1
|
Xu C, Hao B, Sun G, Mei Y, Sun L, Sun Y, Wang Y, Zhang Y, Zhang W, Zhang M, Zhang Y, Wang D, Rao Z, Li X, Shen QJ, Wang NN. Dual activities of ACC synthase: Novel clues regarding the molecular evolution of ACS genes. SCIENCE ADVANCES 2021; 7:eabg8752. [PMID: 34757795 PMCID: PMC8580319 DOI: 10.1126/sciadv.abg8752] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Ethylene plays profound roles in plant development. The rate-limiting enzyme of ethylene biosynthesis is 1-aminocyclopropane-1-carboxylate (ACC) synthase (ACS), which is generally believed to be a single-activity enzyme evolving from aspartate aminotransferases. Here, we demonstrate that, in addition to catalyzing the conversion of S-adenosyl-methionine to the ethylene precursor ACC, genuine ACSs widely have Cβ-S lyase activity. Two N-terminal motifs, including a glutamine residue, are essential for conferring ACS activity to ACS-like proteins. Motif and activity analyses of ACS-like proteins from plants at different evolutionary stages suggest that the ACC-dependent pathway is uniquely developed in seed plants. A putative catalytic mechanism for the dual activities of ACSs is proposed on the basis of the crystal structure and biochemical data. These findings not only expand our current understanding of ACS functions but also provide novel insights into the evolutionary origin of ACS genes.
Collapse
Affiliation(s)
- Chang Xu
- Department of Plant Biology and Ecology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Bowei Hao
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Gongling Sun
- Department of Plant Biology and Ecology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yuanyuan Mei
- Department of Plant Biology and Ecology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Lifang Sun
- Department of Plant Biology and Ecology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yunmei Sun
- Department of Plant Biology and Ecology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yibo Wang
- Department of Plant Biology and Ecology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yongyan Zhang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Wei Zhang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Mengyuan Zhang
- Department of Plant Biology and Ecology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yue Zhang
- Department of Plant Biology and Ecology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Dan Wang
- Department of Plant Biology and Ecology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zihe Rao
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xin Li
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | | | - Ning Ning Wang
- Department of Plant Biology and Ecology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
2
|
Sun G, Mei Y, Deng D, Xiong L, Sun L, Zhang X, Wen Z, Liu S, You X, Wang D, Wang NN. N-Terminus-Mediated Degradation of ACS7 Is Negatively Regulated by Senescence Signaling to Allow Optimal Ethylene Production during Leaf Development in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2017; 8:2066. [PMID: 29270180 PMCID: PMC5723933 DOI: 10.3389/fpls.2017.02066] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 11/17/2017] [Indexed: 05/26/2023]
Abstract
Senescence is the final phase of leaf development, characterized by key processes by which resources trapped in deteriorating leaves are degraded and recycled to sustain the growth of newly formed organs. As the gaseous hormone ethylene exerts a profound effect on the progression of leaf senescence, both the optimal timing and amount of its biosynthesis are essential for controlled leaf development. The rate-limiting enzyme that controls ethylene synthesis in higher plants is ACC synthase (ACS). In this study, we evaluated the production of ethylene and revealed an up-regulation of ACS7 during leaf senescence in Arabidopsis. We further showed that the promoter activity of ACS7 was maintained at a relatively high level throughout the whole rosette development process. However, the accumulation level of ACS7 protein was extremely low in the light-grown young seedlings, and it was gradually restored as plants aging. We previously demonstrated that degradation of ACS7 is regulated by its first 14 N-terminal residues, here we compared the phenotypes of transgenic Arabidopsis overexpressing a truncated ACS7 lacking the 14 residues with transgenic plants overexpressing the full-length protein. Results showed that seedlings overexpressing the truncated ACS7 exhibited a senescence phenotype much earlier than their counterparts overexpressing the full-length gene. Fusion of the 14 residues to SSPP, a PP2C-type senescence-suppressed protein phosphatase, effectively rescued the SSPP-induced suppression of rosette growth and development but had no effect on the delayed senescence. This observation further supported that N-terminus-mediated degradation of ACS7 is negatively regulated by leaf senescence signaling. All results of this study therefore suggest that ACS7 is one of the major contributors to the synthesis of 'senescence ethylene'. And more importantly, the N-terminal 14 residue-mediated degradation of this protein is highly regulated by senescence signaling to enable plants to produce the appropriate levels of ethylene required.
Collapse
|
3
|
Sun L, Dong H, Mei Y, Wang NN. Functional investigation of two 1-aminocyclopropane-1-carboxylate (ACC) synthase-like genes in the moss Physcomitrella patens. PLANT CELL REPORTS 2016; 35:817-30. [PMID: 26743426 DOI: 10.1007/s00299-015-1923-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 12/02/2015] [Accepted: 12/18/2015] [Indexed: 05/16/2023]
Abstract
Two ACC synthase-like (ACL) proteins in the moss Physcomitrella patens have no ACS activity, and PpACL1 functions as an L -cystine/ L -cysteine C-S lyase. The ethylene biosynthetic pathway has been well characterized in higher plants, and homologs of a key enzyme in this pathway, ACS, have been reported in several algae and mosses, including Physcomitrella patens. However, the function of the ACS homologs in P. patens has not been investigated. In this research, we cloned two putative ACS genes from the P. patens genome, namely PpACS-Like 1 and 2, and investigated whether their encoded proteins had in vitro and in vivo ACS activity. In vitro biochemical assays using purified PpACL1 and PpACL2 showed that neither protein had ACS activity. Subsequently, we generated transgenic Arabidopsis lines expressing 35S:PpACL1 and 35S:PpACL2, and found that the transgenic etiolated seedlings that overexpressed either of these proteins lacked the constitutive triple response phenotype and did not emit excess levels of ethylene, indicating that neither of the PpACS-Like proteins had in vivo ACS activity. Furthermore, we found that PpACL1 functions as a C-S lyase that uses L-cystine and L-cysteine as substrates, rather than as an aminotransferase. Together, these results indicated that PpACL1 and PpACL2 are not true ACS genes as those found in higher plants.
