1
|
Pinto-Pinho P, Quelhas J, Impens F, Dufour S, Van Haver D, Lopes G, Rocha A, Pinto-Leite R, Fardilha M, Colaço B. The Surface Proteome of Bovine Unsexed and Sexed Spermatozoa. Animals (Basel) 2025; 15:484. [PMID: 40002966 PMCID: PMC11852025 DOI: 10.3390/ani15040484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/28/2024] [Accepted: 01/02/2025] [Indexed: 02/27/2025] Open
Abstract
Current sperm sexing methods are costly and largely restricted to cattle, while immunological techniques targeting sex-specific membrane proteins may offer more economical alternatives. To advance these methods, understanding the proteomic differences between the cell membranes of X- and Y-chromosome-bearing spermatozoa is essential. This study aimed to characterize the cell surface proteome of bovine sperm and identify potential targets for sperm sexing through LC-MS/MS analysis. Cell surface protein lysates were extracted from unsexed, X-sperm (BX), and Y-sperm (BY) samples via biotinylation. Promising targets were identified through functional annotation (UniProt, eggNOG-mapper v.2.1.7) and topology prediction (DeepTMHMM v.1.0.13). Additionally, statistical overrepresentation (PANTHER 18.0) and orthology analyses were performed. Excluding contaminants, 130 proteins were detected, of which 64 proteins were detected in the BX samples and not in the BY samples. Of these, five transmembrane proteins stood out as potential X-sperm targets (ADAM2, ATP11C, DG1, MCT1, and PMCA4). They were identified as potential cell surface targets, based on GO terms and topology predictions, detected in at least two replicates of the BX samples, and shown to share orthology with other livestock species. These findings enhance our understanding of bovine sperm proteomics; however, further validation is required to confirm the utility of these five proteins in sperm sexing technologies.
Collapse
Affiliation(s)
- Patrícia Pinto-Pinho
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Laboratory of Signal Transduction, Department of Medical Sciences, Institute of Biomedicine, University of Aveiro, 3810-193 Aveiro, Portugal; (J.Q.); (M.F.)
- Laboratory of Genetics and Andrology, Hospital Center of Trás-os-Montes and Alto Douro, E.P.E., 5000-508 Vila Real, Portugal;
- Experimental Pathology and Therapeutics Group, IPO Porto Research Center, Portuguese Institute of Oncology of Porto Francisco Gentil, E.P.E., 4200-072 Porto, Portugal
| | - Joana Quelhas
- Laboratory of Signal Transduction, Department of Medical Sciences, Institute of Biomedicine, University of Aveiro, 3810-193 Aveiro, Portugal; (J.Q.); (M.F.)
- Department of Veterinary Clinics, Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal;
- Department of Veterinary Sciences, University School Vasco da Gama, 3020-210 Coimbra, Portugal
| | - Francis Impens
- VIB Proteomics Core, B-9052 Ghent, Belgium; (F.I.); (S.D.); (D.V.H.)
- VIB-UGent Center for Medical Biotechnology, Flemish Institute for Biotechnology, B-9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, B-9052 Ghent, Belgium
| | - Sara Dufour
- VIB Proteomics Core, B-9052 Ghent, Belgium; (F.I.); (S.D.); (D.V.H.)
- VIB-UGent Center for Medical Biotechnology, Flemish Institute for Biotechnology, B-9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, B-9052 Ghent, Belgium
| | - Delphi Van Haver
- VIB Proteomics Core, B-9052 Ghent, Belgium; (F.I.); (S.D.); (D.V.H.)
- VIB-UGent Center for Medical Biotechnology, Flemish Institute for Biotechnology, B-9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, B-9052 Ghent, Belgium
| | - Graça Lopes
- Department of Veterinary Clinics, Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal;
| | - António Rocha
- Department of Imuno-Physiology and Pharmacology, Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal;
| | - Rosário Pinto-Leite
- Laboratory of Genetics and Andrology, Hospital Center of Trás-os-Montes and Alto Douro, E.P.E., 5000-508 Vila Real, Portugal;
- Experimental Pathology and Therapeutics Group, IPO Porto Research Center, Portuguese Institute of Oncology of Porto Francisco Gentil, E.P.E., 4200-072 Porto, Portugal
| | - Margarida Fardilha
- Laboratory of Signal Transduction, Department of Medical Sciences, Institute of Biomedicine, University of Aveiro, 3810-193 Aveiro, Portugal; (J.Q.); (M.F.)
