1
|
Wu T, Liu Y, Zheng T, Dai Y, Li Z, Lin D. Fe-Based Nanomaterials and Plant Growth Promoting Rhizobacteria Synergistically Degrade Polychlorinated Biphenyls by Producing Extracellular Reactive Oxygen Species. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12771-12781. [PMID: 37583057 DOI: 10.1021/acs.est.3c02495] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Plant growth promoting rhizobacteria (PGPR) produce extracellular reactive oxygen species (ROS) to protect plants from external stresses. Fe-based nanomaterials can potentially interact with PGPR and synergistically degrade organic pollutants, yet they have received no study. Here, we studied how the interaction between a typical PGPR (Pseudomonas chlororaphis, JD37) and Fe-based nanomaterials facilitated the degradation of 2,4,4'-trichlorobiphenyl (PCB28), by comparing the zerovalent iron of 20 nm (nZVI20), 100 nm (nZVI100), and 5 μm; iron oxide nanomaterials (α-Fe2O3, γ-Fe2O3, and Fe3O4) of ca. 20 nm; and ferrous and ferric salts. Although all Fe materials (0.1 g L-1) alone could not degrade aqueous PCB28 (0.1 mg L-1) under dark or aerobic conditions, nZVI20, nZVI100, α-Fe2O3, and Fe2+ promoted PCB28 degradation by JD37, with the half-life of PCB28 shortened from 16.5 h by JD37 alone to 8.1 h with nZVI100 cotreatment. Mechanistically, the nanomaterials stimulated JD37 to secrete phenazine-1-carboxylic acid and accelerated the NADH/NAD+ conversion, promoting O2*- generation; JD37 increased Fe(II) dissolution from the nanomaterials, facilitating *OH generation; and the ROS gradually degraded PCB28 into benzoic acid through dihydroxy substitution, oxidation to quinone, and Michael addition. These findings provide a new strategy of nanoenabled biodegradation of organic pollutants by applying Fe-based nanomaterials and PGPR.
Collapse
Affiliation(s)
- Ting Wu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, P. R. China
- Xi'an Center, China Geological Survey, Ministry of Natural Resources, Xi'an 710119, P. R. China
| | - Yangzhi Liu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, P. R. China
| | - Tianying Zheng
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yunbu Dai
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, P. R. China
| | - Zhongyu Li
- Xi'an Center, China Geological Survey, Ministry of Natural Resources, Xi'an 710119, P. R. China
| | - Daohui Lin
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, P. R. China
- Zhejiang Ecological Civilization Academy, Anji 313300, P. R. China
| |
Collapse
|
2
|
Adewale P, Lang A, Huang F, Zhu D, Sun J, Ngadi M, Yang TC. A novel Bacillus ligniniphilus catechol 2,3-dioxygenase shows unique substrate preference and metal requirement. Sci Rep 2021; 11:23982. [PMID: 34907211 PMCID: PMC8671467 DOI: 10.1038/s41598-021-03144-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 11/26/2021] [Indexed: 12/03/2022] Open
Abstract
Identification of novel enzymes from lignin degrading microorganisms will help to develop biotechnologies for biomass valorization and aromatic hydrocarbons degradation. Bacillus ligniniphilus L1 grows with alkaline lignin as the single carbon source and is a great candidate for ligninolytic enzyme identification. The first dioxygenase from strain L1 was heterologously expressed, purified, and characterized with an optimal temperature and pH of 32.5 °C and 7.4, respectively. It showed the highest activity with 3-ethylcatechol and significant activities with other substrates in the decreasing order of 3-ethylcatechol > 3-methylcatechol > 3-isopropyl catechol > 2, 3-dihydroxybiphenyl > 4-methylcatechol > catechol. It did not show activities against other tested substrates with similar structures. Most reported catechol 2,3-dioxygenases (C23Os) are Fe2+-dependent whereas Bacillus ligniniphilus catechol 2,3-dioxygenase (BLC23O) is more Mn2+- dependent. At 1 mM, Mn2+ led to 230-fold activity increase and Fe2+ led to 22-fold increase. Sequence comparison and phylogenetic analyses suggested that BL23O is different from other Mn-dependent enzymes and uniquely grouped with an uncharacterized vicinal oxygen chelate (VOC) family protein from Paenibacillus apiaries. Gel filtration analysis showed that BLC23O is a monomer under native condition. This is the first report of a C23O from Bacillus ligniniphilus L1 with unique substrate preference, metal-dependency, and monomeric structure.
Collapse
Affiliation(s)
- Peter Adewale
- Bioprocessing and Biocatalysis Team, Aquatic and Crop Resource Development Research Centre, National Research Council Canada, 100 Sussex Drive, Ottawa, ON, K1A 0R6, Canada
| | - Alice Lang
- Bioprocessing and Biocatalysis Team, Aquatic and Crop Resource Development Research Centre, National Research Council Canada, 100 Sussex Drive, Ottawa, ON, K1A 0R6, Canada
| | - Fang Huang
- Bioprocessing and Biocatalysis Team, Aquatic and Crop Resource Development Research Centre, National Research Council Canada, 100 Sussex Drive, Ottawa, ON, K1A 0R6, Canada
| | - Daochen Zhu
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jianzhong Sun
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Michael Ngadi
- Bioresource Engineering Department, McGill University, 21111 Lakeshore Rd., Ste-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Trent Chunzhong Yang
- Bioprocessing and Biocatalysis Team, Aquatic and Crop Resource Development Research Centre, National Research Council Canada, 100 Sussex Drive, Ottawa, ON, K1A 0R6, Canada.
| |
Collapse
|
3
|
Biodegradation of 7-Hydroxycoumarin in Pseudomonas mandelii 7HK4 via ipso-Hydroxylation of 3-(2,4-Dihydroxyphenyl)-propionic Acid. Molecules 2018; 23:molecules23102613. [PMID: 30321993 PMCID: PMC6222606 DOI: 10.3390/molecules23102613] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 10/08/2018] [Accepted: 10/10/2018] [Indexed: 11/17/2022] Open
Abstract
A gene cluster, denoted as hcdABC, required for the degradation of 3-(2,4-dihydroxyphenyl)-propionic acid has been cloned from 7-hydroxycoumarin-degrading Pseudomonas mandelii 7HK4 (DSM 107615), and sequenced. Bioinformatic analysis shows that the operon hcdABC encodes a flavin-binding hydroxylase (HcdA), an extradiol dioxygenase (HcdB), and a putative hydroxymuconic semialdehyde hydrolase (HcdC). The analysis of the recombinant HcdA activity in vitro confirms that this enzyme belongs to the group of ipso-hydroxylases. The activity of the proteins HcdB and HcdC has been analyzed by using recombinant Escherichia coli cells. Identification of intermediate metabolites allowed us to confirm the predicted enzyme functions and to reconstruct the catabolic pathway of 3-(2,4-dihydroxyphenyl)-propionic acid. HcdA catalyzes the conversion of 3-(2,4-dihydroxyphenyl)-propionic acid to 3-(2,3,5-trihydroxyphenyl)-propionic acid through an ipso-hydroxylation followed by an internal (1,2-C,C)-shift of the alkyl moiety. Then, in the presence of HcdB, a subsequent oxidative meta-cleavage of the aromatic ring occurs, resulting in the corresponding linear product (2E,4E)-2,4-dihydroxy-6-oxonona-2,4-dienedioic acid. Here, we describe a Pseudomonas mandelii strain 7HK4 capable of degrading 7-hydroxycoumarin via 3-(2,4-dihydroxyphenyl)-propionic acid pathway.
Collapse
|
4
|
Murugan K, Vasudevan N. Intracellular toxicity exerted by PCBs and role of VBNC bacterial strains in biodegradation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 157:40-60. [PMID: 29605643 DOI: 10.1016/j.ecoenv.2018.03.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/22/2018] [Accepted: 03/06/2018] [Indexed: 06/08/2023]
Abstract
Polychlorinated biphenyls (PCBs) are xenobiotic compounds that persists in the environment for long-term, though its productivity is banned. Abatement of the pollutants have become laborious due to it's recalcitrant nature in the environment leading to toxic effects in humans and other living beings. Biphenyl degrading bacteria co-metabolically degrade low chlorinated PCBs using the active metabolic pathway. bph operon possess different genetic arrangements in gram positive and gram negative bacteria. The binding ability of the genes and the active sites were determined by PCB docking studies. The active site of bphA gene with conserved amino acid residues determines the substrate specificity and biodegradability. Accumulation of toxic intermediates alters cellular behaviour, biomass production and downturn the metabolic activity. Several bacteria in the environment attain unculturable state which is viable and metabolically active but not cultivable (VBNC). Resuscitation-promoting factor (Rpf) and Rpf homologous protein retrieve the culturability of the so far uncultured bacteria. Recovery of this adaptive mechanism against various physical and chemical stressors make a headway in understanding the functionality of both environmental and medically important unculturable bacteria. Thus, this paper review about the general aspects of PCBs, cellular toxicity exerted by PCBs, role of unculturable bacterial strains in biodegradation, genes involved and degradation pathways. It is suggested to extrapolate the research findings on extracellular organic matters produced in culture supernatant of VBNC thus transforming VBNC to culturable state.
Collapse
Affiliation(s)
- Karuvelan Murugan
- Centre for Environmental Studies, Anna University, CEG Campus, Chennai, Tamil Nadu, India.
| | - Namasivayam Vasudevan
- Centre for Environmental Studies, Anna University, CEG Campus, Chennai, Tamil Nadu, India.
| |
Collapse
|
5
|
Tearing down to build up: Metalloenzymes in the biosynthesis lincomycin, hormaomycin and the pyrrolo [1,4]benzodiazepines. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:724-737. [DOI: 10.1016/j.bbapap.2016.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 02/24/2016] [Accepted: 03/02/2016] [Indexed: 11/21/2022]
|
6
|
Sidira M, Galanis A, Nikolaou A, Kanellaki M, Kourkoutas Y. Evaluation of Lactobacillus casei ATCC 393 protective effect against spoilage of probiotic dry-fermented sausages. Food Control 2014. [DOI: 10.1016/j.foodcont.2014.02.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
7
|
Defining a kinetic mechanism for l-DOPA 2,3 dioxygenase, a single-domain type I extradiol dioxygenase from Streptomyces lincolnensis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:607-14. [DOI: 10.1016/j.bbapap.2013.12.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 11/11/2013] [Accepted: 12/09/2013] [Indexed: 11/22/2022]
|
8
|
Solyanikova I, Golovleva L. Biochemical features of the degradation of pollutants by Rhodococcus as a basis for contaminated wastewater and soil cleanup. Microbiology (Reading) 2011. [DOI: 10.1134/s0026261711050158] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
9
|
Puglisi E, Cahill MJ, Lessard PA, Capri E, Sinskey AJ, Archer JAC, Boccazzi P. Transcriptional response of Rhodococcus aetherivorans I24 to polychlorinated biphenyl-contaminated sediments. MICROBIAL ECOLOGY 2010; 60:505-515. [PMID: 20369357 DOI: 10.1007/s00248-010-9650-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Accepted: 02/22/2010] [Indexed: 05/29/2023]
Abstract
We used a microarray targeting 3,524 genes to assess the transcriptional response of the actinomycete Rhodococcus aetherivorans I24 in minimal medium supplemented with various substrates (e.g., PCBs) and in both PCB-contaminated and non-contaminated sediment slurries. Relative to the reference condition (minimal medium supplemented with glucose), 408 genes were upregulated in the various treatments. In medium and in sediment, PCBs elicited the upregulation of a common set of 100 genes, including gene-encoding chaperones (groEL), a superoxide dismutase (sodA), alkyl hydroperoxide reductase protein C (ahpC), and a catalase/peroxidase (katG). Analysis of the R. aetherivorans I24 genome sequence identified orthologs of many of the genes in the canonical biphenyl pathway, but very few of these genes were upregulated in response to PCBs or biphenyl. This study is one of the first to use microarrays to assess the transcriptional response of a soil bacterium to a pollutant under conditions that more closely resemble the natural environment. Our results indicate that the transcriptional response of R. aetherivorans I24 to PCBs, in both medium and sediment, is primarily directed towards reducing oxidative stress, rather than catabolism.