Collapse
Affiliation(s)
- Lifang Sun
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Hui Dong
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yuanyuan Mei
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Ning Ning Wang
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
4
|
Tan J, Tao Q, Niu H, Zhang Z, Li D, Gong Z, Weng Y, Li Z. A novel allele of monoecious (m) locus is responsible for elongated fruit shape and perfect flowers in cucumber (Cucumis sativus L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:2483-93. [PMID: 26350497 DOI: 10.1007/s00122-015-2603-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 08/28/2015] [Indexed: 05/20/2023]
Abstract
A 14 bp deletion in CsACS2 gene encoding a truncated loss-of-function protein is responsible for elongated fruit shape and perfect flowers in cucumber. In cucumber (Cucumis sativus L.), sex expression and fruit shape are important components of biological and marketable yield. The association of fruit shape and sex expression is a very interesting phenomenon. The sex determination is controlled primarily by the F (female) and M (monoecy) loci. Homozygous recessive mm plants bear bisexual (perfect) flowers, and the fruits are often round shaped. CsACS2 encoding the 1-aminocyclopropane-1-carboxylic acid synthase has been shown to be the candidate gene for the m locus. We recently identified an andromonoecious cucumber line H38 that has bisexual flowers but elongated fruits. To rapidly clone this monoecious gene in H38, we developed a tri-parent mapping strategy, which took advantage of the high-density Gy14 × 9930 cucumber genetic map and the powder of bulk segregant analysis. Microsatellite markers from the Gy14 × 9930 map were used to screen two pairs of unisexual and bisexual bulks constructed from H38 × Gy14 and H38 × 9930 F2 populations. Polymorphic markers were identified and used to quickly develop a framework map and place the monoecious locus of H38 in cucumber chromosome 1. Further fine mapping allowed identification of a novel allele, m-1, at the monoecious locus to control the bisexual flower in H38, which was due to a 14 bp deletion in the third exon of the CsACS2 gene encoding a truncated loss-of-function protein of the cucumber 1-aminocyclopropane-1-carboxylic acid synthase. This new allele provides a valuable tool in understanding the molecular mechanisms of CsACS2 in the relationships of sex determination, fruit shape, and CsACS activities in cucumber.
Collapse
Affiliation(s)
- Junyi Tan
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qianyi Tao
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Huanhuan Niu
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhen Zhang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Dandan Li
- Agricultural College, Heilongjiang Bayi Agriculture University, Daqing, 163319, Heilongjiang, China
| | - Zhenhui Gong
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yiqun Weng
- Horticulture Department, University of Wisconsin, Madison, WI, 53706, USA
| | - Zheng Li
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
5
|
Xiong L, Xiao D, Xu X, Guo Z, Wang NN. The non-catalytic N-terminal domain of ACS7 is involved in the post-translational regulation of this gene in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:4397-4408. [PMID: 24860187 DOI: 10.1093/jxb/eru211] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Post-transcriptional control of the expression of the 1-aminocyclopropane-1-carboxylate synthase (ACS) gene family is important for maintaining appropriate levels of ethylene production. However, the molecular mechanism underlying the post-transcriptional regulation of type 3 ACS proteins remains unclear. Multiple sequence alignment revealed that the N-terminus of type 3 ACSs was longer than that of other ACSs. Fusing the N-terminal 54 residues of ACS7, the sole type 3 ACS in Arabidopsis, to the β-glucuronidase (GUS) reporter significantly decreased the stability of N(7(1-54))-GUS fusion protein. Among these 54 residues, residues 1-14 conferred this negative effect on the GUS fusion gene. Consistently, a truncated form of ACS7 lacking residues 1-14 was more stable than full-length ACS7 when transgenically expressed in Arabidopsis and led to a more severe ethylene response phenotype in the light-grown transgenic seedlings. Interestingly, the ACS7 N-terminus had no effect on the stability of N(7)-GUS and ACS7 proteins at the etiolated seedling stage. Both exogenous 1-aminocyclopropane-1-carboxylic acid (ACC) treatment and salt stress could rescue the levels of accumulation of N(7)-GUS fusion protein in light-grown seedlings. These results suggest that the non-catalytic N-terminus of ACS7 is involved in its own post-translational regulation. The proteasome inhibitor MG132 suppressed degradation of full-length ACS7 in vivo, but had little effect on the N-terminal truncated form of ACS7, indicating that the N-terminus mediates the regulation of ACS7 stability through the ubiquitin-26S proteasome pathway.
Collapse
Affiliation(s)
- Li Xiong
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, and Tianjin Key Laboratory of Protein Sciences, Tianjin 300071, China
| | - Dong Xiao
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, and Tianjin Key Laboratory of Protein Sciences, Tianjin 300071, China
| | - Xinxin Xu
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, and Tianjin Key Laboratory of Protein Sciences, Tianjin 300071, China
| | - Zhaoxia Guo
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, and Tianjin Key Laboratory of Protein Sciences, Tianjin 300071, China
| | - Ning Ning Wang
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, and Tianjin Key Laboratory of Protein Sciences, Tianjin 300071, China
| |
Collapse
|
6
|
Jindou S, Ito Y, Mito N, Uematsu K, Hosoda A, Tamura H. Engineered platform for bioethylene production by a cyanobacterium expressing a chimeric complex of plant enzymes. ACS Synth Biol 2014; 3:487-96. [PMID: 24933350 DOI: 10.1021/sb400197f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ethylene is an industrially important compound, but more sustainable production methods are desirable. Since cellulosomes increase the ability of cellulolytic enzymes by physically linking the relevant enzymes via dockerin-cohesin interactions, in this study, we genetically engineered a chimeric cellulosome-like complex of two ethylene-generating enzymes from tomato using cohesin-dockerins from the bacteria Clostridium thermocellum and Acetivibrio cellulolyticus. This complex was transformed into Escherichia coli to analyze kinetic parameters and enzyme complex formation and into the cyanobacterium Synechococcus elongatus PCC 7942, which was then grown with and without 0.1 mM isopropyl β-D-1-thiogalactopyranoside (IPTG) induction. Only at minimal protein expression levels (without IPTG), the chimeric complex produced 3.7 times more ethylene in vivo than did uncomplexed enzymes. Thus, cyanobacteria can be used to sustainably generate ethylene, and the synthetic enzyme complex greatly enhanced production efficiency. Artificial synthetic enzyme complexes hold great promise for improving the production efficiency of other industrial compounds.
