1
|
Makwana MV, Muimo R, Jackson RF. Advances in development of new tools for the study of phosphohistidine. J Transl Med 2018; 98:291-303. [PMID: 29200202 DOI: 10.1038/labinvest.2017.126] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 08/27/2017] [Accepted: 09/03/2017] [Indexed: 01/04/2023] Open
Abstract
Protein phosphorylation is an important post-translational modification that is an integral part of cellular function. The O-phosphorylated amino-acid residues, such as phosphoserine (pSer), phosphothreonine (pThr) and phosphotyrosine (pTyr), have dominated the literature while the acid labile N-linked phosphorylated amino acids, such as phosphohistidine (pHis), have largely been historically overlooked because of the acidic conditions routinely used in amino-acid detection and analysis. This review highlights some misinterpretations that have arisen in the existing literature, pinpoints outstanding questions and potential future directions to clarify the role of pHis in mammalian signalling systems. Particular emphasis is placed on pHis isomerization and the hybrid functionality for both pHis and pTyr of the proposed τ-pHis analogue bearing the triazole residue.
Collapse
Affiliation(s)
- Mehul V Makwana
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, UK.,Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield S10 2RX, UK
| | - Richmond Muimo
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield S10 2RX, UK
| | | |
Collapse
|
2
|
Wieland T, Attwood PV. Alterations in reversible protein histidine phosphorylation as intracellular signals in cardiovascular disease. Front Pharmacol 2015; 6:173. [PMID: 26347652 PMCID: PMC4543942 DOI: 10.3389/fphar.2015.00173] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 08/03/2015] [Indexed: 01/27/2023] Open
Abstract
Reversible phosphorylation of amino acid side chains in proteins is a frequently used mechanism in cellular signal transduction and alterations of such phosphorylation patterns are very common in cardiovascular diseases. They reflect changes in the activities of the protein kinases and phosphatases involving signaling pathways. Phosphorylation of serine, threonine, and tyrosine residues has been extensively investigated in vertebrates, whereas reversible histidine phosphorylation, a well-known regulatory signal in lower organisms, has been largely neglected as it has been generally assumed that histidine phosphorylation is of minor importance in vertebrates. More recently, it has become evident that the nucleoside diphosphate kinase isoform B (NDPK-B), an ubiquitously expressed enzyme involved in nucleotide metabolism, and a highly specific phosphohistidine phosphatase (PHP) form a regulatory histidine protein kinase/phosphatase system in mammals. At least three well defined substrates of NDPK-B are known: The β-subunit of heterotrimeric G-proteins (Gβ), the intermediate conductance potassium channel SK4 and the Ca(2+) conducting TRP channel family member, TRPV5. In each of these proteins the phosphorylation of a specific histidine residue regulates cellular signal transduction or channel activity. This article will therefore summarize our current knowledge on protein histidine phosphorylation and highlight its relevance for cardiovascular physiology and pathophysiology.
Collapse
Affiliation(s)
- Thomas Wieland
- Institute for Experimental and Clinical Pharmacology and Toxicology, Mannheim Medical Faculty, Heidelberg University , Mannheim, Germany
| | - Paul V Attwood
- School of Chemistry and Biochemistry, The University of Western Australia , Crawley, Australia
| |
Collapse
|
3
|
P-N bond protein phosphatases. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1834:470-8. [PMID: 22450136 DOI: 10.1016/j.bbapap.2012.03.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Revised: 02/27/2012] [Accepted: 03/03/2012] [Indexed: 01/09/2023]
Abstract
The current work briefly reviews what is currently known about protein phosphorylation on arginine, lysine and histidine residues, where PN bonds are formed, and the protein kinases that catalyze these reactions. Relatively little is understood about protein arginine and lysine kinases and the role of phosphorylation of these residues in cellular systems. Protein histidine phosphorylation and the two-component histidine kinases play important roles in cellular signaling systems in bacteria, plants and fungi. Their roles in vertebrates are much less well researched and there are no protein kinases similar to the two-component histidine kinases. The main focus of the review however, is to present current knowledge of the characterization, mechanisms of action and biological roles of the phosphatases that catalyze the hydrolysis of these phosphoamino acids. Very little is known about protein phosphoarginine and phospholysine phosphatases, although their existence is well documented. Some of these phosphatases exhibit very broad specificity in terms of which phosphoamino acids are substrates, however there appear to be one or two quite specific protein phospholysine and phosphoarginine phosphatases. Similarly, there are phosphatases with broad substrate specificities that catalyze the hydrolysis of phosphohistidine in protein substrates, including the serine/threonine phosphatases 1, 2A and 2C. However there are two, more specific, protein phosphohistidine phosphatases that have been well characterized and for which structures are available, SixA is a phosphatase associated with two-component histidine kinase signaling in bacteria, and the other is found in a number of organisms, including mammals. This article is part of a Special Issue entitled: Chemistry and mechanism of phosphatases, diesterases and triesterases.
