1
|
Ji HH, Ostap EM. The regulatory protein 14-3-3β binds to the IQ motifs of myosin-IC independent of phosphorylation. J Biol Chem 2020; 295:3749-3756. [PMID: 31811090 PMCID: PMC7086031 DOI: 10.1074/jbc.ra119.011227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/21/2019] [Indexed: 12/30/2022] Open
Abstract
Myosin-IC (Myo1c) has been proposed to function in delivery of glucose transporter type 4 (GLUT4)-containing vesicles to the plasma membrane in response to insulin stimulation. Current evidence suggests that, upon insulin stimulation, Myo1c is phosphorylated at Ser701, leading to binding of the signaling protein 14-3-3β. Biochemical and functional details of the Myo1c-14-3-3β interaction have yet to be described. Using recombinantly expressed proteins and mass spectrometry-based analyses to monitor Myo1c phosphorylation, along with pulldown, fluorescence binding, and additional biochemical assays, we show here that 14-3-3β is a dimer and, consistent with previous work, that it binds to Myo1c in the presence of calcium. This interaction was associated with dissociation of calmodulin (CaM) from the IQ motif in Myo1c. Surprisingly, we found that 14-3-3β binds to Myo1c independent of Ser701 phosphorylation in vitro Additionally, in contrast to previous reports, we did not observe Myo1c Ser701 phosphorylation by Ca2+/CaM-dependent protein kinase II (CaMKII), although CaMKII phosphorylated four other Myo1c sites. The presence of 14-3-3β had little effect on the actin-activated ATPase or motile activities of Myo1c. Given these results, it is unlikely that 14-3-3β acts as a cargo adaptor for Myo1c-powered transport; rather, we propose that 14-3-3β binds Myo1c in the presence of calcium and stabilizes the calmodulin-dissociated, nonmotile myosin.
Collapse
Affiliation(s)
- Huan-Hong Ji
- Pennsylvania Muscle Institute, Department of Physiology, and Center for Engineering Mechanobiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - E Michael Ostap
- Pennsylvania Muscle Institute, Department of Physiology, and Center for Engineering Mechanobiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
2
|
Munson S, Wang Y, Chang W, Bikle DD. Myosin 1a Regulates Osteoblast Differentiation Independent of Intestinal Calcium Transport. J Endocr Soc 2019; 3:1993-2011. [PMID: 31620669 PMCID: PMC6789431 DOI: 10.1210/js.2019-00171] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 08/06/2019] [Indexed: 01/01/2023] Open
Abstract
Myosin 1A (Myo1a) is a mechanoenzyme previously thought to be located exclusively in the intestinal epithelium. It is the principle calmodulin-binding protein of the brush border. Based on earlier studies in chickens, we hypothesized that Myo1a facilitates calcium transport across the brush border membrane of the intestinal epithelium, perhaps in association with the calcium channel Trpv6. Working with C2Bbe1 cells, a human intestinal epithelial cell line, we observed that overexpression of Myo1a increased, whereas the antisense construct blocked calcium transport. To further test this hypothesis, we examined mice in which either or both Myo1a and Trpv6 had been deleted. Although the Trpv6-null mice had decreased intestinal calcium transport, the Myo1a-null mouse did not, disproving our original hypothesis, at least in mice. Expecting that a reduction in intestinal calcium transport would result in decreased bone, we examined the skeletons of these mice. To our surprise, we found no decrease in bone in the Trpv6-null mouse, but a substantial decrease in the Myo1a-null mouse. Double deletions were comparable to the Myo1a null. Moreover, Myo1a but not Trpv6 was expressed in osteoblasts. In vitro, the bone marrow stromal cells from the Myo1a-null mice showed normal numbers of colony-forming units but marked decrements in the formation of alkaline phosphatase-positive colonies and mineralized nodules. We conclude that Myo1a regulates osteoblast differentiation independent of its role, if any, in intestinal calcium transport, whereas Trpv6 functions primarily to promote intestinal calcium transport with little influence in osteoblast function.
Collapse
Affiliation(s)
- Scott Munson
- Department of Medicine and Endocrine Research Unit, Veterans Affairs Medical Center and University of California San Francisco, San Francisco, California
| | - Yongmei Wang
- Department of Medicine and Endocrine Research Unit, Veterans Affairs Medical Center and University of California San Francisco, San Francisco, California
| | - Wenhan Chang
- Department of Medicine and Endocrine Research Unit, Veterans Affairs Medical Center and University of California San Francisco, San Francisco, California
| | - Daniel D Bikle
- Department of Medicine and Endocrine Research Unit, Veterans Affairs Medical Center and University of California San Francisco, San Francisco, California
| |
Collapse
|
3
|
Abstract
Myosin-I molecular motors are proposed to play various cellular roles related to membrane dynamics and trafficking. In this Cell Science at a Glance article and the accompanying poster, we review and illustrate the proposed cellular functions of metazoan myosin-I molecular motors by examining the structural, biochemical, mechanical and cell biological evidence for their proposed molecular roles. We highlight evidence for the roles of myosin-I isoforms in regulating membrane tension and actin architecture, powering plasma membrane and organelle deformation, participating in membrane trafficking, and functioning as a tension-sensitive dock or tether. Collectively, myosin-I motors have been implicated in increasingly complex cellular phenomena, yet how a single isoform accomplishes multiple types of molecular functions is still an active area of investigation. To fully understand the underlying physiology, it is now essential to piece together different approaches of biological investigation. This article will appeal to investigators who study immunology, metabolic diseases, endosomal trafficking, cell motility, cancer and kidney disease, and to those who are interested in how cellular membranes are coupled to the underlying actin cytoskeleton in a variety of different applications.