Collapse
Affiliation(s)
- Sadanari Jindou
- Faculty of Science and Technology, Meijo University , Nagoya, Aichi 468-8502 Japan
| | | | | | | | | | | |
Collapse
|
7
|
Lin Z, Zhong S, Grierson D. Recent advances in ethylene research. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:3311-36. [PMID: 19567479 DOI: 10.1093/jxb/erp204] [Citation(s) in RCA: 349] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Ethylene regulates many aspects of the plant life cycle, including seed germination, root initiation, flower development, fruit ripening, senescence, and responses to biotic and abiotic stresses. It thus plays a key role in responses to the environment that have a direct bearing on a plant's fitness for adaptation and reproduction. In recent years, there have been major advances in our understanding of the molecular mechanisms regulating ethylene synthesis and action. Screening for mutants of the triple response phenotype of etiolated Arabidopsis seedlings, together with map-based cloning and candidate gene characterization of natural mutants from other plant species, has led to the identification of many new genes for ethylene biosynthesis, signal transduction, and response pathways. The simple chemical nature of ethylene contrasts with its regulatory complexity. This is illustrated by the multiplicity of genes encoding the key ethylene biosynthesis enzymes 1-aminocyclopropane-1-carboxylic acid (ACC) synthase and ACC oxidase, multiple ethylene receptors and signal transduction components, and the complexity of regulatory steps involving signalling relays and control of mRNA and protein synthesis and turnover. In addition, there are extensive interactions with other hormones. This review integrates knowledge from the model plant Arabidopsis and other plant species and focuses on key aspects of recent research on regulatory networks controlling ethylene synthesis and its role in flower development and fruit ripening.
Collapse
Affiliation(s)
- Zhefeng Lin
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | | | | |
Collapse
|
8
|
Characterization of a 1-aminocyclopropane-1-carboxylate synthase gene from loblolly pine (Pinus taeda L.). Gene 2008; 413:18-31. [PMID: 18328643 DOI: 10.1016/j.gene.2007.12.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2006] [Revised: 12/11/2007] [Accepted: 12/27/2007] [Indexed: 11/20/2022]
Abstract
1-Aminocyclopropane-1-carboxylate (ACC) synthase catalyzes what is typically the rate-limiting step in the biosynthesis of ethylene, a gaseous plant growth regulator that plays numerous roles in the growth and development of higher plants. Although ACC synthase genes have been characterized from a wide variety of angiosperm plant species, no ACC synthase genes have been described previously for gymnosperms. Evidence suggests that ethylene helps to regulate wood formation in trees, and may also signal for the metabolic shifts that lead to compression wood formation on the undersides of branches and leaning stems in gymnosperm trees. Since compression wood is an inferior feedstock for the manufacturing of most wood products, a better understanding of the factors influencing its formation could lead to substantial economic benefits. This study describes the isolation and characterization of a putative ACC synthase gene, PtaACS1, from loblolly pine (Pinus taeda L.), an important commercial forest tree species. Also described is an apparent splice variant of PtaACS1 (PtaACS1s) that is missing 138 bp from the 5' end of the transcript, including bases that encode a conserved amino acid residue considered critical for ACC synthase activity. The two sequences share interesting homologies with a group of plant aminotransferases, in addition to ACC synthases, but structural models and the conservation of critical catalytic amino acid residues strongly support PtaACS1 as encoding an active ACC synthase. The two transcripts were differentially expressed in various tissues of loblolly pine, as well as in response to perturbations of pine seedling stems. Transcript levels of this ACC synthase gene increased rapidly in response to bending stress but returned to near starting levels within 30 min. It remains unclear to what extent bending-induced expression of this gene product plays a role in compression wood formation.
Collapse
|
9
|
De la Torre F, Del Carmen Rodríguez-Gacio M, Matilla AJ. How ethylene works in the reproductive organs of higher plants: a signaling update from the third millennium. PLANT SIGNALING & BEHAVIOR 2006; 1:231-42. [PMID: 19516984 PMCID: PMC2634124 DOI: 10.4161/psb.1.5.3389] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Accepted: 09/07/2006] [Indexed: 05/15/2023]
Abstract
Ethylene (ET) is a notable signaling molecule in higher plants. In the year 1993 the ET receptor gene, ETR1, was identified; this ETR1 receptor protein being the first plant hormone receptor to be isolated. It is striking that there are six ET receptors in tomato instead of five in Arabidopsis, the two best-known signaling-model systems. Even though over the last few years great progress has been made in elucidating the genes and proteins involved in ET signaling, the complete pathway remains to be established. The present review examines the most representative successive advances that have taken place in this millennium in terms of the signaling pathway of ET, as well as the implications of the signaling in the reproductive organs of plants (i.e., flowers, fruits, seeds and pollen grains). A detailed comparative study is made on the advances in knowledge in the last decade, showing how the characterization of ET signaling provides clues for understanding how higher plants regulate their ET sensitivity. Also, it is indicated that ET signaling is at present sparking interest within phytohormonal molecular physiology and biology, and it is explained why several socio-economic aspects (flowering and fruit ripening) are undoubtedly involved in ET physiology.