Collapse
|
4
|
Kowluru A. Emerging roles for protein histidine phosphorylation in cellular signal transduction: lessons from the islet beta-cell. J Cell Mol Med 2008; 12:1885-908. [PMID: 18400053 PMCID: PMC4506158 DOI: 10.1111/j.1582-4934.2008.00330.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Protein phosphorylation represents one of the key regulatory events in physiological insulin secretion from the islet β-cell. In this context, several classes of protein kinases (e.g. calcium-, cyclic nucleotide- and phospholipid-dependent protein kinases and tyrosine kinases) have been characterized in the β-cell. The majority of phosphorylated amino acids identified include phosphoserine, phosphothreonine and phosphotyrosine. Protein histidine phosphorylation has been implicated in the prokaryotic and eukaryotic cellular signal transduction. Most notably, phoshohistidine accounts for 6% of total protein phosphorylation in eukaryotes, which makes it nearly 100-fold more abundant than phosphotyrosine, but less abundant than phosphoserine and phosphothreonine. However, very little is known about the number of proteins with phosphohistidines, since they are highly labile and are rapidly lost during phosphoamino acid identification under standard experimental conditions. The overall objectives of this review are to: (i) summarize the existing evidence indicating the subcellular distribution and characterization of various histidine kinases in the islet β-cell, (ii) describe evidence for functional regulation of these kinases by agonists of insulin secretion, (iii) present a working model to implicate novel regulatory roles for histidine kinases in the receptor-independent activation, by glucose, of G-proteins endogenous to the β-cell, (iv) summarize evidence supporting the localization of protein histidine phosphatases in the islet β-cell and (v) highlight experimental evidence suggesting potential defects in the histidine kinase signalling cascade in islets derived from the Goto-Kakizaki (GK) rat, a model for type 2 diabetes. Potential avenues for future research to further decipher regulatory roles for protein histidine phosphorylation in physiological insulin secretion are also discussed.
Collapse
Affiliation(s)
- Anjaneyulu Kowluru
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA.
| |
Collapse
|
5
|
Chapter 14 Protein Histidine Phosphorylation. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/s0166-526x(08)00214-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
6
|
Klumpp S, Krieglstein J. Reversible phosphorylation of histidine residues in vertebrate proteins. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1754:291-5. [PMID: 16194631 DOI: 10.1016/j.bbapap.2005.07.035] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2005] [Revised: 07/18/2005] [Accepted: 07/20/2005] [Indexed: 11/24/2022]
Abstract
Knowledge on kinases and phosphatases acting on serine, threonine and tyrosine residues of vertebrate proteins is huge. These enzymes are still under intensive investigation at present. This is in sharp contrast to what is known about kinases and phosphatases acting on histidine, arginine, lysine and aspartate residues in vertebrate proteins. It also is in contrast to extensive studies of histidine/aspartate phosphorylation in prokaryotes. This minireview briefly summarizes what we have learned about the reversible phosphorylation of histidine residues in mammals. It is described how the field developed during 40 years of science. The article especially highlights the discovery of the first protein histidine phosphatase from vertebrates. Having identified and characterized a protein histidine phosphatase provides at least one desperately required tool to handle and study phosphorylation and dephosphorylation of histidine residues in vertebrates in more detail. Recent evidence even suggests an involvement of histidine phosphorylation in signal transduction.
Collapse
Affiliation(s)
- Susanne Klumpp
- Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, Hittorfstr. 58-62, D-48149 Münster, Germany.
| | | |
Collapse
|
7
|
Besant PG, Attwood PV. Mammalian histidine kinases. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1754:281-90. [PMID: 16188507 DOI: 10.1016/j.bbapap.2005.07.026] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2005] [Revised: 07/19/2005] [Accepted: 07/19/2005] [Indexed: 10/25/2022]
Abstract
Protein phosphorylation is one of the most ubiquitous and important types of post-translational modification for the regulation of cell function. The importance of two-component histidine kinases in bacteria, fungi and plants has long been recognised. In mammals, the regulatory roles of serine/threonine and tyrosine kinases have attracted most attention. However, the existence of histidine kinases in mammalian cells has been known for many years, although little is still understood about their biological roles by comparison with the hydroxyamino acid kinases. In addition, with the exception of NDP kinase, other mammalian histidine kinases remain to be identified and characterised. NDP kinase is a multifunctional enzyme that appears to act as a protein histidine kinase and as such, to regulate the activation of some G-proteins. Histone H4 histidine kinase activity has been shown to correlate with cellular proliferation and there is evidence that it is an oncodevelopmental marker in liver. This review mainly concentrates on describing recent research on these two types of histidine kinase. Developments in methods for the detection and assay of histidine kinases, including mass spectrometric methods for the detection of phosphohistidines in proteins and in-gel kinase assays for histone H4 histidine kinases, are described. Little is known about inhibitors of mammalian histidine kinases, although there is much interest in two-component histidine kinase inhibitors as potential antibiotics. The inhibition of a histone H4 histidine kinase by genistein is described and that of two-component histidine kinase inhibitors of structurally-related mammalian protein kinases. In addition, recent findings concerning mammalian protein histidine phosphatases are briefly described.
