1
|
Mussbacher M, Salzmann M, Brostjan C, Hoesel B, Schoergenhofer C, Datler H, Hohensinner P, Basílio J, Petzelbauer P, Assinger A, Schmid JA. Cell Type-Specific Roles of NF-κB Linking Inflammation and Thrombosis. Front Immunol 2019; 10:85. [PMID: 30778349 PMCID: PMC6369217 DOI: 10.3389/fimmu.2019.00085] [Citation(s) in RCA: 428] [Impact Index Per Article: 71.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 01/11/2019] [Indexed: 12/22/2022] Open
Abstract
The transcription factor NF-κB is a central mediator of inflammation with multiple links to thrombotic processes. In this review, we focus on the role of NF-κB signaling in cell types within the vasculature and the circulation that are involved in thrombo-inflammatory processes. All these cells express NF-κB, which mediates important functions in cellular interactions, cell survival and differentiation, as well as expression of cytokines, chemokines, and coagulation factors. Even platelets, as anucleated cells, contain NF-κB family members and their corresponding signaling molecules, which are involved in platelet activation, as well as secondary feedback circuits. The response of endothelial cells to inflammation and NF-κB activation is characterized by the induction of adhesion molecules promoting binding and transmigration of leukocytes, while simultaneously increasing their thrombogenic potential. Paracrine signaling from endothelial cells activates NF-κB in vascular smooth muscle cells and causes a phenotypic switch to a “synthetic” state associated with a decrease in contractile proteins. Monocytes react to inflammatory situations with enforced expression of tissue factor and after differentiation to macrophages with altered polarization. Neutrophils respond with an extension of their life span—and upon full activation they can expel their DNA thereby forming so-called neutrophil extracellular traps (NETs), which exert antibacterial functions, but also induce a strong coagulatory response. This may cause formation of microthrombi that are important for the immobilization of pathogens, a process designated as immunothrombosis. However, deregulation of the complex cellular links between inflammation and thrombosis by unrestrained NET formation or the loss of the endothelial layer due to mechanical rupture or erosion can result in rapid activation and aggregation of platelets and the manifestation of thrombo-inflammatory diseases. Sepsis is an important example of such a disorder caused by a dysregulated host response to infection finally leading to severe coagulopathies. NF-κB is critically involved in these pathophysiological processes as it induces both inflammatory and thrombotic responses.
Collapse
Affiliation(s)
- Marion Mussbacher
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Manuel Salzmann
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Christine Brostjan
- Department of Surgery, General Hospital, Medical University of Vienna, Vienna, Austria
| | - Bastian Hoesel
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | | | - Hannes Datler
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Philipp Hohensinner
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - José Basílio
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Peter Petzelbauer
- Skin and Endothelial Research Division, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Alice Assinger
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Johannes A Schmid
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
Christian F, Smith EL, Carmody RJ. The Regulation of NF-κB Subunits by Phosphorylation. Cells 2016; 5:cells5010012. [PMID: 26999213 PMCID: PMC4810097 DOI: 10.3390/cells5010012] [Citation(s) in RCA: 559] [Impact Index Per Article: 62.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 03/09/2016] [Accepted: 03/14/2016] [Indexed: 12/31/2022] Open
Abstract
The NF-κB transcription factor is the master regulator of the inflammatory response and is essential for the homeostasis of the immune system. NF-κB regulates the transcription of genes that control inflammation, immune cell development, cell cycle, proliferation, and cell death. The fundamental role that NF-κB plays in key physiological processes makes it an important factor in determining health and disease. The importance of NF-κB in tissue homeostasis and immunity has frustrated therapeutic approaches aimed at inhibiting NF-κB activation. However, significant research efforts have revealed the crucial contribution of NF-κB phosphorylation to controlling NF-κB directed transactivation. Importantly, NF-κB phosphorylation controls transcription in a gene-specific manner, offering new opportunities to selectively target NF-κB for therapeutic benefit. This review will focus on the phosphorylation of the NF-κB subunits and the impact on NF-κB function.
Collapse
Affiliation(s)
- Frank Christian
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK.
| | - Emma L Smith
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK.
| | - Ruaidhrí J Carmody
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK.
| |
Collapse
|
3
|
Yu C, Xu L, Chen LF, Guan YJ, Kim M, Biffl WL, Chin YE. PRBC-derived plasma induces non-muscle myosin type IIA-mediated neutrophil migration and morphologic change. Immunopharmacol Immunotoxicol 2012; 35:71-9. [PMID: 23083320 PMCID: PMC3541669 DOI: 10.3109/08923973.2012.677046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Context: Neutrophils are the primary effector cells in the pathogenesis of transfusion-related acute lung injury or multiple organ failure after blood transfusion. Objective: We aimed to investigate the effect of fresh (1 day preparation) and aged (42 day preparation) PRBC-derived plasma on neutrophil morphology, migration and phagocytosis. Materials and methods: We evaluated the production of reactive oxygen species (ROS) and the expression of non-muscle myosin heavy chain IIA (MYH9) in neutrophils treated with PRBC-derived plasma. We used western blots and antibody arrays to evaluate changes in signal transduction pathways in plasma-treated neutrophils. Results: Aged PRBC-derived plasma elicited a stronger oxidative burst in neutrophils when compared with fresh PRBC-derived plasma (p < 0.05). Antibody arrays showed increased phosphorylation of NF-ĸB proteins (p105, p50 and Ikk) in aged PRBC-derived plasma-treated neutrophils. The expression of non-muscle myosin IIA (MYH9), a cytoskeleton protein involved in immune cell migration and morphological change, was also significantly upregulated in neutrophils treated with aged PRBC-derived plasma compared to fresh plasma (p < 0.05). Pretreatment of neutrophils with blebbistatin (a specific type II myosin inhibitor), ascorbic acid (an antioxidant), or staurosporine (a protein tyrosine kinase inhibitor), effectively abrogated the morphological changes, neutrophil migration, and phagocytosis induced by aged PRBC-derived plasma. Conclusion: Upregulation of MYH9 in neutrophils treated with aged PRBC-derived plasma and abrogation of neutrophil migration in blebbistatin-treated neutrophils suggested a functional role of MYH9 in the directional migration of immune cells. Our data help elucidate the cellular and molecular mechanisms of transfusion-related injury.
