1
|
Jahdkaran M, Sistanizad M. From lipids to glucose: Investigating the role of dyslipidemia in the risk of insulin resistance. J Steroid Biochem Mol Biol 2025; 250:106744. [PMID: 40158704 DOI: 10.1016/j.jsbmb.2025.106744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/11/2025] [Accepted: 03/26/2025] [Indexed: 04/02/2025]
Abstract
Dyslipidemia is recognized as one of the most prevalent metabolic disorders and is frequently associated with other prevalent conditions, particularly diabetes mellitus. There appears to be a bidirectional connection between these two metabolic disorders. While considerable research has focused on how insulin resistance can lead to lipid abnormalities, the reverse relationship specifically, how dyslipidemia could assist in developing insulin resistance and diabetes mellitus has received relatively less attention. This review aims to comprehensively evaluate the mechanisms through which dyslipidemia can induce insulin resistance. Dyslipidemia is primarily classified into three main categories: hypercholesterolemia, hypertriglyceridemia, and low levels of HDL. These conditions may promote insulin resistance across multiple pathways, including the accumulation of lipid metabolites, dysfunction of pancreatic β-cells, increased reactive oxygen species, endoplasmic reticulum stress and inflammation, endothelial dysfunction, alterations in adiponectin levels, changes in bile acid composition and concentration, and dysbiosis of gut microbiota. However, further investigation is required to fully elucidate the cellular and molecular mechanisms underlying the relationship between lipid disorders and insulin resistance. Emphasizing such research could facilitate the development of therapeutic strategies targeting both conditions simultaneously.
Collapse
Affiliation(s)
- Mahtab Jahdkaran
- Prevention of Cardiovascular Disease Research Center, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Sistanizad
- Prevention of Cardiovascular Disease Research Center, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Gupta A, Shinde PG, Jorvekar S, Humane AS, Chandrasekaran M, Borkar RM, Selvaraju S. G protein-coupled oestrogen receptor regulates branched-chain amino acid metabolism through c-Jun N-terminal kinase. FEBS Lett 2025; 599:892-900. [PMID: 40047196 DOI: 10.1002/1873-3468.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 01/02/2025] [Accepted: 01/27/2025] [Indexed: 03/25/2025]
Abstract
Branched-chain amino acids (BCAA) are essential requirements for overall protein turnover, signalling and energy balance, and dysregulation of their metabolic pathway has been associated with many pathophysiological events. Despite the importance of BCAA in human health, our understanding of their metabolic regulation is limited. Here, we present evidence that G protein-coupled oestrogen receptor (GPER) activation inhibits the key BCAA metabolic regulatory enzyme branched-chain α-keto acid dehydrogenase complex (BCKDH) by phosphorylating S293. Inhibition of BCKDH results in leucine, isoleucine and valine accumulation in cells. Interestingly, GPER did not alter the levels of the kinase BCKDK and the phosphatase PPM1K, which regulate BCKDH activity, but activated MAPK signalling. Using gene silencing, we identified that JNK intercedes GPER-mediated BCKDH inhibition. Together, our results demonstrate that GPER inhibits BCAA metabolism through JNK signalling.
Collapse
Affiliation(s)
- Anshu Gupta
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati, India
| | - Prasad Govind Shinde
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati, India
| | - Sachin Jorvekar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Guwahati, India
| | - Akash Suresh Humane
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati, India
| | - Mythri Chandrasekaran
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati, India
| | - Roshan M Borkar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Guwahati, India
| | - Sudhagar Selvaraju
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati, India
| |
Collapse
|
3
|
Priscilla L, Yoo C, Jang S, Park S, Lim G, Kim T, Lee DY. Immunotherapy targeting the obese white adipose tissue microenvironment: Focus on non-communicable diseases. Bioact Mater 2024; 35:461-476. [PMID: 38404641 PMCID: PMC10884763 DOI: 10.1016/j.bioactmat.2024.01.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/14/2024] [Accepted: 01/30/2024] [Indexed: 02/27/2024] Open
Abstract
Obesity triggers inflammatory responses in the microenvironment of white adipose tissue, resulting in chronic systemic inflammation and the subsequent development of non-communicable diseases, including type 2 diabetes, coronary heart disease, and breast cancer. Current therapy approaches for obesity-induced non-communicable diseases persist in prioritizing symptom remission while frequently overlooking the criticality of targeting and alleviating inflammation at its source. Accordingly, this review highlights the importance of the microenvironment of obese white adipose tissue and the promising potential of employing immunotherapy to target it as an effective therapeutic approach for non-communicable diseases induced by obesity. Additionally, this review discusses the challenges and offers perspective about the immunotherapy targeting the microenvironment of obese white adipose tissue.
Collapse
Affiliation(s)
- Lia Priscilla
- Department of Bioengineering, College of Engineering, and BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Hanyang University, Seoul, 04763, Republic of Korea
| | - Chaerim Yoo
- Department of Bioengineering, College of Engineering, and BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Hanyang University, Seoul, 04763, Republic of Korea
| | - Seonmi Jang
- Department of Bioengineering, College of Engineering, and BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Hanyang University, Seoul, 04763, Republic of Korea
| | - Sewon Park
- Department of Bioengineering, College of Engineering, and BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Hanyang University, Seoul, 04763, Republic of Korea
| | - Gayoung Lim
- Department of Bioengineering, College of Engineering, and BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Hanyang University, Seoul, 04763, Republic of Korea
| | - Taekyun Kim
- Department of Bioengineering, College of Engineering, and BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Hanyang University, Seoul, 04763, Republic of Korea
| | - Dong Yun Lee
- Department of Bioengineering, College of Engineering, and BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Hanyang University, Seoul, 04763, Republic of Korea
- Institute of Nano Science and Technology (INST) & Institute for Bioengineering and Biopharmaceutical Research (IBBR), Hanyang University, Seoul, 04763, Republic of Korea
- Elixir Pharmatech Inc., Seoul, 07463, Republic of Korea
| |
Collapse
|
4
|
Chen L, Wang J, Ren Y, Ma Y, Liu J, Jiang H, Liu C. Artesunate improves glucose and lipid metabolism in db/db mice by regulating the metabolic profile and the MAPK/PI3K/Akt signalling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155382. [PMID: 38382280 DOI: 10.1016/j.phymed.2024.155382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/23/2023] [Accepted: 01/20/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND Diabetes is a metabolic disorder characterized by chronic hyperglycaemia. Chronic metabolic abnormalities and long-term hyperglycaemia may result in a wide range of acute and chronic consequences. Previous studies have demonstrated that artesunate(ART) has antidiabetic, anti-inflammatory, antiatherosclerotic, and other beneficial effects, but the specific regulatory mechanism is not completely clear. AIM This study investigated the effects of ART on metabolic disorders in type 2 diabetes mellitus (T2DM) model db/db mice and explored the underlying mechanisms involved. METHODS C57BL/KsJ-db/db mice were used to identify the targets and molecular mechanism of ART. Metabolomic methods were used to evaluate the efficacy of ART in improving T2DM-related metabolic disorders. Network pharmacology and transcriptomic sequencing were used to analyse the targets and pathways of ART in T2DM. Finally, molecular biology experiments were performed to verify the key targets and pathways selected by network pharmacology and transcriptomic analyses. RESULTS After a 7-week ART intervention (160 mg/kg), the glucose and lipid metabolism levels of the db/db mice improved. Additionally, the oxidative stress indices, namely, the MDA and SOD levels, significantly improved (p<0.01). Linoleic acid and glycerophospholipid metabolism, amino acid metabolism, bile acid synthesis, and purine metabolism disorders in db/db mice were partially corrected after ART treatment. Network pharmacology analysis identified important targets of ART for the treatment of metabolic disorders in T2DM . These targets are involved in key signalling pathways, including the highest scores observed for the PI3K/Akt signalling pathway. Transcriptomic analysis revealed that ART could activate the MAPK signalling pathway and two key gene targets, HGK and GADD45. Immunoblotting revealed that ART increases p-PI3K, p-AKT, Glut2, and IRS1 protein expression and suppresses the phosphorylation of p38, ERK1/2, and JNK, returning HGK and GADD45 to their preartesunate levels. CONCLUSION Treatment of db/db mice with 160 mg/kg ART for 7 weeks significantly reduced fasting blood glucose and lipid levels. It also improved metabolic imbalances in amino acids, lipids, purines, and bile acids, thereby improving metabolic disorders. These effects are achieved by activating the PI3K/AKT pathway and inhibiting the MAPK pathway, thus demonstrating the efficacy of the drug.
Collapse
Affiliation(s)
- Lulu Chen
- Luoyang Key Laboratory of Clinical Multiomics and Translational Medicine, Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China; Department of Clinical Laboratory, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Jialin Wang
- Luoyang Key Laboratory of Clinical Multiomics and Translational Medicine, Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Yanshuang Ren
- Luoyang Key Laboratory of Clinical Multiomics and Translational Medicine, Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Yujin Ma
- Luoyang Key Laboratory of Clinical Multiomics and Translational Medicine, Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Jie Liu
- Luoyang Key Laboratory of Clinical Multiomics and Translational Medicine, Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Hongwei Jiang
- Luoyang Key Laboratory of Clinical Multiomics and Translational Medicine, Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China.
| | - Chuanxin Liu
- Luoyang Key Laboratory of Clinical Multiomics and Translational Medicine, Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China.
| |
Collapse
|
5
|
Yan H, He L, Lv D, Yang J, Yuan Z. The Role of the Dysregulated JNK Signaling Pathway in the Pathogenesis of Human Diseases and Its Potential Therapeutic Strategies: A Comprehensive Review. Biomolecules 2024; 14:243. [PMID: 38397480 PMCID: PMC10887252 DOI: 10.3390/biom14020243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
JNK is named after c-Jun N-terminal kinase, as it is responsible for phosphorylating c-Jun. As a member of the mitogen-activated protein kinase (MAPK) family, JNK is also known as stress-activated kinase (SAPK) because it can be activated by extracellular stresses including growth factor, UV irradiation, and virus infection. Functionally, JNK regulates various cell behaviors such as cell differentiation, proliferation, survival, and metabolic reprogramming. Dysregulated JNK signaling contributes to several types of human diseases. Although the role of the JNK pathway in a single disease has been summarized in several previous publications, a comprehensive review of its role in multiple kinds of human diseases is missing. In this review, we begin by introducing the landmark discoveries, structures, tissue expression, and activation mechanisms of the JNK pathway. Next, we come to the focus of this work: a comprehensive summary of the role of the deregulated JNK pathway in multiple kinds of diseases. Beyond that, we also discuss the current strategies for targeting the JNK pathway for therapeutic intervention and summarize the application of JNK inhibitors as well as several challenges now faced. We expect that this review can provide a more comprehensive insight into the critical role of the JNK pathway in the pathogenesis of human diseases and hope that it also provides important clues for ameliorating disease conditions.
Collapse
Affiliation(s)
- Huaying Yan
- Department of Ultrasound, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; (H.Y.); (L.H.)
| | - Lanfang He
- Department of Ultrasound, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; (H.Y.); (L.H.)
| | - De Lv
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Jun Yang
- Cancer Center and State Key Laboratory of Biotherapy, Department of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Zhu Yuan
- Cancer Center and State Key Laboratory of Biotherapy, Department of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China;
| |
Collapse
|
6
|
Li H, Meng Y, He S, Tan X, Zhang Y, Zhang X, Wang L, Zheng W. Macrophages, Chronic Inflammation, and Insulin Resistance. Cells 2022; 11:cells11193001. [PMID: 36230963 PMCID: PMC9562180 DOI: 10.3390/cells11193001] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/08/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
The prevalence of obesity has reached alarming levels, which is considered a major risk factor for several metabolic diseases, including type 2 diabetes (T2D), non-alcoholic fatty liver, atherosclerosis, and ischemic cardiovascular disease. Obesity-induced chronic, low-grade inflammation may lead to insulin resistance, and it is well-recognized that macrophages play a major role in such inflammation. In the current review, the molecular mechanisms underlying macrophages, low-grade tissue inflammation, insulin resistance, and T2D are described. Also, the role of macrophages in obesity-induced insulin resistance is presented, and therapeutic drugs and recent advances targeting macrophages for the treatment of T2D are introduced.
Collapse
Affiliation(s)
- He Li
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ya Meng
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Shuwang He
- Shandong DYNE Marine Biopharmaceutical Co., Ltd., Rongcheng 264300, China
| | - Xiaochuan Tan
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yujia Zhang
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xiuli Zhang
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Lulu Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
- Correspondence: (L.W.); (W.Z.); Tel.: +86-010-63165233 (W.Z.)
| | - Wensheng Zheng
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Correspondence: (L.W.); (W.Z.); Tel.: +86-010-63165233 (W.Z.)
| |
Collapse
|
7
|
Yao J, Wu D, Qiu Y. Adipose tissue macrophage in obesity-associated metabolic diseases. Front Immunol 2022; 13:977485. [PMID: 36119080 PMCID: PMC9478335 DOI: 10.3389/fimmu.2022.977485] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Adipose tissue macrophage (ATM) has been appreciated for its critical contribution to obesity-associated metabolic diseases in recent years. Here, we discuss the regulation of ATM on both metabolic homeostatsis and dysfunction. In particular, the macrophage polarization and recruitment as well as the crosstalk between ATM and adipocyte in thermogenesis, obesity, insulin resistance and adipose tissue fibrosis have been reviewed. A better understanding of how ATM regulates adipose tissue remodeling may provide novel therapeutic strategies against obesity and associated metabolic diseases.