Collapse
Affiliation(s)
- Paul G Besant
- School of Biomedical and Chemical Sciences (M310), The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | | |
Collapse
|
8
|
|
9
|
Motojima K. 17β -Hydroxysteroid dehydrogenase type 11 is a major peroxisome proliferator-activated receptor α-regulated gene in mouse intestine. ACTA ACUST UNITED AC 2004; 271:4141-6. [PMID: 15479243 DOI: 10.1111/j.1432-1033.2004.04352.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In order to study the role of peroxisome proliferator-activated receptor alpha in mouse intestine, its agonist-induced proteins were identified by peptide mass fingerprinting followed by Northern blot analysis using their cDNAs. One of the most remarkably induced proteins was identified as 17beta-hydroxysterol dehydrogenase type 11. Its very rapid induction by various agonists was most efficient in intestine and then in liver. These findings together with recently reported results showing the enzyme family's wide substrate spectrum, including not only glucocorticoids and sex steroids but also bile acids, fatty acids and branched chain amino acids, suggest new roles for both peroxisome proliferator-activated receptor alpha and 17beta-hydroxysterol dehydrogenase type 11 in lipid metabolism and/or detoxification in the intestine.
Collapse
Affiliation(s)
- Kiyoto Motojima
- Department of Biochemistry, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan.
| |
Collapse
|
10
|
Abstract
Perturbations of cell hydration as provoked by changes in ambient osmolarity or under isoosmotic conditions by hormones, second messengers, intracellular substrate accumulation, or reactive oxygen intermediates critically contribute to the physiological regulation of cell function. In general an increase in cell hydration stimulates anabolic metabolism and proliferation and provides cytoprotection, whereas cellular dehydration leads to a catabolic situation and sensitizes cells to apoptotic stimuli. Insulin produces cell swelling by inducing a net K+ and Na+ accumulation inside the cell, which results from a concerted activation of Na+/H+ exchange, Na+/K+/2Cl- symport, and the Na+/K(+)-ATPase. In the liver, insulin-induced cell swelling is critical for stimulation of glycogen and protein synthesis as well as inhibition of autophagic proteolysis. These insulin effects can largely be mimicked by hypoosmotic cell swelling, pointing to a role of cell swelling as a trigger of signal transduction. This article discusses insulin-induced signal transduction upstream of swelling and introduces the hypothesis that cell swelling as a signal amplifyer represents an essential component in insulin signaling, which contributes to the full response to insulin at the level of signal transduction and function. Cellular dehydration impairs insulin signaling and may be a major cause of insulin resistance, which develops in systemic hyperosmolarity, nutrient deprivation, uremia, oxidative challenges, and unbalanced production of insulin-counteracting hormones. Hydration changes affect cell functions at multiple levels (such as transcriptom, proteom, phosphoproteom, and the metabolom) and a system biological approach may allow us to develop a more holistic view on the hydration dependence of insulin signaling in the future.
Collapse
Affiliation(s)
- Freimut Schliess
- Clinic for Gastroenterology, Hepatology and Infectiology, Heinrich-Heine-University, Düsseldorf, Germany
| | | |
Collapse
|
11
|
Kowluru A. Regulatory roles for small G proteins in the pancreatic beta-cell: lessons from models of impaired insulin secretion. Am J Physiol Endocrinol Metab 2003; 285:E669-84. [PMID: 12959934 DOI: 10.1152/ajpendo.00196.2003] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Emerging evidence suggests that GTP-binding proteins (G proteins) play important regulatory roles in physiological insulin secretion from the islet beta-cell. Such conclusions were drawn primarily from experimental data derived through the use of specific inhibitors of G protein function. Data from gene depletion experiments appear to further substantiate key roles for these signaling proteins in the islet metabolism. The first part of this review will focus on findings supporting the hypothesis that activation of specific G proteins is essential for insulin secretion, including regulation of their function by posttranslational modifications at their COOH-terminal cysteines (e.g., isoprenylation). The second part will overview novel, non-receptor-dependent mechanism(s) whereby glucose might activate specific G proteins via protein histidine phosphorylation. The third section will review findings that appear to link abnormalities in the expression and/or functional activation of these key signaling proteins to impaired insulin secretion. It is hoped that this review will establish a basis for future research in this area of islet signal transduction, which presents a significant potential, not only in identifying key signaling proteins that are involved in physiological insulin secretion, but also in examining potential abnormalities in this signaling cascade that lead to islet dysfunction and onset of diabetes.
