to -300 bp in the promoter, represses transcription. The other site (CEB-MARE), from +2,628 to +2,641 bp in the first intron of the CHOP gene, activates it. MafA can influence transcription of both sites. The MARE-CEB is repressed by MafA, whereas the CEB-MARE site, which is homologous to the A2C1 component of the glucose-sensitive RIPE3b region of the insulin gene promoter, is activated by MafA. These results indicate that ERK1/2 have dual roles in regulating CHOP gene expression via both promoter and intronic regions, depending on environmental and metabolic stresses imposed on pancreatic beta-cells.
Collapse
Affiliation(s)
- Michael C. Lawrence
- *Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390; and
| | - Kathleen McGlynn
- *Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390; and
| | - Bashoo Naziruddin
- cGMP Islet Cell Processing Laboratory, Islet Cell Transplant Program, Baylor University Medical Center, Dallas, TX 75246
| | - Marlon F. Levy
- cGMP Islet Cell Processing Laboratory, Islet Cell Transplant Program, Baylor University Medical Center, Dallas, TX 75246
| | - Melanie H. Cobb
- *Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390; and
- To whom correspondence should be addressed at:
Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390-9041. E-mail:
| |
Collapse
|
22
|
Cudna RE, Dickson AJ. Engineering responsiveness to cell culture stresses: growth arrest and DNA damage gene 153 (GADD153) and the unfolded protein response (UPR) in NS0 myeloma cells. Biotechnol Bioeng 2006; 94:514-21. [PMID: 16572396 DOI: 10.1002/bit.20861] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The successful movement of a newly synthesized protein through the endoplasmic reticulum (ER) and associated membranous compartments is dependent on appropriate recognition by complex processing systems. Failure to perceive appropriately processed or modified intermediates in the pathway can initiate a series of cellular signaling events (ER stress or unfolded protein response, UPR) that can lead to cell apoptosis and loss of biomass in culture processes. We have shown that expression of growth arrest and DNA damage gene 153 (GADD153) is associated with recognition of damaged or mis-processed proteins within the secretory processes of CHO and NS0 myeloma cells. To directly characterize the roles of GADD153 in UPR-directed apoptosis, we have generated stable clones of NS0 myeloma cells with elevated (constitutive and inducible) and deleted GADD153 expression. Although GADD153 is a robust indicator of the onset of ER stress or the UPR, GADD153 expression alone is not sufficient to provoke NS0 myeloma apoptosis and it is not required for apoptosis to occur.
Collapse
Affiliation(s)
- Renata E Cudna
- The Faculty of Life Sciences, The Michael Smith Building, The University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom
| | | |
Collapse
|
23
|
Ejarque-Ortiz A, Medina MG, Tusell JM, Pérez-González AP, Serratosa J, Saura J. Upregulation of CCAAT/enhancer binding protein β in activated astrocytes and microglia. Glia 2006; 55:178-88. [PMID: 17078024 DOI: 10.1002/glia.20446] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The transcription factor CCAAT/enhancer binding protein beta (C/EBPbeta) regulates the expression of key genes in inflammation but little is known about the involvement of C/EBPbeta in glial activation. In this report, we have studied the patterns of astroglial and microglial C/EBPbeta expression in primary mouse cortical cultures. We show that both astrocytes and microglia express C/EBPbeta in untreated mixed glial cultures. C/EBPbeta is upregulated when glial activation is induced by lipopolysaccharide (LPS). The LPS-induced upregulation of glial C/EBPbeta is rapid (2 h at mRNA level, 4 h at protein level). It is elicited by low concentrations of LPS (almost maximal effect at 1 ng/mL) and it is reversed by the protein synthesis inhibitor cycloheximide. C/EBPbeta nuclear levels increase both in astrocytes and microglia after LPS treatment, and the response is more marked in microglia. The LPS-induced increase in microglial C/EBPbeta is prevented by coadministration of the MAP kinase inhibitors SB203580 (p38 inhibitor) + SP600125 (JNK inhibitor) or SB203580 + U0126 (ERK inhibitor). Systemic injection of LPS also increases brain nuclear levels of C/EBPbeta as shown by Western blot, and this increase is localized in microglial cells as shown by double immunofluorescence, in the first report to our knowledge of C/EBPbeta expression in activated glial cells in vivo. These findings support a role for C/EBPbeta in the activation of astrocytes and, particularly, microglia. Given the nature of the C/EBPbeta-regulated genes, we hypothesize that this factor participates in neurotoxic effects associated with glial activation. (c) 2006 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Aroa Ejarque-Ortiz
- Department of Pharmacology and Toxicology, IIBB-CSIC, IDIBAPS, E-08036 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
24
|
Humphrey BD, Stephensen CB, Calvert CC, Klasing KC. Glucose and cationic amino acid transporter expression in growing chickens (Gallus gallus domesticus). Comp Biochem Physiol A Mol Integr Physiol 2004; 138:515-25. [PMID: 15369841 DOI: 10.1016/j.cbpb.2004.06.016] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2004] [Revised: 06/23/2004] [Accepted: 06/23/2004] [Indexed: 11/25/2022]
Abstract
Tissue glucose transporter (GLUT1-3) and cationic amino acid transporter (CAT1-3) mRNA expression was determined in growing broiler chicks posthatch. In two experiments, tissues were either collected on days 1, 3 and 7 or days 1 and 14 posthatch. Heart and liver were the only tissues expressing a GLUT isoform on day 1. All tissues expressed a GLUT isoform on day 7 except for the thymus. Most tissues expressing a CAT isoform on day 1 decreased mRNA levels through day 7 (P<0.05), except for bursa CAT-1 which tended to increase (P=0.05). The thymus and spleen did not express any CAT isoform mRNA until day 7. The liver was the only tissue expressing GLUT-2 mRNA through day 14. On day 14, GLUT-1, CAT-1 and CAT-2 mRNA were differentially expressed across tissues (P<0.05). High-affinity GLUT and CAT mRNA expression was highest in the heart and bursa, respectively (P<0.05). Total CAT mRNA expression was greatest in the bursa (P<0.05). The thymus had the lowest high affinity GLUT and total CAT mRNA expression on day 14 posthatch. Therefore, T lymphocytes within the thymus may be most susceptible to glucose and cationic amino acid supply.