| | - Bruno Colaço
- Animal and Veterinary Research Centre, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal;
| |
Collapse
|
2
|
Li Y, Carrillo JA, Ding Y, He Y, Zhao C, Zan L, Song J. Ruminal Transcriptomic Analysis of Grass-Fed and Grain-Fed Angus Beef Cattle. PLoS One 2015; 10:e0116437. [PMID: 26090810 PMCID: PMC4475051 DOI: 10.1371/journal.pone.0116437] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 10/09/2014] [Indexed: 11/18/2022] Open
Abstract
Beef represents a major diet component and one of the major sources of protein in human. The beef industry in the United States is currently undergoing changes and is facing increased demands especially for natural grass-fed beef. The grass-fed beef obtained their nutrients directly from pastures, which contained limited assimilable energy but abundant amount of fiber. On the contrary, the grain-fed steers received a grain-based regime that served as an efficient source of high-digestible energy. Lately, ruminant animals have been accused to be a substantial contributor for the green house effect. Therefore, the concerns from environmentalism, animal welfare and public health have driven consumers to choose grass-fed beef. Rumen is one of the key workshops to digest forage constituting a critical step to supply enough nutrients for animals' growth and production. We hypothesize that rumen may function differently in grass- and grain-fed regimes. The objective of this study was to find the differentially expressed genes in the ruminal wall of grass-fed and grain-fed steers, and then explore the potential biopathways. In this study, the RNA Sequencing (RNA-Seq) method was used to measure the gene expression level in the ruminal wall. The total number of reads per sample ranged from 24,697,373 to 36,714,704. The analysis detected 342 differentially expressed genes between ruminal wall samples of animals raised under different regimens. The Fisher's exact test performed in the Ingenuity Pathway Analysis (IPA) software found 16 significant molecular networks. Additionally, 13 significantly enriched pathways were identified, most of which were related to cell development and biosynthesis. Our analysis demonstrated that most of the pathways enriched with the differentially expressed genes were related to cell development and biosynthesis. Our results provided valuable insights into the molecular mechanisms resulting in the phenotype difference between grass-fed and grain-fed cattle.
Collapse
Affiliation(s)
- Yaokun Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China, 712100
| | - José A. Carrillo
- Department of Animal & Avian Sciences, University of Maryland, College Park, MD, 20742, United States of America
| | - Yi Ding
- Department of Animal & Avian Sciences, University of Maryland, College Park, MD, 20742, United States of America
| | - YangHua He
- Department of Animal & Avian Sciences, University of Maryland, College Park, MD, 20742, United States of America
| | - Chunping Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China, 712100
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China, 712100
- * E-mail: (LZ); (JS)
| | - Jiuzhou Song
- Department of Animal & Avian Sciences, University of Maryland, College Park, MD, 20742, United States of America
- * E-mail: (LZ); (JS)
| |
Collapse
|
3
|
Miragliotta V, Donadio E, Felicioli A, Podestà A, Ricciardi MP, Ceccardi S, Abramo F. Immunolocalisation of desmoglein-1 in equine muzzle skin. Equine Vet J 2006; 38:485-7. [PMID: 16986611 DOI: 10.2746/042516406778400592] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- V Miragliotta
- Department of Veterinary Anatomy, Biochemistry and Physiology, University of Pisa, Italy
| | | | | | | | | | | | | |
Collapse
|
4
|
Milingou M, Wood P, Masouyé I, McLean WH, Borradori L. Focal palmoplantar keratoderma caused by an autosomal dominant inherited mutation in the desmoglein 1 gene. Dermatology 2006; 212:117-22. [PMID: 16484817 DOI: 10.1159/000090651] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2005] [Accepted: 08/09/2005] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Palmoplantar keratodermas (PPK) encompass a large genetically heterogeneous group of diseases associated with hyperkeratosis of the soles and/or palms that occur either isolated or in association with other cutaneous and extracutaneous manifestations. Pathogenic mutations in the desmoglein 1 gene (DSG1) have recently been identified in a subset of patients with the striate type of PPK. OBSERVATION We have identified a patient with a focal non-striated form of PPK associated with discrete troubles of keratinisation at sites exposed to mechanical trauma, such as the knees, ankles or finger knuckles, and with mild nail dystrophy. Genetic analyses disclosed a novel dominantly inherited heterozygous single base insertion in exon 3 of DSG1, 121insT, leading to a premature termination codon. The mutation was also present in the father and in a sister. CONCLUSION Our observation extends the spectrum of clinical features associated with genetic defects in DSG1 and provides further evidence that perturbation of desmoglein 1 expression has a critical impact on the integrity of tissues experiencing strong mechanical stress.