Collapse
Affiliation(s)
- Anjaneyulu Kowluru
- Department of Pharmaceutical Sciences 3601, Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48202.
| |
Collapse
|
12
|
Kowluru A. Defective protein histidine phosphorylation in islets from the Goto-Kakizaki diabetic rat. Am J Physiol Endocrinol Metab 2003; 285:E498-503. [PMID: 12799314 DOI: 10.1152/ajpendo.00121.2003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We recently described novel regulatory roles for protein histidine phosphorylation of key islet proteins (e.g., nucleoside diphosphate kinase and succinyl thiokinase) in insulin secretion from the islet beta-cell (Kowluru A. Diabetologia 44: 89-94, 2001; Kowluru A, Tannous M, and Chen HQ. Arch Biochem Biophys 398: 160-169, 2002). In this context, we also characterized a novel, ATP- and GTP-sensitive protein histidine kinase in isolated beta-cells that catalyzed the histidine phosphorylation of islet (endogenous) proteins as well as exogenously added histone 4, and we implicated this kinase in the activation of islet endogenous G proteins (Kowluru A. Biochem Pharmacol 63: 2091-2100, 2002). In the present study, we describe abnormalities in ATP- or GTP-mediated histidine phosphorylation of nucleoside diphosphate kinase in islets derived from the Goto-Kakizaki (GK) rat, a model for non-insulin-dependent diabetes. Furthermore, we provide evidence for a marked reduction in the activities of ATP- or GTP-sensitive histidine kinases in GK rat islets. On the basis of these observations, we propose that alterations in protein histidine phosphorylation could contribute toward insulin-secretory abnormalities demonstrable in the diabetic islet.
Collapse
Affiliation(s)
- Anjaneyulu Kowluru
- Department of Pharmaceutical Sciences, 3601 Applebaum Bldg., Wayne State University, 259 Mack Ave., Detroit, MI 48202, USA.
| |
Collapse
|
13
|
Abstract
The existence of protein kinases, known as histidine kinases, which phosphorylate their substrates on histidine residues has been well documented in bacteria and also in lower eukaryotes such as yeast and plants. Their biological roles in cellular signalling pathways within these organisms have also been well characterised. The evidence for the existence of such enzymes in mammalian cells is much less well established and little has been determined about their cellular functions. The aim of the current review is to present a summary of what is known about mammalian histidine kinases. In addition, by consideration of the chemistry of phosphohistidine, what is currently known of some mammalian histidine kinases and the way in which they act in bacteria and other eukaryotes, a general role for mammalian histidine kinases is proposed. A histidine kinase phosphorylates a substrate protein, by virtue of the relatively high free energy of hydrolysis of phosphohistidine the phosphate group is easily transferred to either a small molecule or another protein with which the phosphorylated substrate protein specifically interacts. This allows a signalling process to occur, which may be downregulated by the action of phosphatases. Given the known importance of protein phosphorylation to the regulation of almost all aspects of cellular function, the investigation of the largely unexplored area of histidine phosphorylation in mammalian cells is likely to provide a greater understanding of cellular action and possibly provide a new set of therapeutic drug targets.