Collapse
Affiliation(s)
- Edoardo Puglisi
- Istituto di Chimica Agraria ed Ambientale, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | | | | | | | | | | | | |
Collapse
|
10
|
Vanbroekhoven K, Ryngaert A, Wattiau P, Mot R, Springael D. Acinetobacter diversity in environmental samples assessed by 16S rRNA gene PCR-DGGE fingerprinting. FEMS Microbiol Ecol 2009; 50:37-50. [PMID: 19712375 DOI: 10.1016/j.femsec.2004.05.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
A primer pair was designed to selectively amplify a fragment of the Acinetobacter 16S rRNA gene from environmental samples by PCR. 16S rRNA gene products were only obtained in PCRs with DNA from members of the genus Acinetobacter and not with DNA from other bacterial species. Denaturing gradient gel electrophoresis (DGGE) of the Acinetobacter 16S rRNA gene amplicons enabled discrimination between different Acinetobacter species. PCR using the Acinetobacter primer pair allowed detection of Acinetobacter in soil with a detection limit of 10(4) cells g(-1) soil, but attachment of the GC-clamp to the forward primer resulted in a 100-fold decrease in sensitivity. Using a nested PCR approach, the detection limit could be lowered to at least 10 cells g(-1) of soil. The method was applied to assess Acinetobacter diversity in soil samples originating from different historically hydrocarbon-contaminated sites. In addition, for one oil-contaminated soil, the dynamics of the Acinetobacter community in response to different treatments was monitored over time in a laboratory biostimulation experimental set-up. In all cases, bands in the DGGE fingerprints were cloned and sequenced. Environmental samples taken from a mineral oil-contaminated site and from a kerosene-contaminated site demonstrated relatively simple Acinetobacter 16S rRNA gene fingerprints with A. lwoffii and A. johnsonii as dominant members. In contrast, soils derived from MTBE- and BTEX-contaminated sites did not harbor detectable Acinetobacter populations. Although Acinetobacter was detected in the soil employed for the biostimulation experiment prior to treatment, substantial changes in its populations were observed depending on the treatment.
Collapse
Affiliation(s)
- Karolien Vanbroekhoven
- Environmental and Process Technology, Vlaamse Instelling voor Technologisch Onderzoek, Boeretang 200, B-2400 Mol, Belgium
| | | | | | | | | |
Collapse
|
11
|
Abstract
Paenibacillus sp. (formerly Bacillus macerans) strain JJ-1b is able to grow on 4-hydroxybenzoate (4HB) as a sole source of carbon and energy and is known to degrade 4HB via the protocatechuate (PCA) 2,3-cleavage pathway. However, none of the genes involved in this pathway have been identified. In this study, we identified and characterized the JJ-1b genes for the 4HB catabolic pathway via the PCA 2,3-cleavage pathway, which consisted of praR and praABEGFDCHI. Based on the enzyme activities of cell extracts of Escherichia coli carrying praI, praA, praH, praB, praC, and praD, these genes were found to code for 4HB 3-hydroxylase, PCA 2,3-dioxygenase, 5-carboxy-2-hydroxymuconate-6-semialdehyde decarboxylase, 2-hydroxymuconate-6-semialdehyde dehydrogenase, 4-oxalocrotonate (OCA) tautomerase, and OCA decarboxylase, respectively, which are involved in the conversion of 4HB into 2-hydroxypenta-2,4-dienoate (HPD). The praE, praF, and praG gene products exhibited 45 to 61% amino acid sequence identity to the corresponding enzymes responsible for the catabolism of HPD to pyruvate and acetyl coenzyme A. The deduced amino acid sequence of praR showed similarity with those of IclR-type transcriptional regulators. Reverse transcription-PCR analysis revealed that praABEGFDCHI constitute an operon, and these genes were expressed during the growth of JJ-1b on 4HB and PCA. praR-praABEGFDCHI conferred the ability to grow on 4HB to E. coli, suggesting that praEGF were functional for the conversion of HPD to pyruvate and acetyl coenzyme A. A promoter analysis suggested that praR encodes a repressor of the pra operon.
Collapse
|
12
|
Biochemical characterization of l-DOPA 2,3-dioxygenase, a single-domain type I extradiol dioxygenase from lincomycin biosynthesis. Arch Biochem Biophys 2008; 479:131-8. [DOI: 10.1016/j.abb.2008.08.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 08/27/2008] [Accepted: 08/27/2008] [Indexed: 11/23/2022]
|
13
|
Abstract
Ring-cleaving dioxygenases catalyze the oxygenolytic fission of catecholic compounds, a critical step in the aerobic degradation of aromatic compounds by bacteria. Two classes of these enzymes have been identified, based on the mode of ring cleavage: intradiol dioxygenases utilize non-heme Fe(III) to cleave the aromatic nucleus ortho to the hydroxyl substituents; and extradiol dioxygenases utilize non-heme Fe(II) or other divalent metal ions to cleave the aromatic nucleus meta to the hydroxyl substituents. Recent genomic, structural, spectroscopic, and kinetic studies have increased our understanding of the distribution, evolution, and mechanisms of these enzymes. Overall, extradiol dioxygenases appear to be more versatile than their intradiol counterparts. Thus, the former cleave a wider variety of substrates, have evolved on a larger number of structural scaffolds, and occur in a wider variety of pathways, including biosynthetic pathways and pathways that degrade non-aromatic compounds. The catalytic mechanisms of the two enzymes proceed via similar iron-alkylperoxo intermediates. The ability of extradiol enzymes to act on a variety of non-catecholic compounds is consistent with proposed differences in the breakdown of this iron-alkylperoxo intermediate in the two enzymes, involving alkenyl migration in extradiol enzymes and acyl migration in intradiol enzymes. Nevertheless, despite recent advances in our understanding of these fascinating enzymes, the major determinant of the mode of ring cleavage remains unknown.
Collapse
Affiliation(s)
- Frédéric H Vaillancourt
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | | | | |
Collapse
|
14
|
Purification, characterization, and substrate specificity of two 2,3-dihydroxybiphenyl 1,2-dioxygenase from Rhodococcus sp. R04, showing their distinct stability at various temperature. Biochimie 2008; 90:1530-8. [PMID: 18585431 DOI: 10.1016/j.biochi.2008.05.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Accepted: 05/29/2008] [Indexed: 11/20/2022]
Abstract
The genes of two 2,3-dihydroxybiphenyl 1,2-dioxygenases (BphC1 and BphC2) were obtained from the gene library of Rhodococcus sp. R04. The enzymes have been purified to apparent electrophoretic homogeneity from the cell extracts of the recombinant harboring bphC1 and bphC2. Both BphC1 and BphC2 were hexamers, consisting of six subunits of 35 and 33 kDa as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, respectively. The enzymes had similar optimal pH (pH 9.0), but different temperatures for their maximum activity (30 degrees C for BphC1, 80 degrees C for BphC2). In addition, they exhibited distinct stability at various temperatures. The enzymes could cleave a wide range of catechols, with 2,3-dihydroxybiphenyl being the optimum substrate for BphC1 and BphC2. BphC1 was inhibited by 2,3-dihydroxybiphenyl, catechol and 3-chlorocatechol, whereas BphC2 showed strong substrate inhibition for all the given substrates. BphC2 exhibited a half-life of 15 min at 80 degrees C and 50 min at 70 degrees C, making it the most thermostable extradiol dioxygenase studied in mesophilic bacteria. After disruption of bphC1 and bphC2 genes, R04DeltaC1 (bphC1 mutant) delayed the time of their completely eliminating biphenyl another 15 h compared with its parent strain R04, but R04DeltaC2 (bphC2 mutant) lost the ability to grow on biphenyl, suggesting that BphC1 plays an assistant role in the degrading of biphenyl by strain R04, while BphC2 is essential for the growth of strain R04 on biphenyl.
Collapse
|
15
|
Furukawa K, Fujihara H. Microbial degradation of polychlorinated biphenyls: Biochemical and molecular features. J Biosci Bioeng 2008; 105:433-49. [PMID: 18558332 DOI: 10.1263/jbb.105.433] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Accepted: 02/04/2008] [Indexed: 11/17/2022]
Affiliation(s)
- Kensuke Furukawa
- Depatment of Food and Bioscience, Faculty of Food and Nutrition, Beppu University, Beppu, Ohita 874-8501, Japan.
| | | |
Collapse
|
16
|
Solyanikova IP, Travkin VM, Rybkina DO, Plotnikova EG, Golovleva LA. Variability of enzyme system of Nocardioform bacteria as a basis of their metabolic activity. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2008; 43:241-252. [PMID: 18368545 DOI: 10.1080/03601230701771180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The present review describes some aspects of organization of biodegradative pathways of Nocardioform microorganisms, first of all, with respect to their ability to degrade aromatic compounds, mostly methylbenzoate, chlorosubstituted phenols, and chlorinated biphenyls and the intermediates of their transformation: 4-chlorobenzoate and para-hydroxybenzoate. Various enzyme systems induced during degradation processes are defined. The ability of microorganisms to induce a few key enzymes under the influence of xenobiotics is described. This ability may increase the biodegradative potential of strains allowing them to survive in the changing environment or demonstrate to some extent the unspecific response of microorganisms to the effect of toxicants. Nocardioform microorganisms responsible for degradation of such persistent compounds as polychlorinated biphenyls, polyaromatic hydrocarbons, chlorinated benzoates and phenols and other xenobiotics are characterized. The possibility of using Nocardioform microorganisms in some aspects of biotechnology due to their ability to produce some compounds important for industry is also estimated.