Collapse
Affiliation(s)
- Francisco De la Torre
- Department of Plant Physiology; Faculty of Pharmacy; University of Santiago de Compostela; Santiago de Compostela, Galicia, Spain
| | | | | |
Collapse
|
10
|
Yoshida H, Nagata M, Saito K, Wang KLC, Ecker JR. Arabidopsis ETO1 specifically interacts with and negatively regulates type 2 1-aminocyclopropane-1-carboxylate synthases. BMC PLANT BIOLOGY 2005; 5:14. [PMID: 16091151 PMCID: PMC1199607 DOI: 10.1186/1471-2229-5-14] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2005] [Accepted: 08/10/2005] [Indexed: 05/03/2023]
Abstract
BACKGROUND In Arabidopsis, ETO1 (ETHYLENE-OVERPRODUCER1) is a negative regulator of ethylene evolution by interacting with AtACS5, an isoform of the rate-limiting enzyme, 1-aminocyclopropane-1-carboxylate synthases (ACC synthase or ACS), in ethylene biosynthetic pathway. ETO1 directly inhibits the enzymatic activity of AtACS5. In addition, a specific interaction between ETO1 and AtCUL3, a constituent of a new type of E3 ubiquitin ligase complex, suggests the molecular mechanism in promoting AtACS5 degradation by the proteasome-dependent pathway. Because orthologous sequences to ETO1 are found in many plant species including tomato, we transformed tomato with Arabidopsis ETO1 to evaluate its ability to suppress ethylene production in tomato fruits. RESULTS Transgenic tomato lines that overexpress Arabidopsis ETO1 (ETO1-OE) did not show a significant delay of fruit ripening. So, we performed yeast two-hybrid assays to investigate potential heterologous interaction between ETO1 and three isozymes of ACC synthases from tomato. In the yeast two-hybrid system, ETO1 interacts with LE-ACS3 as well as AtACS5 but not with LE-ACS2 or LE-ACS4, two major isozymes whose gene expression is induced markedly in ripening fruits. According to the classification of ACC synthases, which is based on the C-terminal amino acid sequences, both LE-ACS3 and AtACS5 are categorized as type 2 isozymes and possess a consensus C-terminal sequence. In contrast, LE-ACS2 and LE-ACS4 are type 1 and type 3 isozymes, respectively, both of which do not possess this specific C-terminal sequence. Yeast two-hybrid analysis using chimeric constructs between LE-ACS2 and LE-ACS3 revealed that the type-2-ACS-specific C-terminal tail is required for interaction with ETO1. When treated with auxin to induce LE-ACS3, seedlings of ETO1-OE produced less ethylene than the wild type, despite comparable expression of the LE-ACS3 gene in the wild type. CONCLUSION These results suggest that ETO1 family proteins specifically interact with and negatively regulate type 2 ACC synthases. Our data also show that Arabidopsis ETO1 can regulate type 2 ACS in a heterologous plant, tomato.
Collapse
Affiliation(s)
- Hitoshi Yoshida
- Department of Rice Research, National Agricultural Research Center, Jo-etsu, Niigata 943–0193, Japan
- Department of Low-Temperature Sciences, National Agricultural Research Center for Hokkaido Region, Sapporo, Hokkaido 062–8555, Japan
| | - Masayasu Nagata
- Department of Physiology and Quality Science, National Institute of Vegetable and Tea Science, Ano, Mie 514–2392, Japan
| | - Koji Saito
- Department of Low-Temperature Sciences, National Agricultural Research Center for Hokkaido Region, Sapporo, Hokkaido 062–8555, Japan
| | - Kevin LC Wang
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, U.S.A
- Present address: Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Joseph R Ecker
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, U.S.A
| |
Collapse
|
11
|
Hernández Sebastià C, Hardin SC, Clouse SD, Kieber JJ, Huber SC. Identification of a new motif for CDPK phosphorylation in vitro that suggests ACC synthase may be a CDPK substrate. Arch Biochem Biophys 2004; 428:81-91. [PMID: 15234272 DOI: 10.1016/j.abb.2004.04.025] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2004] [Revised: 04/26/2004] [Indexed: 11/27/2022]
Abstract
1-Amino-cyclopropane-1-carboxylate synthase (ACS) catalyzes the rate-determining step in the biosynthesis of the plant hormone ethylene, and there is evidence for regulation of stability of the protein by reversible protein phosphorylation. The site of phosphorylation of the tomato enzyme, LeACS2, was recently reported to be Ser460, but the requisite protein kinase has not been identified. In the present study, a synthetic peptide based on the known regulatory phosphorylation site (KKNNLRLS460FSKRMY) in LeACS2 was found to be readily phosphorylated in vitro by several calcium-dependent protein kinases (CDPKs), but not a plant SNF1-related protein kinase or the kinase domain of the receptor-like kinase, BRI1, involved in brassinosteroid signaling. Studies with variants of the LeACS2-Ser460 peptide establish a fundamentally new phosphorylation motif that is broadly targeted by CDPKs: phi -1-[ST]0- phi +1-X-Basic+3-Basic+4, where phi is a hydrophobic residue. Database analysis using the new motif predicts a number of novel phosphorylation sites in plant proteins. Finally, we also demonstrate that CDPKs and SnRK1s do not recognize motifs presented in the reverse order, indicating that side chain interactions alone are not sufficient for substrate recognition.
Collapse
Affiliation(s)
- Cinta Hernández Sebastià
- US Department of Agriculture, Agricultural Research Service, and Department of Plant Biology and Crop Science, University of Illinois, 1201 W. Gregory Drive, Urbana, IL 61801-3838, USA
| | | | | | | | | |
Collapse
|
12
|
Gallie DR, Young TE. The ethylene biosynthetic and perception machinery is differentially expressed during endosperm and embryo development in maize. Mol Genet Genomics 2004; 271:267-81. [PMID: 14760521 DOI: 10.1007/s00438-004-0977-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2003] [Accepted: 12/31/2003] [Indexed: 01/22/2023]
Abstract
The maize endosperm undergoes programmed cell death late in its development so that, with the exception of the aleurone layer, the tissue is dead by the time the kernel matures. Although ethylene is known to regulate the onset of endosperm cell death, the temporal and spatial control of the ethylene biosynthetic and perception machinery during maize endosperm development has not been examined. In this study, we report the isolation of the maize gene families for ACC synthase, ACC oxidase, the ethylene receptor, and EIN2 and EIL, which act downstream of the receptor. We show that ACC oxidase is expressed primarily in the endosperm, and only at low levels in the developing embryo late in its development. ACC synthase is expressed throughout endosperm development but, in contrast to ACC oxidase, it is transiently expressed to a significantly higher level in the developing embryo at a time that corresponds with the onset of endosperm cell death. Only two ethylene receptor gene families were identified in maize, in contrast to the five types previously identified in Arabidopsis. Members of both ethylene receptor families were expressed to substantially higher levels in the developing embryo than in the endosperm, as were members of the EIN2 and EIL gene families. These results suggest that the endosperm and embryo both contribute to the synthesis of ethylene, and they provide a basis for understanding why the developing endosperm is especially sensitive to ethylene-induced cell death while the embryo is protected.