Collapse
Affiliation(s)
- Chen Yu
- Department of Nephrology, Tongji Hospital, Tongji Universith School of Medicine, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
4
|
Regulation of IkappaBalpha function and NF-kappaB signaling: AEBP1 is a novel proinflammatory mediator in macrophages. Mediators Inflamm 2010; 2010:823821. [PMID: 20396415 PMCID: PMC2855089 DOI: 10.1155/2010/823821] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Accepted: 01/12/2010] [Indexed: 02/08/2023] Open
Abstract
NF-κB comprises a family of transcription factors that are critically involved in various inflammatory processes. In this paper, the role of NF-κB in inflammation and atherosclerosis and the regulation of the NF-κB signaling pathway are summarized. The structure, function, and regulation of the NF-κB inhibitors, IκBα and IκBβ, are reviewed. The regulation of NF-κB activity by glucocorticoid receptor (GR) signaling and IκBα sumoylation is also discussed. This paper focuses on the recently reported regulatory function that adipocyte enhancer-binding protein 1 (AEBP1) exerts on NF-κB transcriptional activity in macrophages, in which AEBP1 manifests itself as a potent modulator of NF-κB via physical interaction with IκBα and a critical mediator of inflammation. Finally, we summarize the regulatory roles that recently identified IκBα-interacting proteins play in NF-κB signaling. Based on its proinflammatory roles in macrophages, AEBP1 is anticipated to serve as a therapeutic target towards the treatment of various inflammatory conditions and disorders.
Collapse
|
5
|
Abstract
The transcription factor nuclear factor-kappa B (NF-kappaB) is a crucial regulator of many physiological and patho-physiological processes, including control of the adaptive and innate immune responses, inflammation, proliferation, tumorigenesis, and apoptosis. Thus, the tight regulation of NF-kappaB activity within a cell is extremely important. The central mechanism of NF-kappaB regulation is the signal-induced proteolytic degradation of a family of cytoplasmic inhibitors of NF-kappaB, the IkappaBs. However, with the discovery of an IkappaB-independent noncanonical or "alternative" pathway of NF-kappaB activation, the importance of other regulatory mechanisms responsible for the fine-tuning of NF-kappaB became clear. Post-translational modification, especially phosphorylation, of the Rel proteins, of which dimeric NF-kappaB is composed, are such alternative regulatory mechanisms. The best analyzed example is RelA phosphorylation, which takes place at specific amino acids resulting in distinct functional changes of this gene regulatory protein. The interaction of NF-kappaB with other proteins such as glucocorticoid receptors is very important for the regulation of NF-kappaB activity. Recently, exciting new concepts of IkappaB-independent NF-kappaB control like dimer exchange and nucleolar sequestration of RelA have been described, indicating that many aspects of NF-kappaB control are waiting to be discovered.
Collapse
Affiliation(s)
- Manfred Neumann
- Institute of Experimental Internal Medicine, Otto-von-Guericke University, Medical Faculty, Leipziger Strasse 44, 39120 Magdeburg, Germany
| | | |
Collapse
|
6
|
Perkins ND. Post-translational modifications regulating the activity and function of the nuclear factor kappa B pathway. Oncogene 2006; 25:6717-30. [PMID: 17072324 DOI: 10.1038/sj.onc.1209937] [Citation(s) in RCA: 537] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The diverse cellular and biological functions of the nuclear factor kappa B (NF-kappaB) pathway, together with the catastrophic consequences of its aberrant regulation, demand specific and highly regulated control of its activity. As described in this review, regulation of the NF-kappaB pathway is brought about through multiple post-translational modifications that control the activity of the core components of NF-kappaB signaling: the IkappaB kinase (IKK) complex, the IkappaB proteins and the NF-kappaB subunits themselves. These regulatory modifications, which include phosphorylation, ubiquitination, acetylation, sumoylation and nitrosylation, can vary, depending on the nature of the NF-kappaB-inducing stimulus. Moreover, they frequently have distinct, sometimes antagonistic, functional consequences and the same modification can have different effects depending on the context. Given the important role of NF-kappaB in human health and disease, understanding these pathways will not only provide valuable insights into mechanism and function, but could also lead to new drug targets and the development of diagnostic and prognostic biomarkers for many pathological conditions.