Collapse
Affiliation(s)
- Brooke D Humphrey
- Department of Animal Science, University of California, 1 Shields Avenue, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
25
|
He J, Kang H, Yan F, Chen C. The endoplasmic reticulum-related events in S-nitrosoglutathione-induced neurotoxicity in cerebellar granule cells. Brain Res 2004; 1015:25-33. [PMID: 15223363 DOI: 10.1016/j.brainres.2004.04.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2004] [Indexed: 01/05/2023]
Abstract
Nitric oxide (NO)-induced neurotoxicities are involved in the pathogenesis of several neurodegenerative disorders featured by misfolded proteins. However, the details remain to be investigated. In the present work, we focus on the study of some endoplasmic reticulum-related events in S-nitrosoglutathione (GSNO)-induced neurotoxicity in cerebellar granule cells (CGCs) and we demonstrated that: (1) GSNO caused sustained elevation of intracellular calcium; (2) This calcium elevation resulted partially from the depletion of endoplasmic reticulum (ER) calcium stores; (3) There was ER stress which was indicated by the incomplete splicing of X-box binding protein (XBP-1) mRNA by 8-polysialyltransferase (Pst1); (4) GSNO upregulated the expression of the proapoptotic growth arrest and DNA damage-inducible gene (Gadd153) and caused the depletion of intracellular glutathione (GSH) pools. At the same time, GSNO downregulated the expression of the antiapoptotic gene Sarco/endoplasmic reticulum calcium-ATPase (SERCA2b) in parallel with the downregulation of the antiapoptotic ER chaperones-glucose-regulated protein genes (Grp78 and Grp94). These effects indicate that ER is one of the NO targets in GSNO-induced neurotoxicity in cerebellar granule cells besides mitochondria.
Collapse
Affiliation(s)
- Jie He
- Center for Molecular Biology, Institute of Biophysics, Chinese Academy of Sciences, P.O. Box 33, 15 Datun Road, Chaoyang District, Beijing 100101, PR China
| | | | | | | |
Collapse
|
26
|
Schrem H, Klempnauer J, Borlak J. Liver-enriched transcription factors in liver function and development. Part II: the C/EBPs and D site-binding protein in cell cycle control, carcinogenesis, circadian gene regulation, liver regeneration, apoptosis, and liver-specific gene regulation. Pharmacol Rev 2004; 56:291-330. [PMID: 15169930 DOI: 10.1124/pr.56.2.5] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In the first part of our review (see Pharmacol Rev 2002;54:129-158), we discussed the basic principles of gene transcription and the complex interactions within the network of hepatocyte nuclear factors, coactivators, ligands, and corepressors in targeted liver-specific gene expression. Now we summarize the role of basic region/leucine zipper protein family members and particularly the albumin D site-binding protein (DBP) and the CAAT/enhancer-binding proteins (C/EBPs) for their importance in liver-specific gene expression and their role in liver function and development. Specifically, regulatory networks and molecular interactions were examined in detail, and the experimental findings summarized in this review point to pivotal roles of DBP and C/EBPs in cell cycle control, carcinogenesis, circadian gene regulation, liver regeneration, apoptosis, and liver-specific gene regulation. These regulatory proteins are therefore of great importance in liver physiology, liver disease, and liver development. Furthermore, interpretation of the vast data generated by novel genomic platform technologies requires a thorough understanding of regulatory networks and particularly the hierarchies that govern transcription and translation of proteins as well as intracellular protein modifications. Thus, this review aims to stimulate discussions on directions of future research and particularly the identification of molecular targets for pharmacological intervention of liver disease.
Collapse
Affiliation(s)
- Harald Schrem
- Center for Drug Research and Medical Biotechnology, Fraunhofer Institut für Toxikologie und Experimentelle Medizin, Nicolai Fuchs Str. 1, 30625 Hannover, Germany
| | | | | |
Collapse
|
27
|
Jousse C, Averous J, Bruhat A, Carraro V, Mordier S, Fafournoux P. Amino acids as regulators of gene expression: molecular mechanisms. Biochem Biophys Res Commun 2004; 313:447-52. [PMID: 14684183 DOI: 10.1016/j.bbrc.2003.07.020] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Regulation of gene expression by nutrients in mammals is an important mechanism allowing them to adapt their physiological functions according to the supply of nutrient in the diet. It has been shown recently that amino acids are able to regulate by themselves the expression of numerous genes. CHOP, asparagine synthetase, and IGFBP-1 regulation following AA starvation will be described in this review with special interest in the molecular mechanisms involved.
Collapse
Affiliation(s)
- Céline Jousse
- Unité de Nutrition et Métabolisme Protéique, Institut National de la Recherche Agronomique de Theix, 63122 Saint Genès Champanelle, France
| | | | | | | | | | | |
Collapse
|
28
|
Averous J, Bruhat A, Jousse C, Carraro V, Thiel G, Fafournoux P. Induction of CHOP expression by amino acid limitation requires both ATF4 expression and ATF2 phosphorylation. J Biol Chem 2003; 279:5288-97. [PMID: 14630918 DOI: 10.1074/jbc.m311862200] [Citation(s) in RCA: 214] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The CHOP gene is transcriptionally induced by amino acid starvation. We have previously identified a genomic cis-acting element (amino acid response element (AARE)) involved in the transcriptional activation of the human CHOP gene by leucine starvation and shown that it binds the activating transcription factor 2 (ATF2). The present study was designed to identify other transcription factors capable of binding to the CHOP AARE and to establish their role with regard to induction of the gene by amino acid deprivation. Electrophoretic mobility shift assay and transient transfection experiments show that several transcription factors that belong to the C/EBP or ATF families bind the AARE sequence and activate transcription. Among all these transcription factors, only ATF4 and ATF2 are involved in the amino acid control of CHOP expression. We show that inhibition of ATF2 or ATF4 expression impairs the transcriptional activation of CHOP by amino acid starvation. The transacting capacity of ATF4 depends on its expression level and that of ATF2 on its phosphorylation state. In response to leucine starvation, ATF4 expression and ATF2 phosphorylation are increased. However, induction of ATF4 expression by the endoplasmic reticulum stress pathway does not fully activate the AARE-dependent transcription. Taken together our results demonstrate that at least two pathways, one leading to ATF4 induction and one leading to ATF2 phosphorylation, are necessary to induce CHOP expression by amino acid starvation. This work was extended to the regulation of other amino acid regulated genes and suggests that ATF4 and ATF2 are key components of the amino acid control of gene expression.