Collapse
Affiliation(s)
- D R Gallie
- Department of Biochemistry, University of California, Riverside, CA 92521-0129, USA.
| | | |
Collapse
|
13
|
Yamagami T, Tsuchisaka A, Yamada K, Haddon WF, Harden LA, Theologis A. Biochemical diversity among the 1-amino-cyclopropane-1-carboxylate synthase isozymes encoded by the Arabidopsis gene family. J Biol Chem 2003; 278:49102-12. [PMID: 12968022 DOI: 10.1074/jbc.m308297200] [Citation(s) in RCA: 202] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
1-Amino-cyclopropane-1-carboxylate synthase (ACS, EC 4.4.1.14) is the key enzyme in the ethylene biosynthetic pathway in plants. The completion of the Arabidopsis genome sequence revealed the presence of twelve putative ACS genes, ACS1-12, dispersed among five chromosomes. ACS1-5 have been previously characterized. However, ACS1 is enzymatically inactive whereas ACS3 is a pseudogene. Complementation analysis with the Escherichia coli aminotransferase mutant DL39 shows that ACS10 and 12 encode aminotransferases. The remaining eight genes are authentic ACS genes and together with ACS1 constitute the Arabidopsis ACS gene family. All genes, except ACS3, are transcriptionally active and differentially expressed during Arabidopsis growth and development. IAA induces all ACS genes, except ACS7 and ACS9; CHX enhances the expression of all functional ACS genes. The ACS genes were expressed in E. coli, purified to homogeneity by affinity chromatography, and biochemically characterized. The quality of the recombinant proteins was verified by N-terminal amino acid sequence and MALDI-TOF mass spectrometry. The analysis shows that all ACS isozymes function as dimers and have an optimum pH, ranging between 7.3 and 8.2. Their Km values for AdoMet range from 8.3 to 45 microm, whereas their kcat values vary from 0.19 to 4.82 s-1 per monomer. Their Ki values for AVG and sinefungin vary from 0.019 to 0.80 microm and 0.15 to 12 microm, respectively. The results indicate that the Arabidopsis ACS isozymes are biochemically distinct. It is proposed that biochemically diverse ACS isozymes function in unique cellular environments for the biosynthesis of C2H4, permitting the signaling molecule to exert its unique effects in a tissue- or cell-specific fashion.
Collapse
Affiliation(s)
- Takeshi Yamagami
- Plant Gene Expression Center, United States Department of Agriculture, Albany, California 94710, USA
| | | | | | | | | | | |
Collapse
|
14
|
Huai Q, Xia Y, Chen Y, Callahan B, Li N, Ke H. Crystal structures of 1-aminocyclopropane-1-carboxylate (ACC) synthase in complex with aminoethoxyvinylglycine and pyridoxal-5'-phosphate provide new insight into catalytic mechanisms. J Biol Chem 2001; 276:38210-6. [PMID: 11431475 DOI: 10.1074/jbc.m103840200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The structures of tomato 1-aminocyclopropane-1-carboxylate synthase (ACS) in complex with either cofactor pyridoxal-5'-phosphate (PLP) or both PLP and inhibitor aminoethoxyvinylglycine have been determined by x-ray crystallography. The structures showed good conservation of the catalytic residues, suggesting a similar catalytic mechanism for ACS and other PLP-dependent enzymes. However, the proximity of Tyr152 to the C-gamma-S bond of model substrate S-adenosylmethionine implies its critical role in the catalysis. The concerted accomplishment of catalysis by cofactor PLP and a protein residue, as proposed on the basis of the ACS structures in this paper, may represent a general scheme for the diversity of PLP-dependent catalyses. PLP-dependent enzymes have been categorized into four types of folds. A structural comparison revealed that a core fragment of ACS in fold type I is superimposable over tryptophan synthase beta subunit in fold type II and mouse ornithine decarboxylase in fold type III, thus suggesting a divergent evolution of PLP-dependent enzymes.
Collapse
Affiliation(s)
- Q Huai
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, 27599-7260, USA
| | | | | | | | | | | |
Collapse
|
15
|
Tatsuki M, Mori H. Phosphorylation of Tomato 1-Aminocyclopropane-1-carboxylic Acid Synthase, LE-ACS2, at the C-terminal Region. J Biol Chem 2001; 276:28051-7. [PMID: 11375393 DOI: 10.1074/jbc.m101543200] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
1-aminocyclopropane-1-carboxylic acid synthase is a key enzyme in the ethylene biosynthesis pathway. Recent studies raise the possibility that 1-aminocyclopropane-1-carboxylic acid synthase (ACS) is regulated not only transcriptionally but also post-translationally. To elucidate post-translational ACS regulation, we analyzed the modification of LE-ACS2 protein, a wound-inducible isozyme in the ACS family, in tomato fruit (Lycopersicon esculentum L.) using an anti-LE-ACS2 antibody. We detected phosphorylated LE-ACS2 at 55-kDa using immunoprecipitation from an extract of wounded fruit fed with [32P]inorganic phosphate. Analysis of LE-ACS2 phosphoamino acids indicated that serine residue(s) were phosphorylated. In vitro phosphorylation analyses using site-directed mutagenesis of recombinant LE-ACS2 as a substrate demonstrate that serine 460 located at the C-terminal region of ACS is phosphorylated. During tomato ripening stages, expression of both LE-ACS2 and LE-ACS4 mRNA increased. LE-ACS4, however, was not phosphorylated in vitro. These results suggest that ACS isozymes have different post-translational regulatory mechanisms, such as phosphorylation.
Collapse
MESH Headings
- Amino Acid Sequence
- Amino Acids, Cyclic/chemistry
- Amino Acids, Cyclic/metabolism
- Blotting, Western
- Coenzyme A Ligases/chemistry
- Coenzyme A Ligases/metabolism
- DNA, Complementary/metabolism
- Electrophoresis, Polyacrylamide Gel
- Solanum lycopersicum/enzymology
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Phosphorylation
- Precipitin Tests
- Protein Binding
- Protein Structure, Tertiary
- RNA Processing, Post-Transcriptional
- RNA, Messenger/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/metabolism
- Sequence Homology, Amino Acid
- Serine/chemistry
- Stereoisomerism
- Time Factors
- Transcription, Genetic
Collapse
Affiliation(s)
- M Tatsuki
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | | |
Collapse
|
16
|
Alonso JM, Ecker JR. The Ethylene Pathway: A Paradigm for Plant Hormone Signaling and Interaction. Sci Signal 2001. [DOI: 10.1126/scisignal.702001re1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
17
|
Alonso JM, Ecker JR. The ethylene pathway: a paradigm for plant hormone signaling and interaction. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2001; 2001:re1. [PMID: 11752640 DOI: 10.1126/stke.2001.70.re1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
To dissect the web of signals that control plant growth, it is important to understand how the individual components of the pathway are modulated. Ethylene is a plant hormone involved in a large number of developmental processes. Biochemical and genetic approaches have provided a detailed view of the biosynthetic and signal transduction pathways of this hormone in the reference plant Arabidopsis thaliana. The effects of several hormones and of developmental changes on the regulation of the key enzymes of ethylene biosynthesis, ACC synthase and ACC oxidase, serve as a clear example of interaction between signals in the generation of complex responses. We now have a picture of how ethylene is sensed by the ethylene receptors and how the signal is further transduced to the nucleus. Although some of the ethylene receptors show a tissue-specific pattern of expression, little is known about the regulation of the components of the ethylene transduction cascade by other hormones or developmental factors. Once the ethylene signal reaches the nucleus, it activates a transcriptional cascade that results in changes in the expression of a number of genes. We describe some of the results that suggest an interaction at the transcriptional level between ethylene, other hormones, and stress signals.