Collapse
Affiliation(s)
- Betsy B McIntosh
- Pennsylvania Muscle Institute and Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6085, USA
| | - E Michael Ostap
- Pennsylvania Muscle Institute and Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6085, USA
| |
Collapse
|
4
|
Kittelberger N, Breunig M, Martin R, Knölker HJ, Miklavc P. The role of myosin 1c and myosin 1b in surfactant exocytosis. J Cell Sci 2016; 129:1685-96. [PMID: 26940917 PMCID: PMC4852769 DOI: 10.1242/jcs.181313] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 02/25/2016] [Indexed: 12/19/2022] Open
Abstract
Actin and actin-associated proteins have a pivotal effect on regulated exocytosis in secretory cells and influence pre-fusion as well as post-fusion stages of exocytosis. Actin polymerization on secretory granules during the post-fusion phase (formation of an actin coat) is especially important in cells with large secretory vesicles or poorly soluble secretions. Alveolar type II (ATII) cells secrete hydrophobic lipo-protein surfactant, which does not easily diffuse from fused vesicles. Previous work showed that compression of actin coat is necessary for surfactant extrusion. Here, we investigate the role of class 1 myosins as possible linkers between actin and membranes during exocytosis. Live-cell microscopy showed translocation of fluorescently labeled myosin 1b and myosin 1c to the secretory vesicle membrane after fusion. Myosin 1c translocation was dependent on its pleckstrin homology domain. Expression of myosin 1b and myosin 1c constructs influenced vesicle compression rate, whereas only the inhibition of myosin 1c reduced exocytosis. These findings suggest that class 1 myosins participate in several stages of ATII cell exocytosis and link actin coats to the secretory vesicle membrane to influence vesicle compression.
Collapse
Affiliation(s)
- Nadine Kittelberger
- Institute of General Physiology, Ulm University, Albert-Einstein Allee 11, Ulm 89081, Germany
| | - Markus Breunig
- Institute of General Physiology, Ulm University, Albert-Einstein Allee 11, Ulm 89081, Germany
| | - René Martin
- Department of Chemistry, Technische Universität Dresden, Bergstr. 66, Dresden 01069, Germany
| | - Hans-Joachim Knölker
- Department of Chemistry, Technische Universität Dresden, Bergstr. 66, Dresden 01069, Germany
| | - Pika Miklavc
- Institute of General Physiology, Ulm University, Albert-Einstein Allee 11, Ulm 89081, Germany
| |
Collapse
|
5
|
McConnell RE, Tyska MJ. Leveraging the membrane - cytoskeleton interface with myosin-1. Trends Cell Biol 2010; 20:418-26. [PMID: 20471271 DOI: 10.1016/j.tcb.2010.04.004] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 04/15/2010] [Accepted: 04/16/2010] [Indexed: 12/19/2022]
Abstract
Class 1 myosins are small motor proteins with the ability to simultaneously bind to actin filaments and cellular membranes. Given their ability to generate mechanical force, and their high prevalence in many cell types, these molecules are well positioned to carry out several important biological functions at the interface of membrane and the actin cytoskeleton. Indeed, recent studies implicate these motors in endocytosis, exocytosis, release of extracellular vesicles, and the regulation of tension between membrane and the cytoskeleton. Many class 1 myosins also exhibit a load-dependent mechano-chemical cycle that enables them to maintain tension for long periods of time without hydrolyzing ATP. These properties put myosins-1 in a unique position to regulate dynamic membrane-cytoskeleton interactions and respond to physical forces during these events.
Collapse
Affiliation(s)
- Russell E McConnell
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37205, USA
| | | |
Collapse
|
6
|
Lange K, Gartzke J. F-actin-based Ca signaling-a critical comparison with the current concept of Ca signaling. J Cell Physiol 2006; 209:270-87. [PMID: 16823881 DOI: 10.1002/jcp.20717] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A short comparative survey on the current idea of Ca signaling and the alternative concept of F-actin-based Ca signaling is given. The two hypotheses differ in one central aspect, the mechanism of Ca storage. The current theory rests on the assumption of Ca-accumulating endoplasmic/sarcoplasmic reticulum-derived vesicles equipped with an ATP-dependent Ca pump and IP3- or ryanodine-sensitive channel-receptors for Ca-release. The alternative hypothesis proceeds from the idea of Ca storage at the high-affinity binding sites of actin filaments. Cellular sites of F-actin-based Ca storage are microvilli and the submembrane cytoskeleton. Several specific features of Ca signaling such as store-channel coupling, quantal Ca release, spiking and oscillations, biphasic and "phasic" uptake kinetics, and Ca-induced Ca release (CICR), which are not adequately described by the current concept, are inherent properties of the F-actin system and its dynamic state of treadmilling.
Collapse
|
7
|
Abstract
Myo1b is a widely expressed myosin-I isoform that concentrates on endosomal and ruffling membranes and is thought to play roles in membrane trafficking and dynamics. Myo1b is alternatively spliced within the regulatory domain of the molecule, yielding isoforms with six (myo1b(a)), five (myo1b(b)), or four (myo1b(c)) non-identical IQ motifs. The calmodulin binding properties of the myo1b IQ motifs have not been investigated, and the mechanical and cell biological consequences of alternative splicing are not known. Therefore, we expressed the alternatively spliced myo1b isoforms truncated after the final IQ motif and included a sequence at their C termini that is a substrate for bacterial biotin ligase. Site-specific biotinylation allows us to specifically attach the myosin to motility surfaces via a biotin-streptavidin linkage. We measured the ATPase and motile properties of the recombinant myo1b splice isoforms, and we correlated these properties with calmodulin binding. We confirmed that calcium-dependent changes in the ATPase activity are due to calcium binding to the calmodulin closest to the motor. We found that calmodulin binds tightly to some of the IQ motifs (Kd < 0.2 microM) and very weakly to the others (Kd > 5 microM), suggesting that a subset of the IQ motifs are not calmodulin bound under physiological conditions. Finally, we found the in vitro motility rate to be dependent on the myo1b isoform and the calmodulin concentration and that the myo1b regulatory domain acts as a rigid lever arm upon calmodulin binding to the high affinity and low affinity IQ motifs.
Collapse
Affiliation(s)
- Tianming Lin
- Department of Physiology and The Pennsylvania Muscle Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
8
|
Köhler D, Struchholz S, Bähler M. The two IQ-motifs and Ca2+/calmodulin regulate the rat myosin 1d ATPase activity. FEBS J 2005; 272:2189-97. [PMID: 15853803 DOI: 10.1111/j.1742-4658.2005.04642.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The light chain binding domain of rat myosin 1d consists of two IQ-motifs, both of which bind the light chain calmodulin (CaM). To analyze the Myo1d ATPase activity as a function of the IQ-motifs and Ca2+/CaM binding, we expressed and affinity purified the Myo1d constructs Myo1d-head, Myo1d-IQ1, Myo1d-IQ1.2, Myo1d-IQ2 and Myo1dDeltaLV-IQ2. IQ1 exhibited a high affinity for CaM both in the absence and presence of free Ca2+. IQ2 had a lower affinity for CaM in the absence of Ca2+ than in the presence of Ca2+. The actin-activated ATPase activity of Myo1d was approximately 75% inhibited by Ca2+-binding to CaM. This inhibition was observed irrespective of whether IQ1, IQ2 or both IQ1 and IQ2 were fused to the head. Based on the measured Ca2+-dependence, we propose that Ca2+-binding to the C-terminal pair of high affinity sites in CaM inhibits the Myo1d actin-activated ATPase activity. This inhibition was due to a conformational change of the C-terminal lobe of CaM remaining bound to the IQ-motif(s). Interestingly, a similar but Ca2+-independent inhibition of Myo1d actin-activated ATPase activity was observed when IQ2, fused directly to the Myo1d-head, was rotated through 200 degrees by the deletion of two amino acids in the lever arm alpha-helix N-terminal to the IQ-motif.