Collapse
Affiliation(s)
- N D Perkins
- Division of Gene Regulation and Expression, University of Dundee, Dundee, Scotland, UK.
| |
Collapse
|
7
|
Gits J, van Leeuwen D, Carroll HP, Touw IP, Ward AC. Multiple pathways contribute to the hyperproliferative responses from truncated granulocyte colony-stimulating factor receptors. Leukemia 2006; 20:2111-8. [PMID: 17066093 DOI: 10.1038/sj.leu.2404448] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mutations in the granulocyte colony-stimulating factor receptor (G-CSF-R) gene leading to a truncated protein have been identified in a cohort of neutropenia patients highly predisposed to acute myeloid leukemia. Such mutations act in a dominant manner resulting in hyperproliferation but impaired differentiation in response to G-CSF. This is due, at least in part, to defective internalization and loss of binding sites for several negative regulators, leading to sustained receptor activation. However, those signaling pathways responsible for mediating the hyperproliferative function have remained unclear. In this study, analysis of an additional G-CSF-R mutant confirmed the importance of residues downstream of Box 2 as important contributors to the sustained proliferation. However, maximal proliferation correlated with the ability to robustly activate signal transducer and activator of transcription (STAT) 5 in a sustained manner, whereas co-expression of dominant-negative STAT5, but not dominant-negative STAT3, was able to inhibit G-CSF-stimulated proliferation from a truncated receptor. Furthermore, a Janus kinase (JAK) inhibitor also strongly reduced the proliferative response, whereas inhibitors of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase (MEK) or phosphatidylinositol (PI) 3-kinase reduced proliferation to a lesser degree. These data suggest that sustained JAK2/STAT5 activation is a major contributor to the hyperproliferative function of truncated G-CSF receptors, with pathways involving MEK and PI 3-kinase playing a reduced role.
Collapse
Affiliation(s)
- J Gits
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
8
|
Viatour P, Merville MP, Bours V, Chariot A. Phosphorylation of NF-kappaB and IkappaB proteins: implications in cancer and inflammation. Trends Biochem Sci 2005; 30:43-52. [PMID: 15653325 DOI: 10.1016/j.tibs.2004.11.009] [Citation(s) in RCA: 1204] [Impact Index Per Article: 60.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Nuclear factor-kappaB (NF-kappaB) is a transcription factor that has crucial roles in inflammation, immunity, cell proliferation and apoptosis. Activation of NF-kappaB mainly occurs via IkappaB kinase (IKK)-mediated phosphorylation of inhibitory molecules, including IkappaBalpha. Optimal induction of NF-kappaB target genes also requires phosphorylation of NF-kappaB proteins, such as p65, within their transactivation domain by a variety of kinases in response to distinct stimuli. Whether, and how, phosphorylation modulates the function of other NF-kappaB and IkappaB proteins, such as B-cell lymphoma 3, remains unclear. The identification and characterization of all the kinases known to phosphorylate NF-kappaB and IkappaB proteins are described here. Because deregulation of NF-kappaB and IkappaB phosphorylations is a hallmark of chronic inflammatory diseases and cancer, newly designed drugs targeting these constitutively activated signalling pathways represent promising therapeutic tools.
Collapse
Affiliation(s)
- Patrick Viatour
- Laboratory of Medical Chemistry and Human Genetics, CHU, Sart-Tilman, Center for Biomedical Integrated Genoproteomics, University of Liege, Belgium
| | | | | | | |
Collapse
|
9
|
Affiliation(s)
- Patrick P McDonald
- Pulmonary Division, Faculty of Medicine, Université de Sherbrooke Sherbrooke, Québec JIH 5N4, Canada
| |
Collapse
|
10
|
Druker BJ, Talpaz M, Resta DJ, Peng B, Buchdunger E, Ford JM, Lydon NB, Kantarjian H, Capdeville R, Ohno-Jones S, Sawyers CL. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 2001; 344:1031-7. [PMID: 11287972 DOI: 10.1056/nejm200104053441401] [Citation(s) in RCA: 3609] [Impact Index Per Article: 150.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND BCR-ABL is a constitutively activated tyrosine kinase that causes chronic myeloid leukemia (CML). Since tyrosine kinase activity is essential to the transforming function of BCR-ABL, an inhibitor of the kinase could be an effective treatment for CML. METHODS We conducted a phase 1, dose-escalating trial of STI571 (formerly known as CGP 57148B), a specific inhibitor of the BCR-ABL tyrosine kinase. STI571 was administered orally to 83 patients with CML in the chronic phase in whom treatment with interferon alfa had failed. Patients were successively assigned to 1 of 14 doses ranging from 25 to 1000 mg per day. RESULTS Adverse effects of STI571 were minimal; the most common were nausea, myalgias, edema, and diarrhea. A maximal tolerated dose was not identified. Complete hematologic responses were observed in 53 of 54 patients treated with daily doses of 300 mg or more and typically occurred in the first four weeks of therapy. Of the 54 patients treated with doses of 300 mg or more, cytogenetic responses occurred in 29, including 17 (31 percent of the 54 patients who received this dose) with major responses (0 to 35 percent of cells in metaphase positive for the Philadelphia chromosome); 7 of these patients had complete cytogenetic remissions. CONCLUSIONS STI571 is well tolerated and has significant antileukemic activity in patients with CML in whom treatment with interferon alfa had failed. Our results provide evidence of the essential role of BCR-ABL tyrosine kinase activity in CML and demonstrate the potential for the development of anticancer drugs based on the specific molecular abnormality present in a human cancer.