Collapse
Affiliation(s)
- Paul G Besant
- Proteomics International Pty Ltd, Level 21, Governor Stirling Tower, 197 St. Georges Terrace, Perth, WA 6000, Australia
| | | | | |
Collapse
|
14
|
Kowluru A. Identification and characterization of a novel protein histidine kinase in the islet beta cell: evidence for its regulation by mastoparan, an activator of G-proteins and insulin secretion. Biochem Pharmacol 2002; 63:2091-100. [PMID: 12110368 DOI: 10.1016/s0006-2952(02)01025-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Using insulin-secreting cells, we previously demonstrated that specific proteins associated with the cytosolic, secretory granule, and mitochondrial fractions undergo a novel type of phosphorylation on their histidine residues. Subsequently, we identified these proteins as the nucleoside diphosphate kinase (NDPK) [Kowluru and Metz, Biochemistry 1994;33:12495-503], the beta subunit of trimeric GTP-binding proteins [Kowluru et al., Biochem J 1996;313:97-107], and the alpha subunit of succinyl-CoA synthetase [Kowluru, Diabetologia 2001;44:89-94], respectively. Since several other enzymes of intermediary metabolism (e.g. ATP-citrate lyase and glucose-6-phosphatase) also undergo histidine phosphorylation, these initial findings may have a more generalized significance to beta cells. Herein, we characterized a novel protein histidine kinase in pancreatic beta cells, and determined it to be acid- and heat-labile as well as alkali-resistant in its phosphorylation of histone 4. Such an activity was detected in normal rat islets, human islets, and clonal beta (HIT-T15 and INS-1) cells, and could utilize either ATP or GTP as a phosphoryl donor (with K(m) values in the range of 60-100 microM). On a size-exclusion column, its molecular mass was estimated to be in the range of 60-70 kDa. It was stimulated by divalent cations (Mg(2+)>Mn(2+)>control=Ca(2+)=Zn(2+)=Co(2+)), but was resistant to polyamines. It was inactivated by known in vitro inhibitors of protein histidine phosphorylation (e.g. UDP or cromoglycate). Mastoparan, a global activator of G-proteins and insulin secretion from isolated beta cells, but not mastoparan-17, its inactive analog, stimulated histidine kinase activity and histidine phosphorylation of G(beta) subunit and insulin secretion from isolated rat islets. These studies identify, for the first time, a protein kinase activity in the pancreatic beta cell that does not act on traditional -Ser, -Tyr, or -Thr residues. They also establish a possible link between histidine kinase activity and G(beta) phosphorylation in isolated beta cells.
Collapse
Affiliation(s)
- Anjaneyulu Kowluru
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, Wayne State University, Detroit, MI 48201, USA.
| |
Collapse
|
15
|
Abstract
Glycopeptide antibiotics are integral components of the current antibiotic arsenal that is under strong pressures as a result of the emergence of a variety of resistance mechanisms over the past 15 years. Resistance has manifested itself largely through the expression of genes that encode proteins that reprogram cell wall biosynthesis and thus evade the action of the antibiotic in the enterococci, though recently new mechanisms have appeared that afford resistance and tolerance in the more virulent staphylococci and streptococci. Overcoming glycopeptide resistance will require innovative approaches to generate new antibiotics or otherwise to inhibit the action of resistance elements in various bacteria. The chemical complexity of the glycopeptides, the challenges of discovering and successfully exploiting new targets, and the growing number of distinct resistance types all increase the difficulty of the current problem we face as a result of the emergence of glycopeptide resistance.
Collapse
Affiliation(s)
- Jeff Pootoolal
- Antimicrobial Research Centre, Department of Biochemistry, McMaster University, Hamilton, Ontario, Canada.
| | | | | |
Collapse
|
16
|
Affiliation(s)
- Eiling Tan
- Department of Biochemistry, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | | | | |
Collapse
|
17
|
Besant PG, Attwood PV. Detection of a mammalian histone H4 kinase that has yeast histidine kinase-like enzymic activity. Int J Biochem Cell Biol 2000; 32:243-53. [PMID: 10687958 DOI: 10.1016/s1357-2725(99)00119-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A well characterized histidine kinase purified from yeast has been shown to phosphorylate histone H4 on a histidine residue. This enzyme is unlike the two-component histidine kinases predominantly found in prokaryotes. Until now, a histidine kinase similar to this yeast enzyme has not been purified from a mammalian source. By using a purification scheme similar to that used to purify the yeast histidine kinase, a protein fraction with histone H4 kinase activity has been isolated from porcine thymus. The yeast histidine kinase was shown to be detectable using an in-gel kinase assay system and using this system, four major bands of histone H4 kinase activity were apparent in the porcine thymus preparation. Through the use of immunoprecipitation, alkaline hydrolysis and subsequent phosphoamino acid analysis it has been demonstrated that this partially purified kinase fraction is capable of phosphorylating histone H4 on histidine. In conclusion, an preparation has been made from porcine thymus that contains histone H4 kinase activity and at least one of the kinases present in this preparation is a histidine kinase.