Collapse
Affiliation(s)
- Julien Averous
- Unité de Nutrition et Métabolisme Protéique, Institut National de la Recherche Agronomique de Theix, 63122 Saint Genès Champanelle, France
| | | | | | | | | | | |
Collapse
|
29
|
You KR, Liu MJ, Han XJ, Lee ZW, Kim DG. Transcriptional regulation of the human transferrin gene by GADD153 in hepatoma cells. Hepatology 2003; 38:745-55. [PMID: 12939601 DOI: 10.1053/jhep.2003.50367] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
The transcription factor CHOP/GADD153 is reportedly induced by cellular stresses such as UV light, genotoxic agents, and protein misfolding in the endoplasmic reticulum. However, the mechanism whereby induction of the GADD153 gene is linked to a downstream pathway is still unclear. Previously, we observed that a synthetic retinoid N-(4-hydroxyphenyl)retinamide (4HPR) effectively impaired cell growth and survival (induction of growth arrest and apoptosis) in human hepatoma cells, which was accompanied by over expression of GADD153. Furthermore, GADD153-transfected Hep 3B cells were growth arrested and were sensitized to drug-induced apoptosis. Thus, in this study, we used suppression subtractive hybridization (SSH) to identify GADD153 target genes that were up-regulated or down-regulated in the GADD153 transfectants. We screened 614 sequence-verified clones by Northern blotting, of which 42 genes were scored as over expressed and 17 genes as under expressed in GADD153 transfectants compared with control vector transfectants. Of those genes, 49 corresponded to known genes in public databases. Among them, we further verified that the expression of transferrin (Tf), which is a negative acute-phase protein and is essential to cell survival as a growth factor, was highly modulated by drug-induced GADD153 over expression or by in vitro transfection. GADD153 significantly antagonized the C/EBP (C/EBP-alpha, -beta, and -delta)-mediated transcriptional activation of the Tf gene. In conclusion, Tf and other target genes identified may play a functional role in the downstream pathway of GADD153.
Collapse
Affiliation(s)
- Kyung-Ran You
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Institute for Medical Science, Chonbuk National University Medical School and Hospital, Chonju, Chonbuk, South Korea
| | | | | | | | | |
Collapse
|
30
|
Wu FY, Wang SE, Tang QQ, Fujimuro M, Chiou CJ, Zheng Q, Chen H, Hayward SD, Lane MD, Hayward GS. Cell cycle arrest by Kaposi's sarcoma-associated herpesvirus replication-associated protein is mediated at both the transcriptional and posttranslational levels by binding to CCAAT/enhancer-binding protein alpha and p21(CIP-1). J Virol 2003; 77:8893-914. [PMID: 12885907 PMCID: PMC167214 DOI: 10.1128/jvi.77.16.8893-8914.2003] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Lytic-cycle replication of Kaposi's sarcoma-associated herpesvirus (KSHV) in PEL cells causes G(1) cell cycle arrest mediated by the virus-encoded replication-associated protein (RAP) (or K8 protein), which induces high-level expression of the cellular C/EBPalpha and p21 proteins. Here we have examined the mechanism of this induction at both the transcriptional and posttranslational levels. RAP proved to bind very efficiently to both C/EBPalpha and p21 and stabilized them by up to 10-fold from proteasome-mediated degradation in vitro. Cross-linking revealed that RAP itself forms stable dimers and tetramers in solution and forms higher-order complexes but not heterodimers with C/EBPalpha. Cotransfection of RAP with C/EBPalpha cooperatively stimulated both the C/EBPalpha and p21 promoters in luciferase reporter gene assays. Only the basic/leucine zipper region of RAP was needed for interaction with and stabilization of C/EBPalpha, but both the N-terminal and C-terminal domains were required for transcriptional augmentation. In vitro-translated RAP interfered with DNA binding by C/EBPalpha in electrophonetic mobility shift assay (EMSA) experiments but did not itself bind to the target C/EBPalpha sites or form supershifted bands. However, in endogenous chromatin immunoprecipitation (ChIP) assays with tetradecanoyl phorbol acetate-induced PEL cells, RAP proved to specifically associate with the C/EBPalpha promoter in vivo, but only in a C/EBPalpha-dependent manner, implying an in vivo piggyback interaction with DNA-bound C/EBPalpha. Expression of exogenous RAP (Ad-RAP) caused G(1)/S cell cycle arrest in human dermal microvascular endothelial cells and also induced both the C/EBPalpha and p21 proteins, which formed punctate nuclear patterns that colocalized with RAP in PML nuclear bodies. In the presence of RAP, C/EBPalpha was also efficiently recruited into viral DNA replication compartments in both infected and cotransfected cells. In support of a direct role for this interaction in viral DNA replication, three C/EBPalpha binding sites were identified by in vitro EMSA experiments within a 220-bp core segment of the duplicated KSHV Ori-Lyt region, and although RAP did not bind to Ori-Lyt DNA directly in vitro, both endogenous RAP and C/EBPalpha were found to be associated with the Ori-Lyt region by ChIP assays in lytically induced PEL cells. Finally, we found that the KSHV lytic cycle could not be triggered by either synchronizing KSHV latently infected PEL cells in G(1) phase or inducing p21 in a C/EBPalpha-independent process.