Collapse
Affiliation(s)
- M Milingou
- Clinic of Dermatology, University Medical Hospital, Rue Micheli-du-Crest 24, CH-1211 Geneva, Switzerland
| | | | | | | | | |
Collapse
|
5
|
Tron F, Gilbert D, Mouquet H, Joly P, Drouot L, Makni S, Masmoudi H, Charron D, Zitouni M, Loiseau P, Ben Ayed M. Genetic factors in pemphigus. J Autoimmun 2005; 24:319-28. [PMID: 15869862 DOI: 10.1016/j.jaut.2005.03.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2004] [Revised: 02/23/2005] [Accepted: 03/15/2005] [Indexed: 12/20/2022]
Abstract
Epidemiological studies performed in different ethnic populations and family studies, notably based on a partial phenotype of the autoimmune process, indicate that genetic factors are involved in the occurrence of pemphigus. However, the precise heritability remains uncertain in the absence of twin concordance rate studies. Among the different strategies available to identify genetic factors participating in autoimmune disease susceptibility, only population studies based on case-control design have been performed in pemphigus. These studies consistently showed that MHC locus, in particular HLA class II alleles, are associated with pemphigus vulgaris and pemphigus foliaceus. Other genes of the MHC locus may also participate in disease susceptibility as shown by studies using microsatellite markers across different regions of the MHC. It is likely that other non-MHC genes are involved in the pathogenesis of pemphigus. In particular, involvement of a polymorphic variant of desmoglein 1 gene was shown to be associated with pemphigus foliaceus and to interact in an epistatic manner with MHC class II genes to contribute to the autoimmune process. Other candidate genes to which a role can be assigned in the disease pathogenesis should be considered to design case-control or family-based association studies. Genome scan studies which require a large number of multiplex families to reach statistical power, should also be considered in the endemic form of pemphigus foliaceus because of the high number of familial cases.
Collapse
Affiliation(s)
- François Tron
- Unité INSERM 519 - IFRMP 23, Hôpital Charles Nicolle, Faculté Mixte de Médecine et de Pharmacie, 22, Boulevard Gambetta, 76183 Rouen Cedex, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Whittock NV. Genomic Sequence Analysis of the Mouse Desmoglein Cluster Reveals Evidence for Six Distinct Genes: Characterization of Mouse DSG4, DSG5, and DSG6. J Invest Dermatol 2003. [DOI: 10.1038/jid.2003.10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
7
|
Noguera I, Obata H, Gualandris A, Cowin P, Rifkin DB. Molecular cloning of the mouse Ltbp-1 gene reveals tissue specific expression of alternatively spliced forms. Gene 2003; 308:31-41. [PMID: 12711388 DOI: 10.1016/s0378-1119(03)00463-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Latent transforming growth factor binding proteins (Ltbp-1, -2, -3 and -4) and fibrillins (Fbn-1 and -2) are structurally related cysteine-rich extracellular matrix proteins that localize to the 10 nm microfibrils. Ltbp-1 is thought to promote the secretion and proper folding of the small latent transforming growth factor beta (TGF-beta) complex (TGF-beta plus its propeptide) and is implicated in sequestering it in the extracellular matrix. Here we report the isolation of the mouse Ltbp-1 complementary DNA (cDNA) and gene. The longer form of the Ltbp-1 cDNA encodes a predicted 1713 amino acid protein containing 18 epidermal growth factor-like repeats, four 8-cysteine domains and several motifs that suggest interactions with alpha(IV)beta(1) and alpha(9)beta(1) integrins. Northern blotting analyses indicate that long and short Ltbp-1 transcripts are widely expressed in adult mouse tissues and most abundantly expressed in heart. Ltbp-1 is a single copy gene that maps to chromosome 17, band E (1-3) and encompasses more than 212 kb. The Ltbp-1 gene contains 34 exons and shows a similar organization to the LTBP-2 gene, suggesting that these genes originated from a common ancestral gene.