Collapse
Affiliation(s)
- Inna P Solyanikova
- Skryabin' Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | |
Collapse
|
17
|
Gonçalves ER, Hara H, Miyazawa D, Davies JE, Eltis LD, Mohn WW. Transcriptomic assessment of isozymes in the biphenyl pathway of Rhodococcus sp. strain RHA1. Appl Environ Microbiol 2006; 72:6183-93. [PMID: 16957245 PMCID: PMC1563596 DOI: 10.1128/aem.00947-06] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2006] [Accepted: 06/21/2006] [Indexed: 11/20/2022] Open
Abstract
Rhodococcus sp. RHA1 grows on a broad range of aromatic compounds and vigorously degrades polychlorinated biphenyls (PCBs). Previous work identified RHA1 genes encoding multiple isozymes for most of the seven steps of the biphenyl (BPH) pathway, provided evidence for coexpression of some of these isozymes, and indicated the involvement of some of these enzymes in the degradation of BPH, ethylbenzene (ETB), and PCBs. To investigate the expression of these isozymes and better understand how they contribute to the robust degradative capacity of RHA1, we comprehensively analyzed the 9.7-Mb genome of RHA1 for BPH pathway genes and characterized the transcriptome of RHA1 growing on benzoate (BEN), BPH, and ETB. Sequence analyses revealed 54 potential BPH pathway genes, including 28 not previously reported. Transcriptomic analysis with a DNA microarray containing 70-mer probes for 8,213 RHA1 genes revealed a suite of 320 genes of diverse functions that were upregulated during growth both on BPH and on ETB, relative to growth on the control substrate, pyruvate. By contrast, only 65 genes were upregulated during growth on BEN. Quantitative PCR assays confirmed microarray results for selected genes and indicated that some of the catabolic genes were upregulated over 10,000-fold. Our analysis suggests that up to 22 enzymes, including 8 newly identified ones, may function in the BPH pathway of RHA1. The relative expression levels of catabolic genes did not differ for BPH and ETB, suggesting a common regulatory mechanism. This study delineated a suite of catabolic enzymes for biphenyl and alkyl-benzenes in RHA1, which is larger than previously recognized and which may serve as a model for catabolism in other environmentally important bacteria having large genomes.
Collapse
Affiliation(s)
- Edmilson R Gonçalves
- Department of Microbiology and Immunology, University of British Columbia, 1516-2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | | | | | | | |
Collapse
|
18
|
Peng X, Taki H, Komukai S, Sekine M, Kanoh K, Kasai H, Choi SK, Omata S, Tanikawa S, Harayama S, Misawa N. Characterization of four Rhodococcus alcohol dehydrogenase genes responsible for the oxidation of aromatic alcohols. Appl Microbiol Biotechnol 2005; 71:824-32. [PMID: 16292529 DOI: 10.1007/s00253-005-0204-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2005] [Revised: 09/21/2005] [Accepted: 09/23/2005] [Indexed: 10/25/2022]
Abstract
Four genes were isolated and characterized for alcohol dehydrogenases (ADHs) catalyzing the oxidation of aromatic alcohols such as benzyl alcohol to their corresponding aldehydes, one from o-xylene-degrading Rhodococcus opacus TKN14 and the other three from n-alkane-degrading Rhodococcus erythropolis PR4. Various aromatic alcohols were bioconverted to their corresponding carboxylic acids using Escherichia coli cells expressing each of the four ADH genes together with an aromatic aldehyde dehydrogenase gene (phnN) from Sphingomonas sp. strain 14DN61. The ADH gene (designated adhA) from strain TKN14 had the ability to biotransform a wide variety of aromatic alcohols, i.e., 2-hydroxymethyl-6-methylnaphthalene, 2-hydroxymethylnaphthalene, xylene-alpha,alpha'-diol, 3-chlorobenzyl alcohol, and vanillyl alcohol, in addition to benzyl alcohol with or without a hydroxyl, methyl, or methoxy substitution. In contrast, the three ADH genes of strain PR4 (designated adhA, adhB, and adhC) exhibited lower ability to degrade these alcohols: these genes stimulated the conversion of the alcohol substrates by only threefold or less of the control value. One exception was the conversion of 3-methoxybenzyl alcohol, which was stimulated sevenfold by adhB. A phylogenetic analysis of the amino acid sequences of these four enzymes indicated that they differed from other Zn-dependent ADHs.
Collapse
Affiliation(s)
- Xue Peng
- Marine Biotechnology Institute, 3-75-1 Heita, Kamaishi-shi, 026-0001, Iwate, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Wesche J, Hammer E, Becher D, Burchhardt G, Schauer F. The bphC gene-encoded 2,3-dihydroxybiphenyl-1,2-dioxygenase is involved in complete degradation of dibenzofuran by the biphenyl-degrading bacterium Ralstonia sp. SBUG 290. J Appl Microbiol 2005; 98:635-45. [PMID: 15715866 DOI: 10.1111/j.1365-2672.2004.02489.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AIMS Biphenyl-degrading bacteria are able to metabolize dibenzofuran via lateral dioxygenation and meta-cleavage of the dihydroxylated dibenzofuran produced. This degradation was considered to be incomplete because accumulation of a yellow-orange ring-cleavage product was observed. In this study, we want to characterize the 1,2-dihydroxydibenzofuran cleaving enzyme which is involved in dibenzofuran degradation in the bacterium Ralstonia sp. SBUG 290. METHODS AND RESULTS In this strain, complete degradation of dibenzofuran was observed after cultivation on biphenyl. The enzyme shows a wide substrate utilization spectrum, including 1,2-dihydroxydibenzofuran, 2,3-dihydroxybiphenyl, 1,2-dihydroxynaphthalene, 3- and 4-methylcatechol and catechol. MALDI-TOF analysis of the protein revealed a strong homology to the bphC gene products. We therefore cloned a 3.2 kb DNA fragment containing the bphC gene of Ralstonia sp. SBUG 290. The deduced amino acid sequence of bphC is identical to that of the corresponding gene in Pseudomonas sp. KKS102. The bphC gene was expressed in Escherichia coli and the meta-fission activity was detected using either 2,3-dihydroxybiphenyl or 1,2-dihydroxydibenzofuran as substrate. CONCLUSIONS These results demonstrate that complete degradation of dibenzofuran by biphenyl degraders can occur after initial oxidation steps catalysed by gene products encoded by the bph-operon. The ring fission of 1,2-dihydroxydibenzofuran is catalysed by BphC. Differences found in the metabolism of the ring fission product of dibenzofuran among biphenyl degrading bacteria are assumed to be caused by different substrate specificities of BphD. SIGNIFICANCE AND IMPACT OF THE STUDY This study shows for the first time that the gene products of the bph-operon are involved in the mineralization of dibenzofuran in biphenyl degrading bacteria.
Collapse
Affiliation(s)
- J Wesche
- Institut für Mikrobiologie, Ernst-Moritz-Arndt-Universität Greifswald, Greifswald, Germany.
| | | | | | | | | |
Collapse
|
20
|
Fortin PD, Lo ATF, Haro MA, Kaschabek SR, Reineke W, Eltis LD. Evolutionarily divergent extradiol dioxygenases possess higher specificities for polychlorinated biphenyl metabolites. J Bacteriol 2005; 187:415-21. [PMID: 15629912 PMCID: PMC543568 DOI: 10.1128/jb.187.2.415-421.2005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The reactivities of four evolutionarily divergent extradiol dioxygenases towards mono-, di-, and trichlorinated (triCl) 2,3-dihydroxybiphenyls (DHBs) were investigated: 2,3-dihydroxybiphenyl dioxygenase (EC 1.13.11.39) from Burkholderia sp. strain LB400 (DHBDLB400), DHBDP6-I and DHBDP6-III from Rhodococcus globerulus P6, and 2,2',3-trihydroxybiphenyl dioxygenase from Sphingomonas sp. strain RW1 (THBDRW1). The specificity of each isozyme for particular DHBs differed by up to 3 orders of magnitude. Interestingly, the Kmapp values of each isozyme for the tested polychlorinated DHBs were invariably lower than those of monochlorinated DHBs. Moreover, each enzyme cleaved at least one of the tested chlorinated (Cl) DHBs better than it cleaved DHB (e.g., apparent specificity constants for 3',5'-dichlorinated [diCl] DHB were 2 to 13.4 times higher than for DHB). These results are consistent with structural data and modeling studies which indicate that the substrate-binding pocket of the DHBDs is hydrophobic and can accommodate the Cl DHBs, particularly in the distal portion of the pocket. Although the activity of DHBDP6-III was generally lower than that of the other three enzymes, six of eight tested Cl DHBs were better substrates for DHBDP6-III than was DHB. Indeed, DHBDP6-III had the highest apparent specificity for 4,3',5'-triCl DHB and cleaved this compound better than two of the other enzymes. Of the four enzymes, THBDRW1 had the highest specificity for 2'-Cl DHB and was at least five times more resistant to inactivation by 2'-Cl DHB, consistent with the similarity between the latter and 2,2',3-trihydroxybiphenyl. Nonetheless, THBDRW1 had the lowest specificity for 2',6'-diCl DHB and, like the other enzymes, was unable to cleave this critical PCB metabolite (kcatapp < 0.001 s(-1)).
Collapse
Affiliation(s)
- Pascal D Fortin
- Department of Microbiology and Immunology, University of British Columbia, #300-6174 University Blvd., Vancouver, BC V6T 1Z3, Canada
| | | | | | | | | | | |
Collapse
|
21
|
Brown CK, Vetting MW, Earhart CA, Ohlendorf DH. Biophysical analyses of designed and selected mutants of protocatechuate 3,4-dioxygenase1. Annu Rev Microbiol 2004; 58:555-85. [PMID: 15487948 DOI: 10.1146/annurev.micro.57.030502.090927] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The catechol dioxygenases allow a wide variety of bacteria to use aromatic compounds as carbon sources by catalyzing the key ring-opening step. These enzymes use specifically either catechol or protocatechuate (2,3-dihydroxybenozate) as their substrates; they use a bare metal ion as the sole cofactor. To learn how this family of metalloenzymes functions, a structural analysis of designed and selected mutants of these enzymes has been undertaken. Here we review the results of this analysis on the nonheme ferric iron intradiol dioxygenase protocatechuate 3,4-dioxygenase.
Collapse
Affiliation(s)
- C Kent Brown
- Center for Metals in Biocatalysis and Department of Biochemistry, Molecular Biology, and Biophysics , Minneapolis, Minnesota 55455, USA.
| | | | | | | |
Collapse
|
22
|
Gürtler V, Mayall BC, Seviour R. Can whole genome analysis refine the taxonomy of the genus Rhodococcus? FEMS Microbiol Rev 2004; 28:377-403. [PMID: 15449609 DOI: 10.1016/j.femsre.2004.01.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The current systematics of the genus Rhodococcus is unclear, partly because many members were originally included before the application of a polyphasic taxonomic approach, central to which is the acquisition of 16S rRNA sequence data. This has resulted in the reclassification and description of many new species. Hence, the literature is replete with new species names that have not been brought together in an organized and easily interpreted form. This taxonomic confusion has been compounded by assigning many xenobiotic degrading isolates with phylogenetic positions but without formal taxonomic descriptions. In order to provide a framework for a taxonomic approach based on multiple genetic loci, a survey was undertaken of the known genome characteristics of members of the genus Rhodococcus including: (i) genetics of cell envelope biosynthesis; (ii) virulence genes; (iii) gene clusters involved in metabolic degradation and industrially relevant pathways; (iv) genetic analysis tools; (v) rapid identification of bacteria including rhodococci with specific gene RFLPs; (vi) genomic organization of rrn operons. Genes encoding virulence factors have been characterized for Rhodococcus equi and Rhodococcus fascians. Based on peptide signature comparisons deduced from gene sequences for cytochrome P-450, mono- and dioxygenases, alkane degradation, nitrile metabolism, proteasomes and desulfurization, phylogenetic relationships can be deduced for Rhodococcus erythropolis, Rhodococcus globerulus, Rhodococcus ruber and a number of undesignated Rhodococcus spp. that may distinguish the genus Rhodococcus into two further genera. The linear genome topologies that exist in some Rhodococcus species may alter a previously proposed model for the analysis of genomic fingerprinting techniques used in bacterial systematics.