Collapse
Affiliation(s)
- Danny Köhler
- Institute for General Zoology and Genetics, Westfälische Wilhelms University, Münster, Germany
| | | | | |
Collapse
|
9
|
Martin SR, Bayley PM. Regulatory implications of a novel mode of interaction of calmodulin with a double IQ-motif target sequence from murine dilute myosin V. Protein Sci 2002; 11:2909-23. [PMID: 12441389 PMCID: PMC2373755 DOI: 10.1110/ps.0210402] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2002] [Revised: 07/17/2002] [Accepted: 09/04/2002] [Indexed: 10/27/2022]
Abstract
Apo-Calmodulin acts as the light chain for unconventional myosin V, and treatment with Ca(2+) can cause dissociation of calmodulin from the 6IQ region of the myosin heavy chain. The effects of Ca(2+) on the stoichiometry and affinity of interactions of calmodulin and its two domains with two myosin-V peptides (IQ3 and IQ4) have therefore been quantified in vitro, using fluorescence and near- and far-UV CD. The results with separate domains show their differential affinity in interactions with the IQ motif, with the apo-N domain interacting surprisingly weakly. Contrary to expectations, the effect of Ca(2+) on the interactions of either peptide with either isolated domain is to increase affinity, reducing the K(d) at physiological ionic strengths by >200-fold to approximately 75 nM for the N domain, and approximately 10-fold to approximately 15 nM for the C domain. Under suitable conditions, intact (holo- or apo-) calmodulin can bind up to two IQ-target sequences. Interactions of apo- and holo-calmodulin with the double-length, concatenated sequence (IQ34) can result in complex stoichiometries. Strikingly, holo-calmodulin forms a high-affinity 1:1 complex with IQ34 in a novel mode of interaction, as a "bridged" structure wherein two calmodulin domains interact with adjacent IQ motifs. This apparently imposes a steric requirement for the alpha-helical target sequence to be discontinuous, possibly in the central region, and a model structure is illustrated. Such a mode of interaction could account for the Ca(2+)-dependent regulation of myosin V in vitro motility, by changing the structure of the regulatory complex, and paradoxically causing calmodulin dissociation through a change in stoichiometry, rather than a Ca(2+)-dependent reduction in affinity.
Collapse
Affiliation(s)
- Stephen R Martin
- Division of Physical Biochemistry, National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | | |
Collapse
|
10
|
Yoshimura M, Homma K, Saito J, Inoue A, Ikebe R, Ikebe M. Dual regulation of mammalian myosin VI motor function. J Biol Chem 2001; 276:39600-7. [PMID: 11517222 DOI: 10.1074/jbc.m105080200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Myosin VI is expressed in a variety of cell types and is thought to play a role in membrane trafficking and endocytosis, yet its motor function and regulation are not understood. The present study clarified mammalian myosin VI motor function and regulation at a molecular level. Myosin VI ATPase activity was highly activated by actin with K(actin) of 9 microm. A predominant amount of myosin VI bound to actin in the presence of ATP unlike conventional myosins. K(ATP) was much higher than those of other known myosins, suggesting that myosin VI has a weak affinity or slow binding for ATP. On the other hand, ADP markedly inhibited the actin-activated ATPase activity, suggesting a high affinity for ADP. These results suggested that myosin VI is predominantly in a strong actin binding state during the ATPase cycle. p21-activated kinase 3 phosphorylated myosin VI, and the site was identified as Thr(406). The phosphorylation of myosin VI significantly facilitated the actin-translocating activity of myosin VI. On the other hand, Ca(2+) diminished the actin-translocating activity of myosin VI although the actin-activated ATPase activity was not affected by Ca(2+). Calmodulin was not dissociated from the heavy chain at high Ca(2+), suggesting that a conformational change of calmodulin upon Ca(2+) binding, but not its physical dissociation, determines the inhibition of the motility activity. The present results revealed the dual regulation of myosin VI by phosphorylation and Ca(2+) binding to calmodulin light chain.
Collapse
Affiliation(s)
- M Yoshimura
- Department of Physiology, University of Massachusetts Medical School, 55 Lake Ave., Worcester, MA 01655-0127, USA
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
Myosin X is a member of the diverse myosin superfamily that is ubiquitously expressed in various mammalian tissues. Although its association with actin in cells has been shown, little is known about its biochemical and mechanoenzymatic function at the molecular level. We expressed bovine myosin X containing the entire head, neck, and coiled-coil domain and purified bovine myosin X in Sf9 cells. The Mg(2+)-ATPase activity of myosin X was significantly activated by actin with low K(ATP). The actin-activated ATPase activity was reduced at Ca(2+) concentrations above pCa 5 in which 1 mol of calmodulin light chain dissociates from the heavy chain. Myosin X translocates F-actin filaments with the velocity of 0.3 microm/s with the direction toward the barbed end. The actin translocating activity was inhibited at concentrations of Ca(2+) at pCa 6 in which no calmodulin dissociation takes place, suggesting that the calmodulin dissociation is not required for the inhibition of the motility. Unlike class V myosin, which shows a high affinity for F-actin in the presence of ATP, the K(actin) of the myosin X ATPase was much higher than that of myosin V. Consistently nearly all actin dissociated from myosin X in the presence of ATP. ADP did not significantly inhibit the actin-activated ATPase activity of myosin X, suggesting that the ADP release step is not rate-limiting. These results suggest that myosin X is a nonprocessive motor. Consistently myosin X failed to support the actin translocation at low density in an in vitro motility assay where myosin V, a processive motor, supports the actin filament movement.