Collapse
MESH Headings
- Adult
- Aged
- Antineoplastic Agents/administration & dosage
- Antineoplastic Agents/adverse effects
- Antineoplastic Agents/pharmacokinetics
- Benzamides
- Blood Cell Count
- Dose-Response Relationship, Drug
- Enzyme Inhibitors/administration & dosage
- Enzyme Inhibitors/adverse effects
- Enzyme Inhibitors/pharmacokinetics
- Female
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/metabolism
- Humans
- Imatinib Mesylate
- Interferon-alpha/therapeutic use
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/blood
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/enzymology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Male
- Middle Aged
- Phosphorylation
- Piperazines/administration & dosage
- Piperazines/adverse effects
- Piperazines/pharmacokinetics
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Protein-Tyrosine Kinases/metabolism
- Pyrimidines/administration & dosage
- Pyrimidines/adverse effects
- Pyrimidines/pharmacokinetics
- Recurrence
- Remission Induction/methods
Collapse
Affiliation(s)
- B J Druker
- Division of Hematology and Medical Oncology, Oregon Health Sciences University, Portland 97201, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Akbarzadeh S, Layton JE. Granulocyte colony-stimulating factor receptor: Structure and function. VITAMINS & HORMONES 2001; 63:159-94. [PMID: 11358114 DOI: 10.1016/s0083-6729(01)63006-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- S Akbarzadeh
- Ludwig Institute for Cancer Research, Melbourne Tumour Biology Branch, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | | |
Collapse
|
12
|
Cans C, Mangano R, Barilá D, Neubauer G, Superti-Furga G. Nuclear tyrosine phosphorylation: the beginning of a map. Biochem Pharmacol 2000; 60:1203-15. [PMID: 11007959 DOI: 10.1016/s0006-2952(00)00434-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Tyrosine phosphorylation is usually associated with cytoplasmic events. Yet, over the years, many reports have accumulated on tyrosine phosphorylation of individual molecules in the nucleus, and several tyrosine kinases and phosphatases have been found to be at least partially nuclear. The question arises as to whether nuclear tyrosine phosphorylation represents a collection of loose ends of events originating in the cytoplasm or if there may be intranuclear signaling circuits relying on tyrosine phosphorylation to regulate specific processes. The recent discovery of a mechanism causing nuclear tyrosine phosphorylation has prompted us to review the cumulative evidence for nuclear tyrosine phosphorylation pathways and their possible role. While we found that no complex nuclear function has yet been shown to rely upon intranuclear tyrosine phosphorylation in an unambiguous fashion, we found a very high number of compelling observations on individual molecules that suggest underlying networks linking individual events. A systematic proteomics approach to nuclear tyrosine phosphorylation should help chart possible interaction pathways.
Collapse
Affiliation(s)
- C Cans
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
13
|
Ward AC, Loeb DM, Soede-Bobok AA, Touw IP, Friedman AD. Regulation of granulopoiesis by transcription factors and cytokine signals. Leukemia 2000; 14:973-90. [PMID: 10865962 DOI: 10.1038/sj.leu.2401808] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The development of mature granulocytes from hematopoietic precursor cells is controlled by a myriad of transcription factors which regulate the expression of essential genes, including those encoding growth factors and their receptors, enzymes, adhesion molecules, and transcription factors themselves. In particular, C/EBPalpha, PU.1, CBF, and c-Myb have emerged as critical players during early granulopoiesis. These transcription factors interact with one another as well as other factors to regulate the expression of a variety of genes important in granulocytic lineage commitment. An important goal remains to understand in greater detail how these various factors act in concert with signals emanating from cytokine receptors to influence the various steps of maturation, from the pluripotent hematopoietic stem cell, to a committed myeloid progenitor, to myeloid precursors, and ultimately to mature granulocytes.
Collapse
Affiliation(s)
- A C Ward
- Institute of Hematology, Erasmus University Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
14
|
Fognani C, Rondi R, Romano A, Blasi F. cRel-TD kinase: a serine/threonine kinase binding in vivo and in vitro c-Rel and phosphorylating its transactivation domain. Oncogene 2000; 19:2224-32. [PMID: 10822372 DOI: 10.1038/sj.onc.1203543] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The activity of transcription factors is often modulated by signal responsive protein kinases. Rel/NF-kappaB transcription factors are regulated by IkappaB inhibitors, the phosphorylation of which causes ubiquitination and degradation, resulting in nuclear translocation of NF-kappaB and activation of target genes. Here we report pulldown and immunoprecipitation experiments showing that a mammalian 66 kDa protein kinase binds murine c-Rel, both in vitro and in vivo. This kinase appears to have at least two binding sites on c-Rel, a proline-directed serine/ threonine substrate specificity similar to MAP kinases and to specifically phosphorylate the C-terminal domain of murine c-Rel at an ERK consensus site.
Collapse
Affiliation(s)
- C Fognani
- Department of Molecular Pathology and Medicine, Università Vita-Salute San Raffaele, Milan, Italy
| | | | | | | |
Collapse
|
15
|
Carlotti F, Chapman R, Dower SK, Qwarnstrom EE. Activation of nuclear factor kappaB in single living cells. Dependence of nuclear translocation and anti-apoptotic function on EGFPRELA concentration. J Biol Chem 1999; 274:37941-9. [PMID: 10608861 DOI: 10.1074/jbc.274.53.37941] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have studied the dynamics of nuclear translocation during nuclear factor kappaB activation by using a p65(RELA)-enhanced green fluorescent protein (EGFP) fusion construct. Quantitation of expression levels indicates that EGFPRELA can be detected at physiological concentrations of about 60,000 molecules per cell. Stimulation of transfected fibroblasts with interleukin (IL)-1beta caused nuclear translocation of EGFPRELA, typically resulting in a 30-fold increase in nuclear protein at maximum induction and a concomitant 20% decrease in cytoplasmic levels. The response of individual cells to IL-1beta was graded, and the kinetics of nuclear translocation were dependent on the dose of IL-1beta and the level of EGFPRELA expression. The rate of nuclear uptake was saturable, and the time lag for uptake increased at higher EGFPRELA expression levels. Furthermore, nuclear translocation was reduced at less than saturating doses of IL-1beta suggesting that the pathway is limited by incoming signals. The response to IL-1beta was biphasic, demonstrating a decline in nuclear import rate at expression levels above three to four times endogenous. This correlated with the anti-apoptotic function of EGFPRELA which was more prominent at low expression levels and demonstrated successively less protection at higher levels. In comparison, transfection of p50 had no effect on the level of apoptosis and demonstrated some toxicity in combination with EGFPRELA.