Collapse
Affiliation(s)
- P G Besant
- Department of Biochemistry, The University of Western Australia, Nedlands, Australia
| | | |
Collapse
|
18
|
Passilly P, Schohn H, Jannin B, Cherkaoui Malki M, Boscoboinik D, Dauça M, Latruffe N. Phosphorylation of peroxisome proliferator-activated receptor alpha in rat Fao cells and stimulation by ciprofibrate. Biochem Pharmacol 1999; 58:1001-8. [PMID: 10509752 DOI: 10.1016/s0006-2952(99)00182-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The basic mechanism(s) by which peroxisome proliferators activate peroxisome proliferator-activated receptors (PPARs) is (are) not yet fully understood. Given the diversity of peroxisome proliferators, several hypotheses of activation have been proposed. Among them is the notion that peroxisome proliferators could activate PPARs by changing their phosphorylation status. In fact, it is well known that several members of the nuclear hormone receptor superfamily are regulated by phosphorylation. In this report, we show that the rat Fao hepatic-derived cell line, known to respond to peroxisome proliferators, exhibited a high content of PPARalpha. Alkaline phosphatase treatment of Fao cell lysate as well as immunoprecipitation of PPARalpha from cells prelabeled with [32P] orthophosphate clearly showed that PPARalpha is indeed a phosphoprotein in vivo. Moreover, treatment of rat Fao cells with ciprofibrate, a peroxisome proliferator, increased the phosphorylation level of the PPARalpha. In addition, treatment of Fao cells with phosphatase inhibitors (okadaic acid and sodium orthovanadate) decreased the activity of ciprofibrate-induced peroxisomal acyl-coenzyme A oxidase, an enzyme encoded by a PPARalpha target gene. Our results suggest that the gene expression controlled by peroxisome proliferators could be mediated in part by a modulation of the PPARalpha effect via a modification of the phosphorylation level of this receptor.
Collapse
Affiliation(s)
- P Passilly
- Université de Bourgogne, Laboratoire de Biologie Moléculaire et Cellulaire, Faculté des Sciences Gabriel, Dijon, France
| | | | | | | | | | | | | |
Collapse
|
19
|
Yakisich JS, Sidén A, Vargas VI, Eneroth P, Cruz M. Early effects of protein kinase modulators on DNA synthesis in rat cerebral cortex. Exp Neurol 1999; 159:164-76. [PMID: 10486185 DOI: 10.1006/exnr.1999.7121] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
By using tissue miniunits, protein kinase modulators, and topoisomerase inhibitors in short-term incubation (0-90 min) we studied (1) the role of protein phosphorylation in the immediate control of DNA replication in the developing rat cerebral cortex and (2) the mechanism of action for genistein-mediated DNA synthesis inhibition. Genistein decreased the DNA synthesis within less than 30 min. None of the other protein kinase inhibitors examined (herbimycin A, staurosporine, calphostin-C) or the protein phosphatase inhibitor sodium orthovanadate inhibited DNA synthesis and they did not affect the genistein-mediated inhibition. The selective topoisomerase inhibitors camptothecin and etoposide decreased the DNA synthesis to an extent similar to that of genistein and within less than 30 min. In addition, the effects of these substances on topoisomerase I and II were studied. Etoposide and genistein but not herbimycin A, staurosporine, or calphostin-C strongly inhibited the activity of topoisomerase II. Our results (1) strongly suggest that the net rate of DNA replication during the S phase of the cell cycle is independent of protein phosphorylation and (2) indicate that the early inhibitory effect of genistein on DNA synthesis is mediated by topoisomerase II inhibition rather than protein tyrosine kinase inhibition.
Collapse
Affiliation(s)
- J S Yakisich
- Applied Biochemistry, Clinical Research Center, Karolinska Institute, Novum, Huddinge University Hospital, Huddinge, S-141 86, Sweden
| | | | | | | | | |
Collapse
|
20
|
Soderling SH, Bayuga SJ, Beavo JA. Identification and characterization of a novel family of cyclic nucleotide phosphodiesterases. J Biol Chem 1998; 273:15553-8. [PMID: 9624145 DOI: 10.1074/jbc.273.25.15553] [Citation(s) in RCA: 221] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report the cloning, expression, and characterization of a new family of cyclic nucleotide phosphodiesterase (PDE) that has unique kinetic and inhibitor specificities. A clone corresponding to the C terminus of this PDE was initially identified by a bioinformatic approach and used to isolate a cDNA that is likely full-length. This novel PDE, designated as MMPDE9A1, shows highest mRNA expression in kidney with lower levels in liver, lung, and brain. The mRNA size by Northern blot analysis is approximately 2.0 kilobases, and the cDNA encoding PDE9A1 is 1929 base pairs in length. The largest open reading frame predicts a protein of 534 amino acids with a molecular mass of 62,000 Da. When expressed in COS-7 cells, PDE9A1 activity was not inhibited well by either the nonselective inhibitor 3-isobutyl-1-methyl-xanthine or the new selective PDE5 inhibitor, sildenafil, but it is inhibited by the PDE1/5 inhibitor (+)-cis-5,6a, 7,8,9 hyl] phenylmethyl]-5-methyl-cylopent[4,5]imidao[2, 1-b]purin-49(3H)one (SCH51866) with an IC50 of 1.55 microM. This new phosphodiesterase is highly specific for cGMP. Its Km of approximately 0.07 microM for cGMP is the lowest yet reported for a PDE, being at least 40-170 times lower than that of PDE5 and PDE6, respectively.