Collapse
Affiliation(s)
- K Homma
- Department of Physiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655-0127, USA
| | | | | | | |
Collapse
|
12
|
Sokac AM, Bement WM. Regulation and expression of metazoan unconventional myosins. INTERNATIONAL REVIEW OF CYTOLOGY 2001; 200:197-304. [PMID: 10965469 DOI: 10.1016/s0074-7696(00)00005-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Unconventional myosins are molecular motors that convert adenosine triphosphate (ATP) hydrolysis into movement along actin filaments. On the basis of primary structure analysis, these myosins are represented by at least 15 distinct classes (classes 1 and 3-16), each of which is presumed to play a specific cellular role. However, in contrast to the conventional myosins-2, which drive muscle contraction and cytokinesis and have been studied intensively for many years in both uni- and multicellular organisms, unconventional myosins have only been subject to analysis in metazoan systems for a short time. Here we critically review what is known about unconventional myosin regulation, function, and expression. Several points emerge from this analysis. First, in spite of the high relative conservation of motor domains among the myosin classes, significant differences are found in biochemical and enzymatic properties of these motor domains. Second, the idea that characteristic distributions of unconventional myosins are solely dependent on the myosin tail domain is almost certainly an oversimplification. Third, the notion that most unconventional myosins function as transport motors for membranous organelles is challenged by recent data. Finally, we present a scheme that clarifies relationships between various modes of myosin regulation.
Collapse
Affiliation(s)
- A M Sokac
- Program in Cellular and Molecular Biology, University of Wisconsin, Madison 53706, USA
| | | |
Collapse
|
13
|
Abstract
The members of the Smad protein family are intracellular mediators of transforming growth factor beta (TGF-beta) signaling. Smad1 transduces bone morphogenetic protein signals, inducing formation of ventral mesoderm in Xenopus embryos, whereas Smad2 transduces activin/TGF-beta signals, generating dorsal mesoderm. Calmodulin directly binds to many Smads and was shown to down-regulate Smad2 activity in a cell culture system (Zimmerman, C. M., Kariapper, M. S. T., and Mathews, L. S. (1997) J. Biol. Chem. 273, 677-680). Here, we extend those data and demonstrate that calmodulin alters Smad signaling in living embryos, increasing Smad1 activity while inhibiting Smad2 function. To characterize this regulation, we undertook a structure-function analysis and found that calmodulin binds to two distinct and conserved regions in both Smad1 and Smad2. Receptor tyrosine kinase signaling also modifies Smad activity (Kretzschmar, M., Doody, J., and Massagué, J. (1997) Nature 389, 618-622; Kretzschmar, M., Doody, J., Timokhina, I., and Massagué, J. (1999) Genes Dev. 13, 804-816; de Caestecker, M. P., Parks, W. T., Frank, C. J., Castagnino, P., Bottaro, D. P., Roberts, A. B., and Lechleider, R. J. (1998) Genes Dev. 12, 1587-1592). We show that calmodulin binding to Smads inhibits subsequent Erk2-dependent phosphorylation of Smads and vice versa. These observations suggest the presence of a cross-talk between three major signaling cascades as follows: Ca(2+)/calmodulin, receptor tyrosine kinase, and TGF-beta pathways.
Collapse
Affiliation(s)
- A Scherer
- Center for Developmental Biology, Department of Molecular Biology and Oncology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9133, USA
| | | |
Collapse
|
14
|
Homma K, Saito J, Ikebe R, Ikebe M. Ca(2+)-dependent regulation of the motor activity of myosin V. J Biol Chem 2000; 275:34766-71. [PMID: 10945977 DOI: 10.1074/jbc.m003132200] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mouse myosin V constructs were produced that consisted of the myosin motor domain plus either one IQ motif (M5IQ1), two IQ motifs (M5IQ2), a complete set of six IQ motifs (SHM5), or the complete IQ motifs plus the coiled-coil domain (thus permitting formation of a double-headed structure, DHM5) and expressed in Sf9 cells. The actin-activated ATPase activity of all constructs except M5IQ1 was inhibited above pCa 5, but this inhibition was completely reversed by addition of exogenous calmodulin. At the same Ca(2+) concentration, 2 mol of calmodulin from SHM5 and DHM5 or 1 mol of calmodulin from M5IQ2 were dissociated, suggesting that the inhibition of the ATPase activity is due to dissociation of calmodulin from the heavy chain. However, the motility activity of DHM5 and M5IQ2 was completely inhibited at pCa 6, where no dissociation of calmodulin was detected. Inhibition of the motility activity was not reversed by the addition of exogenous calmodulin. These results indicate that inhibition of the motility is due to conformational changes of calmodulin upon the Ca(2+) binding to the high affinity site but is not due to dissociation of calmodulin from the heavy chain.
Collapse
Affiliation(s)
- K Homma
- Department of Physiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655-0127, USA
| | | | | | | |
Collapse
|
15
|
Nakamura A, Kohama K. Calcium regulation of the actin-myosin interaction of Physarum polycephalum. INTERNATIONAL REVIEW OF CYTOLOGY 1999; 191:53-98. [PMID: 10343392 DOI: 10.1016/s0074-7696(08)60157-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Plasmodia of Physarum polycephalum show vigorous cytoplasmic streaming, the motive force of which is supported by the actin-myosin interaction. Calcium is not required for the interaction but inhibits it. This calcium inhibition, a regulatory mode first discovered in Physarum, is the overwhelming mode of regulation of cytoplasmic streaming of plant cells and lower eukaryotes, and it is diametrically opposite to calcium activation of the interaction found in muscle and nonmuscle cells of the animal kingdom. Myosin, myosin II in myosin superfamily, is the most important protein for Ca2+ action. Its essential light chain, called calcium-binding light chain, is the sole protein that binds Ca2+. Although phosphorylation and dephosphorylation of myosin modify its properties, regulation of physiological significance is shown to be Ca-binding to myosin. The actin-binding protein of Physarum amplifies calcium inhibition when Ca2+ binds to calmodulin and other calcium-binding proteins. This review also includes characterization of this and other calcium-binding proteins of Physarum.
Collapse
Affiliation(s)
- A Nakamura
- Department of Pharmacology, Gunma University School of Medicine, Japan
| | | |
Collapse
|
16
|
Khoroshev MI, Munson SJ, Bikle DD. Six putative IQ motifs of the recombinant chicken intestinal brush border myosin I are involved in calmodulin binding. Arch Biochem Biophys 1999; 361:94-100. [PMID: 9882432 DOI: 10.1006/abbi.1998.0966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chicken brush border myosin I has up to six IQ sequence motifs at which it may bind calmodulin. To determine the relative contributions of these motifs to calmodulin binding, fusion deletion fragments were expressed in Escherichia coli and their ability to bind calmodulin was assessed by the gel overlay technique. The first three N-terminal IQ sites showed strong binding with calmodulin. Surprisingly, the last three incomplete IQ motifs also contributed substantial calmodulin binding. The first and fourth IQ sites bound calmodulin but tended to reduce binding in combination with other sites. The data indicate that interactions among all six IQ motifs contribute to the ability of myosin I to bind calmodulin.