Collapse
Affiliation(s)
- Jingfei Yao
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Dongmei Wu
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Yifu Qiu
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- *Correspondence: Yifu Qiu,
| |
Collapse
|
8
|
Tian JJ, Levy M, Zhang X, Sinnott R, Maddela R. Counteracting Health Risks by Modulating Homeostatic Signaling. Pharmacol Res 2022; 182:106281. [PMID: 35661711 DOI: 10.1016/j.phrs.2022.106281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/14/2022] [Accepted: 05/27/2022] [Indexed: 10/18/2022]
Abstract
Homeostasis was initially conceptualized by Bernard and Cannon around a century ago as a steady state of physiological parameters that vary within a certain range, such as blood pH, body temperature, and heart rate1,2. The underlying mechanisms that maintain homeostasis are explained by negative feedbacks that are executed by the neuronal, endocrine, and immune systems. At the cellular level, homeostasis, such as that of redox and energy steady state, also exists and is regulated by various cell signaling pathways. The induction of homeostatic mechanism is critical for human to adapt to various disruptive insults (stressors); while on the other hand, adaptation occurs at the expense of other physiological processes and thus runs the risk of collateral damages, particularly under conditions of chronic stress. Conceivably, anti-stress protection can be achieved by stressor-mimicking medicinals that elicit adaptive responses prior to an insult and thereby serve as health risk countermeasures; and in situations where maladaptation may occur, downregulating medicinals could be used to suppress the responses and prevent subsequent pathogenesis. Both strategies are preemptive interventions particularly suited for individuals who carry certain lifestyle, environmental, or genetic risk factors. In this article, we will define and characterize a new modality of prophylactic intervention that forestalls diseases via modulating homeostatic signaling. Moreover, we will provide evidence from the literature that support this concept and distinguish it from other homeostasis-related interventions such as adaptogen, hormesis, and xenohormesis.
Collapse
Affiliation(s)
- Junqiang J Tian
- USANA Health Science, Inc., 3838 Parkway Blvd, Salt Lake City, UT 84121, USA.
| | - Mark Levy
- USANA Health Science, Inc., 3838 Parkway Blvd, Salt Lake City, UT 84121, USA
| | - Xuekai Zhang
- Beijing University of Chinese Medicine, No. 11, Bei San Huan Dong Lu, Chaoyang District, Beijing100029, China; US Center for Chinese Medicine, 14801 Physicians lane, 171 A 2nd Floor, #281, Rockville MD 20850, USA
| | - Robert Sinnott
- USANA Health Science, Inc., 3838 Parkway Blvd, Salt Lake City, UT 84121, USA
| | - Rolando Maddela
- USANA Health Science, Inc., 3838 Parkway Blvd, Salt Lake City, UT 84121, USA
| |
Collapse
|
9
|
Nedosugova LV, Markina YV, Bochkareva LA, Kuzina IA, Petunina NA, Yudina IY, Kirichenko TV. Inflammatory Mechanisms of Diabetes and Its Vascular Complications. Biomedicines 2022; 10:biomedicines10051168. [PMID: 35625904 PMCID: PMC9138517 DOI: 10.3390/biomedicines10051168] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 12/14/2022] Open
Abstract
The main cause of death in patients with type 2 DM is cardiovascular complications resulting from the progression of atherosclerosis. The pathophysiology of the association between diabetes and its vascular complications is complex and multifactorial and closely related to the toxic effects of hyperglycemia that causes increased generation of reactive oxygen species and promotes the secretion of pro-inflammatory cytokines. Subsequent oxidative stress and inflammation are major factors of the progression of type 2 DM and its vascular complications. Data on the pathogenesis of the development of type 2 DM and associated cardiovascular diseases, in particular atherosclerosis, open up broad prospects for the further development of new diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Lyudmila V. Nedosugova
- Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (L.V.N.); (L.A.B.); (I.A.K.); (N.A.P.); (I.Y.Y.)
| | - Yuliya V. Markina
- Petrovsky National Research Center of Surgery, 119991 Moscow, Russia;
| | - Leyla A. Bochkareva
- Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (L.V.N.); (L.A.B.); (I.A.K.); (N.A.P.); (I.Y.Y.)
| | - Irina A. Kuzina
- Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (L.V.N.); (L.A.B.); (I.A.K.); (N.A.P.); (I.Y.Y.)
| | - Nina A. Petunina
- Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (L.V.N.); (L.A.B.); (I.A.K.); (N.A.P.); (I.Y.Y.)
| | - Irina Y. Yudina
- Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (L.V.N.); (L.A.B.); (I.A.K.); (N.A.P.); (I.Y.Y.)
- Petrovsky National Research Center of Surgery, 119991 Moscow, Russia;
| | - Tatiana V. Kirichenko
- Petrovsky National Research Center of Surgery, 119991 Moscow, Russia;
- Chazov National Medical Research Center of Cardiology, 121552 Moscow, Russia
- Correspondence:
| |
Collapse
|
10
|
Mechanism of glycometabolism regulation by bioactive compounds from the fruits of Lycium barbarum: A review. Food Res Int 2022; 159:111408. [PMID: 35940747 DOI: 10.1016/j.foodres.2022.111408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/30/2022] [Accepted: 05/22/2022] [Indexed: 11/21/2022]
|
11
|
Liu Z, Qu CY, Li JX, Wang YF, Li W, Wang CZ, Wang DS, Song J, Sun GZ, Yuan CS. Hypoglycemic and Hypolipidemic Effects of Malonyl Ginsenosides from American Ginseng ( Panax quinquefolius L.) on Type 2 Diabetic Mice. ACS OMEGA 2021; 6:33652-33664. [PMID: 34926913 PMCID: PMC8675029 DOI: 10.1021/acsomega.1c04656] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/22/2021] [Indexed: 06/14/2023]
Abstract
American ginseng (Panax quinquefolius L.) is popularly consumed as traditional herbal medicine and health food for the treatment of type 2 diabetes mellitus (T2DM). Malonyl ginsenosides (MGR) are the main natural ginsenosides in American ginseng. However, whether the malonyl ginsenosides in P. quinquefolius (PQ-MGR) possess antidiabetic effects has not been explored yet. In this study, the antidiabetic effects and the underlying mechanism of PQ-MGR in high-fat diet/streptozotocin (HFD/STZ)-induced T2DM mice were investigated. The chemical composition was analyzed by high-performance liquid chromatography-electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS). Our results showed that 14 malonyl ginsenosides were identified in the PQ-MGR. Among them, the content of m-Rb1 represented about 77.4% of the total malonyl ginsenosides. After a 5-week experiment, the PQ-MGR significantly reduced the fasting blood glucose (FBG), triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), nonesterified fatty acid (NEFA), alanine transaminase (ALT), and aspartate transaminase (AST) levels and improved glucose tolerance and insulin resistance. Furthermore, Western blot analysis demonstrated that the protein expressions of p-PI3K, p-AKT, p-AMPK, p-ACC, PPARγ, and GLUT4 in the liver and skeletal muscle were significantly upregulated after PQ-MGR treatment. In contrast, the protein expressions of p-IRS1 and p-JNK were significantly downregulated. Our results revealed that PQ-MGR could ameliorate glucose and lipid metabolism and insulin resistance in T2DM via regulation of the insulin receptor substrate-1/phosphoinositide3-kinase/protein-kinase B (IRS1/PI3K/Akt) and AMP-activated protein kinase/acetyl-CoA carboxylase (AMPK/ACC) pathways. These findings suggest that PQ-MGR may be used as an antidiabetic candidate drug for T2DM treatment.
Collapse
Affiliation(s)
- Zhi Liu
- College
of Chinese Medicinal Materials, Jilin Agricultural
University, Changchun 130118, China
- Institute
of Agricultural Modernization, Jilin Agricultural
University, Changchun 130118, China
| | - Chun-Yuan Qu
- College
of Chinese Medicinal Materials, Jilin Agricultural
University, Changchun 130118, China
| | - Jia-Xin Li
- College
of Chinese Medicinal Materials, Jilin Agricultural
University, Changchun 130118, China
| | - Yan-Fang Wang
- College
of Chinese Medicinal Materials, Jilin Agricultural
University, Changchun 130118, China
| | - Wei Li
- College
of Chinese Medicinal Materials, Jilin Agricultural
University, Changchun 130118, China
| | - Chong-Zhi Wang
- Tang
Center for Herbal Medicine Research and The Pritzker School of Medicine, University of Chicago, Chicago, Illinois 60637, United States
| | - Dong-Sheng Wang
- College
of Chinese Medicinal Materials, Jilin Agricultural
University, Changchun 130118, China
| | - Jia Song
- College
of Chinese Medicinal Materials, Jilin Agricultural
University, Changchun 130118, China
| | - Guang-Zhi Sun
- Institute
of Agricultural Modernization, Jilin Agricultural
University, Changchun 130118, China
| | - Chun-Su Yuan
- Tang
Center for Herbal Medicine Research and The Pritzker School of Medicine, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
12
|
Sehgal A, Behl T, Kaur I, Singh S, Sharma N, Aleya L. Targeting NLRP3 inflammasome as a chief instigator of obesity, contributing to local adipose tissue inflammation and insulin resistance. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:43102-43113. [PMID: 34145545 DOI: 10.1007/s11356-021-14904-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/10/2021] [Indexed: 06/12/2023]
Abstract
Inflammasome activity plays a vital role in various non-microbial disease states correlated with prolonged inflammation. NLRP3 inflammasome function and IL-1β formation are augmented in obesity and several obesity-linked metabolic disorders (i.e. diabetes mellitus, hypertension, hepatic steatosis, cancer, arthritis, and sleep apnea). Also, several factors are associated with the progression of diseases viz. increased plasma glucose, fatty acids, and β-amyloid are augmented during obesity and activate NLRP3 inflammasome expression. Prolonged NLRP3 stimulation seems to play significant role in various disorders, though better knowledge of inflammasome regulation and action might result in improved therapeutic tactics. Numerous compounds that mitigate NLRP3 inflammasome expression and suppress its chief effector, IL-1β are presently studied in clinical phases as therapeutics to manage or prevent these common disorders. A deep research on the literature available till date for inflammasome in obesity was conducted using various medical sites like PubMed, HINARI, MEDLINE from the internet, and data was collected simultaneously. The present review aims to examine the prospects of inflammasome as a major progenitor in the progression of obesity via directing their role in regulating appetite.
Collapse
Affiliation(s)
- Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Ishnoor Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besancon, France
| |
Collapse
|
13
|
The NLRP3 inflammasome regulates adipose tissue metabolism. Biochem J 2020; 477:1089-1107. [PMID: 32202638 DOI: 10.1042/bcj20190472] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 12/27/2022]
Abstract
Adipose tissue regulates metabolic homeostasis by participating in endocrine and immune responses in addition to storing and releasing lipids from adipocytes. Obesity skews adipose tissue adipokine responses and degrades the coordination of adipocyte lipogenesis and lipolysis. These defects in adipose tissue metabolism can promote ectopic lipid deposition and inflammation in insulin-sensitive tissues such as skeletal muscle and liver. Sustained caloric excess can expand white adipose tissue to a point of maladaptation exacerbating both local and systemic inflammation. Multiple sources, instigators and propagators of adipose tissue inflammation occur during obesity. Cross-talk between professional immune cells (i.e. macrophages) and metabolic cells (i.e. adipocytes) promote adipose tissue inflammation during metabolic stress (i.e. metaflammation). Metabolic stress and endogenous danger signals can engage pathogen recognition receptors (PRRs) of the innate immune system thereby activating pro-inflammatory and stress pathways in adipose tissue. The Nod-like receptor protein 3 (NLRP3) inflammasome can act as a metabolic danger sensor to a wide range of pathogen- and damage-associated molecular patterns (PAMPs and DAMPs). Activation of the NLRP3 inflammasome facilitates caspase-1 dependent production of the pro-inflammatory cytokines IL-1β and IL-18. Activation of the NLRP3 inflammasome can promote inflammation and pyroptotic cell death, but caspase-1 is also involved in adipogenesis. This review discusses the role of the NLRP3 inflammasome in adipose tissue immunometabolism responses relevant to metabolic disease. Understanding the potential sources of NLRP3 activation and consequences of NLRP3 effectors may reveal therapeutic opportunities to break or fine-tune the connection between metabolism and inflammation in adipose tissue during obesity.