Collapse
Affiliation(s)
- Volker Gürtler
- Department of Microbiology, Austin Health, Studley Road, Heidelberg, Vic. 3084, Australia.
| | | | | |
Collapse
|
23
|
Furukawa K, Suenaga H, Goto M. Biphenyl dioxygenases: functional versatilities and directed evolution. J Bacteriol 2004; 186:5189-96. [PMID: 15292119 PMCID: PMC490896 DOI: 10.1128/jb.186.16.5189-5196.2004] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Kensuke Furukawa
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Hakozaki, Fukuoka 812-8581, Japan.
| | | | | |
Collapse
|
24
|
Miyazawa D, Mukerjee-Dhar G, Shimura M, Hatta T, Kimbara K. Genes for Mn(II)-dependent NahC and Fe(II)-dependent NahH located in close proximity in the thermophilic naphthalene and PCB degrader, Bacillus sp. JF8: cloning and characterization. Microbiology (Reading) 2004; 150:993-1004. [PMID: 15073308 DOI: 10.1099/mic.0.26858-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A 10 kb DNA fragment was isolated using a DNA probe derived from the N-terminal amino acid sequence of the extradiol dioxygenase purified from naphthalene-grownBacillussp. JF8, a thermophilic naphthalene and polychlorinated biphenyl degrader. The cloned DNA fragment had six open reading frames, designatednahHLOMmocBnahCbased on sequence homology, of which the products NahH_JF8 and NahC_JF8 were extradiol dioxygenases. Although NahC_JF8 and NahH_JF8 exhibit low homology to known extradiol dioxygenases, the active-site residues and metal ion ligands are conserved. The presence of Mn(II) in culture medium was found to be essential for production of active recombinant NahC_JF8, while Fe(II) was necessary for active recombinant NahH_JF8. Inductively coupled plasma mass spectrometry analysis of active NahC_JF8 identified the cofactor to be manganese, indicating a Mn(II)-dependent extradiol dioxygenase. NahC_JF8 exhibitedKmvalues of 32±5 μM for 1,2-dihydroxynaphthalene and 510±90 μM for 2,3-dihydroxybiphenyl at 60 °C. In cell-free extracts, NahH_JF8 exhibited a broad substrate range for 2,3-dihydroxybiphenyl, catechol, and 3- and 4-methylcatechol at 25 °C. Stability studies on the Mn(II)-dependent NahC_JF8 indicated that it was thermostable, retaining 50 % activity after incubation at 80 °C for 20 min, and it exhibited resistance to EDTA and H2O2. Northern hybridization studies clarified that both NahC_JF8 and NahH_JF8 were induced by naphthalene; RT-PCR showed thatnahHLOMmocBnahCis expressed as a single transcript.
Collapse
Affiliation(s)
- Daisuke Miyazawa
- Department of Built Environment, Tokyo Institute of Technology, Yokohama 226-8502, Japan
| | - Gouri Mukerjee-Dhar
- Biotechnology Laboratory, Railway Technical Research Institute, 2-8-38, Hikari-cho, Kokubunji, Tokyo 185-8540, Japan
| | - Minoru Shimura
- Biotechnology Laboratory, Railway Technical Research Institute, 2-8-38, Hikari-cho, Kokubunji, Tokyo 185-8540, Japan
| | - Takashi Hatta
- Research Institute of Technology, Okayama University of Science, Okayama 703-8232, Japan
| | - Kazuhide Kimbara
- Biotechnology Laboratory, Railway Technical Research Institute, 2-8-38, Hikari-cho, Kokubunji, Tokyo 185-8540, Japan
- Department of Built Environment, Tokyo Institute of Technology, Yokohama 226-8502, Japan
| |
Collapse
|
25
|
Vetting MW, Wackett LP, Que L, Lipscomb JD, Ohlendorf DH. Crystallographic comparison of manganese- and iron-dependent homoprotocatechuate 2,3-dioxygenases. J Bacteriol 2004; 186:1945-58. [PMID: 15028678 PMCID: PMC374394 DOI: 10.1128/jb.186.7.1945-1958.2004] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2003] [Accepted: 12/04/2003] [Indexed: 11/20/2022] Open
Abstract
The X-ray crystal structures of homoprotocatechuate 2,3-dioxygenases isolated from Arthrobacter globiformis and Brevibacterium fuscum have been determined to high resolution. These enzymes exhibit 83% sequence identity, yet their activities depend on different transition metals, Mn2+ and Fe2+, respectively. The structures allow the origins of metal ion selectivity and aspects of the molecular mechanism to be examined in detail. The homotetrameric enzymes belong to the type I family of extradiol dioxygenases (vicinal oxygen chelate superfamily); each monomer has four betaalphabetabetabeta modules forming two structurally homologous N-terminal and C-terminal barrel-shaped domains. The active-site metal is located in the C-terminal barrel and is ligated by two equatorial ligands, H214NE1 and E267OE1; one axial ligand, H155NE1; and two to three water molecules. The first and second coordination spheres of these enzymes are virtually identical (root mean square difference over all atoms, 0.19 A), suggesting that the metal selectivity must be due to changes at a significant distance from the metal and/or changes that occur during folding. The substrate (2,3-dihydroxyphenylacetate [HPCA]) chelates the metal asymmetrically at sites trans to the two imidazole ligands and interacts with a unique, mobile C-terminal loop. The loop closes over the bound substrate, presumably to seal the active site as the oxygen activation process commences. An "open" coordination site trans to E267 is the likely binding site for O2. The geometry of the enzyme-substrate complexes suggests that if a transiently formed metal-superoxide complex attacks the substrate without dissociation from the metal, it must do so at the C-3 position. Second-sphere active-site residues that are positioned to interact with the HPCA and/or bound O2 during catalysis are identified and discussed in the context of current mechanistic hypotheses.
Collapse
Affiliation(s)
- Matthew W Vetting
- Department of Biochemistry, Molecular Biology and Biophysics, Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | |
Collapse
|
26
|
Hatta T, Mukerjee-Dhar G, Damborsky J, Kiyohara H, Kimbara K. Characterization of a novel thermostable Mn(II)-dependent 2,3-dihydroxybiphenyl 1,2-dioxygenase from a polychlorinated biphenyl- and naphthalene-degrading Bacillus sp. JF8. J Biol Chem 2003; 278:21483-92. [PMID: 12672826 DOI: 10.1074/jbc.m210240200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A novel thermostable Mn(II)-dependent 2,3-dihydroxybiphenyl-1,2-dioxygenase (BphC_JF8) catalyzing the meta-cleavage of the hydroxylated biphenyl ring was purified from the thermophilic biphenyl and naphthalene degrader, Bacillus sp. JF8, and the gene was cloned. The native and recombinant BphC enzyme was purified to homogeneity. The enzyme has a molecular mass of 125 +/- 10 kDa and was composed of four identical subunits (35 kDa). BphC_JF8 has a temperature optimum of 85 degrees C and a pH optimum of 7.5. It exhibited a half-life of 30 min at 80 degrees C and 81 min at 75 degrees C, making it the most thermostable extradiol dioxygenase studied. Inductively coupled plasma mass spectrometry analysis confirmed the presence of 4.0-4.8 manganese atoms per enzyme molecule. The EPR spectrum of BphC_JF8 exhibited g = 2.02 and g = 4.06 signals having the 6-fold hyperfine splitting characteristic of Mn(II). The enzyme can oxidize a wide range of substrates, and the substrate preference was in the order 2,3-dihydroxybiphenyl > 3-methylcatechol > catechol > 4-methylcatechol > 4-chlorocatechol. The enzyme is resistant to denaturation by various chelators and inhibitors (EDTA, 1,10-phenanthroline, H2O2, 3-chlorocatechol) and did not exhibit substrate inhibition even at 3 mm 2,3-dihydroxybiphenyl. A decrease in Km accompanied an increase in temperature, and the Km value of 0.095 microm for 2,3-dihydroxybiphenyl (at 60 degrees C) is among the lowest reported. The kinetic properties and thermal stability of the native and recombinant enzyme were identical. The primary structure of BphC_JF8 exhibits less than 25% sequence identity to other 2,3-dihydroxybiphenyl 1,2-dioxygenases. The metal ligands and active site residues of extradiol dioxygenases are conserved, although several amino acid residues found exclusively in enzymes that preferentially cleave bicyclic substrates are missing in BphC_JF8. A three-dimensional homology model of BphC_JF8 provided a basis for understanding the substrate specificity, quaternary structure, and stability of the enzyme.
Collapse
Affiliation(s)
- Takashi Hatta
- Research Institute of Technology, Okayama University of Science, 401-1 Seki, Okayama 703-8232, Japan.
| | | | | | | | | |
Collapse
|
27
|
McKay DB, Prucha M, Reineke W, Timmis KN, Pieper DH. Substrate specificity and expression of three 2,3-dihydroxybiphenyl 1,2-dioxygenases from Rhodococcus globerulus strain P6. J Bacteriol 2003; 185:2944-51. [PMID: 12700274 PMCID: PMC154411 DOI: 10.1128/jb.185.9.2944-2951.2003] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rhodococcus globerulus strain P6 contains at least three genes, bphC1, bphC2, and bphC3, coding for 2,3-dihydroxybiphenyl 1,2-dioxygenases; the latter two specify enzymes of the family of one-domain extradiol dioxygenases. In order to assess the importance of these different isoenzymes for the broad catabolic activity of this organism towards the degradation of polychlorinated biphenyls (PCBs), the capacities of recombinant enzymes expressed in Escherichia coli to transform different chlorosubstituted dihydroxybiphenyls formed by the action of R. globerulus P6 biphenyl dioxygenase and biphenyl 2,3-dihydrodiol dehydrogenase were determined. Whereas both BphC2 and BphC3 showed similar activities for 2,3-dihydroxybiphenyl and all monochlorinated 2,3-dihydroxybiphenyls, BphC1 exhibited only weak activity for 2'-chloro-2,3-dihydroxybiphenyl. More highly chlorinated 2'-chlorosubstituted 2,3-dihydroxybiphenyls were also transformed at high rates by BphC2 and BphC3 but not BphC1. In R. globerulus P6, BphC2 was constitutively expressed, BphC1 expression was induced during growth on biphenyl, and BphC3 was not expressed at significant levels under the experimental conditions. Although we cannot rule out the expression of BphC3 under certain environmental conditions, it seems that the contrasting substrate specificities of BphC1 and BphC2 contribute significantly to the versatile PCB-degrading phenotype of R. globerulus P6.