Collapse
Affiliation(s)
- Irene Noguera
- Department of Cell Biology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | | | | | | | | |
Collapse
|
8
|
Pulkkinen L, Choi YW, Kljuic A, Uitto J, Mahoney MG. Novel member of the mouse desmoglein gene family: Dsg1-beta. Exp Dermatol 2003; 12:11-9. [PMID: 12631242 DOI: 10.1034/j.1600-0625.2003.120102.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Desmosomes are major intercellular adhesion junctions that provide stable cell-cell contacts and mechanical strength to epithelial tissues by anchoring cytokeratin intermediate filaments of adjacent cells. Desmogleins (Dsg) are transmembrane core components of the desmosomes, and belong to the cadherin supergene family of calcium-dependent adhesion molecules. Currently, there are three known isoforms of Dsgs (Dsg1, Dsg2, and Dsg3), encoded by distinct genes that are differentially expressed to determine their tissue specificity and differentiation state of epithelial cells. In this study, we cloned a novel mouse desmoglein gene sharing high homology to both mouse and human Dsg1. We propose to designate the previously published mouse Dsg1 gene as Dsg1-alpha and the new gene as Dsg1-beta. Analysis of intron/exon organization of the Dsg1-alpha and Dsg1-beta genes revealed significant conservation. The full-length mouse Dsg1-beta cDNA contains an open reading frame of 3180 bp encoding a precursor protein of 1060 amino acids. Dsg1-beta protein shares 94% and 76% identity with mouse Dsg1-alpha and human DSG1, respectively. RT-PCR using a multitissue cDNA panel demonstrated that while Dsg1-alpha mRNA was expressed in 15- to 17-day-old embryos and adult spleen and testis, Dsg1-beta mRNA was detected in 17-day-old embryos only. To assess subcellular localization, a FLAG-tagged expression construct of Dsg1-beta was transiently expressed in epithelial HaCaT cells. Dsg1-beta-FLAG was found at the cell-cell border and was recognized by the anti-Dsg1/Dsg2 antibody DG3.10. In summary, we have cloned and characterized a novel member of the mouse desmoglein gene family, Dsg1-beta.
Collapse
Affiliation(s)
- L Pulkkinen
- Department of Dermatology and Cutaneous Biology, Jefferson Medical College and Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | |
Collapse
|
9
|
|
10
|
Mahoney MG, Simpson A, Aho S, Uitto J, Pulkkinen L. Interspecies conservation and differential expression of mouse desmoglein gene family. Exp Dermatol 2002; 11:115-25. [PMID: 11994138 DOI: 10.1034/j.1600-0625.2002.110203.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Epithelial cell adhesion is mediated by intercellular junctions, called desmosomes. Desmogleins (Dsg; Dsg1, Dsg2 and Dsg3) are calcium-dependent transmembrane adhesion components of the desmosomes. While Dsg1 and Dsg3 are mainly restricted to stratified squamous epithelia, Dsg2 is expressed in essentially all desmosome-containing epithelia. In the epidermis, Dsg2 and Dsg3 are expressed in the basal keratinocytes while Dsg1 is expressed throughout the upper differentiating cell layers. To date, in mouse, only Dsg3 has been characterized by molecular cloning. In this study, we have cloned and characterized the mouse Dsg1 and Dsg2 genes. The full-length mouse Dsg1 cDNA (5.5 kb) contains an open reading frame (ORF) of 3171 bp encoding a precursor protein of 1057 amino acids. The Dsg2 cDNA (6.3 kb) has an ORF of 3366 bp coding for a precursor protein of 1122 amino acids. Mouse Dsg2 protein shares 76% identity with human DSG2 but only 26% and 33% identity with mouse Dsg1 and Dsg3, respectively. Analysis of intron/exon organization of the desmoglein genes revealed significant conservation. However, the mRNA expression patterns of these desmogleins during mouse embryonic development and in various adult tissues are variable. While Dsg2 and Dsg3 are expressed in all developmental stages, Dsg1 expression is delayed until day 15 of mouse embryos. In adult mouse tissues, Dsg2 is widely expressed while the expression of Dsg1 and Dsg3 is restricted to select tissues. In summary, while desmogleins share high homology at both the gene and protein level, their expression is spatially and temporally regulated, potentially contributing to their significant role in cell-cell adhesion during development.
Collapse
Affiliation(s)
- My G Mahoney
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | | | | | | | | |
Collapse
|
11
|
Frank J, Cserhalmi-Friedman PB, Ahmad W, Panteleyev AA, Aita VM, Christiano AM. Characterization of the desmosomal cadherin gene family: genomic organization of two desmoglein genes on human chromosome 18q12. Exp Dermatol 2001; 10:90-4. [PMID: 11260246 DOI: 10.1034/j.1600-0625.2001.010002090.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The human desmoglein genes, desmogleins 1--3, are members of the desmosomal cadherin superfamily, and encode critical components of the desmosome. These genes are tightly clustered within 150--200 kb of chromosome 18q12.1 and represent excellent candidate genes for genetic disorders of the epidermis linked to this region of the genome. Mutations in desmoglein 1 have already been implicated in the genetic disorder striate palmoplantar keratoderma. Similarly, a mutation in desmoglein 3 underlies the balding mouse phenotype, although no human mutations in desmoglein 3 have been identified to date. In this study, we have characterized the genomic organization of two of the three desmoglein genes mapped to chromosome 18q12. Comparison of their exon-intron structure reveals the high level of evolutionary conservation expected from these related genes. The identification of the genomic structure of the desmoglein genes will facilitate mutation detection in genodermatoses with desmosomal abnormalities resulting from underlying defects in these genes.