Collapse
|
14
|
Bi A, An W, Wang C, Hua Y, Fang F, Dong X, Chen R, Zhang Z, Luo L. SCR-1693 inhibits tau phosphorylation and improves insulin resistance associated cognitive deficits. Neuropharmacology 2020; 168:108027. [DOI: 10.1016/j.neuropharm.2020.108027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 02/27/2020] [Accepted: 03/01/2020] [Indexed: 12/29/2022]
|
15
|
Zatterale F, Longo M, Naderi J, Raciti GA, Desiderio A, Miele C, Beguinot F. Chronic Adipose Tissue Inflammation Linking Obesity to Insulin Resistance and Type 2 Diabetes. Front Physiol 2020; 10:1607. [PMID: 32063863 PMCID: PMC7000657 DOI: 10.3389/fphys.2019.01607] [Citation(s) in RCA: 620] [Impact Index Per Article: 124.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/23/2019] [Indexed: 12/13/2022] Open
Abstract
Obesity is one of the major health burdens of the 21st century as it contributes to the growing prevalence of its related comorbidities, including insulin resistance and type 2 diabetes. Growing evidence suggests a critical role for overnutrition in the development of low-grade inflammation. Specifically, chronic inflammation in adipose tissue is considered a crucial risk factor for the development of insulin resistance and type 2 diabetes in obese individuals. The triggers for adipose tissue inflammation are still poorly defined. However, obesity-induced adipose tissue expansion provides a plethora of intrinsic signals (e.g., adipocyte death, hypoxia, and mechanical stress) capable of initiating the inflammatory response. Immune dysregulation in adipose tissue of obese subjects results in a chronic low-grade inflammation characterized by increased infiltration and activation of innate and adaptive immune cells. Macrophages are the most abundant innate immune cells infiltrating and accumulating into adipose tissue of obese individuals; they constitute up to 40% of all adipose tissue cells in obesity. In obesity, adipose tissue macrophages are polarized into pro-inflammatory M1 macrophages and secrete many pro-inflammatory cytokines capable of impairing insulin signaling, therefore promoting the progression of insulin resistance. Besides macrophages, many other immune cells (e.g., dendritic cells, mast cells, neutrophils, B cells, and T cells) reside in adipose tissue during obesity, playing a key role in the development of adipose tissue inflammation and insulin resistance. The association of obesity, adipose tissue inflammation, and metabolic diseases makes inflammatory pathways an appealing target for the treatment of obesity-related metabolic complications. In this review, we summarize the molecular mechanisms responsible for the obesity-induced adipose tissue inflammation and progression toward obesity-associated comorbidities and highlight the current therapeutic strategies.
Collapse
Affiliation(s)
- Federica Zatterale
- Department of Translational Medicine, University of Naples Federico II, Naples, Italy.,URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Michele Longo
- Department of Translational Medicine, University of Naples Federico II, Naples, Italy.,URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Jamal Naderi
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy.,Department of Environmental, Biological, and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Gregory Alexander Raciti
- Department of Translational Medicine, University of Naples Federico II, Naples, Italy.,URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Antonella Desiderio
- Department of Translational Medicine, University of Naples Federico II, Naples, Italy.,URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Claudia Miele
- Department of Translational Medicine, University of Naples Federico II, Naples, Italy.,URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Francesco Beguinot
- Department of Translational Medicine, University of Naples Federico II, Naples, Italy.,URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| |
Collapse
|
16
|
Zhao C, Yang C, Wai STC, Zhang Y, P Portillo M, Paoli P, Wu Y, San Cheang W, Liu B, Carpéné C, Xiao J, Cao H. Regulation of glucose metabolism by bioactive phytochemicals for the management of type 2 diabetes mellitus. Crit Rev Food Sci Nutr 2018; 59:830-847. [PMID: 30501400 DOI: 10.1080/10408398.2018.1501658] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/13/2018] [Accepted: 07/15/2018] [Indexed: 02/08/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is the most prevalent disease and becoming a serious public health threat worldwide. It is a severe endocrine metabolic disorder that has the ability to induce serious complications in all kinds of organs. Although mechanisms of anti-diabetics have been described before, we focus here on the cellular and physiological mechanisms involved in the modulation of insulin and glucose blood levels. As obesity and inflammation are intimately associated with the development of T2DM, their possible relationships are also described. The effects of gut microbiota on insulin resistance have been recently investigated in clinical trials, and we discuss the potential mechanisms by which gut microbiota may improve glucose handling, especially via the metabolism of ingested phytochemicals. Among the historically supported effects of phytochemicals, their therapeutic potential for T2DM leads to consider these natural products as an important pool for the identification of novel anti-diabetic drug leads. This current research extends the descriptions of anti-diabetic effects of plants that are used in traditional medicines or as nutraceuticals. The objective of the present review is to make a systematic report on glucose metabolism in T2DM as well as to explore the relationships between natural phytochemicals and glucose handling.
Collapse
Affiliation(s)
- Chao Zhao
- a College of Food Science , Fujian Agriculture and Forestry University , Fuzhou , China
- b Department of Chemistry , University of California , Davis , CA , USA
| | - Chengfeng Yang
- a College of Food Science , Fujian Agriculture and Forestry University , Fuzhou , China
- c Institute of Oceanography , Minjiang University , Fuzhou , China
| | - Sydney Tang Chi Wai
- d Department of Medicine, LKS Faculty of Medicine , The University of Hong Kong, Queen Mary Hospital , Hong Kong
| | - Yanbo Zhang
- e School Chinese Medicine , University of Hong Kong , Hong Kong , China
| | - Maria P Portillo
- f Department of Nutrition and Food Science, Faculty of Pharmacy , University of Basque Country (UPV/EHU) and Lucio Lascaray Research Center , Vitoria , Spain
- g CIBEROBN Physiopathology of Obesity and Nutrition , Institute of Health Carlos III (ISCIII) , Spain
| | - Paolo Paoli
- h Department of Biomedical, Experimental and Clinical Sciences , University of Florence , Florence , Italy
| | - Yijing Wu
- c Institute of Oceanography , Minjiang University , Fuzhou , China
- i College of Food Science and Nutritional Engineering , China Agricultural University , China
| | - Wai San Cheang
- j Institute of Chinese Medical Sciences, State Key Laboratory of Quality Control in Chinese Medicine , University of Macau , Macau SAR , China
| | - Bin Liu
- a College of Food Science , Fujian Agriculture and Forestry University , Fuzhou , China
| | - Christian Carpéné
- k Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM U1048) / Université Paul Sabatier, Bât. L4, CHU Rangueil , Toulouse cedex 4 , France
| | - Jianbo Xiao
- j Institute of Chinese Medical Sciences, State Key Laboratory of Quality Control in Chinese Medicine , University of Macau , Macau SAR , China
| | - Hui Cao
- a College of Food Science , Fujian Agriculture and Forestry University , Fuzhou , China
- j Institute of Chinese Medical Sciences, State Key Laboratory of Quality Control in Chinese Medicine , University of Macau , Macau SAR , China
| |
Collapse
|
17
|
Emerging Role of Adipocytokines in Type 2 Diabetes as Mediators of Insulin Resistance and Cardiovascular Disease. Can J Diabetes 2018; 42:446-456.e1. [PMID: 29229313 DOI: 10.1016/j.jcjd.2017.10.040] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 10/06/2017] [Accepted: 10/06/2017] [Indexed: 12/13/2022]
|
18
|
Araujo LCC, Feitosa KB, Murata GM, Furigo IC, Teixeira SA, Lucena CF, Ribeiro LM, Muscará MN, Costa SKP, Donato J, Bordin S, Curi R, Carvalho CRO. Uncaria tomentosa improves insulin sensitivity and inflammation in experimental NAFLD. Sci Rep 2018; 8:11013. [PMID: 30030460 PMCID: PMC6054645 DOI: 10.1038/s41598-018-29044-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 06/22/2018] [Indexed: 02/06/2023] Open
Abstract
We investigated the effect of the crude herbal extract from Uncaria tomentosa (UT) on non-alcoholic fatty liver disease (NAFLD) in two models of obesity: high fat diet (HFD) and genetically obese (ob/ob) mice. Both obese mouse models were insulin resistant and exhibited an abundance of lipid droplets in the hepatocytes and inflammatory cell infiltration in the liver, while only the HFD group had collagen deposition in the perivascular space of the liver. UT treatment significantly reduced liver steatosis and inflammation in both obese mouse models. Furthermore, serine phosphorylation of IRS-1 was reduced by 25% in the HFD mice treated with UT. Overall, UT treated animals exhibited higher insulin sensitivity as compared to vehicle administration. In conclusion, Uncaria tomentosa extract improved glucose homeostasis and reverted NAFLD to a benign hepatic steatosis condition and these effects were associated with the attenuation of liver inflammation in obese mice.
Collapse
Affiliation(s)
- Layanne C C Araujo
- Department of Physiology and Biophysics, University of São Paulo, São Paulo, 05508-900, Brazil
| | - Karla B Feitosa
- Department of Pharmacology, Institute of Biological Science, University of São Paulo, São Paulo, 05508-900, Brazil
| | - Gilson M Murata
- Department of Physiology and Biophysics, University of São Paulo, São Paulo, 05508-900, Brazil
| | - Isadora C Furigo
- Department of Physiology and Biophysics, University of São Paulo, São Paulo, 05508-900, Brazil
| | - Simone A Teixeira
- Department of Pharmacology, Institute of Biological Science, University of São Paulo, São Paulo, 05508-900, Brazil
| | - Camila F Lucena
- Department of Physiology and Biophysics, University of São Paulo, São Paulo, 05508-900, Brazil
| | - Luciene M Ribeiro
- Department of Physiology and Biophysics, University of São Paulo, São Paulo, 05508-900, Brazil
| | - Marcelo N Muscará
- Department of Pharmacology, Institute of Biological Science, University of São Paulo, São Paulo, 05508-900, Brazil
| | - Soraia K P Costa
- Department of Pharmacology, Institute of Biological Science, University of São Paulo, São Paulo, 05508-900, Brazil
| | - José Donato
- Department of Physiology and Biophysics, University of São Paulo, São Paulo, 05508-900, Brazil
| | - Silvana Bordin
- Department of Physiology and Biophysics, University of São Paulo, São Paulo, 05508-900, Brazil
| | - Rui Curi
- Interdisciplinar Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, SP, Brazil
| | - Carla R O Carvalho
- Department of Physiology and Biophysics, University of São Paulo, São Paulo, 05508-900, Brazil.
| |
Collapse
|
19
|
Abstract
Diabetes is a major risk factor for the development of heart failure. One of the hallmarks of diabetes is insulin resistance associated with hyperinsulinemia. The literature shows that insulin and adrenergic signaling is intimately linked to each other; however, whether and how insulin may modulate cardiac adrenergic signaling and cardiac function remains unknown. Notably, recent studies have revealed that insulin receptor and β2 adrenergic receptor (β2AR) forms a membrane complex in animal hearts, bringing together the direct contact between 2 receptor signaling systems, and forming an integrated and dynamic network. Moreover, insulin can drive cardiac adrenergic desensitization via protein kinase A and G protein-receptor kinases phosphorylation of the β2AR, which compromises adrenergic regulation of cardiac contractile function. In this review, we will explore the current state of knowledge linking insulin and G protein-coupled receptor signaling, especially β-adrenergic receptor signaling in the heart, with emphasis on molecular insights regarding its role in diabetic cardiomyopathy.
Collapse
|
20
|
Abstract
Adipose tissue plays an important role in energy metabolism. Adipose dysfunction is closely related to obesity and type II diabetes. Glucose uptake is the key step for fat synthesis in adipocyte. miRNAs have been proven to play a crucial role in adipocyte differentiation, adipogenesis and glucose homeostasis. In this paper, we firstly reported that miR-146b decreased glucose consumption by up-regulating miR-146b in a porcine primary adipocyte model, while the inhibitor of endogenous miR-146b rescued the reduction. Then, miR-146b was predicated to target IRS1 by bioinformatics analysis, and a dual-luciferase reporter assay validated this predication. Western blot analyses indicated both IRS1 and glucose transporter type 4 (GLUT4) were down-regulated by miR-146b overexpression. Our study demonstrated that miR-146b regulated glucose homeostasis in porcine primary pre-adipocyte by targeting IRS1, and provided new understandings on regulations of lipogenesis by miRNAs.