Collapse
Affiliation(s)
- David B McKay
- Department of Environmental Microbiology, GBF-German Research Center for Biotechnology, D-38124 Braunschweig, Germany
| | | | | | | | | |
Collapse
|
28
|
Vaillancourt FH, Haro MA, Drouin NM, Karim Z, Maaroufi H, Eltis LD. Characterization of extradiol dioxygenases from a polychlorinated biphenyl-degrading strain that possess higher specificities for chlorinated metabolites. J Bacteriol 2003; 185:1253-60. [PMID: 12562795 PMCID: PMC142886 DOI: 10.1128/jb.185.4.1253-1260.2003] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent studies demonstrated that 2,3-dihydroxybiphenyl 1,2-dioxygenase from Burkholderia sp. strain LB400 (DHBDLB400; EC 1.13.11.39) cleaves chlorinated 2,3-dihydroxybiphenyls (DHBs) less specifically than unchlorinated DHB and is competitively inhibited by 2',6'-dichloro-2,3-dihydroxybiphenyl (2',6'-diCl DHB). To determine whether these are general characteristics of DHBDs, we characterized DHBDP6-I and DHBDP6-III, two evolutionarily divergent isozymes from Rhodococcus globerulus strain P6, another good polychlorinated biphenyl (PCB) degrader. In contrast to DHBDLB400, both rhodococcal enzymes had higher specificities for some chlorinated DHBs in air-saturated buffer. Thus, DHBDP6-I cleaved the DHBs in the following order of specificity: 6-Cl DHB > 3'-Cl DHB approximately DHB approximately 4'-Cl DHB > 2'-Cl DHB > 4-Cl DHB > 5-Cl DHB. It also cleaved its preferred substrate, 6-Cl DHB, three times more specifically than DHB. Interestingly, some of the worst substrates for DHBDP6-I were among the best for DHBDP6-III (4-Cl DHB > 5-Cl DHB approximately 6-Cl DHB approximately 3'-Cl DHB > DHB > 2'-Cl DHB approximately 4'-Cl DHB; DHBDP6-III cleaved 4-Cl DHB two times more specifically than DHB). Generally, each of the monochlorinated DHBs inactivated the enzymes more rapidly than DHB. The exceptions were 4-Cl DHB for DHBDP6-I and 2'-Cl DHB for DHBDP6-III. As observed in DHBDLB400, chloro substituents influenced the reactivity of the dioxygenases with O2. For example, the apparent specificities of DHBDP6-I and DHBDP6-III for O2 in the presence of 2'-Cl DHB were lower than those in the presence of DHB by factors of >60 and 4, respectively. DHBDP6-I and DHBDP6-III shared the relative inability of DHBDLB400 to cleave 2',6'-diCl DHB (apparent catalytic constants of 0.088 +/- 0.004 and 0.069 +/- 0.002 s(-1), respectively). However, these isozymes had remarkably different apparent K(m) values for this compound (0.007 +/- 0.001, 0.14 +/- 0.01, and 3.9 +/- 0.4 micro M for DHBDLB400, DHBDP6-I, and DHBDP6-III, respectively). The markedly different reactivities of DHBDP6-I and DHBDP6-III with chlorinated DHBs undoubtedly contribute to the PCB-degrading activity of R. globerulus P6.
Collapse
Affiliation(s)
- Frédéric H Vaillancourt
- Departments of Microbiology and Biochemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | | | | | | | |
Collapse
|
29
|
Takenaka S, Asami T, Orii C, Murakami S, Aoki K. A novel meta-cleavage dioxygenase that cleaves a carboxyl-group-substituted 2-aminophenol. Purification and characterization of 4-amino-3-hydroxybenzoate 2,3-dioxygenase from Bordetella sp. strain 10d. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:5871-7. [PMID: 12444975 DOI: 10.1046/j.1432-1033.2002.03306.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A bacterial strain that grew on 4-amino-3-hydroxybenzoic acid was isolated from farm soil. The isolate, strain 10d, was identified as a species of Bordetella. Cell extracts of Bordetella sp. strain 10d grown on 4-amino-3-hydroxybenzoic acid contained an enzyme that cleaved this substrate. The enzyme was purified to homogeneity with a 110-fold increase in specific activity. The purified enzyme was characterized as a meta-cleavage dioxygenase that catalyzed the ring fission between C2 and C3 of 4-amino-3-hydroxybenzoic acid, with the consumption of 1 mol of O2 per mol of substrate. The enzyme was therefore designated as 4-amino-3-hydroxybenzoate 2,3-dioxygenase. The molecular mass of the native enzyme was 40 kDa based on gel filtration; the enzyme is composed of two identical 21-kDa subunits according to SDS/PAGE. The enzyme showed a high dioxygenase activity only for 4-amino-3-hydroxybenzoic acid. The Km and Vmax values for this substrate were 35 micro m and 12 micro mol.min-1.(mg protein)-1, respectively. Of the 2-aminophenols tested, only 4-aminoresorcinol and 6-amino-m-cresol inhibited the enzyme. The enzyme reported here differs from previously reported extradiol dioxygenases, including 2-aminophenol 1,6-dioxygenase, in molecular mass, subunit structure and catalytic properties.
Collapse
Affiliation(s)
- Shinji Takenaka
- Department of Biofunctional Chemistry, Faculty of Agriculture and Division of Science of Biological Resources, Graduate School of Science and Technology, Kobe University, Japan
| | | | | | | | | |
Collapse
|
30
|
Skowasch D, Möbus E, Maser E. Identification of a novel Comamonas testosteroni gene encoding a steroid-inducible extradiol dioxygenase. Biochem Biophys Res Commun 2002; 294:560-6. [PMID: 12056803 DOI: 10.1016/s0006-291x(02)00516-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Comamonas testosteroni is a Gram-negative bacterium that can grow on steroids and polycyclic aromatic hydrocarbons (PAH) as sole carbon and energy source. Complete mineralisation of these compounds is achieved through complex metabolic pathways comprising a set of inducible enzymes. Whereas the degradation pathways for PAHs have been intensively studied, patterns of enzymes leading to ring fissions of the steroid nucleus are unclear. Several intermediates of the steroid and PAH degradation pathways have similar structures therefore the question remains of whether both classes are substrates of different degradation routes or whether some catabolic enzymes function in both pathways. Interestingly, our studies reveal that testosterone simultaneously induces the expression of steroid- and PAH-catabolising enzymes in C. testosteroni. By cloning the gene, one of these testosterone-inducible proteins (TIP1) turned out to be biphenyl-2,3-diol-1,2-dioxygenase. This enzyme has been described to convert 2,3-dihydroxybiphenyl into 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid in PAH degradation. The gene was found on a cluster encoding TIP1, three orfs, and another testosterone-inducible protein (TIP6) of unknown function. The deduced amino acid sequence of TIP1 revealed that the enzyme contains 299 amino acids (34 kDa) and shares homologies to a variety of other extradiol dioxygenases. Based on the similar catechol moieties in PAH and steroid intermediates, together with its inducibility by testosterone, it is conceivable that TIP1 functions as a steroid extradiol dioxygenase to convert steroidal secocatechols into the disecoandrostanes. Our data suggest a role of the reported TIP1 protein in both the degradation pathways for steroids and aromatic hydrocarbons.
Collapse
Affiliation(s)
- Dirk Skowasch
- Department of Pharmacology and Toxicology, School of Medicine, Philipps-University of Marburg, Karl-von-Frisch-Strasse 1, Marburg 35033, Germany
| | | | | |
Collapse
|
31
|
Totevová S, Prouza M, Burkhard J, Demnerová K, Brenner V. Characterization of polychlorinated biphenyl-degrading bacteria isolated from contaminated sites in Czechia. Folia Microbiol (Praha) 2002; 47:247-54. [PMID: 12094733 DOI: 10.1007/bf02817646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Biphenyl-utilizing polychlorinated biphenyls (PCB)-degrading bacteria were isolated from sites highly contaminated by PCBs, and their degradation abilities were determined using GC for typical commercial PCB mixtures (Delor 103 and Delor 106). Out of twelve strains which utilized biphenyl as a sole source of carbon and energy, strains Pseudomonas alcaligenes KP2 and P. fluorescens KP12, characterized by the BIOLOG identification system and the NEFERM test, were shown to significantly co-metabolize the PCB mixture Delor 103. DNA-DNA hybridization was used to compare both strains with well-known PCB-degraders Burkholderia cepacia strain LB400 and Ralstonia eutropha strain H850. The strain KP12 employs the same meta-fission route for degradation of chlorobenzoates as a chlorobiphenyl degrader Pseudomonas cepacia P166. Both isolates KP2 and KP12 belong to different phylogenetic groups, which indicates that the same geographical location does not ensure the same ancestor of degradative enzymes. We confirmed that also highly chlorinated and the most toxic congeners, which are contained in commercial PCB mixtures, can be biotransformed by members of indigenous bacterial-soil community under aerobic conditions.
Collapse
Affiliation(s)
- S Totevová
- Institute of Microbiology, Academy of Sciences of the Czech Republic, 142 20 Prague, Czechia.
| | | | | | | | | |
Collapse
|
32
|
Horinouchi M, Yamamoto T, Taguchi K, Arai H, Kudo T. Meta-cleavage enzyme gene tesB is necessary for testosterone degradation in Comamonas testosteroni TA441. MICROBIOLOGY (READING, ENGLAND) 2001; 147:3367-75. [PMID: 11739769 DOI: 10.1099/00221287-147-12-3367] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Comamonas testosteroni metabolizes testosterone as the sole carbon source via a meta-cleavage reaction. A meta-cleavage enzyme gene, tesB, was cloned from C. testosteroni TA441. The deduced N-terminal amino acid sequence of tesB matched that of the purified meta-cleavage enzyme which is induced in TA441 during growth on testosterone as the sole carbon source. The tesB-disrupted mutant did not show growth on testosterone, suggesting that tesB is necessary for TA441 to grow on testosterone. Downstream from tesB, three putative ORFs which encode products also necessary for growth of TA441 on testosterone were identified. The usual substrate of TesB is probably 3,4-dihydroxy-9,10-secoandrosta-1,3,5(10)-triene-9,17-dione. Although this compound was not identified in the gene disrupted mutants, accumulation of upstream metabolites of testosterone degradation, 4-androstene-3,17-dione and 1,4-androstadiene-3,17-dione, was shown by TLC analysis.