Collapse
Affiliation(s)
- J Frank
- Department of Dermatology, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | |
Collapse
|
12
|
Hunt DM, Rickman L, Whittock NV, Eady RA, Simrak D, Dopping-Hepenstal PJ, Stevens HP, Armstrong DK, Hennies HC, Küster W, Hughes AE, Arnemann J, Leigh IM, McGrath JA, Kelsell DP, Buxton RS. Spectrum of dominant mutations in the desmosomal cadherin desmoglein 1, causing the skin disease striate palmoplantar keratoderma. Eur J Hum Genet 2001; 9:197-203. [PMID: 11313759 DOI: 10.1038/sj.ejhg.5200605] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2000] [Revised: 10/27/2000] [Accepted: 11/01/2000] [Indexed: 11/09/2022] Open
Abstract
The adhesive proteins of the desmosome type of cell junction consist of two types of cadherin found exclusively in that structure, the desmogleins and desmocollins, coded by two closely linked loci on human chromosome 18q12.1. Recently we have identified a mutation in the DSG1 gene coding for desmoglein 1 as the cause of the autosomal dominant skin disease striate palmoplantar keratoderma (SPPK) in which affected individuals have marked hyperkeratotic bands on the palms and soles. In the present study we present the complete exon-intron structure of the DSG1 gene, which occupies approximately 43 kb, and intron primers sufficient to amplify all the exons. Using these we have analysed the mutational changes in this gene in five further cases of SPPK. All were heterozygotic mutations in the extracellular domain leading to a truncated protein, due either to an addition or deletion of a single base, or a base change resulting in a stop codon. Three mutations were in exon 9 and one in exon 11, both of which code for part of the third and fourth extracellular domains, and one was in exon 2 coding for part of the prosequence of this processed protein. This latter mutation thus results in the mutant allele synthesising only 25 amino acid residues of the prosequence of the protein so that this is effectively a null mutation implying that dominance in the case of this mutation was caused by haploinsufficiency. The most severe consequences of SPPK mutations are in regions of the body where pressure and abrasion are greatest and where desmosome function is most necessary. SPPK therefore provides a very sensitive measure of desmosomal function.
Collapse
Affiliation(s)
- D M Hunt
- Division of Membrane Biology, National Institute for Medical Research, Mill Hill, London, NW7 1AA, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Whittock NV, Hunt DM, Rickman L, Malhi S, Vogazianou AP, Dawson LF, Eady RA, Buxton RS, McGrath JA. Genomic organization and amplification of the human desmosomal cadherin genes DSC1 and DSC3, encoding desmocollin types 1 and 3. Biochem Biophys Res Commun 2000; 276:454-60. [PMID: 11027496 DOI: 10.1006/bbrc.2000.3500] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The desmosomal cadherins comprise the desmocollins and desmogleins and are involved in epithelial cell-cell adhesion. There are three desmocollins (DSC 1-3) and three desmogleins (DSG 1-3) that are expressed in a tissue- and development-specific manner. Desmosomal proteins have been implicated in a number of disorders characterized by loss of cell-cell adhesion and trauma-induced skin fragility. Therefore, the desmocollins are potential candidates for genodermatoses involving epithelial tissues. In order to screen the entire DSC1 and DSC3 genes, we have characterized their intron-exon organization. The DSC1 gene comprises 17 exons spanning approximately 33 kb on 18q12.1, and the DSC3 gene comprises 17 exons spanning approximately 49 kb on 18q12.1. We have also developed a comprehensive PCR-based mutation detection strategy for desmocollins 1, 2, and 3 using primers placed on flanking introns followed by direct sequencing of the PCR products.
Collapse
Affiliation(s)
- N V Whittock
- Department of Cell and Molecular Pathology, St. John's Institute of Dermatology, London, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Nollet F, Kools P, van Roy F. Phylogenetic analysis of the cadherin superfamily allows identification of six major subfamilies besides several solitary members. J Mol Biol 2000; 299:551-72. [PMID: 10835267 DOI: 10.1006/jmbi.2000.3777] [Citation(s) in RCA: 541] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Cadherins play an important role in specific cell-cell adhesion events. Their expression appears to be tightly regulated during development and each tissue or cell type shows a characteristic pattern of cadherin molecules. Inappropriate regulation of their expression levels or functionality has been observed in human malignancies, in many cases leading to aggravated cancer cell invasion and metastasis. The cadherins form a superfamily with at least six subfamilies, which can be distinguished on the basis of protein domain composition, genomic structure, and phylogenetic analysis of the protein sequences. These subfamilies comprise classical or type-I cadherins, atypical or type-II cadherins, desmocollins, desmogleins, protocadherins and Flamingo cadherins. In addition, several cadherins clearly occupy isolated positions in the cadherin superfamily (cadherin-13, -15, -16, -17, Dachsous, RET, FAT, MEGF1 and most invertebrate cadherins). We suggest a different evolutionary origin of the protocadherin and Flamingo cadherin genes versus the genes encoding desmogleins, desmocollins, classical cadherins, and atypical cadherins. The present phylogenetic analysis may accelerate the functional investigation of the whole cadherin superfamily by allowing focused research of prototype cadherins within each subfamily.