Collapse
Affiliation(s)
- M I Khoroshev
- Department of Medicine, University of California, Veterans Affairs Medical Center, San Francisco, California, 94121, USA.
| | | | | |
Collapse
|
17
|
Zhu T, Beckingham K, Ikebe M. High affinity Ca2+ binding sites of calmodulin are critical for the regulation of myosin Ibeta motor function. J Biol Chem 1998; 273:20481-6. [PMID: 9685403 DOI: 10.1074/jbc.273.32.20481] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We coexpressed myosin Ibeta heavy chain with three different calmodulin mutants in which the two Ca2+-binding sites of the two N-terminal domain (E12Q), C-terminal domain (E34Q), or all four sites (E1234Q) are mutated in order to define the importance of these Ca2+ binding sites to the regulation of myosin Ibeta. The calmodulin mutated at the two Ca2+ binding sites in N-terminal domain and C-terminal domain lost its lower affinity Ca2+ binding site and higher affinity Ca2+ binding site, respectively. We found that, based upon the change in the actin-activated ATPase activities and actin translocating activities, myosin Ibeta with E12Q calmodulin has the regulatory characteristics similar to myosin Ibeta containing wild-type calmodulin, while myosin Ibeta with E34Q or E1234Q calmodulin lose all Ca2+ regulation. While the increase in myosin Ibeta ATPase activity paralleled the dissociation of 1 mol of calmodulin from myosin Ibeta heavy chain for both wild type (above pCa 5) and E12Q calmodulin (above pCa 6), the Ca2+ level required for the inhibition of actin-translocating activity of myosin Ibeta was lower than that required for dissociation of calmodulin, suggesting that the conformational change induced by the binding of Ca2+ at the high affinity site but not the dissociation of calmodulin is critical for the inhibition of the motor activity. Our results suggest that the regulation of unconventional myosins by Ca2+ is directly mediated by the Ca2+ binding to calmodulin, and that the C-terminal pair of Ca2+-binding sites are critical for this regulation.
Collapse
Affiliation(s)
- T Zhu
- Department of Physiology, University of Massachusetts Medical Center, Worcester, Massachusetts 01655, USA
| | | | | |
Collapse
|
18
|
Cameron LC, Carvalho RN, Araujo JR, Santos AC, Tauhata SB, Larson RE, Sorenson MM. Calcium-induced quenching of intrinsic fluorescence in brain myosin V is linked to dissociation of calmodulin light chains. Arch Biochem Biophys 1998; 355:35-42. [PMID: 9647664 DOI: 10.1006/abbi.1998.0700] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Myosin V isolated from chick brain (BM V) is a multimeric protein of about 640 kDa consisting of two intertwined heavy chains of 212 kDa and multiple light chains of 10 to 20 kDa. A distinctive feature of the heavy chain is an extended neck region with six consensus IQ sites for the binding of calmodulin (CaM) and myosin light chains. The actin-activated MgATPase has been shown to require >/=1 microM Ca2+ for full activity, and evidence points to a myosin-linked regulatory system where the CaM light chains participate as modulators for the Ca2+ signal. Still, the precise mechanism of Ca2+ regulation remains unknown. In the present study we have used the intrinsic tryptophan fluorescence of native BM V to monitor conformational changes of BM V induced by Ca2+, and we relate these changes to CaM dissociation from the BM V molecule. The fluorescence intensity decreases approximately 17% upon addition of sub-micromolar concentrations of Ca2+ (K0.5 = 0.038 microM). This decrease in fluorescence, which is dominated by a conformational change in the heavy chain, can be reversed by addition of 1, 2-di(2-aminoethoxy)ethane-N,N,N',N'tetraacetic acid (EGTA) followed by an excess of CaM, but not by addition of EGTA alone. Gel filtration of native BM V using HPLC shows that CaM is partially dissociated from the heavy chain in EGTA and dissociates further upon addition of sub-micromolar concentrations of Ca2+. These observations suggest that the affinity of CaM for at least one of the IQ sites on the BM V heavy chain decreases with Ca2+ and that the Ca2+ concentration required for this effect is lower than that needed to activate acto-BM V. Using a cosedimentation assay in the presence of actin, we also observe partial dissociation of CaM when Ca2+ is absent, but now the addition of Ca2+ has a biphasic effect: sub-micromolar Ca2+ concentrations lead to reassociation of CaM with the heavy chain, followed by dissociation when Ca2+ exceeds 5-10 microM. Thus, the binding of CaM to BM V is affected by both actin and Ca2+.
Collapse
Affiliation(s)
- L C Cameron
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-590 RJ, Brazil
| | | | | | | | | | | | | |
Collapse
|
19
|
Kahn J, Walcheck B, Migaki GI, Jutila MA, Kishimoto TK. Calmodulin regulates L-selectin adhesion molecule expression and function through a protease-dependent mechanism. Cell 1998; 92:809-18. [PMID: 9529256 DOI: 10.1016/s0092-8674(00)81408-7] [Citation(s) in RCA: 165] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Expression of the L-selectin adhesion molecule is rapidly down-regulated upon cell activation through proteolysis at a membrane-proximal site. Here we demonstrate that calmodulin, an intracellular calcium regulatory protein, specifically coprecipitates with L-selectin through a direct association with the cytoplasmic domain of L-selectin. Furthermore, calmodulin inhibitors disrupt L-selectin-dependent adhesion by inducing proteolytic release of L-selectin from the cell surface. The effects of the calmodulin inhibitors on L-selectin expression and function can be prevented by cotreatment with a hydroxamic acid-based metalloprotease inhibitor. Our results suggest a novel role for calmodulin in regulating the expression and function of an integral membrane protein through a protease-dependent mechanism. These findings may have broader implications for other cell surface proteins that also undergo regulated proteolysis.