Collapse
Affiliation(s)
- F Carlotti
- Division of Molecular Medicine, The Medical School, University of Sheffield, Sheffield S10 2JF, United Kingdom
| | | | | | | |
Collapse
|
16
|
Khaled AR, Butfiloski EJ, Villas B, Sobel ES, Schiffenbauer J. Aberrant expression of the NF-kappaB and IkappaB proteins in B cells from viable motheaten mice. Autoimmunity 1999; 30:115-28. [PMID: 10435725 DOI: 10.3109/08916939908994769] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In viable motheaten mice, a mutation in the gene encoding the phosphatase, SHP1, causes severe immunodeficiency and autoimmunity. A defective phosphatase may result in modified phosphorylation of proteins involved in gene regulation. Since the NFkappaB/IkappaB proteins are regulated through phosphorylation, we wished to understand if the expression of these proteins was altered by the SHP1 defect. Splenic B cells from viable motheaten mice were isolated and assessed for purity by flow cytometry. Levels of each protein in isolated B cells were examined by Western blot analyses. Measurement of RNA levels for each protein was assessed by semi-quantitative RT-PCR. Western blots revealed that, in me(v) whole cell lysates, there were reduced levels of RelA and RelB proteins and increased levels of p50 and c-Rel. Furthermore, we analyzed the protein levels of IkappaBalpha and found that, in me(v), this inhibitor was significantly reduced, while the level of another member of the IkappaB family, IkappaBbeta, was not. To determine if these findings in me(v) were secondary to the autoimmune process, we evaluated NF-kappaB/IkappaB expression in the BXSB murine model of autoimmunity. Unlike me(v), B cells from BXSB/Yaa mice had NF-kappaB complexes composed of the RelA submit, and IkappaBalpha was readily detected. In addition, RNA for the RelA and IkappaBalpha proteins in me(v) and control littermates was detected by RT-PCR, indicating that the reduced amounts of these proteins was not exclusively due to transcriptional defects. We conclude that the differences in NF-kappaB/IkappaB proteins that we have described in me(v) are likely a consequences of the SHP1 defect and could contribute to the clinical disorder that characterizes me(v) mice.
Collapse
Affiliation(s)
- A R Khaled
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville 32610, USA
| | | | | | | | | |
Collapse
|
17
|
Díaz-Guerra MJ, Castrillo A, Martín-Sanz P, Boscá L. Negative regulation by protein tyrosine phosphatase of IFN-gamma-dependent expression of inducible nitric oxide synthase. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 1999; 162:6776-6783. [PMID: 10352298 DOI: 10.4049/jimmunol.162.11.6776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2025]
Abstract
Treatment of cultured peritoneal macrophages with IFN-gamma resulted in tyrosine phosphorylation of IkappaBalpha and IkappaBbeta, NF-kappaB activation, and expression of inducible NO synthase (iNOS). Since tyrosine phosphorylation of IkappaBalpha is sufficient to activate NF-kappaB in Jurkat cells, macrophages were treated with the protein tyrosine phosphatase inhibitor peroxovanadate (POV), which elicited an intense tyrosine phosphorylation of both IkappaB. However, this phosphorylation failed to activate NF-kappaB. Treatment with POV of macrophages stimulated with IFN-gamma or LPS potentiated the degradation of IkappaBalpha and IkappaBbeta, the activation of NF-kappaB, and the expression of iNOS. Analysis of the iNOS gene promoter activity corresponding to the 5'-flanking region indicated that POV potentiates the cooperation between IFN-gamma-activated transcription factors and NF-kappaB. These results indicate that tyrosine phosphorylation of IkappaB is not sufficient to activate NF-kappaB in macrophages and propose a negative role for protein tyrosine phosphatase in the expression of iNOS in response to IFN-gamma.
Collapse
Affiliation(s)
- M J Díaz-Guerra
- Instituto de Bioquímica (Consejo Superior de Investigaciones Cientificas-UCM), Facultad de Farmacia, Universidad Complutense de Madrid, Spain
| | | | | | | |
Collapse
|
18
|
Ward C, Chilvers ER, Lawson MF, Pryde JG, Fujihara S, Farrow SN, Haslett C, Rossi AG. NF-kappaB activation is a critical regulator of human granulocyte apoptosis in vitro. J Biol Chem 1999; 274:4309-18. [PMID: 9933632 DOI: 10.1074/jbc.274.7.4309] [Citation(s) in RCA: 264] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During beneficial inflammation, potentially tissue-damaging granulocytes undergo apoptosis before being cleared by phagocytes in a non-phlogistic manner. Here we show that the rate of constitutive apoptosis in human neutrophils and eosinophils is greatly accelerated in both a rapid and concentration-dependent manner by the fungal metabolite gliotoxin, but not by its inactive analog methylthiogliotoxin. This induction of apoptosis was abolished by the caspase inhibitor zVAD-fmk, correlated with the inhibition of nuclear factor-kappa B (NF-kappaB), and was mimicked by a cell permeable inhibitory peptide of NF-kappaB, SN-50; other NF-kappaB inhibitors, curcumin and pyrrolidine dithiocarbamate; and the proteasome inhibitor, MG-132. Gliotoxin also augmented dramatically the early (2-6 h) pro-apoptotic effects of tumor necrosis factor-alpha (TNF-alpha) in neutrophils and unmasked the ability of TNF-alpha to induce eosinophil apoptosis. In neutrophils, TNF-alpha caused a gliotoxin-inhibitable activation of an inducible form of NF-kappaB, a response that may underlie the ability of TNF-alpha to delay apoptosis at later times (12-24 h) and limit its early killing effect. Furthermore, cycloheximide displayed a similar capacity to enhance TNF-alpha induced neutrophil apoptosis even at time points when cycloheximide alone had no pro-apoptotic effect, suggesting that NF-kappaB may regulate the production of protein(s) which protect neutrophils from the cytotoxic effects of TNF-alpha. These data shed light on the biochemical and molecular mechanisms regulating human granulocyte apoptosis and, in particular, indicate that the transcription factor NF-kappaB plays a crucial role in regulating the physiological cell death pathway in granulocytes.