Collapse
Affiliation(s)
- F Nollet
- Molecular Cell Biology Unit, Department of Molecular Biology, Flanders Interuniversity Institute for Biotechnology, Ledeganckstraat 35, Ghent, B-9000, Belgium
| | | | | |
Collapse
|
15
|
Müller E, Caldelari R, Levine R, Kaplan S, Baron A, Wyder M, Balmer V, Suter MM. Cloning of canine Dsg1 and evidence for alternative polyadenylation. J Invest Dermatol 2000; 114:1211-3. [PMID: 10844571 DOI: 10.1046/j.1523-1747.2000.00005-4.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Hunt DM, Sahota VK, Taylor K, Simrak D, Hornigold N, Arnemann J, Wolfe J, Buxton RS. Clustered cadherin genes: a sequence-ready contig for the desmosomal cadherin locus on human chromosome 18. Genomics 1999; 62:445-55. [PMID: 10644442 DOI: 10.1006/geno.1999.6036] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We describe the assembly of a cosmid and PAC contig of approximately 700 kb on human chromosome 18q12 spanning the DSC and DSG genes coding for the desmocollins and desmogleins. These are members of the cadherin superfamily of calcium-dependent cell adhesion proteins present in the desmosome type of cell junction found especially in epithelial cells. They provide the strong cell-cell adhesion generated by this type of cell junction for which expression of both a desmocollin and a desmoglein is required. In the autoimmune skin diseases pemphigus foliaceous and pemphigus vulgaris (PV), where the autoantigens are, respectively, encoded by the DSG1 and DSG3 genes, severe areas of acantholysis (cell separation), potentially life-threatening in the case of PV, are evident. Dominant mutations in the DSG1 gene causing striate palmoplantar keratoderma result in hyperkeratosis of the skin on the parts of the body where pressure and abrasion are greatest, viz., on the palms and soles. These genes are also candidate tumor suppressor genes in squamous cell carcinomas and other epithelial cancers. We have screened two chromosome 18-specific cosmid libraries by hybridization with previously isolated YAC clones and DSC and DSG cDNAs, and a whole genome PAC library, both by hybridization with the YACs and by screening by PCR using cDNA sequences and YAC end sequence. The contigs were extended by further PCR screens using STSs generated by vectorette walking from the ends of the cosmids and PACs, together with sequence from PAC ends. Despite screening of two libraries, the cosmid contig still had four gaps. The PAC contig filled these gaps and in fact covered the whole locus. The positions of 45 STSs covering the whole of this region are presented. The desmocollin and desmoglein genes, which are about 30-35 kb in size, are quite well separated at approximately 20-30 kb apart and are arranged in two clusters, one DSC cluster and one DSG cluster, which are transcribed outward from the interlocus region. The order of the genes is correlated with the spatial order of gene expression in the developing mouse embryo, and this, and previous transgenic experiments, suggests that long-range genetic elements that coordinate expression of these genes may be present. The complete bacterial clone contig described in this paper is thus a resource not only for future sequencing but also for investigations into the control of expression of these clustered genes.
Collapse
Affiliation(s)
- D M Hunt
- Division of Membrane Biology, National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Kowalczyk AP, Bornslaeger EA, Norvell SM, Palka HL, Green KJ. Desmosomes: intercellular adhesive junctions specialized for attachment of intermediate filaments. INTERNATIONAL REVIEW OF CYTOLOGY 1998; 185:237-302. [PMID: 9750269 DOI: 10.1016/s0074-7696(08)60153-9] [Citation(s) in RCA: 183] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cell-cell adhesion is thought to play important roles in development, in tissue morphogenesis, and in the regulation of cell migration and proliferation. Desmosomes are adhesive intercellular junctions that anchor the intermediate filament network to the plasma membrane. By functioning both as an adhesive complex and as a cell-surface attachment site for intermediate filaments, desmosomes integrate the intermediate filament cytoskeleton between cells and play an important role in maintaining tissue integrity. Recent observations indicate that tissue integrity is severely compromised in autoimmune and genetic diseases in which the function of desmosomal molecules is impaired. In addition, the structure and function of many of the desmosomal molecules have been determined, and a number of the molecular interactions between desmosomal proteins have now been elucidated. Finally, the molecular constituents of desmosomes and other adhesive complexes are now known to function not only in cell adhesion, but also in the transduction of intracellular signals that regulate cell behavior.