Collapse
|
21
|
Guo XX, An S, Yang Y, Liu Y, Hao Q, Tang T, Xu TR. Emerging role of the Jun N-terminal kinase interactome in human health. Cell Biol Int 2018; 42:756-768. [DOI: 10.1002/cbin.10948] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 02/03/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Xiao-Xi Guo
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming Yunnan 650500 China
| | - Su An
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming Yunnan 650500 China
| | - Yang Yang
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming Yunnan 650500 China
| | - Ying Liu
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming Yunnan 650500 China
| | - Qian Hao
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming Yunnan 650500 China
| | - Tao Tang
- Faculty of Medicine; Kunming University of Science and Technology; Kunming Yunnan 650500 China
| | - Tian-Rui Xu
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming Yunnan 650500 China
| |
Collapse
|
22
|
Saad MJ. Obesity, Diabetes, and Endothelium: Molecular Interactions. ENDOTHELIUM AND CARDIOVASCULAR DISEASES 2018:639-652. [DOI: 10.1016/b978-0-12-812348-5.00044-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
23
|
Wagman AS, Boyce RS, Brown SP, Fang E, Goff D, Jansen JM, Le VP, Levine BH, Ng SC, Ni ZJ, Nuss JM, Pfister KB, Ramurthy S, Renhowe PA, Ring DB, Shu W, Subramanian S, Zhou XA, Shafer CM, Harrison SD, Johnson KW, Bussiere DE. Synthesis, Binding Mode, and Antihyperglycemic Activity of Potent and Selective (5-Imidazol-2-yl-4-phenylpyrimidin-2-yl)[2-(2-pyridylamino)ethyl]amine Inhibitors of Glycogen Synthase Kinase 3. J Med Chem 2017; 60:8482-8514. [DOI: 10.1021/acs.jmedchem.7b00922] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Allan S. Wagman
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Rustum S. Boyce
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Sean P. Brown
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Eric Fang
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Dane Goff
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Johanna M. Jansen
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Vincent P. Le
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Barry H. Levine
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Simon C. Ng
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Zhi-Jie Ni
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - John M. Nuss
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Keith B. Pfister
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Savithri Ramurthy
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Paul A. Renhowe
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - David B. Ring
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Wei Shu
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Sharadha Subramanian
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Xiaohui A. Zhou
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Cynthia M. Shafer
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Stephen D. Harrison
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Kirk W. Johnson
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Dirksen E. Bussiere
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| |
Collapse
|
24
|
Mullins RJ, Diehl TC, Chia CW, Kapogiannis D. Insulin Resistance as a Link between Amyloid-Beta and Tau Pathologies in Alzheimer's Disease. Front Aging Neurosci 2017; 9:118. [PMID: 28515688 PMCID: PMC5413582 DOI: 10.3389/fnagi.2017.00118] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 04/11/2017] [Indexed: 12/19/2022] Open
Abstract
Current hypotheses and theories regarding the pathogenesis of Alzheimer’s disease (AD) heavily implicate brain insulin resistance (IR) as a key factor. Despite the many well-validated metrics for systemic IR, the absence of biomarkers for brain-specific IR represents a translational gap that has hindered its study in living humans. In our lab, we have been working to develop biomarkers that reflect the common mechanisms of brain IR and AD that may be used to follow their engagement by experimental treatments. We present two promising biomarkers for brain IR in AD: insulin cascade mediators probed in extracellular vesicles (EVs) enriched for neuronal origin, and two-dimensional magnetic resonance spectroscopy (MRS) measures of brain glucose. As further evidence for a fundamental link between brain IR and AD, we provide a novel analysis demonstrating the close spatial correlation between brain expression of genes implicated in IR (using Allen Human Brain Atlas data) and tau and beta-amyloid pathologies. We proceed to propose the bold hypotheses that baseline differences in the metabolic reliance on glycolysis, and the expression of glucose transporters (GLUT) and insulin signaling genes determine the vulnerability of different brain regions to Tau and/or Amyloid beta (Aβ) pathology, and that IR is a critical link between these two pathologies that define AD. Lastly, we provide an overview of ongoing clinical trials that target IR as an angle to treat AD, and suggest how biomarkers may be used to evaluate treatment efficacy and target engagement.
Collapse
Affiliation(s)
- Roger J Mullins
- Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging, National Institutes of Health (NIA/NIH)Baltimore, MD, USA
| | - Thomas C Diehl
- Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging, National Institutes of Health (NIA/NIH)Baltimore, MD, USA
| | - Chee W Chia
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health (NIA/NIH)Baltimore, MD, USA
| | - Dimitrios Kapogiannis
- Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging, National Institutes of Health (NIA/NIH)Baltimore, MD, USA
| |
Collapse
|
25
|
Diehl T, Mullins R, Kapogiannis D. Insulin resistance in Alzheimer's disease. Transl Res 2017; 183:26-40. [PMID: 28034760 PMCID: PMC5393926 DOI: 10.1016/j.trsl.2016.12.005] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 12/05/2016] [Accepted: 12/06/2016] [Indexed: 12/14/2022]
Abstract
The links between systemic insulin resistance (IR), brain-specific IR, and Alzheimer's disease (AD) have been an extremely productive area of current research. This review will cover the fundamentals and pathways leading to IR, its connection to AD via cellular mechanisms, the most prominent methods and models used to examine it, an introduction to the role of extracellular vesicles (EVs) as a source of biomarkers for IR and AD, and an overview of modern clinical studies on the subject. To provide additional context, we also present a novel analysis of the spatial correlation of gene expression in the brain with the aid of Allen Human Brain Atlas data. Ultimately, examining the relation between IR and AD can be seen as a means of advancing the understanding of both disease states, with IR being a promising target for therapeutic strategies in AD treatment. In conclusion, we highlight the therapeutic potential of targeting brain IR in AD and the main strategies to pursue this goal.
Collapse
Affiliation(s)
- Thomas Diehl
- Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging/National Institutes of Health (NIA/NIH), Baltimore, MD
| | - Roger Mullins
- Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging/National Institutes of Health (NIA/NIH), Baltimore, MD
| | - Dimitrios Kapogiannis
- Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging/National Institutes of Health (NIA/NIH), Baltimore, MD.
| |
Collapse
|
26
|
Solinas G, Becattini B. JNK at the crossroad of obesity, insulin resistance, and cell stress response. Mol Metab 2016; 6:174-184. [PMID: 28180059 PMCID: PMC5279903 DOI: 10.1016/j.molmet.2016.12.001] [Citation(s) in RCA: 290] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 11/28/2016] [Accepted: 12/02/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The cJun-N-terminal-kinase (JNK) plays a central role in the cell stress response, with outcomes ranging from cell death to cell proliferation and survival, depending on the specific context. JNK is also one of the most investigated signal transducers in obesity and insulin resistance, and studies have identified new molecular mechanisms linking obesity and insulin resistance. Emerging evidence indicates that whereas JNK1 and JNK2 isoforms promote the development of obesity and insulin resistance, JNK3 activity protects from excessive adiposity. Furthermore, current evidence indicates that JNK activity within specific cell types may, in specific stages of disease progression, promote cell tolerance to the stress associated with obesity and type-2 diabetes. SCOPE OF REVIEW This review provides an overview of the current literature on the role of JNK in the progression from obesity to insulin resistance, NAFLD, type-2 diabetes, and diabetes complications. MAJOR CONCLUSION Whereas current evidence indicates that JNK1/2 inhibition may improve insulin sensitivity in obesity, the role of JNK in the progression from insulin resistance to diabetes, and its complications is largely unresolved. A better understanding of the role of JNK in the stress response to obesity and type-2 diabetes, and the development of isoform-specific inhibitors with specific tissue distribution will be necessary to exploit JNK as possible drug target for the treatment of type-2 diabetes.
Collapse
Affiliation(s)
- Giovanni Solinas
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, 41345 Gothenburg, Sweden.
| | - Barbara Becattini
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, 41345 Gothenburg, Sweden
| |
Collapse
|
27
|
IGF-1 mediated phosphorylation of specific IRS-1 serines in Ames dwarf fibroblasts is associated with longevity. Oncotarget 2016; 6:35315-23. [PMID: 26474286 PMCID: PMC4742107 DOI: 10.18632/oncotarget.6112] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 09/22/2015] [Indexed: 12/28/2022] Open
Abstract
Insulin/IGF-1 signaling involves phosphorylation/dephosphorylation of serine/threonine or tyrosine residues of the insulin receptor substrate (IRS) proteins and is associated with hormonal control of longevity determination of certain long-lived mice. The stimulation of serine phosphorylations by IGF-1 suggests there is insulin/IGF-1 crosstalk that involves the phosphorylation of the same serine residues. By this mechanism, insulin and IGF-1 mediated phosphorylation of specific IRS-1 serines could play a role in longevity determination. We used fibroblasts from WT and Ames dwarf mice to examine whether: (a) IGF-1 stimulates phosphorylation of IRS-1 serines targeted by insulin; (b) the levels of serine phosphorylation differ in WT vs. Ames fibroblasts; and (c) aging affects the levels of these serine phosphorylations which are altered in the Ames dwarf mutant. We have shown that IRS-1 is a substrate for IGF-1 induced phosphorylation of Ser307, Ser612, Ser636/639, and Ser1101; that the levels of phosphorylation of these serines are significantly lower in Ames vs. WT cells; that IGF-1 mediated phosphorylation of these serines increases with age in WT cells. We propose that insulin/IGF-1 cross talk and level of phosphorylation of specific IRS-1 serines may promote the Ames dwarf longevity phenotype.
Collapse
|
28
|
Katsoulieris EN, Drossopoulou GI, Kotsopoulou ES, Vlahakos DV, Lianos EA, Tsilibary EC. High Glucose Impairs Insulin Signaling in the Glomerulus: An In Vitro and Ex Vivo Approach. PLoS One 2016; 11:e0158873. [PMID: 27434075 PMCID: PMC4951020 DOI: 10.1371/journal.pone.0158873] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/23/2016] [Indexed: 01/14/2023] Open
Abstract
Objective Chronic hyperglycaemia, as seen in type II diabetes, results in both morphological and functional impairments of podocytes in the kidney. We investigated the effects of high glucose (HG) on the insulin signaling pathway, focusing on cell survival and apoptotic markers, in immortalized human glomerular cells (HGEC; podocytes) and isolated glomeruli from healthy rats. Methods and Findings HGEC and isolated glomeruli were cultured for various time intervals under HG concentrations in the presence or absence of insulin. Our findings indicated that exposure of HGEC to HG led to downregulation of all insulin signaling markers tested (IR, p-IR, IRS-1, p-Akt, p-Fox01,03), as well as to increased sensitivity to apoptosis (as seen by increased PARP cleavage, Casp3 activation and DNA fragmentation). Short insulin pulse caused upregulation of insulin signaling markers (IR, p-IR, p-Akt, p-Fox01,03) in a greater extent in normoglycaemic cells compared to hyperglycaemic cells and for the case of p-Akt, in a PI3K-dependent manner. IRS-1 phosphorylation of HG-treated podocytes was negatively regulated, favoring serine versus tyrosine residues. Prolonged insulin treatment caused a significant decrease of IR levels, while alterations in glucose concentrations for various time intervals demonstrated changes of IR, p-IR and p-Akt levels, suggesting that the IR signaling pathway is regulated by glucose levels. Finally, HG exerted similar effects in isolated glomeruli. Conclusions These results suggest that HG compromises the insulin signaling pathway in the glomerulus, promoting a proapoptotic environment, with a possible critical step for this malfunction lying at the level of IRS-1 phosphorylation; thus we herein demonstrate glomerular insulin signaling as another target for investigation for the prevention and/ or treatment of diabetic nephropathy.
Collapse
Affiliation(s)
- Elias N. Katsoulieris
- Institute of Biosciences and Applications, National Center for Scientific Research ‘Demokritos’, Athens, Greece
| | - Garyfalia I. Drossopoulou
- Institute of Biosciences and Applications, National Center for Scientific Research ‘Demokritos’, Athens, Greece
- * E-mail: (GID); (ECT)
| | - Eleni S. Kotsopoulou
- Institute of Biosciences and Applications, National Center for Scientific Research ‘Demokritos’, Athens, Greece
| | - Dimitrios V. Vlahakos
- 2nd Department of Propaedeutic Medicine, Attikon University Hospital, Athens, Greece
| | - Elias A. Lianos
- Department of Pathology, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Effie C. Tsilibary
- Institute of Biosciences and Applications, National Center for Scientific Research ‘Demokritos’, Athens, Greece
- * E-mail: (GID); (ECT)
| |
Collapse
|
29
|
Díaz-Ruiz A, Guzmán-Ruiz R, Moreno NR, García-Rios A, Delgado-Casado N, Membrives A, Túnez I, El Bekay R, Fernández-Real JM, Tovar S, Diéguez C, Tinahones FJ, Vázquez-Martínez R, López-Miranda J, Malagón MM. Proteasome Dysfunction Associated to Oxidative Stress and Proteotoxicity in Adipocytes Compromises Insulin Sensitivity in Human Obesity. Antioxid Redox Signal 2015; 23:597-612. [PMID: 25714483 PMCID: PMC4554552 DOI: 10.1089/ars.2014.5939] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AIMS Obesity is characterized by a low-grade systemic inflammatory state and adipose tissue (AT) dysfunction, which predispose individuals to the development of insulin resistance (IR) and metabolic disease. However, a subset of obese individuals, referred to as metabolically healthy obese (MHO) individuals, are protected from obesity-associated metabolic abnormalities. Here, we aim at identifying molecular factors and pathways in adipocytes that are responsible for the progression from the insulin-sensitive to the insulin-resistant, metabolically unhealthy obese (MUHO) phenotype. RESULTS Proteomic analysis of paired samples of adipocytes from subcutaneous (SC) and omental (OM) human AT revealed that both types of cells are altered in the MUHO state. Specifically, the glutathione redox cycle and other antioxidant defense systems as well as the protein-folding machinery were dysregulated and endoplasmic reticulum stress was increased in adipocytes from IR subjects. Moreover, proteasome activity was also compromised in adipocytes of MUHO individuals, which was associated with enhanced accumulation of oxidized and ubiquitinated proteins in these cells. Proteasome activity was also impaired in adipocytes of diet-induced obese mice and in 3T3-L1 adipocytes exposed to palmitate. In line with these data, proteasome inhibition significantly impaired insulin signaling in 3T3-L1 adipocytes. INNOVATION This study provides the first evidence of the occurrence of protein homeostasis deregulation in adipocytes in human obesity, which, together with oxidative damage, interferes with insulin signaling in these cells. CONCLUSION Our results suggest that proteasomal dysfunction and impaired proteostasis in adipocytes, resulting from protein oxidation and/or misfolding, constitute major pathogenic mechanisms in the development of IR in obesity.