Collapse
Affiliation(s)
- J M Alonso
- the Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA.
| | | |
Collapse
|
18
|
Metzler DE, Metzler CM, Sauke DJ. Coenzymes. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50017-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Zhou H, Wang HW, Zhu K, Sui SF, Xu P, Yang SF, Li N. The multiple roles of conserved arginine 286 of 1-aminocyclopropane-1-carboxylate synthase. Coenzyme binding, substrate binding, and beyond. PLANT PHYSIOLOGY 1999; 121:913-9. [PMID: 10557240 PMCID: PMC59454 DOI: 10.1104/pp.121.3.913] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/1999] [Accepted: 07/08/1999] [Indexed: 05/19/2023]
Abstract
A pyridoxal 5'-phosphate (PLP)-dependent enzyme, 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (S-adenosyl-L-Met methylthioadenosine-lyase, EC 4.4.1.14), catalyzes the conversion of S-adenosyl-L-methionine (AdoMet) to ACC. A tomato ACC synthase isozyme (LE-ACS2) with a deletion of 46 amino acids at the C terminus was chosen as the control enzyme for the study of the function of R286 in ACC synthase. R286 of the tomato ACC synthase was mutated to a leucine via site-directed mutagenesis. The ACC synthase mutant R286L was purified using a simplified two-step purification protocol. Circular dichroism (CD) analysis indicated that the overall three-dimensional structure of the mutant was indistinguishable from that of the control enzyme. Fluorescence spectroscopy revealed that the binding affinity of R286L ACC synthase for its cofactor PLP was reduced 20- to 25-fold compared with control. Kinetic analysis of R286L showed that this mutant ACC synthase had a significantly reduced turnover number (k(cat)) of 8.2 x 10(-3) s(-1) and an increased K(m) of 730 microM for AdoMet, leading to an 8,000-fold decrease in overall catalytic efficiency compared with the control enzyme. Thus, R286 of tomato ACC synthase is involved in binding both PLP and AdoMet.
Collapse
Affiliation(s)
- H Zhou
- Department of Biology, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong Special Administrative Region, The People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
20
|
Woeste KE, Ye C, Kieber JJ. Two Arabidopsis mutants that overproduce ethylene are affected in the posttranscriptional regulation of 1-aminocyclopropane-1-carboxylic acid synthase. PLANT PHYSIOLOGY 1999; 119:521-30. [PMID: 9952448 PMCID: PMC32129 DOI: 10.1104/pp.119.2.521] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/1998] [Accepted: 10/22/1998] [Indexed: 05/18/2023]
Abstract
The Arabidopsis mutants eto1 (ethylene overproducer) and eto3 produce elevated levels of ethylene as etiolated seedlings. Ethylene production in these seedlings peaks at 60 to 96 h, and then declines back to almost wild-type levels. Ethylene overproduction in eto1 and eto3 is limited mainly to etiolated seedlings; light-grown seedlings and various adult tissues produce close to wild-type amounts of ethylene. Several compounds that induce ethylene biosynthesis in wild-type, etiolated seedlings through distinct 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (ACS) isoforms were found to act synergistically with eto1 and eto3, as did the ethylene-insensitive mutation etr1 (ethylene resistant), which blocks feedback inhibition of biosynthesis. ACS activity, the rate-limiting step of ethylene biosynthesis, was highly elevated in both eto1 and eto3 mutant seedlings, even though RNA gel-blot analysis demonstrated that the steady-state level of ACS mRNA was not increased, including that of a novel Arabidopsis ACS gene that was identified. Measurements of the conversion of ACC to ethylene by intact seedlings indicated that the mutations did not affect conjugation of ACC or the activity of ACC oxidase, the final step of ethylene biosynthesis. Taken together, these data suggest that the eto1 and eto3 mutations elevate ethylene biosynthesis by affecting the posttranscriptional regulation of ACS.
Collapse
Affiliation(s)
- K E Woeste
- Department of Biological Sciences, Laboratory for Molecular Biology, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | | | | |
Collapse
|
21
|
Jones ML, Woodson WR. Differential expression of three members of the 1-aminocyclopropane-1-carboxylate synthase gene family in carnation. PLANT PHYSIOLOGY 1999; 119:755-64. [PMID: 9952472 PMCID: PMC32153 DOI: 10.1104/pp.119.2.755] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/1998] [Accepted: 11/06/1998] [Indexed: 05/19/2023]
Abstract
We investigated the expression patterns of three 1-aminocyclopropane-1-carboxylate (ACC) synthase genes in carnation (Dianthus caryophyllus cv White Sim) under conditions previously shown to induce ethylene biosynthesis. These included treatment of flowers with 2,4-dichlorophenoxyacetic acid, ethylene, LiCl, cycloheximide, and natural and pollination-induced flower senescence. Accumulation of ACC synthase transcripts in leaves following mechanical wounding and treatment with 2,4-dichlorophenoxyacetic acid or LiCl was also determined by RNA gel-blot analysis. As in other species, the carnation ACC synthase genes were found to be differentially regulated in a tissue-specific manner. DCACS2 and DCACS3 were preferentially expressed in styles, whereas DCACS1 mRNA was most abundant in petals. Cycloheximide did not induce increased accumulation of ACC synthase transcripts in carnation flowers, whereas the expression of ACC synthase was up-regulated by auxin, ethylene, LiCl, pollination, and senescence in a floral-organ-specific manner. Expression of the three ACC synthases identified in carnation did not correspond to elevated ethylene biosynthesis from wounded or auxin-treated leaves, and there are likely additional members of the carnation ACC synthase gene family responsible for ACC synthase expression in vegetative tissues.