Collapse
Affiliation(s)
- J Kahn
- Boehringer Ingelheim Pharmaceuticals, Inc., Department of Immunological Diseases, Ridgefield, Connecticut 06877, USA
| | | | | | | | | |
Collapse
|
20
|
Marquis RE, Hudspeth AJ. Effects of extracellular Ca2+ concentration on hair-bundle stiffness and gating-spring integrity in hair cells. Proc Natl Acad Sci U S A 1997; 94:11923-8. [PMID: 9342338 PMCID: PMC23657 DOI: 10.1073/pnas.94.22.11923] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
When a hair cell is stimulated by positive deflection of its hair bundle, increased tension in gating springs opens transduction channels, permitting cations to enter stereocilia and depolarize the cell. Ca2+ is thought to be required in mechanoelectrical transduction, for exposure of hair bundles to Ca2+ chelators eliminates responsiveness by disrupting tip links, filamentous interstereociliary connections that probably are the gating springs. Ca2+ also participates in adaptation to stimuli by controlling the activity of a molecular motor that sets gating-spring tension. Using a flexible glass fiber to measure hair-bundle stiffness, we investigated the effect of Ca2+ concentration on stiffness before and after the disruption of gating springs. The stiffness of intact hair bundles depended nonmonotonically on the extracellular Ca2+ concentration; the maximal stiffness of approximately 1200 microN.m-1 occurred when bundles were bathed in solutions containing 250 microM Ca2+, approximately the concentration found in frog endolymph. For cells exposed to solutions with sufficient chelator capacity to reduce the Ca2+ concentration below approximately 100 nM, hair-bundle stiffness fell to approximately 200 microN.m-1 and no longer exhibited Ca2+-dependent changes. Because cells so treated lost mechanoelectrical transduction, we attribute the reduction in bundle stiffness to tip-link disruption. The results indicate that gating springs are not linearly elastic; instead, they stiffen with increased strain, which rises with adaptation-motor activity at the physiological extracellular Ca2+ concentration.
Collapse
Affiliation(s)
- R E Marquis
- Howard Hughes Medical Institute and Laboratory of Sensory Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY 10021-6399, USA
| | | |
Collapse
|
21
|
Whittaker M, Milligan RA. Conformational changes due to calcium-induced calmodulin dissociation in brush border myosin I-decorated F-actin revealed by cryoelectron microscopy and image analysis. J Mol Biol 1997; 269:548-57. [PMID: 9217259 DOI: 10.1006/jmbi.1997.1058] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Brush border myosin I (BBMI) is a single-headed molecular motor. Its catalytic domain exhibits extensive sequence homology to the catalytic domain of myosin II, while its tail lacks the coiled-coil nature of myosin II. The BBMI tail domain contains at least three IQ motifs and binds calmodulin. Addition of calcium removes one of these calmodulin light chains, with effects on ATPase activity and motility in in vitro assays. Using the techniques of cryoelectron microscopy and helical image analysis we have calculated three-dimensional (3D) maps of BBMI-decorated actin filaments prepared in the presence and absence of calcium. The 3D maps describe a BBMI catalytic domain that is strikingly similar to the catalytic domain of myosin II subfragment 1 (S1), with the exception of a short amino-terminal region of the heavy chain, which is absent from BBMI. The tail domains of BBMI and S1 are highly divergent in structure, continuing on from their respective motor domains with very different geometries. Addition of calcium to BBMI, and the concomitant loss of a calmodulin light chain, results in an extensive reorganization of mass in the tail domain.
Collapse
Affiliation(s)
- M Whittaker
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
22
|
Nascimento AA, Cheney RE, Tauhata SB, Larson RE, Mooseker MS. Enzymatic characterization and functional domain mapping of brain myosin-V. J Biol Chem 1996; 271:17561-9. [PMID: 8663447 DOI: 10.1074/jbc.271.29.17561] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The actin binding and ATPase properties, as well as the functional domain structure of chick brain myosin-V, a two-headed, unconventional myosin, is reported here. Compared to conventional myosin from skeletal muscle, brain myosin-V exhibits low K-EDTA- and Ca-ATPase activities (1.8 and 0.8 ATP/s per head). The physiologically relevant Mg-ATPase is also low (approximately 0.3 ATP/s), unless activated by the presence of both F-actin and Ca2+ (Vmax of 27 ATP/s). Ca2+ stimulates the actin-activated Mg-ATPase over a narrow concentration range between 1 and 3 microM. In the presence of saturating Ca2+ and 75 mM KCl, surprisingly low concentrations of F-actin activate the Mg-ATPase in a hyperbolic manner (KATPase of 1.3 microM). Brain myosin-V also binds with relatively high affinity (compared to other known myosins) to F-actin in the presence of ATP, as assayed by cosedimentation. Digestion of brain myosin-V with calpain yielded a 65-kDa head domain fragment that cosediments with actin in an ATP-sensitive manner and a 80-kDa tail fragment that does not interact with F-actin. The 80-kDa fragment results from cleavage one residue beyond the proline-, glutamate-, serine-, threonine-rich region. Our data indicate that the Mg-ATPase cycle of brain myosin-V is tightly regulated by Ca2+, probably via direct binding to the calmodulin light chains in the neck domain, which like brush border myosin-I, results in partial (approximately 30%) dissociation of the calmodulin associated with brain myosin-V. The effect of Ca2+ binding, which appears to relieve suppression by the neck domain, can be mimicked by calpain cleavage near the head/neck junction.
Collapse
Affiliation(s)
- A A Nascimento
- Department of Biology, Yale University, New Haven, Connecticut 06511, USA
| | | | | | | | | |
Collapse
|
23
|
Zhu T, Sata M, Ikebe M. Functional expression of mammalian myosin I beta: analysis of its motor activity. Biochemistry 1996; 35:513-22. [PMID: 8555222 DOI: 10.1021/bi952053c] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The motor function of vertebrate unconventional myosins is not well understood. In this study, we initiated the baculovirus expression system to characterize a novel myosin I from bovine adrenal gland that we had previously cloned [Zhu, T., & Ikebe, M. (1994) FEBS Lett. 339, 31-36], which is classified as myosin I beta. The expressed myosin I beta was well extracted when calmodulin was coexpressed in Sf9 cells. The recombinant myosin I beta cosedimented with actin in an ATP dependent manner. The purified myosin I beta was composed of one heavy chain and three calmodulins. The electron microscopic image of myosin I beta confirmed its single-headed structure with a short tail, which is similar to that of brush border myosin I (BBMI). Myosin I beta showed high K+,EDTA--ATPase activity (approximately 0.14 mumol/min/mg) and Ca(2+)-ATPase activity (approximately 0.32 mumol/min/mg), and the KCl/pH dependence of these activities was different from that of conventional myosin. Mg(2+)-ATPase activity of myosin I beta alone was increased above pCa 6, while the actin dependent activity was not affected by Ca2+. Actin sliding velocity of myosin I beta in the absence of Ca2+ was 0.3-0.5 microns/s at 25 degrees C, which is much greater than that of BBMI (< 0.05 microns/s). The actin sliding activity was abolished above pCa 6, and the sliding activity was restored when exogenous calmodulin was added in the absence of Ca2+. Within similar Ca2+ concentrations, one of the three calmodulins was dissociated from myosin I beta. The results suggest that Ca2+ dependent association of calmodulin may function as a regulatory mechanism of myosin I beta motor activity and that the motor activity of mammalian myosin I is largely different among distinct myosin I isoforms.