Collapse
Affiliation(s)
- Alberto Díaz-Ruiz
- 1 Department of Cell Biology, Physiology, and Immunology, Instituto Maimónides de Investigación Biomédica (IMIBIC)/Reina Sofia University Hospital/University of Córdoba , Córdoba, Spain .,2 CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III , Córdoba, Spain
| | - Rocío Guzmán-Ruiz
- 1 Department of Cell Biology, Physiology, and Immunology, Instituto Maimónides de Investigación Biomédica (IMIBIC)/Reina Sofia University Hospital/University of Córdoba , Córdoba, Spain .,2 CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III , Córdoba, Spain
| | - Natalia R Moreno
- 1 Department of Cell Biology, Physiology, and Immunology, Instituto Maimónides de Investigación Biomédica (IMIBIC)/Reina Sofia University Hospital/University of Córdoba , Córdoba, Spain .,2 CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III , Córdoba, Spain
| | - Antonio García-Rios
- 2 CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III , Córdoba, Spain .,3 Lipids and Atherosclerosis Unit, IMIBIC/Reina Sofia University Hospital/University of Córdoba , Córdoba, Spain
| | - Nieves Delgado-Casado
- 2 CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III , Córdoba, Spain .,3 Lipids and Atherosclerosis Unit, IMIBIC/Reina Sofia University Hospital/University of Córdoba , Córdoba, Spain
| | - Antonio Membrives
- 4 Unidad de Gestión Clínica de Cirugía General y Digestivo. Sección de Obesidad, IMIBIC/Reina Sofia University Hospital , Córdoba, Spain
| | - Isaac Túnez
- 5 Department of Biochemistry and Molecular Biology, IMIBIC/Reina Sofia University Hospital/University of Córdoba , Córdoba, Spain
| | - Rajaa El Bekay
- 2 CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III , Córdoba, Spain .,6 Biomedical Research Laboratory, Endocrinology Department, Hospital Virgen de la Victoria , Málaga, Spain
| | - José M Fernández-Real
- 2 CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III , Córdoba, Spain .,7 Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomédica de Girona (IdIBGi) , Girona, Spain
| | - Sulay Tovar
- 2 CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III , Córdoba, Spain .,8 Department of Physiology, School of Medicine-CIMUS-Instituto de Investigaciones Sanitarias (IDIS), University of Santiago de Compostela , Santiago de Compostela, A Coruña, Spain
| | - Carlos Diéguez
- 2 CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III , Córdoba, Spain .,8 Department of Physiology, School of Medicine-CIMUS-Instituto de Investigaciones Sanitarias (IDIS), University of Santiago de Compostela , Santiago de Compostela, A Coruña, Spain
| | - Francisco J Tinahones
- 2 CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III , Córdoba, Spain .,6 Biomedical Research Laboratory, Endocrinology Department, Hospital Virgen de la Victoria , Málaga, Spain
| | - Rafael Vázquez-Martínez
- 1 Department of Cell Biology, Physiology, and Immunology, Instituto Maimónides de Investigación Biomédica (IMIBIC)/Reina Sofia University Hospital/University of Córdoba , Córdoba, Spain .,2 CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III , Córdoba, Spain
| | - José López-Miranda
- 2 CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III , Córdoba, Spain .,3 Lipids and Atherosclerosis Unit, IMIBIC/Reina Sofia University Hospital/University of Córdoba , Córdoba, Spain
| | - María M Malagón
- 1 Department of Cell Biology, Physiology, and Immunology, Instituto Maimónides de Investigación Biomédica (IMIBIC)/Reina Sofia University Hospital/University of Córdoba , Córdoba, Spain .,2 CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III , Córdoba, Spain
| |
Collapse
|
30
|
Velloso LA, Folli F, Saad MJ. TLR4 at the Crossroads of Nutrients, Gut Microbiota, and Metabolic Inflammation. Endocr Rev 2015; 36:245-71. [PMID: 25811237 DOI: 10.1210/er.2014-1100] [Citation(s) in RCA: 187] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Obesity is accompanied by the activation of low-grade inflammatory activity in metabolically relevant tissues. Studies have shown that obesity-associated insulin resistance results from the inflammatory targeting and inhibition of key proteins of the insulin-signaling pathway. At least three apparently distinct mechanisms-endoplasmic reticulum stress, toll-like receptor (TLR) 4 activation, and changes in gut microbiota-have been identified as triggers of obesity-associated metabolic inflammation; thus, they are expected to represent potential targets for the treatment of obesity and its comorbidities. Here, we review the data that place TLR4 in the center of the events that connect the consumption of dietary fats with metabolic inflammation and insulin resistance. Changes in the gut microbiota can lead to reduced integrity of the intestinal barrier, leading to increased leakage of lipopolysaccharides and fatty acids, which can act upon TLR4 to activate systemic inflammation. Fatty acids can also trigger endoplasmic reticulum stress, which can be further stimulated by cross talk with active TLR4. Thus, the current data support a connection among the three main triggers of metabolic inflammation, and TLR4 emerges as a link among all of these mechanisms.
Collapse
Affiliation(s)
- Licio A Velloso
- Department of Internal Medicine (L.A.V., F.F., M.J.S.), University of Campinas, 13084-970 Campinas SP, Brazil; and Department of Medicine (F.F.), Division of Diabetes, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Franco Folli
- Department of Internal Medicine (L.A.V., F.F., M.J.S.), University of Campinas, 13084-970 Campinas SP, Brazil; and Department of Medicine (F.F.), Division of Diabetes, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Mario J Saad
- Department of Internal Medicine (L.A.V., F.F., M.J.S.), University of Campinas, 13084-970 Campinas SP, Brazil; and Department of Medicine (F.F.), Division of Diabetes, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| |
Collapse
|
31
|
Ando Y, Shinozawa Y, Iijima Y, Yu BC, Sone M, Ooi Y, Watanaka Y, Chida K, Hakuno F, Takahashi SI. Tumor necrosis factor (TNF)-α-induced repression of GKAP42 protein levels through cGMP-dependent kinase (cGK)-Iα causes insulin resistance in 3T3-L1 adipocytes. J Biol Chem 2015; 290:5881-92. [PMID: 25586176 DOI: 10.1074/jbc.m114.624759] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Insulin receptor substrates (IRSs) have been shown to be major mediators of insulin signaling. Recently, we found that IRSs form high-molecular weight complexes, and here, we identify by yeast two-hybrid screening a novel IRS-1-associated protein: a 42-kDa cGMP-dependent protein kinase-anchoring protein (GKAP42). GKAP42 knockdown in 3T3-L1 adipocytes suppressed insulin-dependent IRS-1 tyrosine phosphorylation and downstream signaling, resulting in suppression of GLUT4 translocation to plasma membrane induced by insulin. In addition, GLUT4 translocation was also suppressed in cells overexpressing GKAP42-N (the IRS-1 binding region of GKAP42), which competed with GKAP42 for IRS-1, indicating that GKAP42 binding to IRS-1 is required for insulin-induced GLUT4 translocation. Long term treatment of 3T3-L1 adipocytes with TNF-α, which induced insulin resistance, significantly decreased the GKAP42 protein level. We then investigated the roles of cGMP-dependent kinase (cGK)-Iα, which bound to GKAP42, in these changes. cGK-Iα knockdown partially rescued TNF-α-induced decrease in GKAP42 and impairment of insulin signals. These data indicated that TNF-α-induced repression of GKAP42 via cGK-Iα caused reduction of insulin-induced IRS-1 tyrosine phosphorylation at least in part. The present study describes analysis of the novel TNF-α-induced pathway, cGK-Iα-GKAP42, which regulates insulin-dependent signals and GLUT4 translocation.
Collapse
Affiliation(s)
- Yasutoshi Ando
- From the Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yusuke Shinozawa
- From the Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yumi Iijima
- From the Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Bu-Chin Yu
- From the Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Meri Sone
- From the Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yuko Ooi
- From the Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yusuke Watanaka
- From the Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kazuhiro Chida
- From the Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Fumihiko Hakuno
- From the Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shin-Ichiro Takahashi
- From the Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
32
|
Ceppo F, Jager J, Berthou F, Giorgetti-Peraldi S, Cormont M, Bost F, Tanti JF. [Implication of MAP kinases in obesity-induced inflammation and insulin resistance]. Biol Aujourdhui 2014; 208:97-107. [PMID: 25190570 DOI: 10.1051/jbio/2014014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Indexed: 12/16/2022]
Abstract
Insulin resistance is often associated with obesity and is a major risk factor for development of type 2 diabetes as well as cardiovascular and hepatic diseases. Insulin resistance may also increase the incidence or the aggressiveness of some cancers. Insulin resistance occurs owing to defects in insulin signaling in target tissues of this hormone. During the last ten years, it became evident that the chronic low-grade inflammatory state that develops during obesity plays an important role in insulin resistance development. Indeed, inflammatory cytokines activate several signaling pathways that impinge on the insulin signaling pathway. Among them, this review will focus on the implication of the MAP kinases JNK and ERK1/2 signaling in the development of insulin signaling alterations and will discuss the possibility to target these pathways in order to fight insulin resistance.
Collapse
Affiliation(s)
- Franck Ceppo
- INSERM U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Route de Saint-Antoine de Ginestière, 06204 Nice Cedex 3, France
| | - Jennifer Jager
- INSERM U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Route de Saint-Antoine de Ginestière, 06204 Nice Cedex 3, France - Adresse actuelle : Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Department of Genetics, and The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, PA 19104, Philadelphia, USA
| | - Flavien Berthou
- INSERM U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Route de Saint-Antoine de Ginestière, 06204 Nice Cedex 3, France
| | - Sophie Giorgetti-Peraldi
- INSERM U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Route de Saint-Antoine de Ginestière, 06204 Nice Cedex 3, France
| | - Mireille Cormont
- INSERM U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Route de Saint-Antoine de Ginestière, 06204 Nice Cedex 3, France
| | - Fréderic Bost
- INSERM U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Route de Saint-Antoine de Ginestière, 06204 Nice Cedex 3, France
| | - Jean-François Tanti
- INSERM U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Route de Saint-Antoine de Ginestière, 06204 Nice Cedex 3, France
| |
Collapse
|
33
|
Arikoglu H, Aksoy Hepdogru M, Erkoc Kaya D, Asik A, Ipekci SH, Iscioglu F. IRS1 gene polymorphisms Gly972Arg and Ala513Pro are not associated with insulin resistance and type 2 diabetes risk in non-obese Turkish population. Meta Gene 2014; 2:579-85. [PMID: 25606440 PMCID: PMC4287848 DOI: 10.1016/j.mgene.2014.07.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 07/23/2014] [Accepted: 07/30/2014] [Indexed: 12/13/2022] Open
Abstract
Insulin receptor substrate 1 (IRS1), plays a critical role in insulin signaling and its control has an important place in the development of insulin resistance. The tyrosine phosphorylation of IRS1 serves as docking molecules for downstream effectors such as Phosphatidylinositol 3-kinase and phosphotyrosine phosphatase-2. We focused on the Gly972Arg and Ala513Pro variants of the IRS1 gene, since these specific allelic variants are located near the Tyr-Met-X-Met (YMXM) motifs around Tyr987 and Tyr612. Thus, we aimed to investigate the effects of Gly972Arg/Ala513Pro polymorphisms in IRS1 gene on development of insulin resistance and the risk of type 2 diabetes in a non-obese Turkish population. This work included 306 individuals comprising 178 subjects with type 2 diabetes and 128 healthy subjects matched for body mass index. Gly972Arg/Ala513Pro polymorphisms had no effect on type 2 diabetes risk and its phenotypes (P > 0.05). Although IRS1 gene and its variants are associated with type 2 diabetes and insulin resistance in several studies worldwide, our data showed that there is no association between Gly972Arg and Ala513Pro variants in IRS1 and disease in Turkish population.