Collapse
Affiliation(s)
- ML Jones
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907-1165, USA
| | | |
Collapse
|
22
|
Control of ethylene synthesis and metabolism. BIOCHEMISTRY AND MOLECULAR BIOLOGY OF PLANT HORMONES 1999. [DOI: 10.1016/s0167-7306(08)60489-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
23
|
Zhou H, Huxtable S, Xin H, Li N. Enhanced high-level expression of soluble 1-aminocyclopropane-1-carboxylase synthase and rapid purification by expanded-bed adsorption. Protein Expr Purif 1998; 14:178-84. [PMID: 9790879 DOI: 10.1006/prep.1998.0923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
1-Aminocyclopropane-1-carboxylate (ACC) synthase is a key enzyme regulating the biosynthesis of the plant hormone ethylene. Expression of ACC synthase in Escherichia coli can result in the production of a large proportion of the enzyme in the form of insoluble aggregates (inclusion bodies). We investigated the effect on the soluble expression in E. coli of tomato and zucchini ACC synthases, by manipulation of the induction conditions, changing the vector, and deletions in the amino acid sequence. Manipulation of the induction conditions did not influence the soluble expression; however, soluble expression increased significantly when the enzyme was cloned into vector pET11d, in comparison to the other vector used, pET30a. It was also found that when ACC synthase with a portion of the C-terminus deleted was inserted into pET11d, the soluble expression was further enhanced in comparison to that of the full length. Structural and functional analysis of ACC synthase requires the purification of milligram quantities of protein to homogeneity. The development of a faster and simpler protocol for the purification of ACC synthase is highly desirable due to the extreme lability of the enzyme. C-terminal truncated tomato ACC synthase was overexpressed in E. coli pET11d and purified by expanded-bed adsorption and hydroxylapatite FPLC. This improved two-step purification protocol allows for rapid, high-level purification with a significantly improved yield in comparison to the multistage purification it replaces. 15.7 mg of highly purified tomato ACC synthase del-1 were obtained from 2 L of cells in comparison to 2 mg from 10 L using a multistage purification. This represents a 40-fold improvement in yield. Antibodies were raised against C-terminal deleted ACC synthase. The antibodies were purified by epitope-specific affinity chromatography and used to assess the identity and purity of the C-terminal-deleted tomato ACC synthase purified by expanded-bed adsorption.
Collapse
Affiliation(s)
- H Zhou
- Department of Biology, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | | | | | | |
Collapse
|
24
|
Tarun AS, Lee JS, Theologis A. Random mutagenesis of 1-aminocyclopropane-1-carboxylate synthase: a key enzyme in ethylene biosynthesis. Proc Natl Acad Sci U S A 1998; 95:9796-801. [PMID: 9707555 PMCID: PMC21416 DOI: 10.1073/pnas.95.17.9796] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
1-Aminocyclopropane-1-carboxylate synthase (ACC synthase, EC 4.4.1. 14) catalyzes the rate-limiting step in the ethylene biosynthetic pathway in plants. To determine the amino acid residues critical for the structure and function of this enzyme, the tomato Le-ACS2 isoenzyme has been subjected to both site-directed and PCR random mutagenesis. Mutant ACC synthases with reduced enzyme activity have been selected by using a genetic screen based on the functional complementation of an Escherichia coli Ile auxotroph that has been engineered to express ACC deaminase from Pseudomonas sp. The DNA sequence of almost 1,000 clones has been determined, and 334 single missense mutations have been selected for analysis. We have identified three classes of mutants based on their activity and expression in E. coli. Class I and II mutants have the same level of protein expression as the wild type, but their enzyme activity is reduced to 0-5% and 5-50%, respectively. Class III mutants have neither activity nor detectable protein expression. The inactive mutations are clustered in regions that are highly conserved among various ACC synthases. This library of mutants will facilitate the elucidation of structure-function relationships of this regulatory enzyme.
Collapse
Affiliation(s)
- A S Tarun
- Plant Gene Expression Center, 800 Buchanan Street, Albany, CA 94710, USA
| | | | | |
Collapse
|
25
|
Tarun AS, Theologis A. Complementation analysis of mutants of 1-aminocyclopropane- 1-carboxylate synthase reveals the enzyme is a dimer with shared active sites. J Biol Chem 1998; 273:12509-14. [PMID: 9575209 DOI: 10.1074/jbc.273.20.12509] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The pyridoxal phosphate-dependent enzyme 1-aminocyclopropane-1-carboxylate synthase (ACS, EC 4.4.1.14) catalyzes the rate-limiting step in the ethylene biosynthetic pathway. ACS shares the conservation of 11 invariant residues with a family of aminotransferases that includes aspartate aminotransferase. Site-directed mutagenesis on two of these residues, Tyr-92 and Lys-278, in the tomato isoenzyme Le-ACS2 greatly reduces enzymatic activity, indicating their importance in catalysis. These mutants have been used in complementation experiments either in vivo in Escherichia coli or in an in vitro transcription/translation assay to study whether the enzyme functions as a dimer. When the Y92L mutant is coexpressed with the K278A mutant protein, there is partial restoration of enzyme activity, suggesting that the mutant proteins can dimerize and form active heterodimers. Coexpressing a double mutant with the wild-type protein reduces wild-type activity, indicating that inactive heterodimers are formed between the wild-type and the double mutant protein subunits. Furthermore, hybrid complementation shows that another tomato isoenzyme, Le-ACS4, can dimerize and that Le-ACS2 and Le-ACS4 have limited capacity for heterodimerization. The data suggest that ACS functions as a dimer with shared active sites.