Collapse
Affiliation(s)
- C Ward
- Respiratory Medicine Unit, Department of Medicine (RIE), Rayne Laboratory, University of Edinburgh Medical School, Teviot Place, Edinburgh, EH8 9AG, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Ponnappan U, Trebilcock GU, Zheng MZ. Studies into the effect of tyrosine phosphatase inhibitor phenylarsine oxide on NFkappaB activation in T lymphocytes during aging: evidence for altered IkappaB-alpha phosphorylation and degradation. Exp Gerontol 1999; 34:95-107. [PMID: 10197731 DOI: 10.1016/s0531-5565(98)00059-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Nuclear Factor kappa B (NFkappaB) is a critical regulator of several genes involved in immune and inflammatory responses. Treatment of T cells with a variety of stimuli, including TNF-alpha, leads to the translocation of the active p65-50 heterodimer to the nucleus, albeit at a lower level in T cells from the elderly. We demonstrate here that pretreatment with PAO results in the inhibition of NFkappaB induction in TNF-alpha treated T cells, suggesting a role for PAO-sensitive phosphatase in the activation of the NFkappaB via this pathway in human T cells. Furthermore, it demonstrates that aging does not influence the sensitivity of this phosphatase. Treatment with DMP prior to treatment with PAO and TNF abolishes the inhibition induced by PAO, in T cells from both young and old donors, alike. Finally, we demonstrate that a failure to degrade IkappaB-alpha in cytosols of TNF-treated T cells pretreated with PAO is due to its interference with the phosphorylation of IkappaB-alpha and not due to its inhibitory effect on proteasomal degradation. These data collectively suggest that PAO interferes with the phosphorylation and the regulated degradation of IkappaB-alpha, induced by TNF, without affecting the chymotryptic activity of the proteasome, independent of age.
Collapse
Affiliation(s)
- U Ponnappan
- Department of Geriatrics, University of Arkansas for Medical Sciences and GRECC, John L. McClellan Memorial Hospital, VA Medical Research, Little Rock 72205, USA.
| | | | | |
Collapse
|
20
|
Ward AC, Monkhouse JL, Hamilton JA, Csar XF. Direct binding of Shc, Grb2, SHP-2 and p40 to the murine granulocyte colony-stimulating factor receptor. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1448:70-6. [PMID: 9824671 DOI: 10.1016/s0167-4889(98)00120-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Granulocyte colony-stimulating factor (G-CSF) mediates the proliferation, differentiation and activation of cells in the granulocytic lineage. However, knowledge about the specific signaling pathways utilized by the G-CSF receptor (G-CSF-R) upon ligand binding remains limited. In this report, we show rapid phosphorylation of Shc upon stimulation of NFS-60 cells with G-CSF, and inducible association of Shc and Grb2 with the G-CSF-R in these cells. Using a tyrosine-phosphorylated GST-G-CSF-R fusion we demonstrate that Shc, Grb2 and SHP-2 directly bind the receptor via their respective SH2 domains, suggesting multiple routes of MAPK activation from the G-CSF-R are possible. In addition, we have identified an unknown p40 molecule which is associated with the G-CSF-R transiently following G-CSF stimulation, and a constitutively-associated p37 molecule.
Collapse
Affiliation(s)
- A C Ward
- Institute of Hematology, Room Ee 1330e, Erasmus University Rotterdam, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands.
| | | | | | | |
Collapse
|
21
|
Matsushita K, Arima N. Involvement of granulocyte colony-stimulating factor in proliferation of adult T-cell leukemia cells. Leuk Lymphoma 1998; 31:295-304. [PMID: 9869193 DOI: 10.3109/10428199809059222] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Granulocyte-colony stimulating factor (G-CSF) was originally found to induce proliferation and differentiation of normal granulocyte progenitors. Recent studies demonstrated that G-CSF induces growth of some malignant cells, including lymphoid cells. G-CSF is now widely and successfully used to treat neutropenia induced by intensive chemotherapy, and the responsive growth of malignant cells becomes a major clinical issue. Adult T-cell leukemia (ATL) is a malignant lymphoid disease of T cells, etiologically associated with human T cell lymphotropic virus type I (HTLV-I). We demonstrated that primary ATL cells in about 80% of patients expressed cell surface G-CSF receptor (G-CSFR). Our recent data also show that ATL cells from a third of the patients show responsive growth to G-CSF ex vivo. Several patients whose ATL cells proliferated in response to G-CSF showed a significant increase of the ATL cell count after administration of G-CSF in vivo. These observations suggest caution for it's routine clinical use in ATL. The molecular mechanism of G-CSF responsive growth of ATL cells is obscure, however the population of G-CSFR expressing cells is larger in responsive cases than in nonresponsive cases. Expression of G-CSFR on ATL cells may relate to the expression of Tax protein encoded by HTLV-I. Precise studies on G-CSFR signaling in ATL cells are necessary for the safe use of G-CSF routinely for ATL patients.