Collapse
Affiliation(s)
- Hilal Arikoglu
- Department of Medical Biology, Faculty of Medicine, Selcuk University, Konya, Turkey
| | - Melda Aksoy Hepdogru
- Department of Medical Biology, Faculty of Medicine, Selcuk University, Konya, Turkey
| | - Dudu Erkoc Kaya
- Department of Medical Biology, Faculty of Medicine, Selcuk University, Konya, Turkey
| | - Aycan Asik
- Department of Medical Biology, Faculty of Medicine, Selcuk University, Konya, Turkey
| | | | - Funda Iscioglu
- Department of Statistics, Faculty of Science, Ege University, Izmir, Turkey
| |
Collapse
|
34
|
The renin-angiotensin system in adipose tissue and its metabolic consequences during obesity. J Nutr Biochem 2013; 24:2003-15. [PMID: 24120291 DOI: 10.1016/j.jnutbio.2013.07.002] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 05/24/2013] [Accepted: 07/22/2013] [Indexed: 02/07/2023]
Abstract
Obesity is a worldwide disease that is accompanied by several metabolic abnormalities such as hypertension, hyperglycemia and dyslipidemia. The accelerated adipose tissue growth and fat cell hypertrophy during the onset of obesity precedes adipocyte dysfunction. One of the features of adipocyte dysfunction is dysregulated adipokine secretion, which leads to an imbalance of pro-inflammatory, pro-atherogenic versus anti-inflammatory, insulin-sensitizing adipokines. The production of renin-angiotensin system (RAS) components by adipocytes is exacerbated during obesity, contributing to the systemic RAS and its consequences. Increased adipose tissue RAS has been described in various models of diet-induced obesity (DIO) including fructose and high-fat feeding. Up-regulation of the adipose RAS by DIO promotes inflammation, lipogenesis and reactive oxygen species generation and impairs insulin signaling, all of which worsen the adipose environment. Consequently, the increase of circulating RAS, for which adipose tissue is partially responsible, represents a link between hypertension, insulin resistance in diabetes and inflammation during obesity. However, other nutrients and food components such as soy protein attenuate adipose RAS, decrease adiposity, and improve adipocyte functionality. Here, we review the molecular mechanisms by which adipose RAS modulates systemic RAS and how it is enhanced in obesity, which will explain the simultaneous development of metabolic syndrome alterations. Finally, dietary interventions that prevent obesity and adipocyte dysfunction will maintain normal RAS concentrations and effects, thus preventing metabolic diseases that are associated with RAS enhancement.
Collapse
|
35
|
Kumar H, Mishra M, Bajpai S, Pokhria D, Arya AK, Singh RK, Tripathi K. Correlation of insulin resistance, beta cell function and insulin sensitivity with serum sFas and sFasL in newly diagnosed type 2 diabetes. Acta Diabetol 2013; 50:511-8. [PMID: 21695404 DOI: 10.1007/s00592-011-0307-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 06/09/2011] [Indexed: 11/30/2022]
Abstract
Pancreatic beta cell dysfunction and reduced insulin sensitivity are fundamental factors associated with glucotoxicity, lipotoxicity and oxidative stress in type 2 diabetic patients (T2DM). Diabetic milieu can induce apoptosis in several types of cells. The aim of present study was to compare circulating soluble apoptotic markers (sFas and sFas-L) with HOMA-IR, HOMA-%S, HOMA-%B in the serum of newly diagnosed T2DM and healthy subjects. For this study, 94 T2DM and 60 healthy subjects were enroled and evaluated for various parameters. Biochemical quantifications were performed with Syncron CX5 auto-analyzer. The levels of serum sFas-L, TNF-α and IL-6 were estimated by flowcytometry. The fasting serum insulin and sFas quantified by ELISA. HOMA-IR, HOMA-%S and HOMA-%B were calculated with HOMA calculator v2.2.2. The levels of TC, TG, LDL-C, VLDL-C were augmented and HDL declined significantly (P < 0.001) in diabetics. The levels of serum insulin, TNF-α, IL-6, sFas, HOMA-IR were raised (P < 0.001) and sFas-L, HOMA-%S and HOMA-%B were decreased significantly (P < 0.001) in T2DM subjects than healthy. In diabetics, serum sFas was positively correlated with HOMA-IR (r = 0.720, P < 0.001) and negatively with HOMA-%B (r = -0.642, P < 0.001) significantly while serum sFasL was negatively correlated with HOMA-IR (r = -0.483, P < 0.001) and positively with HOMA-%B (r = 0.466, P < 0.001) significantly. Further, the multivariate stepwise regression analysis shows that HOMA-IR contributes significantly to the variance of sFas and sFasL. Our findings suggest that the pancreatic beta cell dysfunction along with increased insulin resistance appears to be associated with apoptotic markers.
Collapse
Affiliation(s)
- Hemant Kumar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221 005, India
| | | | | | | | | | | | | |
Collapse
|
36
|
Dridi L, Seyrantepe V, Fougerat A, Pan X, Bonneil É, Thibault P, Moreau A, Mitchell GA, Heveker N, Cairo CW, Issad T, Hinek A, Pshezhetsky AV. Positive regulation of insulin signaling by neuraminidase 1. Diabetes 2013; 62:2338-46. [PMID: 23520133 PMCID: PMC3712076 DOI: 10.2337/db12-1825] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Neuraminidases (sialidases) catalyze the removal of sialic acid residues from sialylated glycoconjugates. We now report that mammalian neuraminidase 1 (Neu1), in addition to its catabolic function in lysosomes, is transported to the cell surface where it is involved in the regulation of insulin signaling. Insulin binding to its receptor rapidly induces interaction of the receptor with Neu1, which hydrolyzes sialic acid residues in the glycan chains of the receptor and, consequently, induces its activation. Cells from sialidosis patients with a genetic deficiency of Neu1 show impairment of insulin-induced phosphorylation of downstream protein kinase AKT, and treatment of these cells with purified Neu1 restores signaling. Genetically modified mice with ∼10% of the normal Neu1 activity exposed to a high-fat diet develop hyperglycemia and insulin resistance twice as fast as their wild-type counterparts. Together, these studies identify Neu1 as a novel component of the signaling pathways of energy metabolism and glucose uptake.
Collapse
Affiliation(s)
- Larbi Dridi
- Division of Medical Genetics, Sainte-Justine University Hospital Research Center, University of Montréal, Montréal, Québec, Canada
| | - Volkan Seyrantepe
- Division of Medical Genetics, Sainte-Justine University Hospital Research Center, University of Montréal, Montréal, Québec, Canada
| | - Anne Fougerat
- Division of Medical Genetics, Sainte-Justine University Hospital Research Center, University of Montréal, Montréal, Québec, Canada
| | - Xuefang Pan
- Division of Medical Genetics, Sainte-Justine University Hospital Research Center, University of Montréal, Montréal, Québec, Canada
| | - Éric Bonneil
- Institute of Research in Immunology and Cancer, University of Montréal, Montréal, Québec, Canada
| | - Pierre Thibault
- Institute of Research in Immunology and Cancer, University of Montréal, Montréal, Québec, Canada
| | - Allain Moreau
- Department of Stomatology, Faculty of Dentistry, University of Montréal, Montréal, Québec, Canada
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Sainte-Justine University Hospital Research Center, University of Montréal, Montréal, Québec, Canada
- Department of Biochemistry, University of Montréal, Montréal, Québec, Canada
| | - Grant A. Mitchell
- Division of Medical Genetics, Sainte-Justine University Hospital Research Center, University of Montréal, Montréal, Québec, Canada
| | - Nikolaus Heveker
- Department of Biochemistry, University of Montréal, Montréal, Québec, Canada
| | - Christopher W. Cairo
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Tarik Issad
- Institut Cochin, Université Paris Descartes, CNRS (UMR8104), Paris, France
- INSERM, U1016, Paris, France
| | - Alexander Hinek
- Physiology and Experimental Medicine Program, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Alexey V. Pshezhetsky
- Division of Medical Genetics, Sainte-Justine University Hospital Research Center, University of Montréal, Montréal, Québec, Canada
- Department of Biochemistry, University of Montréal, Montréal, Québec, Canada
- Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montréal, Québec, Canada
- Corresponding author: Alexey V. Pshezhetsky,
| |
Collapse
|
37
|
Green CJ, Bunprajun T, Pedersen BK, Scheele C. Physical activity is associated with retained muscle metabolism in human myotubes challenged with palmitate. J Physiol 2013; 591:4621-35. [PMID: 23774280 DOI: 10.1113/jphysiol.2013.251421] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The aim of this study was to investigate whether physical activity is associated with preserved muscle metabolism in human myotubes challenged with saturated fatty acids. Human muscle satellite cells were isolated from sedentary or active individuals and differentiated into myocytes in culture. Metabolic differences were then investigated in the basal state or after chronic palmitate treatment. At basal, myocytes from sedentary individuals exhibited higher CD36 and HSP70 protein expression as well as elevated phosphorylation of c-Jun NH2-terminal kinase (JNK) and insulin receptor substrate 1 (IRS1) serine(307) compared to myocytes from active individuals. Despite equal lipid accumulation following palmitate treatment, myocytes from sedentary individuals exhibited delayed acetyl coenzyme A carboxylase phosphorylation compared to the active group. Myocytes from sedentary individuals had significantly higher basal glucose uptake and palmitate promoted insulin resistance in sedentary myocytes. Importantly, myocytes from active individuals were partially protected from palmitate-induced insulin resistance. Palmitate treatment enhanced IRS1 serine307 phosphorylation in myocytes from sedentary individuals and correlated positively to JNK phosphorylation. In conclusion, muscle satellite cells retain metabolic differences associated with physical activity. Physical activity partially protects myocytes from fatty acid-induced insulin resistance and inactivity is associated with dysregulation of metabolism in satellite cells challenged with palmitate. Although the benefits of physical activity on whole body physiology have been well investigated, this paper presents novel findings that both diet and exercise impact satellite cells directly. Given the fact that satellite cells are important for muscle maintenance, a dysregulated function could have profound effects on health. Therefore the effects of lifestyle on satellite cells needs to be delineated.
Collapse
Affiliation(s)
- C J Green
- C. J. Green: Centre of Inflammation and Metabolism, Rigshospitalet - Section 7641, Blegdamsvej 9, DK-2100, Copenhagen, Denmark.
| | | | | | | |
Collapse
|
38
|
Geetha T, Langlais P, Caruso M, Yi Z. Protein phosphatase 1 regulatory subunit 12A and catalytic subunit δ, new members in the phosphatidylinositide 3 kinase insulin-signaling pathway. J Endocrinol 2012; 214:437-43. [PMID: 22728334 PMCID: PMC4445742 DOI: 10.1530/joe-12-0145] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Skeletal muscle insulin resistance is an early abnormality in individuals with metabolic syndrome and type 2 diabetes (T2D). Insulin receptor substrate-1 (IRS1) plays a key role in insulin signaling, the function of which is regulated by both phosphorylation and dephosphorylation of tyrosine and serine/threonine residues. Numerous studies have focused on kinases in IRS1 phosphorylation and insulin resistance; however, the mechanism for serine/threonine phosphatase action in insulin signaling is largely unknown. Recently, we identified protein phosphatase 1 (PP1) regulatory subunit 12A (PPP1R12A) as a novel endogenous insulin-stimulated interaction partner of IRS1 in L6 myotubes. The current study was undertaken to better understand PPP1R12A's role in insulin signaling. Insulin stimulation promoted an interaction between the IRS1/p85 complex and PPP1R12A; however, p85 and PPP1R12A did not interact independent of IRS1. Moreover, kinase inhibition experiments indicated that insulin-induced interaction between IRS1 and PPP1R12A was reduced by treatment with inhibitors of phosphatidylinositide 3 kinase, PDK1, Akt, and mTOR/raptor but not MAPK. Furthermore, a novel insulin-stimulated IRS1 interaction partner, PP1 catalytic subunit (PP1cδ), was identified, and its interaction with IRS1 was also disrupted by inhibitors of Akt and mTOR/raptor. These results indicate that PPP1R12A and PP1cδ are new members of the insulin-stimulated IRS1 signaling complex, and the interaction of PPP1R12A and PP1cδ with IRS1 is dependent on Akt and mTOR/raptor activation. These findings provide evidence for the involvement of a particular PP1 complex, PPP1R12A/PP1cδ, in insulin signaling and may lead to a better understanding of dysregulated IRS1 phosphorylation in insulin resistance and T2D.