Collapse
Affiliation(s)
- M Horinouchi
- RIKEN, The Institute of Physical and Chemical Research, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan.
| | | | | | | | | |
Collapse
|
33
|
Seeger M, Cámara B, Hofer B. Dehalogenation, denitration, dehydroxylation, and angular attack on substituted biphenyls and related compounds by a biphenyl dioxygenase. J Bacteriol 2001; 183:3548-55. [PMID: 11371517 PMCID: PMC95230 DOI: 10.1128/jb.183.12.3548-3555.2001] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The attack by the bph-encoded biphenyl dioxygenase of Burkholderia sp. strain LB400 on a number of symmetrical ortho-substituted biphenyls or quasi ortho-substituted biphenyl analogues has been investigated. 2,2'-Difluoro-, 2,2'-dibromo-, 2,2'-dinitro-, and 2,2'-dihydroxybiphenyl were accepted as substrates. Dioxygenation of all of these compounds showed a strong preference for the semisubstituted pair of vicinal ortho and meta carbons, leading to the formation of 2'-substituted 2,3-dihydroxybiphenyls by subsequent elimination of HX (X = F, Br, NO(2), or OH). All of these products were further metabolized by 2,3-dihydroxybiphenyl 1,2-dioxygenases of Burkholderia sp. strain LB400 or of Rhodococcus globerulus P6. Dibenzofuran and dibenzodioxin, which may be regarded as analogues of doubly ortho-substituted biphenyls or diphenylethers, respectively, were attacked at the "quasi ortho" carbon (the angular position 4a) and its neighbor. This shows that an aromatic ring-hydroxylating dioxygenase of class IIB is able to attack angular carbons. The catechols formed, 2,3,2'-trihydroxybiphenyl and 2,3,2'-trihydroxydiphenylether, were further metabolized by 2,3-dihydroxybiphenyl 1,2-dioxygenase. While angular attack by the biphenyl dioxygenase was the main route of dibenzodioxin oxidation, lateral dioxygenation leading to dihydrodiols was the major reaction with dibenzofuran. These results indicate that this enzyme is capable of hydroxylating ortho or angular carbons carrying a variety of substituents which exert electron-withdrawing inductive effects. They also support the view that the conversions of phenols into catechols by ring-hydroxylating dioxygenases, such as the transformation of 2,2'-dihydroxybiphenyl into 2,3,2'-trihydroxybiphenyl, are the results of di- rather than of monooxygenations. Lateral dioxygenation of dibenzofuran and subsequent dehydrogenation and extradiol dioxygenation by a number of biphenyl-degrading strains yielded intensely colored dead-end products. Thus, dibenzofuran can be a useful chromogenic indicator for the activity of the first three enzymes of biphenyl catabolic pathways.
Collapse
Affiliation(s)
- M Seeger
- Departamento de Química, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | | | | |
Collapse
|
34
|
Furukawa K. Biochemical and genetic bases of microbial degradation of polychlorinated biphenyls (PCBs). J GEN APPL MICROBIOL 2000; 46:283-296. [PMID: 12483570 DOI: 10.2323/jgam.46.283] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The microbial degradation of polychlorinated biphenyls (PCBs) has been extensively conducted by many workers, and the following general results have been obtained. (1) PCBs are degraded oxidatively by aerobic bacteria and other microorganisms such as white rot fungi. PCBs are also reductively dehalogenated by anaerobic microbial consortia. (2) The biodegradability of PCBs is highly dependent on chlorine substitution, i.e., number and position of chlorine. The degradation and dehalogenation capabilities are also highly strain dependent. (3) Biphenyl-utilizing bacteria can cometabolize many PCB congeners to chlorobenzoates by biphenl-catabolic enzymes. (4) Enzymes involved in the PCB degradation were purified and characterized. Biphenyl dioxygenase, ring-cleavage dioxygenase, and hydrolase are crystallized, and two ring-cleavage dioxygenases are being solved by x-ray crystallography. (5) The bph gene clusters responsible for PCB degradation are cloned from a variety of bacterial strains. The structure and function are analyzed with respect to the evolutionary relationship. (6) The molecular engineering of biphenyl dioxygenases is successfully performed by DNA shuffling, domain exchange, and subunit exchange. The evolved enzymes exhibit wide and enhanced degradation capacities for PCBs and other aromatic compounds.
Collapse
Affiliation(s)
- Kensuke Furukawa
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 812-8581, Japan
| |
Collapse
|
35
|
Bartels F, Backhaus S, Moore ER, Timmis KN, Hofer B. Occurrence and expression of glutathione-S-transferase-encoding bphK genes in Burkholderia sp. strain LB400 and other biphenyl-utilizing bacteria. MICROBIOLOGY (READING, ENGLAND) 1999; 145 ( Pt 10):2821-34. [PMID: 10537204 DOI: 10.1099/00221287-145-10-2821] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The gene bphK of Burkholderia sp. strain LB400 has previously been shown to be located within the bph locus, which specifies the degradation of biphenyl (BP) and chlorobiphenyls, and to encode a glutathione S-transferase (GST) which accepts 1-chloro-2,4-dinitrobenzene (CDNB) as substrate. The specific physiological role of this gene is not known. It is now shown that the gene is expressed in the parental organism and that GST activity is induced more than 20-fold by growth of the strain on BP relative to succinate when these compounds serve as sole carbon source. Approximately the same induction factor was observed for 2,3-dihydroxybiphenyl 1,2-dioxygenase activity, which is encoded by the 5'-adjacent bphC gene. This suggests that the expression of bphK is coregulated with the expression of genes responsible for the catabolism of BP. A bphK probe detected only a single copy of the gene in strain LB400. A spontaneous BP- mutant of the organism neither gave a signal with the bphK probe nor showed CDNB-accepting GST activity, suggesting that this activity is solely encoded by bphK. Complementation of the mutant with a bph gene cluster devoid of bphK restored the ability to grow on BP, indicating that bphK is not essential for utilization of this carbon source. BphK activity proved to be almost unaffected by up to 100-fold differences in proton concentration or ionic strength. The enzyme showed a narrow range with respect to a variety of widely used electrophilic GST substrates, accepting only CDNB. A number of established laboratory strains as well as novel isolates able to grow on BP as sole carbon and energy source were examined for BphK activity and the presence of a bphK analogue. CDNB assays, probe hybridizations and PCR showed that several, but not all, BP degraders possess this type of GST activity and/or a closely related gene. In all bacteria showing BphK activity, this was induced by growth on BP as sole carbon source, although activity levels differed by up to 10-fold after growth on BP and by up to 60-fold after growth on succinate. This resulted in a variation of induction factors between 2 and 30. In the majority of bphK+ bacteria examined, the gene appeared to be part of LB400-like bph gene clusters. DNA sequencing revealed almost complete identity of bphK genes from five different bph gene clusters. These results suggest that bphK genes, although not essential, fulfill a strain-specific function related to the utilization of BPs by their host organisms. The usefulness of BphK as a reporter enzyme for monitoring the expression of catabolic pathways is discussed.
Collapse
Affiliation(s)
- F Bartels
- National Research Centre for Biotechnology (GBF), Division of Microbiology, Braunschweig, Germany
| | | | | | | | | |
Collapse
|
36
|
Riegert U, Heiss G, Kuhm AE, Müller C, Contzen M, Knackmuss HJ, Stolz A. Catalytic properties of the 3-chlorocatechol-oxidizing 2, 3-dihydroxybiphenyl 1,2-dioxygenase from Sphingomonas sp. strain BN6. J Bacteriol 1999; 181:4812-7. [PMID: 10438749 PMCID: PMC93966 DOI: 10.1128/jb.181.16.4812-4817.1999] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The 2,3-dihydroxybiphenyl dioxygenase from Sphingomonas sp. strain BN6 (BphC1-BN6) differs from most other extradiol dioxygenases by its ability to oxidize 3-chlorocatechol to 3-chloro-2-hydroxymuconic semialdehyde by a distal cleavage mechanism. The turnover of different substrates and the effects of various inhibitors on BphC1-BN6 were compared with those of another 2,3-dihydroxybiphenyl dioxygenase from the same strain (BphC2-BN6) as well as with those of the archetypical catechol 2,3-dioxygenase (C23O-mt2) encoded by the TOL plasmid. Cell extracts containing C23O-mt2 or BphC2-BN6 converted the relevant substrates with an almost constant rate for at least 10 min, whereas BphC1-BN6 was inactivated significantly within the first minutes during the turnover of all substrates tested. Furthermore, BphC1-BN6 was much more sensitive than the other two enzymes to inactivation by the Fe(II) ion-chelating compound o-phenanthroline. The reason for inactivation of BphC1-BN6 appeared to be the loss of the weakly bound ferrous ion, which is the cofactor in the catalytic center. A mutant enzyme of BphC1-BN6 constructed by site-directed mutagenesis showed a higher stability to inactivation by o-phenanthroline and an increased catalytic efficiency for the conversion of 2,3-dihydroxybiphenyl and 3-methylcatechol but was still inactivated during substrate oxidation.
Collapse
Affiliation(s)
- U Riegert
- Institut für Mikrobiologie, Universität Stuttgart, 70569 Stuttgart, Germany
| | | | | | | | | | | | | |
Collapse
|
37
|
Dercová K, Vrana B, Baláz S. A kinetic distribution model of evaporation, biosorption and biodegradation of polychlorinated biphenyls (PCBs) in the suspension of Pseudomonas stutzeri. CHEMOSPHERE 1999; 38:1391-1400. [PMID: 10070727 DOI: 10.1016/s0045-6535(98)00541-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Kinetics of distribution of PCBs in an active bacterial suspension of Pseudomonas stutzeri was studied by monitoring the evaporated amounts and the concentration remaining in the liquid medium with the biomass. To determine the biodegradation rate constants of the individual congeners of the PCB formulation Delor 103, a model considering biosorption, evaporation, and primary biodegradation constructed previously was used. Rate constants of biodegradation imply that biodegradation of individual congeners is structure-dependent process. Biodegradability decreases with increasing number of chlorine substituents in the molecule, especially if they are in the ortho and para positions. On the other hand, the increasing number of free ortho and meta positions in the biphenyl molecule leads to better biodegradability. For a simple empirical determination of the influence of the chlorine substitution pattern on biodegradability, the di- and trichlorobiphenyl rate constants of biodegradation were analysed.
Collapse
Affiliation(s)
- K Dercová
- Department of Biochemical Technology, Slovak University of Technology, Bratislava, Slovakia
| | | | | |
Collapse
|
38
|
Laurie AD, Lloyd-Jones G. The phn genes of Burkholderia sp. strain RP007 constitute a divergent gene cluster for polycyclic aromatic hydrocarbon catabolism. J Bacteriol 1999; 181:531-40. [PMID: 9882667 PMCID: PMC93407 DOI: 10.1128/jb.181.2.531-540.1999] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cloning and molecular ecological studies have underestimated the diversity of polycyclic aromatic hydrocarbon (PAH) catabolic genes by emphasizing classical nah-like (nah, ndo, pah, and dox) sequences. Here we report the description of a divergent set of PAH catabolic genes, the phn genes, which although isofunctional to the classical nah-like genes, show very low homology. This phn locus, which contains nine open reading frames (ORFs), was isolated on an 11.5-kb HindIII fragment from phenanthrene-degrading Burkholderia sp. strain RP007. The phn genes are significantly different in sequence and gene order from previously characterized genes for PAH degradation. They are transcribed by RP007 when grown at the expense of either naphthalene or phenanthrene, while in Escherichia coli the recombinant phn enzymes have been shown to be capable of oxidizing both naphthalene and phenanthrene to predicted metabolites. The locus encodes iron sulfur protein alpha and beta subunits of a PAH initial dioxygenase but lacks the ferredoxin and reductase components. The dihydrodiol dehydrogenase of the RP007 pathway, PhnB, shows greater similarity to analogous dehydrogenases from described biphenyl pathways than to those characterized from naphthalene/phenanthrene pathways. An unusual extradiol dioxygenase, PhnC, shows no similarity to other extradiol dioxygenases for naphthalene or biphenyl oxidation but is the first member of the recently proposed class III extradiol dioxygenases that is specific for polycyclic arene diols. Upstream of the phn catabolic genes are two putative regulatory genes, phnR and phnS. Sequence homology suggests that phnS is a LysR-type transcriptional activator and that phnR, which is divergently transcribed with respect to phnSFECDAcAdB, is a member of the sigma54-dependent family of positive transcriptional regulators. Reverse transcriptase PCR experiments suggest that this gene cluster is coordinately expressed and is under regulatory control which may involve PhnR and PhnS.