Collapse
Affiliation(s)
- A P Kowalczyk
- Department of Pathology, R.H. Lurie Cancer Center, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | | | | | |
Collapse
|
18
|
Greenwood MD, Marsden MD, Cowley CM, Sahota VK, Buxton RS. Exon-intron organization of the human type 2 desmocollin gene (DSC2): desmocollin gene structure is closer to "classical" cadherins than to desmogleins. Genomics 1997; 44:330-5. [PMID: 9325054 DOI: 10.1006/geno.1997.4894] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The cadherins are a superfamily of calcium-dependent glycoproteins that are cell adhesion molecules. Two families of cadherins, the desmocollins (Dsc) and desmogleins (Dsg), are found only in the desmosome type of cell-cell junction. They are each present in at least three different isoforms with differing spatial and temporal distributions and are specified by two clusters of closely linked genes on human chromosome 18q12.1. The human DSC2 gene, coding for the most widely distributed form of the desmocollins, has been found to consist of more than 32 kb of DNA. By using PCR we have determined the exon-intron organization. The gene is arranged into 17 exons ranging in size from 46 to 258 bp; exon 16 is alternatively spliced, giving rise to the a and b forms of the protein. This has revealed a remarkable degree of conservation of intron position with other cadherins. The desmocollin exon-intron organization is more similar to the so-called classical cadherins than to the desmogleins, especially in the cytoplasmic domain. Intron 1 is the largest in DSC2, as it is in the desmogleins, in contrast to the classical cadherins, where intron 2 is extremely large; this latter intron is missing from the desmogleins.
Collapse
Affiliation(s)
- M D Greenwood
- Division of Membrane Biology, National Institute for Medical Research, London, United Kingdom
| | | | | | | | | |
Collapse
|
19
|
Silos SA, Tamai K, Li K, Kivirikko S, Kouba D, Christiano AM, Uitto J. Cloning of the gene for human pemphigus vulgaris antigen (desmoglein 3), a desmosomal cadherin. Characterization of the promoter region and identification of a keratinocyte-specific cis-element. J Biol Chem 1996; 271:17504-11. [PMID: 8663392 DOI: 10.1074/jbc.271.29.17504] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Pemphigus vulgaris antigen is a cadherin-like desmosomal cell adhesion molecule expressed primarily in suprabasal keratinocytes within the epidermis. Previously characterized structural features have defined this molecule as a desmoglein, DSG3. In this study, we have cloned the human DSG3 gene and examined the transcriptional regulation of its expression. The total gene consisted of 15 exons and was estimated to span >23 kilobases. Comparison of exon-intron organization of DSG3 with bovine DSG1 and several classical cadherin genes revealed striking conservation of the structure. Up to 2.8 kilobases of the upstream genomic sequences were sequenced and found to contain several putative cis-regulatory elements. The promoter region was GC-rich and TATA-less, similar to previously characterized mammalian cadherin promoters. The putative promoter region was subcloned into a vector containing chloramphenicol acetyl transferase reporter gene. Transient transfections with a series of deletion clones indicated that the DSG3 promoter demonstrated keratinocyte-specific expression, as compared with dermal fibroblasts examined in parallel, and fine mapping identified a 30-base pair segment at -200 to -170 capable of conferring epidermal specific expression. The results provide evidence for the transcriptional regulation of the pemphigus vulgaris antigen gene, potentially critical for development of the epidermis and physiologic terminal differentiation of keratinocytes.
Collapse
Affiliation(s)
- S A Silos
- Department of Dermatology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, 19107, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Witcher LL, Collins R, Puttagunta S, Mechanic SE, Munson M, Gumbiner B, Cowin P. Desmosomal cadherin binding domains of plakoglobin. J Biol Chem 1996; 271:10904-9. [PMID: 8631907 DOI: 10.1074/jbc.271.18.10904] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Plakoglobin is a major component of both desmosomes and adherens junctions. At these sites it binds to the cytoplasmic domains of cadherin cell-cell adhesion proteins and regulates their adhesive and cytoskeletal binding functions. Plakoglobin also forms distinct cytosolic protein complexes that function in pathways of tumor suppression and cell fate determination. Recent studies in Xenopus suggest that cadherins inhibit the signaling functions of plakoglobin presumably by sequestering this protein at the membrane and depleting its cytosolic pool. To understand the reciprocal regulation between desmosomal cadherins (desmoglein and desmocollin) and plakoglobin, we have sought to identify the binding domains involved in the formation of these protein complexes. Plakoglobin comprises 13 central repeats flanked by amino-terminal and carboxyl-terminal domains. Our results show that repeats 1-4 are involved in binding desmoglein-1. In contrast, the interaction of plakoglobin with desmocollin-1a is sensitive to deletion of either end of the central repeat domain. The binding sites for two adherens junction components, alpha-catenin and classical cadherins, overlap these sites. Competition among these proteins for binding sites on plakoglobin may therefore account for the distinct composition of adherens junctions and desmosomes.