Collapse
Affiliation(s)
- K Matsushita
- First Department of Internal Medicine, Faculty of Medicine, Kagoshima University, Japan
| | | |
Collapse
|
22
|
Lepley RA, Fitzpatrick FA. 5-Lipoxygenase compartmentalization in granulocytic cells is modulated by an internal bipartite nuclear localizing sequence and nuclear factor kappa B complex formation. Arch Biochem Biophys 1998; 356:71-6. [PMID: 9681993 DOI: 10.1006/abbi.1998.0744] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A region of basic amino acids spanning residues 639-656 in the human 5-lipoxygenase sequence resembles a consensus bipartite nuclear localizing sequence. A synthetic peptide consisting of the Kaposi fibroblast growth factor signal sequence fused to the 5-lipoxygenase639-656 bipartite nuclear localizing sequence has a prominent inhibitory effect on 5-lipoxygenase catalysis in granulocytic HL-60 cells activated by calcium ionophor A23187. Recombinant 5-lipoxygenase was not affected by the peptide. The peptide also inhibited redistribution of 5-lipoxygenase from the cytosol to the nuclear membrane of HL-60 cells stimulated by A23187. 5-Lipoxygenase protein was detected in nuclear factor kappaB (NF-kappaB) p65 subunit immunoprecipitate fractions prepared from HL-60 cell lysates. The amount of 5-lipoxygenase protein coimmunoprecipitated by NF-kappaB antiserum was increased following A23187 stimulation. In cells treated with agents that block 5-lipoxygenase translocation to the nucleus, 5-lipoxygenase protein appearing in the NF-kappaB immunoprecipitate was diminished. Our results implicate an internal bipartite nuclear localizing sequence as a regulatory domain that modulates 5-lipoxygenase redistribution and catalysis in granulocytic cells. Additionally, our results suggest that molecular determinants which govern 5-lipoxygenase and NF-kappaB redistribution to the nucleus may be coordinately controlled in granulocytic cells.
Collapse
Affiliation(s)
- R A Lepley
- Department of Pharmacology, University of Colorado Health Sciences Center, Denver, Colorado, 80262, USA.
| | | |
Collapse
|
23
|
Wang W, Rath S, Durdik JM, Sen R. Pentoxifylline Inhibits Ig κ Gene Transcription and Rearrangements in Pre-B Cells. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.160.4.1789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
Pentoxifylline (PF) has been used in a wide variety of clinical situations; however, the molecular consequences of this drug are not well characterized. In this paper we assayed the effects of PF in two models of pre-B differentiation. In 70Z pre-B cells, transcriptional induction of rearranged Ig κ-chain gene in response to LPS was suppressed by PF, without affecting the induction of Rel family proteins. In contrast, κ induction by IFN-γ was not suppressed by PF, indicating that the drug inhibited certain activation pathways. We also found that LPS-induced activation of germline κ transcription and Vκ to Jκ recombination were inhibited by PF in the pre-B cell line 38B9. These observations suggest that PF may adversely affect B lymphopoiesis during chronic administration.
Collapse
Affiliation(s)
- Weihong Wang
- *Rosenstiel Research Center and Department of Biology, Brandeis University, Waltham, MA 02254
| | - Satyajit Rath
- †National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India; and
| | - Jeannine M. Durdik
- ‡Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701
| | - Ranjan Sen
- *Rosenstiel Research Center and Department of Biology, Brandeis University, Waltham, MA 02254
| |
Collapse
|
24
|
Abstract
AbstractActivated neutrophils have the ability to upregulate the expression of many genes, in particular those encoding cytokines and chemokines, and to subsequently release the corresponding proteins. Although little is known to date concerning the regulation of gene transcription in neutrophils, it is noteworthy that many of these genes depend on the activation of transcription factors, such as NF-κB, for inducible expression. We therefore investigated whether NF-κB/Rel proteins are expressed in human neutrophils, as well as their fate on cell activation. We now report that dimers consisting of p50 NFκB1, p65 RelA, and/or c-Rel are present in neutrophils and that the greater part of these protein complexes is physically associated with cytoplasmic IκB-α in resting cells. Following neutrophil stimulation with proinflammatory agonists (such as lipopolysaccharide [LPS], tumor necrosis factor-α [TNF-α], and fMet-Leu-Phe) that induce the production of cytokines and chemokines in these cells, NF-κB/Rel proteins translocated to nuclear fractions, resulting in a transient induction of NF-κB DNA binding activity, as determined in gel mobility shift assays. The onset of both processes was found to be closely paralleled by, and dependent on, IκB-α degradation. Proinflammatory neutrophil stimuli also promoted the accumulation of IκB-α mRNA transcripts, resulting in the reexpression of the IκB-α protein. To our knowledge, this constitutes the first indication that NF-κB activation may underlie the action of proinflammatory stimuli towards human neutrophil gene expression and, as such, adds a new facet to our understanding of neutrophil biology.