Collapse
Affiliation(s)
- A S Tarun
- Plant Gene Expression Center, Albany, California 94710, USA
| | | |
Collapse
|
26
|
Vogel JP, Woeste KE, Theologis A, Kieber JJ. Recessive and dominant mutations in the ethylene biosynthetic gene ACS5 of Arabidopsis confer cytokinin insensitivity and ethylene overproduction, respectively. Proc Natl Acad Sci U S A 1998; 95:4766-71. [PMID: 9539813 PMCID: PMC22565 DOI: 10.1073/pnas.95.8.4766] [Citation(s) in RCA: 216] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We identified a set of cytokinin-insensitive mutants by using a screen based on the ethylene-mediated triple response observed after treatment with low levels of cytokinins. One group of these mutants disrupts ACS5, a member of the Arabidopsis gene family that encodes 1-aminocyclopropane-1-carboxylate synthase, the first enzyme in ethylene biosynthesis. The ACS5 isoform is mainly responsible for the sustained rise in ethylene biosynthesis observed in response to low levels of cytokinin and appears to be regulated primarily by a posttranscriptional mechanism. Furthermore, the dominant ethylene-overproducing mutant eto2 was found to be the result of an alteration of the carboxy terminus of ACS5, suggesting that this domain acts as a negative regulator of ACS5 function.
Collapse
Affiliation(s)
- J P Vogel
- Department of Biological Sciences, Laboratory for Molecular Biology, University of Illinois, Chicago, IL 60607, USA
| | | | | | | |
Collapse
|
27
|
Huxtable S, Zhou H, Wong S, Li N. Renaturation of 1-aminocyclopropane-1-carboxylate synthase expressed in Escherichia coli in the form of inclusion bodies into a dimeric and catalytically active enzyme. Protein Expr Purif 1998; 12:305-14. [PMID: 9535697 DOI: 10.1006/prep.1997.0847] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
1-Aminocyclopropane-1-carboxylate (ACC) synthase is a key enzyme regulating the biosynthesis of the plant hormone ethylene. A wound-inducible zucchini ACC synthase cDNA was isolated by reverse-transcription polymerase chain reaction (RT-PCR) and expressed in a heterologous Escherichia coli BL21(DE3)pLysS:pET30a protein expression system. A method was developed and optimized for the renaturation of the ACC synthase expressed in the form of inclusion bodies. The optimum conditions were found to be unfolding in a buffer containing 100 mM Mops, pH 9.5, 6 M urea, and 50 mM DTT, for 3 h at 4 degrees C and refolding by a combined process of dialysis and dilution in 100 mM Mops, pH 8, 30 mM Chaps, and 5 mM GSH at a protein concentration of 45 microg/ml. The purified enzyme has a specific activity of 90,000 U mg-1 and exhibits an apparent homogeneity on SDS-PAGE fractionation. Biochemical characterization of the refolded enzyme revealed a high degree of similarity to the enzyme purified from the soluble source. The refolded enzyme was found to be a dimer with a native size of 110 kDa, a Km of 23 microM, and a Vmax of 112,000 U mg-1.
Collapse
Affiliation(s)
- S Huxtable
- Department of Biology, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | | | | | | |
Collapse
|
28
|
Li N, Jiang XN, Cai GP, Yang SF. A novel bifunctional fusion enzyme catalyzing ethylene synthesis via 1-aminocyclopropane1-carboxylic acid. J Biol Chem 1996; 271:25738-41. [PMID: 8824199 DOI: 10.1074/jbc.271.42.25738] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
A C terminus truncated soybean 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (466 aa) was fused to an N terminus truncated tomato ACC oxidase (312 aa) to create a 778-amino acid fusion polypeptide. This ACC synthase-ACC oxidase fusion enzyme (ACSO) was expressed in a heterologous prokaryotic Escherichia coli system, which is capable of converting endogenous S-adenosyl-L-methionine (AdoMet) to ethylene. The molecular weight of the fusion enzyme, ACSO, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, was 90 +/- 3 kDa. Gel filtration analysis indicates that the native ACSO is oligomeric and is capable of converting exogenously supplied AdoMet to ethylene. The ethylene production rate of ACSO fusion enzyme was determined to be 6.0 nmol h-1 mg-1 under our assaying conditions using the partially purified enzyme extract. In the enzyme reaction mixture, an increase in ethylene production catalyzed by the bifunctional ACSO was accompanied by a decrease in ACC accumulation. Similarly, in E. coli cells, the level of ACC, produced as an intermediate during the sequential reactions from AdoMet to ethylene, was also found to arise earlier than that of ethylene. Because ACSO could produce ethylene from the ubiquitous AdoMet in living cell and the method commonly used to measure gaseous ethylene is simple, fast, and sensitive, we anticipate this bifunctional fusion enzyme to be useful as a reporter and for research in molecular biology, developmental biology, fermentation, and genetic engineering.
Collapse
Affiliation(s)
- N Li
- Department of Biology, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | | | | | | |
Collapse
|
29
|
Li N, Huxtable S, Yang SF, Kung SD. Effects of N-terminal deletions on 1-aminocyclopropane-1-carboxylate synthase activity. FEBS Lett 1996; 378:286-90. [PMID: 8557119 DOI: 10.1016/0014-5793(95)01464-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A series of nested N-terminal deletions were made on the full-length (wt) and C-terminal deleted (Cdel) 1-aminocyclopropane-1-carboxylate synthase cDNAs. These wt and mutant ACC synthases were over-expressed in a heterologous E. coli expression system. It was found that removal of an amino acid region (residues 2-12) from the non-conserved N-termini of wt and Cdel ACC synthases led to a slight increase in both in vivo ACC production and in vitro ACC synthase activity. Further deletion of 11 amino acids through Glu-23 from the N-termini of both wt and Cdel ACC synthases resulted in a substantial reduction in both in vivo ACC production and in vitro enzyme activity. Deletion of an amino acid region, residues 3 through 27, from the N-terminus of ACC synthase abolished enzyme activity completely. Kinetic analysis of a highly purified double-deletion mutant (NCdel-1) of ACC synthase demonstrated that the Km of this mutant is 42 microM, which is much smaller than that of the corresponding Cdel (280 microM) and closer to that of wt (22 microM) reported previously, suggesting a clear effect of the non-conserved N-terminal region on its ACC synthase function.
Collapse
Affiliation(s)
- N Li
- Department of Biology, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | | | | | | |
Collapse
|
30
|
Zarembinski TI, Theologis A. Ethylene biosynthesis and action: a case of conservation. PLANT MOLECULAR BIOLOGY 1994; 26:1579-97. [PMID: 7858205 DOI: 10.1007/bf00016491] [Citation(s) in RCA: 144] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
|