Collapse
Affiliation(s)
- Frederick Y Wu
- Molecular Virology Laboratories, Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21231-1000, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Averous J, Bruhat A, Mordier S, Fafournoux P. Recent advances in the understanding of amino acid regulation of gene expression. J Nutr 2003; 133:2040S-2045S. [PMID: 12771362 DOI: 10.1093/jn/133.6.2040s] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In mammals, the impact of nutrients on gene expression has become an important area of research. Because amino acids have multiple and important functions, their homeostasis has to be finely maintained. However, amino acidemia can be affected by certain nutritional conditions or various forms of stress. Consequently, mammals must adjust several of the physiological functions involved in the adaptation to amino acid availability by regulating expression of numerous genes. It has been shown that amino acids alone can modify the expression of target genes. However, understanding of amino acid-dependent control of gene expression has just started to emerge. This review focuses on recent advances in the understanding of mechanisms involved in the amino acid control of gene expression.
Collapse
Affiliation(s)
- Julien Averous
- Unité de Nutrition et Métabolisme Protéique, Institut National de la Recherche Agronomique de Theix, 63122 Saint Genès Champanelle, France
| | | | | | | |
Collapse
|
32
|
Watanabe Y, Suzuki O, Haruyama T, Akaike T. Interferon-gamma induces reactive oxygen species and endoplasmic reticulum stress at the hepatic apoptosis. J Cell Biochem 2003; 89:244-53. [PMID: 12704788 DOI: 10.1002/jcb.10501] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Interferon-gamma (IFN-gamma) induces cell-cycle arrest and p53-independent apoptosis in primary cultured hepatocytes. However, the detailed mechanism, including regulating molecules, is still unclear. In this study, we found that IFN-gamma induced generation of reactive oxygen species (ROS) in primary hepatocytes and that pyrrolidinedithiocarbamate (PDTC), an anti-oxidant reagent, completely suppressed IFN-gamma-induced hepatic apoptosis. PDTC blocked apoptosis downstream from IRF-1 and upstream from caspase activation, suggesting that the generation of ROS occurred between these stages. However, IFN-gamma also induced the generation of ROS in IRF-1-deficient hepatocytes, cells insensitive to IFN-gamma-induced apoptosis. Moreover, a general cyclooxygenase (COX) inhibitor, indomethacin (but not the cyclooxygenase 2-specific inhibitor, NS-398) also inhibited the apoptosis without blocking the generation of ROS. Both PDTC and indomethacin also blocked IFN-gamma-induced release of cytochrome c from mitochondria. These results suggest that ROS are not the only or sufficient mediators of IFN-gamma-induced hepatic apoptosis. In contrast, we also found that IFN-gamma induced endoplasmic reticulum (ER) stress proteins, CHOP/GADD153 and caspase 12, in wild-type primary hepatocytes, but induced only caspase 12 and not CHOP/GADD153 protein in IRF-1-deficient hepatocytes. These results suggest that IFN-gamma induces ER stress in primary hepatocytes. Both the ROS and ER stress induced by IFN-gamma may be complementary mediators that induce apoptosis in primary hepatocytes.
Collapse
Affiliation(s)
- Yoshifumi Watanabe
- Department of Biomolecular Engineering, Tokyo Institute of Technology, 4259 Nagatsuda, Midori-ku, Yokohama 226-8501, Japan.
| | | | | | | |
Collapse
|
33
|
Hattori T, Ohoka N, Hayashi H, Onozaki K. C/EBP homologous protein (CHOP) up-regulates IL-6 transcription by trapping negative regulating NF-IL6 isoform. FEBS Lett 2003; 541:33-9. [PMID: 12706815 DOI: 10.1016/s0014-5793(03)00283-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Interleukin-6 (IL-6) production is up-regulated by several stimuli through the activation of transcription factors. We have previously demonstrated that CCAAT/enhancer binding protein homologous protein (CHOP) positively regulates IL-6 production at the transcriptional level in the human melanoma cell line A375. In this study, we provide evidence that CHOP up-regulates the IL-6 transcription without binding to the IL-6 promoter. CHOP dimerized more preferentially with an inhibitory isoform of nuclear factor for IL-6 expression (LIP (liver-enriched inhibitory protein)) than with a positively acting isoform (LAP, liver-enriched activator protein). These results indicate that CHOP plays an important role in IL-6 production without binding to its promoter, probably by trapping protein(s) such as LIP, which would otherwise inhibit IL-6 transcription.
Collapse
Affiliation(s)
- Takayuki Hattori
- Department of Molecular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, Mizuho, Japan
| | | | | | | |
Collapse
|
34
|
Lengwehasatit I, Dickson AJ. Analysis of the role of GADD153 in the control of apoptosis in NS0 myeloma cells. Biotechnol Bioeng 2002; 80:719-30. [PMID: 12402318 DOI: 10.1002/bit.10422] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Apoptosis can limit the maximum production of recombinant protein expression from cultured mammalian cells. This article focuses on the links between nutrient deprivation, ER perturbation, the regulation of (growth arrest and DNA damage inducible gene 153) GADD153 expression and apoptosis. During batch culture, decreases in glucose and glutamine correlated with an increase in apoptotic cells. This event was paralleled by a simultaneous increase in GADD153 expression. The expression of GADD153 in batch culture was suppressed by the addition of nutrients and with fed-batch culture the onset of apoptosis was delayed but not completely prevented. In defined stress conditions, glucose deprivation had the greatest effect on cell death when compared to glutamine deprivation or the addition of tunicamycin (an inhibitor of glycosylation), added to generate endoplasmic reticulum stress. However, the contribution of apoptosis to overall cell death (as judged by morphology) was smaller in conditions of glucose deprivation than in glutamine deprivation or tunicamycin treatment. Transient activation of GADD153 expression was found to occur in response to all stresses and occurred prior to detection of the onset of cell death. These results imply that GADD153 expression is either a trigger for apoptosis or offers a valid indicator of the likelihood of cell death arising from stresses of relevance to the bioreactor environment.