Collapse
Affiliation(s)
- Thangiah Geetha
- Center for Metabolic and Vascular Biology, Arizona State University, Tempe, Arizona 85287, USA
| | | | | | | |
Collapse
|
39
|
Arunkumar E, Anuradha CV. Genistein promotes insulin action through adenosine monophosphate-activated protein kinase activation and p70 ribosomal protein S6 kinase 1 inhibition in the skeletal muscle of mice fed a high energy diet. Nutr Res 2012; 32:617-25. [PMID: 22935345 DOI: 10.1016/j.nutres.2012.06.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 06/02/2012] [Accepted: 06/07/2012] [Indexed: 12/15/2022]
Abstract
Genistein (GEN), a soy isoflavone, exerts insulin-sensitizing actions in animals; however, the underlying mechanisms have not been determined. Because GEN is a known activator of adenosine monophosphate-activated protein kinase (AMPK), we hypothesize that GEN activates insulin signaling through AMPK activation. To test this hypothesis, a high fat-high fructose diet (HFFD)-fed mice model of insulin resistance was administered GEN, and the insulin signaling pathway proteins in the skeletal muscle were examined. Hyperglycemia and hyperinsulinemia observed in HFFD-fed mice were significantly lowered by GEN. GEN increased insulin-stimulated tyrosine phosphorylation of insulin receptor-β and insulin receptor substrate (IRS) 1 but down-regulated IRS-1 serine phosphorylation in the skeletal muscle of HFFD-fed mice. Furthermore, GEN treatment improved muscle IRS-1-associated phospatidylinositol-3 kinase expression, phosphorylation of Akt at Ser(473), and translocation of glucose transporter subtype 4. Phosphorylation of AMPK at Thr(172) and acetyl coenzyme A carboxylase (ACC) at Ser(79) was augmented, whereas phosphorylation of p70 ribosomal protein S6 kinase 1 at Thr(389) was significantly decreased after GEN treatment in the skeletal muscle of HFFD-fed mice. These results suggest that GEN might improve insulin action in the skeletal muscle by targeting AMPK.
Collapse
Affiliation(s)
- Elumalai Arunkumar
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalai Nagar, Tamil Nadu, India
| | | |
Collapse
|
40
|
Ohsaka Y, Nishino H. Cooling-increased phospho-β-arrestin-1 and β-arrestin-1 expression levels in 3T3-L1 adipocytes. Cryobiology 2012; 65:12-20. [PMID: 22465333 DOI: 10.1016/j.cryobiol.2012.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 02/22/2012] [Accepted: 03/12/2012] [Indexed: 10/28/2022]
Abstract
Cooling induces several responses that are modulated by molecular inhibitors and activators and receptor signaling. Information regarding potential targets involved in cold response mechanisms is still insufficient. We examined levels of the receptor-signaling mediator β-arrestin-1 and phospho-Ser-412 β-arrestin-1 in 3T3-L1 adipocytes exposed to 4-37 °C or treated with some molecular agents at 37°C. We also cooled cells with or without modification and signal-modulating agents. These conditions did not decrease cell viability, and western blot analysis revealed that exposure to 4 °C for 1.5h and to 28 and 32 °C for 24 and 48 h increased phospho-β-arrestin-1 and β-arrestin-1 levels and that exposure to 4 and 18 °C for 3 and 4.5h increased β-arrestin-1 level. Serum removal and rewarming abolished β-arrestin-1 alterations induced by cooling. Mithramycin A (a transcription inhibitor) treatment for 4 and 24h increased the level of β-arrestin-1 but not that of phospho-β-arrestin-1. The level of phospho-β-arrestin-1 was increased by okadaic acid (a phosphatase inhibitor), decreased by epinephrine and aluminum fluoride (receptor-signaling modulators), and unaffected by N-ethylmaleimide (an alkylating agent) at 37 °C. N-Ethylmaleimide and the receptor-signaling modulators did not alter β-arrestin-1 expression at 37 °C but impaired the induction of phospho-β-arrestin-1 at 28 and 32 °C without affecting the induction of β-arrestin-1. We show that cold-induced β-arrestin-1 alterations are partially mimicked by molecular agents and that the responsive machinery for β-arrestin-1 requires serum factors and N-ethylmaleimide-sensitive sites and is linked to rewarming- and receptor signaling-responsive machinery. Our findings provide helpful information for clarifying the cold-responsive machinery for β-arrestin-1 and elucidating low-temperature responses.
Collapse
Affiliation(s)
- Yasuhito Ohsaka
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Chiba Institute of Science, 15-8 Shiomi-cho, Choshi, Chiba 288-0025, Japan.
| | | |
Collapse
|
41
|
Fedjaev M, Parmar A, Xu Y, Vyetrogon K, Difalco MR, Ashmarina M, Nifant'ev I, Posner BI, Pshezhetsky AV. Global analysis of protein phosphorylation networks in insulin signaling by sequential enrichment of phosphoproteins and phosphopeptides. MOLECULAR BIOSYSTEMS 2012; 8:1461-71. [PMID: 22362066 DOI: 10.1039/c2mb05440j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Although the important role of protein phosphorylation in insulin signaling networks is well recognized, its analysis in vivo has not been pursued in a systematic fashion through proteome-wide studies. Here we undertake a global analysis of insulin-induced changes in the rat liver cytoplasmic and endosomal phosphoproteome by sequential enrichment of phosphoproteins and phosphopeptides. After subcellular fractionation proteins were denatured and loaded onto iminodiacetic acid-modified Sepharose with immobilized Al³⁺ ions (IMAC-Al resin). Retained phosphoproteins were eluted with 50 mM phosphate and proteolytically digested. The digest was then loaded onto an IMAC-Al resin and phosphopeptides were eluted with 50 mM phosphate, and resolved by 2-dimensional liquid chromatography, which combined offline weak anion exchange and online reverse phase separations. The peptides were identified by tandem mass spectrometry, which also detected the phosphorylation sites. Non-phosphorylated peptides found in the flow-through of the IMAC-Al columns were also analyzed providing complementary information for protein identification. In this study we enriched phosphopeptides to ~85% purity and identified 1456 phosphopeptides from 604 liver phosphoproteins. Eighty-nine phosphosites including 45 novel ones in 83 proteins involved in vesicular transport, metabolism, cell motility and structure, gene expression and various signaling pathways were changed in response to insulin treatment. Together these findings could provide potential new markers for evaluating insulin action and resistance in obesity and diabetes.
Collapse
Affiliation(s)
- Michael Fedjaev
- Department of Medical Genetics, CHU Sainte-Justine, University of Montreal, Montreal, Quebec H3T 1C5, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Caricilli AM, Picardi PK, de Abreu LL, Ueno M, Prada PO, Ropelle ER, Hirabara SM, Castoldi Â, Vieira P, Camara NOS, Curi R, Carvalheira JB, Saad MJA. Gut microbiota is a key modulator of insulin resistance in TLR 2 knockout mice. PLoS Biol 2011; 9:e1001212. [PMID: 22162948 PMCID: PMC3232200 DOI: 10.1371/journal.pbio.1001212] [Citation(s) in RCA: 214] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 10/27/2011] [Indexed: 02/07/2023] Open
Abstract
Environmental factors and host genetics interact to control the gut microbiota, which may have a role in the development of obesity and insulin resistance. TLR2-deficient mice, under germ-free conditions, are protected from diet-induced insulin resistance. It is possible that the presence of gut microbiota could reverse the phenotype of an animal, inducing insulin resistance in an animal genetically determined to have increased insulin sensitivity, such as the TLR2 KO mice. In the present study, we investigated the influence of gut microbiota on metabolic parameters, glucose tolerance, insulin sensitivity, and signaling of TLR2-deficient mice. We investigated the gut microbiota (by metagenomics), the metabolic characteristics, and insulin signaling in TLR2 knockout (KO) mice in a non-germ free facility. Results showed that the loss of TLR2 in conventionalized mice results in a phenotype reminiscent of metabolic syndrome, characterized by differences in the gut microbiota, with a 3-fold increase in Firmicutes and a slight increase in Bacteroidetes compared with controls. These changes in gut microbiota were accompanied by an increase in LPS absorption, subclinical inflammation, insulin resistance, glucose intolerance, and later, obesity. In addition, this sequence of events was reproduced in WT mice by microbiota transplantation and was also reversed by antibiotics. At the molecular level the mechanism was unique, with activation of TLR4 associated with ER stress and JNK activation, but no activation of the IKKβ-IκB-NFκB pathway. Our data also showed that in TLR2 KO mice there was a reduction in regulatory T cell in visceral fat, suggesting that this modulation may also contribute to the insulin resistance of these animals. Our results emphasize the role of microbiota in the complex network of molecular and cellular interactions that link genotype to phenotype and have potential implications for common human disorders involving obesity, diabetes, and even other immunological disorders.
Collapse
Affiliation(s)
- Andréa M. Caricilli
- Department of Internal Medicine, State University of Campinas, Campinas, Brazil
| | - Paty K. Picardi
- Department of Internal Medicine, State University of Campinas, Campinas, Brazil
| | - Lélia L. de Abreu
- Department of Nursing, State University of Campinas, Campinas, Brazil
| | - Mirian Ueno
- Department of Internal Medicine, State University of Campinas, Campinas, Brazil
| | - Patrícia O. Prada
- Department of Internal Medicine, State University of Campinas, Campinas, Brazil
| | - Eduardo R. Ropelle
- Department of Internal Medicine, State University of Campinas, Campinas, Brazil
| | - Sandro Massao Hirabara
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ângela Castoldi
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Pedro Vieira
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Niels O. S. Camara
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Rui Curi
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - José B. Carvalheira
- Department of Internal Medicine, State University of Campinas, Campinas, Brazil
| | - Mário J. A. Saad
- Department of Internal Medicine, State University of Campinas, Campinas, Brazil
| |
Collapse
|
43
|
Gibbs PEM, Miralem T, Lerner-Marmarosh N, Tudor C, Maines MD. Formation of ternary complex of human biliverdin reductase-protein kinase Cδ-ERK2 protein is essential for ERK2-mediated activation of Elk1 protein, nuclear factor-κB, and inducible nitric-oxidase synthase (iNOS). J Biol Chem 2011; 287:1066-79. [PMID: 22065579 DOI: 10.1074/jbc.m111.279612] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Growth factors, insulin, oxidative stress, and cytokines activate ERK1/2 by PKCδ and MEK1/2. Human biliverdin reductase (hBVR), a Ser/Thr/Tyr kinase and intracellular scaffold/bridge/anchor, is a nuclear transporter of MEK1/2-stimulated ERK1/2 (Lerner-Marmarosh, N., Miralem, T., Gibbs, P. E., and Maines, M. D. (2008) Proc. Natl. Acad. Sci. U.S.A. 105, 6870-6875). hBVR, PKCδ, and MEK1/2 overlap in their tissue expression profile and type of activators. Presently, we report on formation of an hBVR-PKCδ-ERK2 ternary complex that is essential for ERK2 signal transduction and activation of genes linked to cell proliferation and cancer. MEK1/2 and the protein phosphatase PP2A were also present in the complex. When cells were stimulated with insulin-like growth factor-1 (IGF-1), an increased interaction between hBVR and PKCδ was detected by FRET-fluorescence lifetime imaging microscopy. hBVR and ERK2 were phosphorylated by PKCδ; however, the PKC was not a substrate for either ERK2 or hBVR. IGF-1 and phorbol ester increased hBVR/PKCδ binding; hBVR was required for the activation of PKCδ and its interaction with ERK2. The C-terminal phenylalanine residues of PKCδ (Phe(660), Phe(663), and Phe(665)) were necessary for binding to ERK2 but not for hBVR binding. Formation of the hBVR-PKCδ-ERK2 complex required the hBVR docking site for ERK, FXFP (DEF, C-box) and D(δ)-box (ILXXLXL) motifs. The hBVR-based peptide KKRILHCLGLA inhibited PKC activation and PKCδ/ERK2 interaction. Phorbol ester- and TNF-α-dependent activation of the ERK-regulated transcription factors Elk1 and NF-κB and expression of the iNOS gene were suppressed by hBVR siRNA; those activities were rescued by hBVR. The findings reveal the direct input of hBVR in PKCδ/ERK signaling and identify hBVR-based peptide regulators of ERK-mediated gene activation.
Collapse
Affiliation(s)
- Peter E M Gibbs
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | | | | | | | |
Collapse
|
44
|
Bugner V, Aurhammer T, Kühl M. Xenopus laevis insulin receptor substrate IRS-1 is important for eye development. Dev Dyn 2011; 240:1705-15. [DOI: 10.1002/dvdy.22659] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2011] [Indexed: 12/30/2022] Open
|
45
|
Geetha T, Langlais P, Luo M, Mapes R, Lefort N, Chen SC, Mandarino LJ, Yi Z. Label-free proteomic identification of endogenous, insulin-stimulated interaction partners of insulin receptor substrate-1. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2011; 22:457-66. [PMID: 21472564 PMCID: PMC3072570 DOI: 10.1007/s13361-010-0051-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 11/24/2010] [Accepted: 11/28/2010] [Indexed: 05/27/2023]
Abstract
Protein-protein interactions are key to most cellular processes. Tandem mass spectrometry (MS/MS)-based proteomics combined with co-immunoprecipitation (CO-IP) has emerged as a powerful approach for studying protein complexes. However, a majority of systematic proteomics studies on protein-protein interactions involve the use of protein overexpression and/or epitope-tagged bait proteins, which might affect binding stoichiometry and lead to higher false positives. Here, we report an application of a straightforward, label-free CO-IP-MS/MS method, without the use of protein overexpression or protein tags, to the investigation of changes in the abundance of endogenous proteins associated with a bait protein, which is in this case insulin receptor substrate-1 (IRS-1), under basal and insulin stimulated conditions. IRS-1 plays a central role in the insulin signaling cascade. Defects in the protein-protein interactions involving IRS-1 may lead to the development of insulin resistance and type 2 diabetes. HPLC-ESI-MS/MS analyses identified eleven novel endogenous insulin-stimulated IRS-1 interaction partners in L6 myotubes reproducibly, including proteins play an important role in protein dephosphorylation [protein phosphatase 1 regulatory subunit 12A, (PPP1R12A)], muscle contraction and actin cytoskeleton rearrangement, endoplasmic reticulum stress, and protein folding, as well as protein synthesis. This novel application of label-free CO-IP-MS/MS quantification to assess endogenous interaction partners of a specific protein will prove useful for understanding how various cell stimuli regulate insulin signal transduction.