Collapse
Affiliation(s)
- S H Soderling
- Department of Pharmacology, University of Washington, Seattle, Washington 98195, USA
| | | | | |
Collapse
|
21
|
Motojima K, Passilly P, Jannin B, Latruffe N. Protein phosphorylation by peroxisome proliferators: species-specific stimulation of protein kinases and its role in PP-induced transcriptional activation. Ann N Y Acad Sci 1996; 804:413-23. [PMID: 8993560 DOI: 10.1111/j.1749-6632.1996.tb18632.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- K Motojima
- Department of Biochemistry, School of Pharmaceutical Sciences, Toho University, Chiba, Japan
| | | | | | | |
Collapse
|
22
|
Kim Y, Pesis KH, Matthews HR. Removal of phosphate from phosphohistidine in proteins. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1268:221-8. [PMID: 7662712 DOI: 10.1016/0167-4889(95)00062-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Kinetic constants of KM = 0.8 microM, 3 microM and 1.6 microM, and kcat = 9 s-1, 7 s-1 or 9 s-1 were determined for histidine dephosphorylation by protein phosphatases 1, 2A and 2C respectively. IC50 values were determined for the inhibition of protein phosphatase 1 by inhibitor 1 (IC50 = 1 nM), inhibitor-2 (IC50 = 3 nM) and okadaic acid (IC50 = 30 nM) and for the inhibition of protein phosphatase 2A by okadaic acid (IC50 = 0.02 nM) and microcystin-LR (IC50 = 1 nM). Inhibitor-1 (Ki = 0.7 nM) and okadaic acid (Ki = 32 nM) are noncompetitive with protein phosphatase 1. Some of the IC50 values were low enough to violate the assumptions of the usual inhibition equations and a more general approach to the analysis of the data was used. On the basis of these kinetic parameters and the presence of phosphohistidine, the major cellular protein serine/threonine phosphatases are likely to act as protein histidine phosphatases in the cell.
Collapse
Affiliation(s)
- Y Kim
- Department of Biological Chemistry, University of California at Davis 95616, USA
| | | | | |
Collapse
|
23
|
Crovello CS, Furie BC, Furie B. Histidine phosphorylation of P-selectin upon stimulation of human platelets: a novel pathway for activation-dependent signal transduction. Cell 1995; 82:279-86. [PMID: 7543025 DOI: 10.1016/0092-8674(95)90315-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Transient phosphorylation of histidine characterizes the two-component systems in prokaryotes that control important physiological functions, but analogous events have not been implicated in signal transduction in mammalian cells. To explore histidine phosphorylation during activation of human cells, stimulated platelets were analyzed for the formation of protein phosphohistidine in a model system employing P-selectin. P-selectin, a leukocyte adhesion molecule, undergoes rapid phosphorylation and selective dephosphorylation of tyrosine, serine, and threonine. We now establish that phosphorylation following platelet activation with thrombin or collagen generates phosphohistidine at histidines on the cytoplasmic tail of P-selectin. With thrombin stimulation, the kinetics of phosphohistidine appearance and disappearance of P-selectin are very rapid. Platelets exhibit a novel ligand-induced signaling pathway to generate phosphohistidine. These results provide direct biochemical evidence for the induction of rapid and reversible histidine phosphorylation in mammalian cells upon cell activation and represent a novel paradigm for mammalian cell signaling.