Collapse
Affiliation(s)
- L L Witcher
- Department of Cell Biology, New York University Medical Center, New York 10016, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
E-cadherin is a cell-cell adhesion molecule which is anchored to the cytoskeleton via catenins. There is increasing evidence which suggests that E-cadherin also acts as a suppressor of tumour invasion and metastasis. Both in vitro and in vivo studies have revealed that expression of E-cadherin correlates inversely with the motile and invasive behaviour of a tumour cell; it also correlates inversely with metastasis in patients with cancer. The function of E-cadherin is highly dependent on the functional activity of catenins. This review summarizes progress, from both basic and clinical research, in our understanding of the roles of E-cadherin and catenins, and discusses the clinical relevance of the discoveries.
Collapse
Affiliation(s)
- W G Jiang
- University Department of Surgery, University of Wales College of Medicine, Heath Park, Cardiff, UK
| |
Collapse
|
22
|
|
23
|
Berx G, Staes K, van Hengel J, Molemans F, Bussemakers MJ, van Bokhoven A, van Roy F. Cloning and characterization of the human invasion suppressor gene E-cadherin (CDH1). Genomics 1995; 26:281-9. [PMID: 7601454 DOI: 10.1016/0888-7543(95)80212-5] [Citation(s) in RCA: 163] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
E-cadherin is a Ca(2+)-dependent epithelial cell-cell adhesion molecule. Downregulation of E-cadherin expression often correlates with strong invasive potential and poor prognosis of human carcinomas. By using recombinant lambda phage, cosmid, and P1 phage clones, we isolated the full-length human E-cadherin gene (CDH1). The gene spans a region of approximately 100 kb, and its location on chromosome 16q22.1 was confirmed by FISH analysis. Detailed restriction mapping and partial sequence analysis of the gene allowed us to identify 16 exons and a 65-kb-long intron 2. The intron-exon boundaries are highly conserved in comparison with other "classical cadherins." In intron 1 we identified a 5' high-density CpG island that may be implicated in transcription regulation during embryogenesis and malignancy.
Collapse
Affiliation(s)
- G Berx
- Section Molecular Cell Biology, University of Ghent, Belgium
| | | | | | | | | | | | | |
Collapse
|
24
|
Koch PJ, Franke WW. Desmosomal cadherins: another growing multigene family of adhesion molecules. Curr Opin Cell Biol 1994; 6:682-7. [PMID: 7833048 DOI: 10.1016/0955-0674(94)90094-9] [Citation(s) in RCA: 163] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The formation of supracellular structures, i.e. tissues and organs, is dependent on the spatially and temporally regulated formation of semistable cell-cell contacts. In recent years, the molecular components of such cell junctions, especially those occurring in epithelial cells, have been studied extensively, and the main proteins and glycoproteins of the 'adhering junctions' such as the desmosomes and the zonula adherens of polar epithelial cells have been characterized. We are now beginning to understand the complex protein-protein interactions that contribute to the assembly and disassembly of these structures and their roles in the attachment of specific filaments of the cytoskeleton.
Collapse
Affiliation(s)
- P J Koch
- Dermatology Branch, National Cancer Institute, Bethesda, MD 20892
| | | |
Collapse
|
25
|
Abstract
At the skin surface, the epidermis serves an important protective function which it manifests by building an extensive cytoskeletal architecture of keratin filaments, spanning from the nuclear envelope to hemidesmosomes and desmosomes. Recent studies on epidermal proteins and their interactions have provided insights into human skin diseases, including genetic disorders of keratins, laminins, and collagen. Explorations into the regulatory mechanisms underlying epidermal genes have underscored the importance of transcription factors AP-1 and AP-2, retinoic acid receptors, and POU proteins. Transgenic and gene ablation experiments on TGF-alpha and TGF-beta genes have yielded clues as to how the epidermis maintains a balance of growing and differentiating cells.
Collapse
Affiliation(s)
- E Fuchs
- Howard Hughes Medical Institute, Department of Molecular Genetics and Cell Biology, University of Chicago, Illinois 60637
| | | |
Collapse
|
26
|
Mathur M, Goodwin L, Cowin P. Interactions of the cytoplasmic domain of the desmosomal cadherin Dsg1 with plakoglobin. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)36756-x] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|