Collapse
Affiliation(s)
- Idsada Lengwehasatit
- Biochemistry Research Division, School of Biological Sciences, 2.205 Stopford Building, University of Manchester, Oxford Road, United Kingdom
| | | |
Collapse
|
35
|
Bruhat A, Averous J, Carraro V, Zhong C, Reimold AM, Kilberg MS, Fafournoux P. Differences in the molecular mechanisms involved in the transcriptional activation of the CHOP and asparagine synthetase genes in response to amino acid deprivation or activation of the unfolded protein response. J Biol Chem 2002; 277:48107-14. [PMID: 12351626 DOI: 10.1074/jbc.m206149200] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A promoter element called the amino acid response element (AARE), which is essential for the induction of CHOP (a CCAAT/enhancer-binding protein-related gene) transcription by amino acid depletion, has been previously characterized. Conversely, the human asparagine synthetase (AS) promoter contains two cis-acting elements termed nutrient-sensing response elements (NSRE-1 and NSRE-2) that are required to activate the gene by either amino acid deprivation or the endoplasmic reticulum stress response. The results reported here document the comparison between CHOP and AS transcriptional control elements used by the amino acid pathway. We first establish that the AS NSRE-1 sequence shares nucleotide sequence and functional similarities with the CHOP AARE. However, we demonstrate that the CHOP AARE can function independently, whereas AS NSRE-1 is functionally weak by itself and instead requires the presence of NSRE-2. Furthermore, AS NSRE-2 can confer endoplasmic reticulum stress responsiveness to the CHOP AARE. Using activating transcription factor-2-deficient mouse embryonic fibroblasts, we also show that lack of this transcription factor does not abolish the amino acid inducibility of AS transcription, but this transcription factor is necessary to obtain the full AS response to amino acid starvation. Collectively, these results document that there are significant differences in the molecular mechanisms involved in the transcriptional activation of CHOP and AS by amino acid limitation.
Collapse
Affiliation(s)
- Alain Bruhat
- Unité de Nutrition et Métabolisme Protéique, Institut National de la Recherche Agronomique de Theix, 63122 Saint Genès Champanelle, France.
| | | | | | | | | | | | | |
Collapse
|
36
|
Qiao D, Im E, Qi W, Martinez JD. Activator protein-1 and CCAAT/enhancer-binding protein mediated GADD153 expression is involved in deoxycholic acid-induced apoptosis. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1583:108-16. [PMID: 12069855 DOI: 10.1016/s1388-1981(02)00190-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Studies have demonstrated bile acids, principally deoxycholic acid (DCA), to be colon tumor promoters. DCA is cytotoxic and increasing evidence suggests a role for DCA-induced apoptosis in colon tumorigenesis. Although the precise mechanism by which DCA induces apoptosis remains unclear, DCA may affect cell growth and cell death via altering intracellular signaling and gene expression. In this study, we examined the effect of DCA on the GADD153 (growth arrest- and DNA damage-inducible gene 153) proapoptotic gene and its role in DCA-induced apoptosis in a human colon cancer cell line, HCT116. Our results showed that GADD153 expression was strongly stimulated by DCA and disruption of this with an antisense GADD153 transcript could significantly suppress DCA-induced apoptosis, suggesting GADD153 is essential for DCA induction of apoptosis. Further studies were conducted to investigate the upstream regulatory factors that participated in DCA mediated GADD153 expression. Activator protein-1 (AP-1) was activated by DCA and an AP-1 regulatory element was identified in the human GADD153 promoter in our previous studies. However, inhibition of the AP-1 activation by the dominant negative mutant c-Jun, Tam67, caused only a partial suppression of both DCA-induced GADD153 expression and apoptosis, indicating AP-1 plays an important but not exclusive role in DCA mediated GADD153 pathway. By further promoter analyses, a novel DCA response element, which is located downstream of the AP-1 binding site in the human GADD153 promoter, was determined and identified as C/EBP regulatory element. These results suggest that GADD153 expression is critical for DCA-induced apoptosis and that multiple signaling pathways that include AP-1 and C/EBP transcription factors are involved in DCA-induced GADD153 expression.
Collapse
Affiliation(s)
- Dianhua Qiao
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 53792-8550, USA
| | | | | | | |
Collapse
|
37
|
Mordier S, Bruhat A, Averous J, Fafournoux P. Cellular Adaptation to Amino Acid Availability: Mechanisms Involved in the Regulation of Gene Expression and Protein Metabolism. CELL AND MOLECULAR RESPONSE TO STRESS 2002. [DOI: 10.1016/s1568-1254(02)80015-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
38
|
Abstract
C/EBPs are a family of transcription factors that play important roles in energy metabolism. Although initially thought to be constitutive regulators of transcription, an increasing amount of evidence indicates that their transactivating capacity within the cell can be modulated by nutrients and hormones. There are several mechanisms whereby this occurs. First, hormones/nutrients are known to directly alter the expression of C/EBPs. Second, hormones/nutrients may cause an alteration in the phosphorylation state of C/EBPs, which can affect their DNA-binding activity or transactivating capacity. Third, C/EBPs can function as accessory factors on gene promoters within a hormone response unit, interacting with other transcription factors to enhance the degree of responsiveness to specific hormones. Given their role in regulating genes involved in a wide variety of metabolic events, advancing our understanding of the molecular mechanism of action of C/EBPs will undoubtedly further our appreciation for the role these transcription factors play in both health and disease.
Collapse
Affiliation(s)
- W J Roesler
- Department of Biochemistry, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan, Canada S7N 5E5.
| |
Collapse
|
39
|
Delany AM, Durant D, Canalis E. Glucocorticoid suppression of IGF I transcription in osteoblasts. Mol Endocrinol 2001; 15:1781-9. [PMID: 11579210 DOI: 10.1210/mend.15.10.0704] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Glucocorticoids have profound effects on bone formation, decreasing IGF I transcription in osteoblasts, but the mechanisms involved are poorly understood. We previously showed that the bp +34 to +192 region of the rat IGF I exon 1 promoter was responsible for repression of IGF I transcription by cortisol in cultures of osteoblasts from fetal rat calvariae (Ob cells). Here, site-directed mutagenesis was used to show that a binding site for members of the CAAT/enhancer binding protein family of transcription factors, within the +132 to +158 region of the promoter, mediates this glucocorticoid effect. EMSAs demonstrated that cortisol increased binding of osteoblast nuclear proteins to the +132 to +158 region of the IGF I promoter. Supershift assays showed that CAAT/enhancer binding protein alpha, beta, and delta interact with this sequence, and binding of CAAT/enhancer binding protein delta, in particular, was increased in the presence of cortisol. Northern blot analysis showed that CAAT/enhancer binding protein delta and beta transcripts were increased by cortisol in Ob cells. Further, cortisol increased the transcription of these genes and increased the stability of CAAT/enhancer binding protein delta mRNA. In conclusion, cortisol represses IGF I transcription in osteoblasts, and CAAT/enhancer binding proteins appear to play a role in this effect.