Collapse
Affiliation(s)
- C S Crovello
- Center for Hemostasis and Thrombosis Research, New England Medical Center, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|
24
|
Passilly P, Jannin B, Latruffe N. Influence of peroxisome proliferators on phosphoprotein levels in human and rat hepatic-derived cell lines. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 230:316-21. [PMID: 7601116 DOI: 10.1111/j.1432-1033.1995.0316i.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
To elucidate the effect of peroxisome proliferators on the signal-transduction pathway, we have compared the effect of ciprofibrate, an hypolipaemic agent, on the overall phosphoprotein level between rat and human well differentiated hepatic derived cell lines. The phosphorylation status of several phosphoproteins in the rat Fao cell line was increased by the drug while no changes were observed in the human HepG2 cell line. In rat Fao cells, this increase, which is concentration and time dependent, can be as much as eightfold for 20-kDa and 22-kDa proteins. Wy-14,643, a non-fibrate molecule and a more potent peroxisome proliferator than ciprofibrate, increased the phosphorylation status of the same phosphoproteins. Peroxisome proliferators may act by activating kinases inactive in control cells, by amplifying kinases already active in control cells or by inactivating phosphatases. The phosphoamino acid residues affected are essentially serine and threonine. This modification of the signal-transduction pathway by the peroxisome proliferators in rodent cells appears to be an early event or an independent mechanism of the peroxisome proliferation. These results support the accumulating evidence that the perturbation of this pathway may be a major cause of the hepatomegaly and the hepatocarcinogenesis induced by peroxisome proliferators in rodent species. In contrast, the lack of phosphorylation changes in the human HepG2 cell line supports the non-toxic effect of peroxisome proliferators also used as hypolipaemic agents in humans.
Collapse
Affiliation(s)
- P Passilly
- LBMC, Université de Bourgogne, Dijon, France
| | | | | |
Collapse
|
25
|
Abstract
Whole cell extracts from rat liver or spinach leaves contain divalent ion-independent protein histidine phosphatase activity due to phosphatases of the PP1/PP2A family. In the rat liver extract, almost all the activity was found in the PP1, PP2A1 and PP2A2 peaks. In the spinach leaf extract, four phosphorylase phosphatase activity peaks were resolved--three containing PP1 and one containing PP2A--and all showed histidine phosphatase activity. Thus, protein histidine phosphatase activity is expressed in the cytosolic forms of protein phosphatases of the PP1/PP2A family in mammalian and plant cells.
Collapse
Affiliation(s)
- H R Matthews
- Biochemistry Department, The University, Dundee, UK
| | | |
Collapse
|
26
|
Abstract
In this report we outline a protocol for rapid detection of histidine phosphoproteins in cellular crude extracts prepared from different tissues. The nature of the phosphorylated amino acid residues was confirmed by determination of their stability under different pH conditions and by direct phospho-amino acid analysis. Furthermore, DEPC treatment that can selectively modify the histidine residues blocks the phosphorylation. Interestingly, the phosphoprotein pattern detected under these conditions in four different tissues is very similar, suggesting that these proteins play important roles in biochemical pathways shared by many cells and tissues.
Collapse
Affiliation(s)
- S Noiman
- Department of Molecular Genetics and Virology, Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
27
|
Matthews HR. Protein kinases and phosphatases that act on histidine, lysine, or arginine residues in eukaryotic proteins: a possible regulator of the mitogen-activated protein kinase cascade. Pharmacol Ther 1995; 67:323-50. [PMID: 8577821 DOI: 10.1016/0163-7258(95)00020-8] [Citation(s) in RCA: 149] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Phosphohistidine goes undetected in conventional studies of protein phosphorylation, although it may account for 6% of total protein phosphorylation in eukaryotes. Procedures for studying protein N- kinases are described. Genes whose products are putative protein histidine kinases occur in a yeast and a plant. In rat liver plasma membranes, activation of the small G-protein, Ras, causes protein histidine phosphorylation. Cellular phosphatases dephosphorylate phosphohistidine. One eukaryotic protein histidine kinase has been purified, and specific proteins phosphorylated on histidine have been observed. There is a protein arginine kinase in mouse and protein lysine kinases in rat. Protein phosphohistidine may regulate the mitogen-activated protein kinase cascade.
Collapse
Affiliation(s)
- H R Matthews
- Department of Biological Chemistry, University of California at Davis 95616, USA
| |
Collapse
|
28
|
Abstract
Structural information about proteins involved in bacterial hexose transport mediated by the phosphoenolpyruvate:sugar phosphotransferase system is rapidly accumulating. Within the past year, two crystal structures and two solution NMR structures of the histidine-containing phosphocarrier protein have been reported, adding structural details to previous NMR and crystallographic work on this protein and on enzyme IIA. The crystal structure of the regulatory complex between the glucose enzyme IIA and glycerol kinase has been determined, and the association of the histidine-containing phosphocarrier protein and either the glucose enzyme IIA or the mannitol enzyme IIA have been studied by NMR. Proposals concerning the mechanism of phosphoryl transfer and the protein-protein interactions involved may now be tested more rigorously using these data.
Collapse
Affiliation(s)
- O Herzberg
- Center for Advanced Research in Biotechnology, University of Maryland Biotechnology Institute, Rockville 20850
| | | |
Collapse
|
29
|
Chapter 26. Protein Kinases and Phosphatases: Structural Biology and Synthetic Inhibitors. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 1994. [DOI: 10.1016/s0065-7743(08)60739-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|