Collapse
Affiliation(s)
- T Zhu
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | |
Collapse
|
24
|
The cytoskeleton of the intestinal epithelium. CYTOSKELETON IN SPECIALIZED TISSUES AND IN PATHOLOGICAL STATES 1996. [DOI: 10.1016/s1874-6020(96)80015-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Abstract
Myosins constitute a diverse superfamily of actin-based mechanoenzymes that are involved in many essential cellular motilities. In addition to conventional muscle myosin II, ten other classes of unconventional myosins are known. Many unconventional myosins bind multiple calmodulin light chains and Ca2+, which can dramatically alter their mechanochemical and enzymatic activity. Calmodulin-binding myosins can also be regulated by phospholipid binding, phosphorylation of the heavy chain and actin-binding proteins. The molecular details linking unconventional-myosin regulation and function are just beginning to emerge.
Collapse
Affiliation(s)
- J S Wolenski
- Dept of Biology, Yale University, KBT 224, PO Box 208103, New Haven, CT 06520-8103, USA
| |
Collapse
|
26
|
Chacko S, Longhurst PA. Contractile proteins and their response to bladder outlet obstruction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1995; 385:55-63; discussion 75-9. [PMID: 8571845 DOI: 10.1007/978-1-4899-1585-6_7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- S Chacko
- Department of Pathobiology, University of Pennsylvania, Philadelphia 10104, USA
| | | |
Collapse
|
27
|
Zot HG. Phospholipid membrane-associated brush border myosin-I activity. CELL MOTILITY AND THE CYTOSKELETON 1995; 30:26-37. [PMID: 7728866 DOI: 10.1002/cm.970300105] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Brush border myosin-I (BBMI) is associated with the membrane of intestinal epithelial cells where it probably plays a structural role. BBMI also has been identified on Golgi-derived vesicles in intestinal epithelial cells where it may translocate vesicles into the brush border. However, the mechanochemical activity of BBMI bound to a phospholipid membrane has not been described. This study reports that phospholipid membrane-associated BBMI displays ATPase activity when bound to phospholipids, but does not move actin filaments when associated with a phospholipid bilayer. BBMI does not bind significantly to brush border membrane lipids, which contain about 16% phosphatidylserine (PS), in either a pelleting or planar membrane assay. Similarly, planar membranes containing 20% PS do not bind a significant amount of BBMI. Increasing the concentration of PS to 40% does result in the binding of BBMI to both vesicles and planar membranes. This binding is enhanced with increased Ca2+ concentrations. BBMI retains its ATPase activity when bound to phospholipid vesicles containing 40% PS. However, BBMI attached to a phospholipid bilayer surface does not move actin filaments, even though the amount of BBMI bound to the lipid surface, as reflected by the number of actin filaments associated with bilayer-bound BBMI, is sufficient to observe motility in control experiments. When membrane fluidity is reduced by adding cholesterol to the membrane lipids containing 40% PS, BBMI still binds to the membrane, but again no actin filament motility is observed. The lack of binding by BBMI to brush border membrane lipids and the absence of membrane-associated BBMI mechanical activity suggest that factors in addition to membrane lipids are necessary for membrane-associated myosin-I motility.
Collapse
Affiliation(s)
- H G Zot
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas 75235-9040, USA
| |
Collapse
|
28
|
Chacko S, Jacob S, Horiuchi K. Myosin I from mammalian smooth muscle is regulated by caldesmon-calmodulin. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)40751-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
29
|
Affiliation(s)
- A J Hudspeth
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas 75235-9117
| | | |
Collapse
|
30
|
Fanning AS, Wolenski JS, Mooseker MS, Izant JG. Differential regulation of skeletal muscle myosin-II and brush border myosin-I enzymology and mechanochemistry by bacterially produced tropomyosin isoforms. CELL MOTILITY AND THE CYTOSKELETON 1994; 29:29-45. [PMID: 7820856 DOI: 10.1002/cm.970290104] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In this report, we have compared the physical properties and actin-binding characteristics of several bacterially produced nonmuscle and striated muscle tropomyosins, and we have examined the effects of these isoforms on the interactions of actin with two structurally distinct classes of myosin: striated muscle myosin-II and brush border (BB) myosin-I. All of the bacterially produced nonmuscle tropomyosins bind to F-actin with the expected stoichiometry and with affinities comparable to that of a tissue produced alpha-tropomyosin, although the striated muscle tropomyosin CTm7 has a lower affinity for F-actin than a tissue-purified striated muscle alpha tropomyosin. The bacterially produced isoforms also protect F-actin from severing by villin as effectively as tissue-purified striated muscle alpha-tropomyosin. The bacterially produced 284 amino acid striated muscle tropomyosin isoform CTm7, the 284 amino acid nonmuscle tropomyosin isoform CTm4, and two chimeric tropomyosins (CTm47 and CTm74) all inhibit the actin-activated MgATPase activity of muscle myosin S1 by approximately 70-85%, comparable to the inhibition seen with tissue-purified striated muscle alpha tropomyosin. The 248 amino acid tropomyosin XTm4 stimulated the actin-activated MgATPase activity of muscle myosin S1 approximately two- to threefold. The in vitro sliding of actin filaments translocated by muscle myosin-II (2.4 microns/sec at 19 degrees C, 5.0 microns/s at 24 degrees C) increased 25-65% in the presence of XTm4. Tropomyosins CTm4, CTm7, CTm47, and CTm74 had no detectable effect on myosin-II motility. The actin-activated MgATPase activity of BB myosin-I was inhibited 75-90% by all of the tropomyosin isoforms tested, including the 248 amino acid tropomyosin XTm4. BB myosin-I motility (50 nm/s) was completely inhibited by both the 248 and 284 amino acid tropomyosins. These results demonstrate that bacterially produced tropomyosins can differentially regulate myosin enzymology and mechanochemistry, and suggest a role for tropomyosin in the coordinated regulation of myosin isoforms in vivo.