Collapse
Affiliation(s)
- A M Delany
- Department of Research, Saint Francis Hospital and Medical Center, Hartford, Connecticut 06105, USA
| | | | | |
Collapse
|
40
|
Bruhat A, Fafournoux P. Recent advances on molecular mechanisms involved in amino acid control of gene expression. Curr Opin Clin Nutr Metab Care 2001; 4:439-43. [PMID: 11568507 DOI: 10.1097/00075197-200109000-00016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In mammals, the impact of nutrients on gene expression has become an important area of research. Because amino acids have multiple and important functions, their homeostasis has to be finely maintained. However, amino acidaemia can be affected by certain nutritional conditions or various forms of aggression. It follows that mammals have to adjust several of their physiological functions involved in the adaptation to amino acid availability by regulating the expression of numerous genes. It has been shown that amino acids by themselves can modify the expression of target genes. However, the current understanding of amino acid-dependent control of gene expression has just started to emerge. This review focuses on the recent advances on mechanisms involved in the amino acids control of gene expression. Several examples discussed in this paper demonstrate that amino acids regulate gene expression at the level of transcription, messenger RNA stability and translation.
Collapse
Affiliation(s)
- A Bruhat
- Unité de Nutrition Cellulaire et Moléculaire, INRA de Theix, 63122 Saint Genès Champanelle, France
| | | |
Collapse
|
41
|
McCullough KD, Martindale JL, Klotz LO, Aw TY, Holbrook NJ. Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state. Mol Cell Biol 2001; 21:1249-59. [PMID: 11158311 PMCID: PMC99578 DOI: 10.1128/mcb.21.4.1249-1259.2001] [Citation(s) in RCA: 1525] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
gadd153, also known as chop, is a highly stress-inducible gene that is robustly expressed following disruption of homeostasis in the endoplasmic reticulum (ER) (so-called ER stress). Although all reported types of ER stress induce expression of Gadd153, its role in the stress response has remained largely undefined. Several studies have correlated Gadd153 expression with cell death, but a mechanistic link between Gadd153 and apoptosis has never been demonstrated. To address this issue we employed a cell model system in which Gadd153 is constitutively overexpressed, as well as two cell lines in which Gadd153 expression is conditional. In all cell lines, overexpression of Gadd153 sensitized cells to ER stress. Investigation of the mechanisms contributing to this effect revealed that elevated Gadd153 expression results in the down-regulation of Bcl2 expression, depletion of cellular glutathione, and exaggerated production of reactive oxygen species. Restoration of Bcl2 expression in Gadd153-overexpressing cells led to replenishment of glutathione and a reduction in levels of reactive oxygen species, and it protected cells from ER stress-induced cell death. We conclude that Gadd153 sensitizes cells to ER stress through mechanisms that involve down-regulation of Bcl2 and enhanced oxidant injury.
Collapse
Affiliation(s)
- K D McCullough
- Cell Stress and Aging Section, Laboratory of Biological Chemistry, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224-6825, USA
| | | | | | | | | |
Collapse
|
42
|
Schmitt-Ney M, Habener JF. CHOP/GADD153 gene expression response to cellular stresses inhibited by prior exposure to ultraviolet light wavelength band C (UVC). Inhibitory sequence mediating the UVC response localized to exon 1. J Biol Chem 2000; 275:40839-45. [PMID: 11010973 DOI: 10.1074/jbc.m007440200] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CHOP/GADD153 is both an activating and repressing transcription factor that is markedly induced in response to a variety of cellular stresses. The CHOP/GADD153 gene was originally cloned because of its inducibility by ultraviolet light wavelength band C (UVC) and has since been found to be activated in response to many different cellular stresses. Some of the recent studies have questioned the UVC responsiveness of the CHOP gene. Contradiction in our own data led us to reexamine the UVC effects on CHOP expression. UVC is capable of strongly activating the mouse CHOP promoter in stably transfected NIH 3T3 cells but has only a modest and transient effect on the level of the CHOP messenger RNA. In addition to its positive effect on CHOP promoter activity, we show that UVC negatively affects CHOP mRNA and protein expression. Pretreatment of NIH 3T3 cells with UVC markedly attenuates the subsequent induction of CHOP mRNA by the cellular stress activators methylmethane sulfate, tunicamycin, glucose deprivation, and methionine deprivation for as long as at least 16 h. This inhibitory effect of UVC on CHOP expression in response to stress is independent of the presence or absence of p53 and does not involve mRNA degradation as opposed to the UVC effect that inhibits p21 expression seen only in the absence of p53. The target of the inhibitory effect of UVC on CHOP expression is located in the first exon of the gene, a 5'-untranslated region that is unusually conserved between different species. These findings suggest that an unknown function encoded by the 5'-untranslated region somehow modifies the response of CHOP gene transcription to UVC.
Collapse
Affiliation(s)
- M Schmitt-Ney
- Laboratory of Molecular Endocrinology, Massachusetts General Hospital, Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | |
Collapse
|
43
|
Matsuo R, Murayama A, Saitoh Y, Sakaki Y, Inokuchi K. Identification and cataloging of genes induced by long-lasting long-term potentiation in awake rats. J Neurochem 2000; 74:2239-49. [PMID: 10820183 DOI: 10.1046/j.1471-4159.2000.0742239.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Maintenance of long-term potentiation (LTP) requires de novo gene expression. Here we report the direct isolation, using PCR-differential display, of genes whose expression level was altered after induction of long-lasting LTP in the hippocampus of freely moving awake rats. Differential display using 480 primer combinations revealed 17 cDNA bands that showed a reproducible change in expression level. These cDNAs represented at least 10 different genes (termed RM1-10), all of which showed up-regulation at 75 min after LTP induction and a return to basal expression levels within 24 h. Three of these genes were known only from expressed sequence tags (RM1-3), two were known genes whose up-regulation by LTP has not been described (GADD153/CHOP and ler5), and five were known genes whose up-regulation by LTP has already been reported (MAPK phosphatase, NGFI-A/zif268, vesl-1S/homer-1a, Ag2, and krox-20). We characterized the expression profiles of genes in the two former categories with respect to NMDA receptor dependency, tissue specificity, and developmental regulation using northern blotting and semiquantitative RT-PCR. The up-regulation of all five of these genes was NMDA receptor-dependent and correlated with the persistence of LTP, suggesting that these genes may play functional roles in prolonged LTP maintenance.