Collapse
Affiliation(s)
- A D Laurie
- Department of Biological Sciences, University of Waikato, Hamilton, New Zealand
| | | |
Collapse
|
39
|
Vaillancourt FH, Han S, Fortin PD, Bolin JT, Eltis LD. Molecular basis for the stabilization and inhibition of 2, 3-dihydroxybiphenyl 1,2-dioxygenase by t-butanol. J Biol Chem 1998; 273:34887-95. [PMID: 9857017 DOI: 10.1074/jbc.273.52.34887] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The steady-state cleavage of catechols by 2,3-dihydroxybiphenyl 1, 2-dioxygenase (DHBD), the extradiol dioxygenase of the biphenyl biodegradation pathway, was investigated using a highly active, anaerobically purified preparation of enzyme. The kinetic data obtained using 2,3-dihydroxybiphenyl (DHB) fit a compulsory order ternary complex mechanism in which substrate inhibition occurs. The Km for dioxygen was 1280 +/- 70 microM, which is at least 2 orders of magnitude higher than that reported for catechol 2,3-dioxygenases. Km and Kd for DHB were 22 +/- 2 and 8 +/- 1 microM, respectively. DHBD was subject to reversible substrate inhibition and mechanism-based inactivation. In air-saturated buffer, the partition ratios of catecholic substrates substituted at C-3 were inversely related to their apparent specificity constants. Small organic molecules that stabilized DHBD most effectively also inhibited the cleavage reaction most strongly. The steady-state kinetic data and crystallographic results suggest that the stabilization and inhibition are due to specific interactions between the organic molecule and the active site of the enzyme. t-Butanol stabilized the enzyme and inhibited the cleavage of DHB in a mixed fashion, consistent with the distinct binding sites occupied by t-butanol in the crystal structures of the substrate-free form of the enzyme and the enzyme-DHB complex. In contrast, crystal structures of complexes with catechol and 3-methylcatechol revealed relationships between the binding of these smaller substrates and t-butanol that are consistent with the observed competitive inhibition.
Collapse
Affiliation(s)
- F H Vaillancourt
- Department of Biochemistry, Pavillon Marchand, Université Laval, Québec City, P.Q. G1K 7P4, Canada
| | | | | | | | | |
Collapse
|
40
|
Gilbert SC, Morton J, Buchanan S, Oldfield C, McRoberts A. Isolation of a unique benzothiophene-desulphurizing bacterium, Gordona sp. strain 213E (NCIMB 40816), and characterization of the desulphurization pathway. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 9):2545-2553. [PMID: 9782503 DOI: 10.1099/00221287-144-9-2545] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Gordona sp. strain 213E (NCIMB 40816) grew in pure culture in a mineral salts medium containing fructose as a source of carbon and energy, and benzothiophene (BTH) as the sole source of sulphur. During growth a phenolic compound accumulated, as indicated by the production of a blue colour on addition of Gibb's reagent. Therefore this pathway is analogous to the dibenzothiophene (DBT) desulphurization pathway of Rhodococcus sp. strain IGTS8, in which 2-hydroxybiphenyl accumulates during growth with DBT as the sole sulphur source. Ethyl acetate extraction of the culture medium yielded the metabolites benzothiophene s-oxide (BTHO), benzothiophene s,s-dioxide (BTHO2), benzo[c][1,2]oxathiin 6-oxide (BcOTO), 2-(2'-hydroxyphenyl) ethan 1-al (HPEal) and benzofuran (BFU). The deduced pathway for BTH desulphurization is BTH-->BTHO-->BTHO2-->HPESi(-)-->HPEal. HPESi- is (Z)-2-(2'-hydroxyphenyl)ethen 1-sulphinate, the stable aqueous-solution form of BcOTO. It was concluded that HPEal was the Gibb's-reagent-reactive phenolic compound which accumulated in the culture medium of strain 213E during growth, and that the presence of BFU was due to partial condensation of HPEal during the ethyl acetate extraction procedure. Gordona sp. strain 213E was unable to grow in a mineral salts medium containing fructose as a source of carbon and energy and DBT as the sole sulphur source. BTH-desulphurization-active cells (grown using BTH as sole sulphur source) were unable to desulphurize DBT. Likewise Rhodococcus sp. strain IGTS8 was unable to grow using BTH as the sole sulphur source, and DBT-desulphurization-active cells of strain IGTS8 (grown using DBT as sole sulphur source) were unable to desulphurize BTH. This absence of cross-reactivity is discussed in terms of fundamental differences in the chemistry of the DBT- and BTH-desulphurization reactions.
Collapse
Affiliation(s)
- Steven C Gilbert
- Department of Biological Sciences and Napier UniversityEdinburgh EH10 5DTUK
| | - John Morton
- Department of Biological Sciences and Napier UniversityEdinburgh EH10 5DTUK
| | - Sheena Buchanan
- Department of Biological Sciences and Napier UniversityEdinburgh EH10 5DTUK
| | | | - Andrew McRoberts
- Department of Applied Physical and Chemical Sciences, Napier UniversityEdinburgh EH10 5DTUK
| |
Collapse
|
41
|
Bergdoll M, Eltis LD, Cameron AD, Dumas P, Bolin JT. All in the family: structural and evolutionary relationships among three modular proteins with diverse functions and variable assembly. Protein Sci 1998; 7:1661-70. [PMID: 10082363 PMCID: PMC2144073 DOI: 10.1002/pro.5560070801] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The crystal structures of three proteins of diverse function and low sequence similarity were analyzed to evaluate structural and evolutionary relationships. The proteins include a bacterial bleomycin resistance protein, a bacterial extradiol dioxygenase, and human glyoxalase I. Structural comparisons, as well as phylogenetic analyses, strongly indicate that the modern family of proteins represented by these structures arose through a rich evolutionary history that includes multiple gene duplication and fusion events. These events appear to be historically shared in some cases, but parallel and historically independent in others. A significant early event is proposed to be the establishment of metal-binding in an oligomeric ancestor prior to the first gene fusion. Variations in the spatial arrangements of homologous modules are observed that are consistent with the structural principles of three-dimensional domain swapping, but in the unusual context of the formation of larger monomers from smaller dimers or tetramers. The comparisons support a general mechanism for metalloprotein evolution that exploits the symmetry of a homooligomeric protein to originate a metal binding site and relies upon the relaxation of symmetry, as enabled by gene duplication, to establish and refine specific functions.
Collapse
Affiliation(s)
- M Bergdoll
- Laboratoire de Biologie Structurale, Institut de Génétique et de Biologie Moléculaire et Cellulaire du CNRS, Illkirch, France
| | | | | | | | | |
Collapse
|
42
|
Wagner-Döbler I, Bennasar A, Vancanneyt M, Strömpl C, Brümmer I, Eichner C, Grammel I, Moore ER. Microcosm enrichment of biphenyl-degrading microbial communities from soils and sediments. Appl Environ Microbiol 1998; 64:3014-22. [PMID: 9687466 PMCID: PMC106808 DOI: 10.1128/aem.64.8.3014-3022.1998] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
A microcosm enrichment approach was employed to isolate bacteria which are representative of long-term biphenyl-adapted microbial communities. Growth of microorganisms was stimulated by incubating soil and sediment samples from polluted and nonpolluted sites with biphenyl crystals. After 6 months, stable population densities between 8 x 10(9) and 2 x 10(11) CFU/ml were established in the microcosms, and a large percentage of the organisms were able to grow on biphenyl-containing minimal medium plates. A total of 177 biphenyl-degrading strains were subsequently isolated and characterized by their ability to grow on biphenyl in liquid culture and to accumulate a yellow meta cleavage product when they were sprayed with dihydroxybiphenyl. Isolates were identified by using a polyphasic approach, including fatty acid methyl ester (FAME) analysis, 16S rRNA gene sequence comparison, sodium dodecyl sulfate-polyacrylamide gel electrophoresis of whole-cell proteins, and genomic fingerprinting based on sequence variability in the 16S-23S ribosomal DNA intergenic spacer region. In all of the microcosms, isolates identified as Rhodococcus opacus dominated the cultivable microbial community, comprising a cluster of 137 isolates with very similar FAME profiles (Euclidean distances, <10) and identical 16S rRNA gene sequences. The R. opacus isolates from the different microcosms studied could not be distinguished from each other by any of the fingerprint methods used. In addition, three other FAME clusters were found in one or two of the microcosms analyzed; these clusters could be assigned to Alcaligenes sp., Terrabacter sp., and Bacillus thuringiensis on the basis of their FAME profiles and/or comparisons of the 16S rRNA gene sequences of representatives. Thus, the microcosm enrichments were strongly dominated by gram-positive bacteria, especially the species R. opacus, independent of the pollution history of the original sample. R. opacus, therefore, is a promising candidate for development of effective long-term inocula for polychlorinated biphenyl bioremediation.