Collapse
Affiliation(s)
- A S Fanning
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06521-8019
| | | | | | | |
Collapse
|
31
|
Swanljung-Collins H, Collins JH. Brush border myosin I has a calmodulin/phosphatidylserine switch and tail actin-binding. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1994; 358:205-13. [PMID: 7801806 DOI: 10.1007/978-1-4615-2578-3_19] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- H Swanljung-Collins
- Department of Biochemistry, Temple University School of Medicine, Philadelphia, PA 19140
| | | |
Collapse
|
32
|
Cheney RE, O'Shea MK, Heuser JE, Coelho MV, Wolenski JS, Espreafico EM, Forscher P, Larson RE, Mooseker MS. Brain myosin-V is a two-headed unconventional myosin with motor activity. Cell 1993; 75:13-23. [PMID: 8402892 DOI: 10.1016/s0092-8674(05)80080-7] [Citation(s) in RCA: 285] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Chicken myosin-V is a member of a recently recognized class of myosins distinct from both the myosins-I and the myosins-II. We report here the purification, electron microscopic visualization, and motor properties of a protein of this class. Myosin-V molecules consist of two heads attached to an approximately 30 nm stalk that ends in a globular region of unknown function. Myosin-V binds to and decorates F-actin, has actin-activated magnesium-ATPase activity, and is a barbed-end-directed motor capable of moving actin filaments at rates of up to 400 nm/s. Myosin-V does not form filaments. Each myosin-V heavy chain is associated with approximately four calmodulin light chains as well as two less abundant proteins of 23 and 17 kd.
Collapse
Affiliation(s)
- R E Cheney
- Department of Biology, Yale University, New Haven, Connecticut 06511
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Gillespie PG, Wagner MC, Hudspeth AJ. Identification of a 120 kd hair-bundle myosin located near stereociliary tips. Neuron 1993; 11:581-94. [PMID: 8398149 DOI: 10.1016/0896-6273(93)90071-x] [Citation(s) in RCA: 116] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
By adapting to sustained stimuli, hair cells of the internal ear maintain their optimal sensitivity to minute displacements. Biophysical experiments have suggested that adaptation is mediated by a molecular motor, most likely a member of the myosin family. To provide direct evidence for the presence of myosin isozymes in hair bundles, we used photoaffinity labeling with vanadate-trapped uridine and adenine nucleotides to identify proteins of 120, 160, and 230 kd in a preparation of hair bundles purified from the bullfrog's sacculus. The photoaffinity labeling properties of these proteins, particularly the 120 kd protein, resembled those of other well-characterized myosins. A 120 kd hair-bundle protein was also recognized by a monoclonal antibody directed against a vertebrate myosin I isozyme. Immunofluorescence microscopy localized this protein near the beveled top edge of the hair bundle, the site of mechanoelectrical transduction and adaptation.
Collapse
Affiliation(s)
- P G Gillespie
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas 75235-9039
| | | | | |
Collapse
|
34
|
Cheney RE, Riley MA, Mooseker MS. Phylogenetic analysis of the myosin superfamily. CELL MOTILITY AND THE CYTOSKELETON 1993; 24:215-23. [PMID: 8477454 DOI: 10.1002/cm.970240402] [Citation(s) in RCA: 214] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- R E Cheney
- Department of Biology, Yale University, New Haven, Connecticut 06511
| | | | | |
Collapse
|
35
|
Means AR, Cruzalegui F. Differential gene expression from a single transcription unit during spermatogenesis. RECENT PROGRESS IN HORMONE RESEARCH 1993; 48:79-97. [PMID: 8441865 DOI: 10.1016/b978-0-12-571148-7.50007-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- A R Means
- Department of Pharmacology, Duke University Medical Center, Durham North Carolina 27710
| | | |
Collapse
|
36
|
Brzeska H, Kulesza-Lipka D, Korn E. Inhibition of Acanthamoeba myosin I heavy chain kinase by Ca(2+)-calmodulin. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)35917-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
37
|
Swanljung-Collins H, Collins J. Phosphorylation of brush border myosin I by protein kinase C is regulated by Ca(2+)-stimulated binding of myosin I to phosphatidylserine concerted with calmodulin dissociation. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50751-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
38
|
Abstract
The unconventional myosins form a large and diverse group of molecular motors. The number of known unconventional myosins is increasing rapidly and in the past year alone two new classes have been identified. Substantial progress has been made towards characterizing the properties and functions of these motor proteins, which have been hypothesized to play fundamental roles in processes such as cell locomotion, phagocytosis and vesicle transport.
Collapse
Affiliation(s)
- R E Cheney
- Department of Biology, Yale University, New Haven, Connecticut 06511
| | | |
Collapse
|
39
|
Collins JH, Swanljung-Collins H. Calcium regulation of myosin I--a motor for membrane movement. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1992; 321:159-63. [PMID: 1449079 DOI: 10.1007/978-1-4615-3448-8_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- J H Collins
- Eastern Virginia Medical School, Department of Biochemistry, Norfolk 23401
| | | |
Collapse
|
40
|
Abstract
The traditional view of myosin, drawn from studies of myosins from striated muscles, is that of an elongated two-headed molecule that assembles into filaments. However, biochemical, molecular genetic and genetic studies have uncovered a host of ubiquitous single-headed nonfilamentous myosins known collectively as myosins I. All of the myosins I possess the myosin head domain, the motor portion of muscle myosins they have tail the filament-forming tail domain of muscle myosins they have tail domains that interact variously with membranes, actin and calmodulin. These alternative molecular interactions confer novel motile properties on myosins I, such as the ability to move membranes relative to actin and to move actin relative to actin without having to assemble into filaments. The numerous actin-based movements retained by cells lacking myosin II, the two-headed filamentous form of nonmuscle myosin, may be supported by myosins I.
Collapse
Affiliation(s)
- J A Hammer
- Laboratory of Cell Biology, Bldg 3, Rm B1-22, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
41
|
Swanljung-Collins H, Collins JH. Rapid, high-yield purification of intestinal brush border myosin I. Methods Enzymol 1991; 196:3-11. [PMID: 1827866 DOI: 10.1016/0076-6879(91)96003-a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|