Collapse
Affiliation(s)
- R Matsuo
- Mitsubishi Kasei Institute of Life Sciences, Tokyo, Japan. Institute of Medical Sciences, University of Tokyo, Japan
| | | | | | | | | |
Collapse
|
44
|
Qiao D, Chen W, Stratagoules ED, Martinez JD. Bile acid-induced activation of activator protein-1 requires both extracellular signal-regulated kinase and protein kinase C signaling. J Biol Chem 2000; 275:15090-8. [PMID: 10748108 DOI: 10.1074/jbc.m908890199] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Elevated concentrations of fecal bile aids are known to promote colon cancer and increasing evidence suggests that alterations in cellular signaling and gene expression may play an important role in this process. In this study, we examined the molecular mechanisms underlying bile acid-mediated gene regulation using GADD153 as our model gene. Promoter deletion analyses revealed that the activator protein-1 (AP-1) transcription factor was crucial for deoxycholic acid (DCA)-mediated GADD153 gene transcription. Electrophoretic mobility shift assays and transient transfection analyses demonstrated that both DNA binding and transactivation activities of AP-1 were induced by DCA in a dose-dependent manner. The AP-1 complex induced by DCA consisted of JunD, Fra-1, and c-Fos. Examination of the signaling pathways stimulated by DCA showed that extracellular signal-regulated kinases (ERKs) were required for AP-1 activation. Inhibition of ERK by the mitogen-activated protein kinase/ERK kinase inhibitor PD 98059 or by expression of a dominant negative mutant ERK suppressed AP-1 activation. Notably, the PKC inhibitor, calphostin C, also abolished DCA-induced AP-1 activation but did not affect DCA-mediated ERK activation, suggesting that ERK and PKC function in separate signaling pathways that cooperatively mediate DCA-induced AP-1 activation. Hence, bile acid-stimulated signaling appears to converge on the AP-1 protooncogene.
Collapse
Affiliation(s)
- D Qiao
- Arizona Cancer Center, Department of Radiation Oncology, University of Arizona, Tucson, Arizona 85724, USA
| | | | | | | |
Collapse
|
45
|
Maytin EV, Lin JC, Krishnamurthy R, Batchvarova N, Ron D, Mitchell PJ, Habener JF. Keratin 10 gene expression during differentiation of mouse epidermis requires transcription factors C/EBP and AP-2. Dev Biol 1999; 216:164-81. [PMID: 10588870 DOI: 10.1006/dbio.1999.9460] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The epidermis forms a vital barrier composed of stratified keratinocytes and their differentiated products. One of these products, keratin K10, is critical to epidermal integrity, because mutations in k10 lead to abnormal blistering. For the normal expression of k10, differentiation-associated transcription factors C/EBPalpha, C/EBPbeta, and AP-2 are well positioned to play an important role. Here, regulation of the k10 gene is examined in keratinocytes in the skin of normal mice and in transgenic mice carrying targeted deletions of c/ebpbeta and ap-2alpha. In cultured cells, C/EBPalpha and C/EBPbeta are each capable of activating the k10 promoter via three binding sites, identified by site-directed mutagenesis. In a given epidermal cell in vivo, however, the selection of C/EBPalpha versus C/EBPbeta for k10 regulation is determined via a third transcription factor, AP-2. This novel regulatory scheme involves: (1) unique gradients of expression for each transcription factor, i.e., C/EBPbeta and AP-2 most abundant in the lower epidermis, C/EBPalpha in the upper; (2) C/EBP-binding sites in the ap-2alpha gene promoter, through which C/EBPbeta stimulates ap-2alpha; and (3) AP-2 binding sites in the c/ebpalpha promoter, through which AP-2 represses c/ebpalpha. Promoter-analysis and gene-expression data presented herein support a regulatory model in which C/EBPbeta activates and maintains AP-2 expression in basal keratinocytes, whereas AP-2 represses C/EBPalpha in those cells. In response to differentiation signals, loss of AP-2 expression leads to derepression of the c/ebpalpha promoter and activation of k10 as cells migrate upward.
Collapse
Affiliation(s)
- E V Maytin
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, 02114, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
In mammals, the plasma concentration of amino acids is affected by nutritional or pathological conditions. For example, an alteration in the amino acid profile has been reported when there is a deficiency of any one or more of the essential amino acids, a dietary imbalance of amino acids, or an insufficient intake of protein. We examined the role of amino acid limitation in regulating mammalian gene expression. Depletion of arginine, cystine and all essential amino acids leads to induction of insulin-like growth factor-binding protein-1 (IGFBP-1) mRNA and protein expression in a dose-dependent manner. Moreover, exposure of HepG2 cells to amino acids at a concentration reproducing the amino acid concentration found in portal blood of rats fed on a low-protein diet leads to a significantly higher (P < 0.0002) expression of IGFBP-1. Using CCAAT/enhancer-binding protein homologous protein (CHOP) induction by leucine deprivation as a model, we have characterized the molecular mechanisms involved in the regulation of gene expression by amino acids. We have shown that leucine limitation leads to induction of CHOP mRNA and protein. Elevated mRNA levels result from both an increase in the rate of CHOP transcription and an increase in mRNA stability. We have characterized two elements of the CHOP gene that are essential to the transcriptional activation produced by an amino acid limitation. These findings demonstrate that an amino acid limitation, as occurs during dietary protein deficiency, can induce gene expression. Thus, amino acids by themselves can play, in concert with hormones, an important role in the control of gene expression.