Collapse
Affiliation(s)
- I Wagner-Döbler
- Department of Microbiology, GBF National Research Institute for Biotechnology, D-38124 Braunschweig, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Peng X, Egashira T, Hanashiro K, Masai E, Nishikawa S, Katayama Y, Kimbara K, Fukuda M. Cloning of a Sphingomonas paucimobilis SYK-6 gene encoding a novel oxygenase that cleaves lignin-related biphenyl and characterization of the enzyme. Appl Environ Microbiol 1998; 64:2520-7. [PMID: 9647824 PMCID: PMC106420 DOI: 10.1128/aem.64.7.2520-2527.1998] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Sphingomonas paucimobilis SYK-6 transforms 2,2'-dihydroxy-3,3'-dimethoxy-5,5'-dicarboxybiphenyl (DDVA), a lignin-related biphenyl compound, to 5-carboxyvanillic acid via 2,2',3-trihydroxy-3'-methoxy-5,5'-dicarboxybiphenyl (OH-DDVA) as an intermediate (15). The ring fission of OH-DDVA is an essential step in the DDVA degradative pathway. A 15-kb EcoRI fragment isolated from the cosmid library complemented the growth deficiency of a mutant on OH-DDVA. Subcloning and deletion analysis showed that a 1.4-kb DNA fragment included the gene responsible for the ring fission of OH-DDVA. An open reading frame encoding 334 amino acids was identified and designated ligZ. The deduced amino acid sequence of LigZ had 18 to 21% identity with the class III extradiol dioxygenase family, including the beta subunit (LigB) of protocatechuate 4,5-dioxygenase of SYK-6 (Y. Noda, S. Nishikawa, K.-I. Shiozuka, H. Kadokura, H. Nakajima, K. Yano, Y. Katayama, N. Morohoshi, T. Haraguchi, and M. Yamasaki, J. Bacteriol. 172:2704-2709, 1990), catechol 2,3-dioxygenase I (MpcI) of Alcaligenes eutrophus JMP222 (M. Kabisch and P. Fortnagel, Nucleic Acids Res. 18:3405-3406, 1990), the catalytic subunit of the meta-cleavage enzyme (CarBb) for 2'-aminobiphenyl-2,3-diol from Pseudomonas sp. strain CA10 (S. I. Sato, N. Ouchiyama, T. Kimura, H. Nojiri, H. Yamane, and T. Omori, J. Bacteriol. 179:4841-4849, 1997), and 2,3-dihydroxyphenylpropionate 1,2-dioxygenase (MhpB) of Escherichia coli (E. L. Spence, M. Kawamukai, J. Sanvoisin, H. Braven, and T. D. H. Bugg, J. Bacteriol. 178:5249-5256, 1996). The ring fission product formed from OH-DDVA by LigZ developed a yellow color with an absorption maximum at 455 nm, suggesting meta cleavage. Thus, LigZ was concluded to be a ring cleavage extradiol dioxygenase. LigZ activity was detected only for OH-DDVA and 2,2',3,3'-tetrahydroxy-5,5'-dicarboxybiphenyl and was dependent on the ferrous ion.
Collapse
Affiliation(s)
- X Peng
- Department of Bioengineering, Nagaoka University of Technology, Niigata, Japan
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Okuta A, Ohnishi K, Harayama S. PCR isolation of catechol 2,3-dioxygenase gene fragments from environmental samples and their assembly into functional genes. Gene 1998; 212:221-8. [PMID: 9611265 DOI: 10.1016/s0378-1119(98)00153-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A method was developed to isolate central segments of catechol 2, 3-dioxygenase (C23O) genes from environmental samples and to insert these C23O gene segments into nahH (the structural gene for C23O encoded by catabolic plasmid NAH7) by replacing the corresponding nahH sequence with the isolated segments. To PCR-amplify the central C23O gene segments, a pair of degenerate primers was designed from amino acid sequences conserved among C23Os. Using these primers, central regions of the C23O genes were amplified from DNA isolated from a mixed culture of phenol-degrading or crude oil-degrading bacteria. Both the 5' and 3' regions of nahH were also PCR-amplified by using appropriate primers. These three PCR products, the 5'-nahH and 3'-nahH segments and the central C23O gene segments, were mixed and PCR-amplified again. Since the primers for the amplification of the central C23O gene segments were designed so that the 20 nucleotides at both ends of the segments are identical to the 3' end of the 5'-nahH segment and the 5' end of the 3'-nahH segment, respectively, the central C23O gene segments could anneal to both the 5'- and 3'-nahH segments. After the second PCR, hybrid C23O genes in the form of (5'-nahH segment-central C23O gene segment-3'-nahH segment) were amplified to full length. The resulting products were cloned into a vector and used to transform Escherichia coli. This method enabled divergent C23O sequences to be readily isolated, and more than 90% of the hybrid plasmids expressed C23O activity. Thus, the present method is useful to create, without isolating bacteria, a library of functional hybrid genes.
Collapse
Affiliation(s)
- A Okuta
- Marine Biotechnology Institute, 3-75-1 Heita, Kamaishi, Iwate 026, Japan
| | | | | |
Collapse
|
45
|
Kulakov LA, Delcroix VA, Larkin MJ, Ksenzenko VN, Kulakova AN. Cloning of new Rhodococcus extradiol dioxygenase genes and study of their distribution in different Rhodococcus strains. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 4):955-963. [PMID: 9579069 DOI: 10.1099/00221287-144-4-955] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Four extradiol dioxygenase genes which encode enzymes active against catechol and substituted catechols were cloned from two different Rhodococcus strains, and their nucleotide sequences were determined. A catechol 2,3-dioxygenase gene (edoC) was shown to be identical to the previously described ipbC gene from the isopropylbenzene operon of Rhodococcus erythropolis. Amino acid sequences deduced from the three other genes (edoA, edoB and edoD) were shown to have various degrees of homology to different extradiol dioxygenases. The EdoA and EdoB dioxygenases were classified as belonging to the third family of type I oxygenases and represented two new subfamilies, whereas the EdoD dioxygenase was a type II enzyme. Analysis of six Rhodococcus strains revealed a wide distribution of the above dioxygenase genes. Rhodococcus sp. 11 was shown to harbour all four of the analysed dioxygenase genes. Nucleotide sequences homologous to the edoB gene were present in all of the strains, including R. erythropolis NCIMB 13065, which did not utilize any of the aromatic compounds analysed. The latter finding points to the existence of a silent pathway(s) for degradation of aromatic compounds in this Rhodococcus strain.
Collapse
Affiliation(s)
- Leonid A Kulakov
- 1 The Questor Centre, David Keir Building, The Queen's University of Belfast, Belfast BT9 5AG, UK and School of Biology and Biochemistry, Medical Biology Centre, The Queen's University of Belfast, Belfast BT9 7BL, UK
| | - Valerie A Delcroix
- 1 The Questor Centre, David Keir Building, The Queen's University of Belfast, Belfast BT9 5AG, UK and School of Biology and Biochemistry, Medical Biology Centre, The Queen's University of Belfast, Belfast BT9 7BL, UK
| | - Michael J Larkin
- 1 The Questor Centre, David Keir Building, The Queen's University of Belfast, Belfast BT9 5AG, UK and School of Biology and Biochemistry, Medical Biology Centre, The Queen's University of Belfast, Belfast BT9 7BL, UK
| | - Vladimir N Ksenzenko
- 2 Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Science, Pushchino, Moscow region, Russia
| | - Anna N Kulakova
- 1 The Questor Centre, David Keir Building, The Queen's University of Belfast, Belfast BT9 5AG, UK and School of Biology and Biochemistry, Medical Biology Centre, The Queen's University of Belfast, Belfast BT9 7BL, UK
| |
Collapse
|
46
|
D. H. Bugg T, J. Winfield C. Enzymatic cleavage of aromatic rings: mechanistic aspects of the catechol dioxygenases and later enzymes of bacterial oxidative cleavage pathways. Nat Prod Rep 1998. [DOI: 10.1039/a815513y] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
47
|
Hatta T, Shimada T, Yoshihara T, Yamada A, Masai E, Fukuda M, Kiyohara H. Meta-fission product hydrolases from a strong PCB degrader Rhodococcus sp. RHA1. ACTA ACUST UNITED AC 1998. [DOI: 10.1016/s0922-338x(97)86763-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
48
|
Arai H, Kosono S, Taguchi K, Maeda M, Song E, Fuji F, Chung SY, Kudo T. Two sets of biphenyl and PCB degradation genes on a linear plasmid in Rhodococcus erythropolis TA421. ACTA ACUST UNITED AC 1998. [DOI: 10.1016/s0922-338x(99)80013-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
49
|
Khan AA, Wang RF, Nawaz MS, Cerniglia CE. Nucleotide sequence of the gene encoding cis-biphenyl dihydrodiol dehydrogenase (bphB) and the expression of an active recombinant His-tagged bphB gene product from a PCB degrading bacterium, Pseudomonas putida OU83. FEMS Microbiol Lett 1997; 154:317-24. [PMID: 9311131 DOI: 10.1111/j.1574-6968.1997.tb12662.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The nucleotide sequence of the bphB gene of Pseudomonas putida strain OU83 was determined. The bphB gene, which encodes cis-biphenyl dihydrodiol dehydrogenase (BDDH), was composed of 834 base pairs with an ATG initiation codon and a TGA termination codon. It can encode a polypeptide of 28.91 kDa, containing 277 amino acids. Promoter-like and ribosome-binding sequences were identified upstream of the bphB gene. The bphB nucleotide sequence was used to produce His-tagged BDDH, in Escherichia coli. The His-tagged BDDH construction, carrying a single 6 x His tail on the N-terminal portion, was active. The molecular mass of the native enzyme was 128 kDa and on SDS-PAGE analysis the molecular mass was 31 kDa. This enzyme requires NAD+ for its activity and its optimum pH is 8.5. Nucleotide and the deduced amino acid sequence analyses revealed a high degree of homology between the bphB gene from Pseudomonas putida OU83 and the bphB genes from P. cepacia LB400 and P. pseudoalcaligenes KF707.
Collapse
Affiliation(s)
- A A Khan
- Microbiology Division, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | | | | | | |
Collapse
|
50
|
Sato SI, Ouchiyama N, Kimura T, Nojiri H, Yamane H, Omori T. Cloning of genes involved in carbazole degradation of Pseudomonas sp. strain CA10: nucleotide sequences of genes and characterization of meta-cleavage enzymes and hydrolase. J Bacteriol 1997; 179:4841-9. [PMID: 9244273 PMCID: PMC179332 DOI: 10.1128/jb.179.15.4841-4849.1997] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The DNA fragment encoding meta-cleavage enzymes and the meta-cleavage compound hydrolase, involved in carbazole degradation, was cloned from the carbazole-utilizing bacterium Pseudomonas sp. strain CA10. DNA sequence analysis of this 2.6-kb SmaI-SphI fragment revealed that there were three open reading frames (ORF1, ORF2, and ORF3, in this gene order). ORF1 and ORF2 were indispensable for meta-cleavage activity for 2'-aminobiphenyl-2,3-diol and its easily available analog, 2,3-dihydroxybiphenyl, and were designated carBa and carBb, respectively. The alignment of CarBb with other meta-cleavage enzymes indicated that CarBb may have a non-heme iron cofactor coordinating site. On the basis of the phylogenetic tree, CarBb was classified as a member of the protocatechuate 4,5-dioxygenase family. This unique extradiol dioxygenase, CarB, had significantly higher affinity and about 20-times-higher meta-cleavage activity for 2,3-dihydroxybiphenyl than for catechol derivatives. The putative polypeptide encoded by ORF3 was homologous with meta-cleavage compound hydrolases in other bacteria, and ORF3 was designated carC. The hydrolase activity of CarC for 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid, the meta-cleavage compound of 2,3-dihydroxybiphenyl, was 40 times higher than that for 2-hydroxy-6-oxohepta-2,4-dienoic acid, the meta-cleavage compound of 3-methylcatechol. Alignment analysis and the phylogenetic tree indicate that CarC has greatest homologies with hydrolases involved in the monoaromatic compound degradation pathway. These results suggest the possibility that CarC is a novel type of hydrolase.
Collapse
Affiliation(s)
- S I Sato
- Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Japan
| | | | | | | | | | | |
Collapse
|