Collapse
Affiliation(s)
- Thangiah Geetha
- Center for Metabolic and Vascular Biology, Arizona State University, Tempe, AZ, USA
| | - Paul Langlais
- Center for Metabolic and Vascular Biology, Arizona State University, Tempe, AZ, USA
| | - Moulun Luo
- Center for Metabolic and Vascular Biology, Arizona State University, Tempe, AZ, USA
| | - Rebekka Mapes
- Center for Metabolic and Vascular Biology, Arizona State University, Tempe, AZ, USA
- Department of Medicine, Mayo Clinic in Arizona, Scottsdale, AZ, USA
| | - Natalie Lefort
- Center for Metabolic and Vascular Biology, Arizona State University, Tempe, AZ, USA
| | - Shu-Chuan Chen
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ, USA
| | - Lawrence J. Mandarino
- Center for Metabolic and Vascular Biology, Arizona State University, Tempe, AZ, USA
- Department of Medicine, Mayo Clinic in Arizona, Scottsdale, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Zhengping Yi
- Center for Metabolic and Vascular Biology, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Center for Metabolic and Vascular Biology, School of Life Sciences, Arizona State University, P.O. Box 873704 ISTB-1, Room 481, LSE-S61 (Lab)/S75 (Office), Tempe, AZ, USA
| |
Collapse
|
46
|
Nada SE, Thompson RC, Padmanabhan V. Developmental programming: differential effects of prenatal testosterone excess on insulin target tissues. Endocrinology 2010; 151:5165-73. [PMID: 20843997 PMCID: PMC2954716 DOI: 10.1210/en.2010-0666] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 08/10/2010] [Indexed: 02/01/2023]
Abstract
Polycystic ovarian syndrome (PCOS) is the leading cause of infertility in reproductive-aged women with the majority manifesting insulin resistance. To delineate the causes of insulin resistance in women with PCOS, we determined changes in the mRNA expression of insulin receptor (IR) isoforms and members of its signaling pathway in tissues of adult control (n = 7) and prenatal testosterone (T)-treated (n = 6) sheep (100 mg/kg twice a week from d 30-90 of gestation), the reproductive/metabolic characteristics of which are similar to women with PCOS. Findings revealed that prenatal T excess reduced (P < 0.05) expression of IR-B isoform (only isoform detected), insulin receptor substrate-2 (IRS-2), protein kinase B (AKt), peroxisome proliferator-activated receptor-γ (PPARγ), hormone-sensitive lipase (HSL), and mammalian target of rapamycin (mTOR) but increased expression of rapamycin-insensitive companion of mTOR (rictor), and eukaryotic initiation factor 4E (eIF4E) in the liver. Prenatal T excess increased (P < 0.05) the IR-A to IR-B isoform ratio and expression of IRS-1, glycogen synthase kinase-3α and -β (GSK-3α and -β), and rictor while reducing ERK1 in muscle. In the adipose tissue, prenatal T excess increased the expression of IRS-2, phosphatidylinositol 3-kinase (PI3K), PPARγ, and mTOR mRNAs. These findings provide evidence that prenatal T excess modulates in a tissue-specific manner the expression levels of several genes involved in mediating insulin action. These changes are consistent with the hypothesis that prenatal T excess disrupts the insulin sensitivity of peripheral tissues, with liver and muscle being insulin resistant and adipose tissue insulin sensitive.
Collapse
Affiliation(s)
- Shadia E Nada
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan 48109-5404, USA
| | | | | |
Collapse
|
47
|
Solinas G, Karin M. JNK1 and IKKbeta: molecular links between obesity and metabolic dysfunction. FASEB J 2010; 24:2596-611. [PMID: 20371626 DOI: 10.1096/fj.09-151340] [Citation(s) in RCA: 253] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Inflammation is thought to underlie the pathogenesis of many chronic diseases. It is now established that obesity results in a state of chronic low-grade inflammation thought to contribute to several metabolic disorders, including insulin resistance and pancreatic islet dysfunction. The protein kinases JNK1 and IKKbeta have been found to serve as critical molecular links between obesity, metabolic inflammation, and disorders of glucose homeostasis. The precise mechanisms of these linkages are still being investigated. However, as we discuss here, JNK1 and IKKbeta are activated by almost all forms of metabolic stress that have been implicated in insulin resistance or islet dysfunction. Furthermore, both JNK1 and IKKbeta are critically involved in the promotion of diet-induced obesity, metabolic inflammation, insulin resistance, and beta-cell dysfunction. Understanding the molecular mechanisms by which JNK1 and IKKbeta mediate obesity-induced metabolic stress is likely to be of importance for the development of new treatments for a variety of obesity-associated diseases.
Collapse
Affiliation(s)
- Giovanni Solinas
- Laboratory of Metabolic Stress Biology, Department of Medicine, Physiology, University of Fribourg, Chemin du Musée 5, CH-1700 Fribourg, Switzerland.
| | | |
Collapse
|
48
|
Charbonneau A, Marette A. Inducible nitric oxide synthase induction underlies lipid-induced hepatic insulin resistance in mice: potential role of tyrosine nitration of insulin signaling proteins. Diabetes 2010; 59:861-71. [PMID: 20103705 PMCID: PMC2844834 DOI: 10.2337/db09-1238] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE The present study was undertaken to assess the contribution of inducible nitric oxide (NO) synthase (iNOS) to lipid-induced insulin resistance in vivo. RESEARCH DESIGN AND METHODS Wild-type and iNOS(-/-) mice were infused for 6 h with a 20% intralipid emulsion, during which a hyperinsulinemic-euglycemic clamp was performed. RESULTS In wild-type mice, lipid infusion led to elevated basal hepatic glucose production and marked insulin resistance as revealed by impaired suppression of liver glucose production and reduced peripheral glucose disposal (R(d)) during insulin infusion. Liver insulin resistance was associated with a robust induction of hepatic iNOS, reduced tyrosine phosphorylation of insulin receptor (IR) beta, insulin receptor substrate (IRS)-1, and IRS-2 but elevated serine phosphorylation of IRS proteins as well as decreased Akt activation. The expression of gluconeogenic enzymes Pepck and G6Pc was also increased in the liver of wild-type mice. In contrast to their wild-type counterparts, iNOS(-/-) mice were protected from lipid-induced hepatic and peripheral insulin resistance. Moreover, neither the phosphorylation of insulin signaling intermediates nor expression of gluconeogenic enzymes were altered in the lipid-infused iNOS(-/-) mice compared with their saline-infused controls. Importantly, lipid infusion induced tyrosine nitration of IRbeta, IRS-1, IRS-2, and Akt in wild-type mice but not in iNOS(-/-) animals. Furthermore, tyrosine nitration of hepatic Akt by the NO derivative peroxynitrite blunted insulin-induced Akt tyrosine phosphorylation and kinase activity. CONCLUSIONS These findings demonstrate that iNOS induction is a novel mechanism by which circulating lipids inhibit hepatic insulin action. Our results further suggest that iNOS may cause hepatic insulin resistance through tyrosine nitration of key insulin signaling proteins.
Collapse
Affiliation(s)
- Alexandre Charbonneau
- From the Axe Cardiologie, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada, and Centre Hospitalier Universitaire de Québec, Axe Métabolisme, Santé Vasculaire et Rénale, Department of Medicine, Laval University, Québec, Canada
| | - André Marette
- From the Axe Cardiologie, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada, and Centre Hospitalier Universitaire de Québec, Axe Métabolisme, Santé Vasculaire et Rénale, Department of Medicine, Laval University, Québec, Canada
- Corresponding author: André Marette,
| |
Collapse
|
49
|
Zhang N, Huan Y, Huang H, Song GM, Sun SJ, Shen ZF. Atorvastatin improves insulin sensitivity in mice with obesity induced by monosodium glutamate. Acta Pharmacol Sin 2010; 31:35-42. [PMID: 20023693 DOI: 10.1038/aps.2009.176] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AIM To examine the mechanisms underlying the effects of atorvastatin on glucose and lipid metabolism. METHODS Mice with insulin resistance and obesity induced by monosodium glutamate (MSG) were used. Atorvastatin (80 mg.kg(-1).d(-1)) or vehicle control treatment was given orally once a day for 30 days. Plasma levels of total cholesterol, triglycerides, low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and free fatty acids were monitored. Serum insulin and glucose concentrations were used to calculate the insulin resistance index and insulin sensitivity index using a homeostasis model. Body length, waistline circumference, intraperitoneal adipose tissue mass, and total body mass were measured. Semi-quantitative RT-PCR and Western analysis were used to determine the expression of inflammatory factors and proteins involved in inflammation signaling pathways. RESULTS Atorvastatin improved insulin sensitivity, ameliorated glucose tolerance, and decreased plasma levels of total cholesterol, triglycerides, LDL-C, HDL-C and free fatty acids. Semi-quantitative RT-PCR and Western analysis revealed increased expression of interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-alpha) in serum and adipose tissue in MSG obese mice. Atorvastatin treatment decreased expression of IL-6, TNF-alpha, nuclear factor kappaB (NF-kappaB) and I-kappa-B (IkappaB) kinase-beta, but increased the expression of IkappaB, in adipose tissue. CONCLUSION Atorvastatin is a potential candidate for the prevention and therapy of diseases associated with insulin resistance such as type 2 diabetes mellitus and cardiovascular disease. One possible mechanism underlying the effects of atorvastatin on glucose and lipid metabolism may be to ameliorate a state of chronic inflammation.
Collapse
|
50
|
Ragheb R, Shanab GM, Medhat AM, Seoudi DM, Adeli K, Fantus I. Free fatty acid-induced muscle insulin resistance and glucose uptake dysfunction: evidence for PKC activation and oxidative stress-activated signaling pathways. Biochem Biophys Res Commun 2009; 389:211-6. [PMID: 19706288 PMCID: PMC2981601 DOI: 10.1016/j.bbrc.2009.08.106] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Accepted: 08/19/2009] [Indexed: 12/18/2022]
Abstract
In the present study, we examined the effects of free fatty acids (FFAs) on insulin sensitivity and signaling cascades in the C2C12 skeletal muscle cell culture system. Our data clearly manifested that the inhibitory effects of PKC on insulin signaling may at least in part be explained by the serine/threonine phosphorylation of IRS-1. Both oleate and palmitate treatment were able to increase the Serine(307) phosphorylation of IRS-1. IRS-1 Serine(307) phosphorylation is inducible which causes the inhibition of IRS-1 tyrosine phosphorylation by either IkappaB-kinase (IKK) or c-jun N-terminal kinase (JNK) as seen in our proteomic kinases screen. Furthermore, our proteomic data have also manifested that the two FFAs activate the IKKalpha/beta, the stress kinases S6 kinase p70 (p70SK), stress-activated protein kinase (SAPK), JNK, as well as p38 MAP kinase (p38MAPK). On the other hand, the antioxidant, Taurine at 10mM concentrations was capable of reversing the oleate-induced insulin resistance in myocytes as manifested from the glucose uptake data. Our current data point out the importance of FFA-induced insulin resistance via multiple signaling mechanisms.
Collapse
Affiliation(s)
- Rafik Ragheb
- University of Ain Shams, Department of Biochemistry, Faculty of Science, Cairo, Egypt
- University Health Network, Toronto, Ontario, Canada M5G 2C4
- Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
- Mount Sinai Hospital, Toronto, Ontario, Canada M5G 1X5
- University of Toronto, Department of Laboratory Medicine and Pathobiology, Toronto, Ontario, Canada M5G 1L5
| | - Gamila M.L. Shanab
- University of Ain Shams, Department of Biochemistry, Faculty of Science, Cairo, Egypt
| | - Amina M. Medhat
- University of Ain Shams, Department of Biochemistry, Faculty of Science, Cairo, Egypt
| | - Dina M. Seoudi
- University of Ain Shams, Department of Biochemistry, Faculty of Science, Cairo, Egypt
| | - K. Adeli
- Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
- University of Toronto, Department of Laboratory Medicine and Pathobiology, Toronto, Ontario, Canada M5G 1L5
| | - I.G. Fantus
- University Health Network, Toronto, Ontario, Canada M5G 2C4
- Mount Sinai Hospital, Toronto, Ontario, Canada M5G 1X5
- University of Toronto, Department of Laboratory Medicine and Pathobiology, Toronto, Ontario, Canada M5G 1L5
| |
Collapse
|