Collapse
|
25
|
Csar XF, Ward AC, Hoffmann BW, Guy GG, Hamilton JA. Identification of phosphoproteins specific to granulocyte colony-stimulating factor-mediated signaling using 2D-SDS-PAGE. J Interferon Cytokine Res 1997; 17:77-86. [PMID: 9058313 DOI: 10.1089/jir.1997.17.77] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Like other cytokines, granulocyte colony-stimulating factor (G-CSF) activates a complex array of signal transduction pathways involving multiple kinases and phosphatases. We sought to identify phosphoproteins specific to G-CSF signaling. Using 2D-SDS-PAGE of 32P-labeled cytosolic extracts, we compared phosphoprotein patterns of NFS-60 cells treated with G-CSF or interleukin-3 (IL-3). We also compared the patterns found after stimulation of M-NFS-60 cells with macrophage-CSF (M-CSF). A large number of phosphoproteins were found that were specific for the G-CSF response. Their distribution contrasted with that of Erk-1-related spots, identified by Western blotting, which were common to G-CSF, M-CSF (CSF-1), and IL-3 responses. The activation of Erk-1 by these cytokines was confirmed by in vitro kinase assays. The 2D-SDS-PAGE approach was also used to demonstrate that a series of unrelated G1 phase inhibitors of the mitogenic action of G-CSF elicited both common and diverse protein phosphorylation changes in G-CSF-treated NFS-60 cells that were not dependent on the inhibition of Erk-1 activity, as demonstrated by both in vitro kinase assays and 2D-SDS-PAGE. Therefore, 2D-SDS-PAGE has potential to dissect both the signal transduction pathways lying downstream of the G-CSF receptor (and of the receptors for other CSFs) and also the site of action of proliferation inhibitors.
Collapse
Affiliation(s)
- X F Csar
- University of Melbourne, Department of Medicine, Royal Melbourne Hospital, Victoria, Australia
| | | | | | | | | |
Collapse
|
26
|
|
27
|
Rajagopalan LE, Malter JS. Regulation of eukaryotic messenger RNA turnover. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1997; 56:257-86. [PMID: 9187056 DOI: 10.1016/s0079-6603(08)61007-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have demonstrated the existence of multiple mRNA binding proteins that interact specifically with defined regions in posttranscriptionally regulated mRNAs. These domains appear to be destabilizers whose function can be attenuated by the interaction with the specific binding proteins. Thus, the ability to alter mRNA decay rates on demand, given different environmental or intracellular conditions, appears to be mediated by controlling the localization, activity, and overall function of the cognate binding protein. Based on our limited experience, we predict that most, if not all, of similarly regulated mRNAs will ultimately be found to interact with regulatory mRNA binding proteins. Under conditions whereby the mRNA binding proteins are constitutively active (e.g., tumor cell lines), abnormal mRNA decay will result, with accumulation and overtranslation. Such appears to be the case for cytokines and possibly amyloid protein precursor mRNAs in cancer and Alzheimer's disease, respectively. Conversely, mutagenesis of these critical 3' untranslated region elements will likely have comparable deleterious effects on the regulation of gene expression. To the extent that such derangements exist in human disease, attention to understanding the mechanistic detail at this level may provide insights into the development of appropriate therapeutics or treatment strategies.
Collapse
Affiliation(s)
- L E Rajagopalan
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison Hospitals and Clinics 53792, USA
| | | |
Collapse
|
28
|
Imbert V, Rupec RA, Livolsi A, Pahl HL, Traenckner EB, Mueller-Dieckmann C, Farahifar D, Rossi B, Auberger P, Baeuerle PA, Peyron JF. Tyrosine phosphorylation of I kappa B-alpha activates NF-kappa B without proteolytic degradation of I kappa B-alpha. Cell 1996; 86:787-98. [PMID: 8797825 DOI: 10.1016/s0092-8674(00)80153-1] [Citation(s) in RCA: 549] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The transcription factor NF-kappa B regulates genes participating in immune and inflammatory responses. In T lymphocytes, NF-kappa B is sequestered in the cytosol by the inhibitor I kappa B-alpha and released after serine phosphorylation of I kappa B-alpha that regulates its ubiquitin-dependent degradation. We report an alternative mechanism of NF-kappa B activation. Stimulation of Jurkat T cells with the protein tyrosine phosphatase inhibitor and T cell activator pervanadate led to NF-kappa B activation through tyrosine phosphorylation but not degradation of I kappa B-alpha. Pervanadate-induced I kappa B-alpha phosphorylation and NF-kappa B activation required expression of the T cell tyrosine kinase p56ick. Reoxygenation of hypoxic cells appeared as a physiological effector of I kappa B-alpha tyrosine phosphorylation. Tyrosine phosphorylation of I kappa B-alpha represents a proteolysis-independent mechanism of NF-kappa B activation that directly couples NF-kappa B to cellular tyrosine kinase.
Collapse
Affiliation(s)
- V Imbert
- Inserm Unité 364 Faculté de Médecine Pasteur, Nice, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Serfling E, Avots A, Neumann M. The architecture of the interleukin-2 promoter: a reflection of T lymphocyte activation. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1263:181-200. [PMID: 7548205 DOI: 10.1016/0167-4781(95)00112-t] [Citation(s) in RCA: 187] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- E Serfling
- Institute of Pathology, University of Würzburg, Germany
| | | | | |
Collapse
|
30
|
Finco TS, Baldwin AS. Mechanistic aspects of NF-kappa B regulation: the emerging role of phosphorylation and proteolysis. Immunity 1995; 3:263-72. [PMID: 7552992 DOI: 10.1016/1074-7613(95)90112-4] [Citation(s) in RCA: 323] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- T S Finco
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill 27599, USA
| | | |
Collapse
|
31
|
Oda T, Heaney C, Hagopian J, Okuda K, Griffin J, Druker B. Crkl is the major tyrosine-phosphorylated protein in neutrophils from patients with chronic myelogenous leukemia. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)31596-x] [Citation(s) in RCA: 211] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|