Collapse
Affiliation(s)
- A Bruhat
- Unité de Nutrition Cellulaire et Moléculaire, INRA de Theix, Saint Genès Champanelle, France
| | | | | |
Collapse
|
47
|
Sok J, Wang XZ, Batchvarova N, Kuroda M, Harding H, Ron D. CHOP-Dependent stress-inducible expression of a novel form of carbonic anhydrase VI. Mol Cell Biol 1999; 19:495-504. [PMID: 9858573 PMCID: PMC83907 DOI: 10.1128/mcb.19.1.495] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/1998] [Accepted: 09/10/1998] [Indexed: 11/20/2022] Open
Abstract
CHOP (also called GADD153) is a stress-inducible nuclear protein that dimerizes with members of the C/EBP family of transcription factors and was initially identified as an inhibitor of C/EBP binding to classic C/EBP target genes. Subsequent experiments suggested a role for CHOP-C/EBP heterodimers in positively regulating gene expression; however, direct evidence that this is the case has so far not been uncovered. Here we describe the identification of a positively regulated direct CHOP-C/EBP target gene, that encoding murine carbonic anhydrase VI (CA-VI). The stress-inducible form of the gene is expressed from an internal promoter and encodes a novel intracellular form of what is normally a secreted protein. Stress-induced expression of CA-VI is both CHOP and C/EBPbeta dependent in that it does not occur in cells deficient in either gene. A CHOP-responsive element was mapped to the inducible CA-VI promoter, and in vitro footprinting revealed binding of CHOP-C/EBP heterodimers to that site. Rescue of CA-VI expression in c/ebpbeta-/- cells by exogenous C/EBPbeta and a shorter, normally inhibitory isoform of the protein known as LIP suggests that the role of the C/EBP partner is limited to targeting the CHOP-containing heterodimer to the response element and points to a preeminent role for CHOP in CA-VI induction during stress.
Collapse
Affiliation(s)
- J Sok
- Skirball Institute of Biomolecular Medicine, Departments of Medicine and Cell Biology, and Kaplan Cancer Center, New York University Medical Center, New York, New York 10016, USA
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
Members of the CCAAT/enhancer-binding protein (C/EBP) family of transcription factors are pivotal regulators of liver functions such as nutrient metabolism and its control by hormones, acute-phase response and liver regeneration. Recent progress in clarification of regulatory mechanisms for the C/EBP family members gives insight into understanding the liver functions at the molecular level.
Collapse
Affiliation(s)
- M Takiguchi
- Department of Biochemistry, Chiba University School of Medicine, Japan.
| |
Collapse
|
49
|
Liu PC, Dunlap DY, Matsumura F. Suppression of C/EBPalpha and induction of C/EBPbeta by 2,3,7,8-tetrachlorodibenzo-p-dioxin in mouse adipose tissue and liver. Biochem Pharmacol 1998; 55:1647-55. [PMID: 9634001 DOI: 10.1016/s0006-2952(98)00012-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We examined the effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on two transcription factors, CAAT/enhancer binding protein-alpha (C/EBPalpha) and beta (C/EBPbeta), involved in the coordination of gene expression in adipose and liver. A single dose of TCDD (100 microg/kg) to male C57BL mice resulted in a time- and dose-dependent decrease in the level of C/EBPalpha mRNA in adipose tissue and liver, and a reciprocal increase in C/EBPbeta mRNA. Gel shift analysis using hepatic nuclear extracts from control and TCDD-treated mice and an oligonucleotide containing a C/EBP recognition element revealed a time-dependent change in DNA-protein complexes formed. Bands corresponding to C/EBPalpha, as determined by supershift analysis, diminished in TCDD-treated animals over a 7-day time period, whereas two new bands corresponding to C/EBPbeta, not present in control extracts, were increased significantly in treated samples. TCDD induced C/EBPbeta mRNA in wild-type mouse hepatoma cells, but not in aryl hydrocarbon receptor (AhR) nuclear translocator-deficient hepatoma cells. Induction in wild-type hepatoma cells was antagonized effectively by a molar excess of alpha-naphthoflavone. These results showed that TCDD caused rapid, reciprocal changes in C/EBPalpha and C/EBPbeta mRNAs and DNA binding in the adipose and liver of male C57BL mice and induced C/EBPbeta in hepatoma cells in an AhR-dependent manner. C/EBPs play vital roles in the coordination of energy homeostasis, and their alteration by TCDD may provide insight into the mechanism by which TCDD perturbs energy storage and utilization in vivo.
Collapse
Affiliation(s)
- P C Liu
- Department of Environmental Toxicology and the Center for Environmental Health Sciences, University of California, Davis 95616, USA
| | | | | |
Collapse
|
50
|
Yamada T, Tsuchiya T, Osada S, Nishihara T, Imagawa M. CCAAT/enhancer-binding protein delta gene expression is mediated by autoregulation through downstream binding sites. Biochem Biophys Res Commun 1998; 242:88-92. [PMID: 9439615 DOI: 10.1006/bbrc.1997.7915] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
CCAAT/enhancer-binding protein delta (C/EBP delta) transcription factor is sharply induced at the early stage of the acute phase response. We previously reported that the C/EBP delta gene expression is induced by the acute-phase response factor/signal transducers and activators of transcription 3 (APRF/STAT3). However, the expression level of the C/EBP delta gene is relatively high up to several hours after the stimulation, whereas APRF/STAT3 is inactivated within one hour. In this report, we identified the two C/EBP delta binding sites at the downstream region of this gene. The binding analysis revealed that both of these sites bound recombinant C/EBP delta protein. A cotransfection analysis identified these sites as the cis-elements for the autoregulation. We conclude that the C/EBP delta gene is activated by APRF/STAT3, and the expression level is then maintained by an autoregulation mechanism.
Collapse
Affiliation(s)
- T Yamada
- Laboratory of Environmental Biochemistry, School of Pharmaceutical Sciences, Osaka University, Japan
| | | | | | | | | |
Collapse
|