1
|
Kobayashi S, Tanaka T, Moue M, Ohashi S, Nishikawa T. YB-1 gene expression is kept constant during myocyte differentiation through replacement of different transcription factors and then falls gradually under the control of neural activity. Int J Biochem Cell Biol 2015; 68:1-8. [PMID: 26279143 DOI: 10.1016/j.biocel.2015.08.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 07/23/2015] [Accepted: 08/11/2015] [Indexed: 11/24/2022]
Abstract
We have previously reported that translation of acetylcholine receptor α-subunit (AChR α) mRNA in skeletal muscle cells is regulated by Y-box binding protein 1 (YB-1) in response to neural activity, and that in the postnatal mouse developmental changes in the amount of YB-1 mRNA are similar to those of AChR α mRNA, which is known to be regulated by myogenic transcription factors. Here, we examined transcriptional regulation of the YB-1 gene in mouse skeletal muscle and differentiating C2C12 myocytes. Although neither YB-1 nor AChR α was detected at either the mRNA or protein level in adult hind limb muscle, YB-1 expression was transiently activated in response to denervation of the sciatic nerve and completely paralleled that of AChR α, suggesting that these genes are regulated by the same transcription factors. However, during differentiation of C2C12 cells to myotubes, the level of YB-1 remained constant even though the level of AChR α increased markedly. Reporter gene, gel mobility shift and ChIP assays revealed that in the initial stage of myocyte differentiation, transcription of the YB-1 gene was regulated by E2F1 and Sp1, and was then gradually replaced under the control of both MyoD and myogenin through an E-box sequence in the proximal region of the YB-1 gene promoter. These results suggest that transcription factors for the YB-1 gene are exchanged during skeletal muscle cell differentiation, perhaps playing a role in translational control of mRNAs by YB-1 in both myotube formation and the response of skeletal muscle tissues to neural stimulation.
Collapse
Affiliation(s)
- Shunsuke Kobayashi
- Department of Biochemistry, School of Pharmacy, Nihon University, 7-7-1, Narashinodai, Funabashi, Chiba 274-8555, Japan.
| | - Toru Tanaka
- Department of Biochemistry, School of Pharmacy, Nihon University, 7-7-1, Narashinodai, Funabashi, Chiba 274-8555, Japan
| | - Masamitsu Moue
- Department of Biochemistry, School of Pharmacy, Nihon University, 7-7-1, Narashinodai, Funabashi, Chiba 274-8555, Japan
| | - Sachiyo Ohashi
- Department of Biochemistry, School of Pharmacy, Nihon University, 7-7-1, Narashinodai, Funabashi, Chiba 274-8555, Japan
| | - Taishi Nishikawa
- Department of Biochemistry, School of Pharmacy, Nihon University, 7-7-1, Narashinodai, Funabashi, Chiba 274-8555, Japan
| |
Collapse
|
2
|
Vial C, Zúñiga LM, Cabello-Verrugio C, Cañón P, Fadic R, Brandan E. Skeletal muscle cells express the profibrotic cytokine connective tissue growth factor (CTGF/CCN2), which induces their dedifferentiation. J Cell Physiol 2008; 215:410-21. [PMID: 18064627 DOI: 10.1002/jcp.21324] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Fibrotic disorders are typified by excessive connective tissue and extracellular matrix (ECM) deposition that precludes normal healing processes of different tissues. Connective tissue growth factor (CTGF) seems to be involved in the fibrotic response. Several muscular dystrophies are characterized by a progressive weakness and wasting of the musculature, and by extensive fibrosis. However, the exact role of CTGF in skeletal muscle is unknown. Here we show that myoblasts and myotubes are able to synthesize CTGF in response to transforming growth factor type-beta (TGF-beta) and lysophosphatidic acid (LPA). CTGF induced several ECM constituents such as fibronectin, collagen type I and alpha4, 5, 6, and beta1 integrin subunits in myoblasts and myotubes. CTGF had an important inhibitory effect on muscle differentiation evaluated by the decrease in the nuclear translocation of the early muscle regulatory factor myogenin and myosin. Remarkable, CTGF treatment of myoblasts induced their dedifferentiation, characterized by down regulating MyoD and desmin, two markers of committed myoblasts, together with a strong reorganization of cytoskeletal filaments. These results provide novel evidence for the underlying mechanisms and participation of skeletal muscle cells in the synthesis and role of CTGF inducing fibrosis, inhibiting myogenesis and dedifferentiating myoblasts.
Collapse
Affiliation(s)
- Cecilia Vial
- Centro de Regulación y Patología Joaquín V. Luco, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, MIFAB, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
3
|
Riquet FB, Rodriguez M, Guigal N, Dromaint S, Naime I, Boutin JA, Galizzi JP. In vivo characterisation of the human UCP3 gene minimal promoter in mice tibialis anterior muscles. Biochem Biophys Res Commun 2004; 311:583-91. [PMID: 14623310 DOI: 10.1016/j.bbrc.2003.10.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Transcriptional mechanisms controlling human UCP3 gene expression in skeletal muscle remain poorly understood. Experiments based on plasmid electrotransfer into tibialis anterior muscle of C57/BL6 male mice were set up in order to functionally analyze the hUCP3 gene promoter. These transfection experiments showed that a 6300 bp region upstream of the transcription initiation site was sufficient to mediate maximal promoter activity. Further analyses with a series of 5(')-deleted constructs demonstrated that the hUCP3 gene minimal promoter was located between nucleotides -284 and -40. Furthermore, an essential region was identified between nucleotides -284 and -224. The analysis of this region revealed a putative response element for PPAR located between nucleotides -281 and -269. Finally, mutations of potential cis-acting elements within the hUCP3 minimal promoter showed the presence of two TATA boxes (-198/-194 and -45/-41) required for constitutive UCP3 gene expression. To our knowledge, this is the first time that molecular characterization of the UCP3 promoter has been achieved using an in vivo experimental model.
Collapse
Affiliation(s)
- Franck B Riquet
- Institut de Recherches Servier, Division de Pharmacologie Moléculaire et Cellulaire, 125, Chemin de Ronde, 78290 Croissy-sur-Seine, France
| | | | | | | | | | | | | |
Collapse
|
4
|
Zhao P, Iezzi S, Carver E, Dressman D, Gridley T, Sartorelli V, Hoffman EP. Slug is a novel downstream target of MyoD. Temporal profiling in muscle regeneration. J Biol Chem 2002; 277:30091-101. [PMID: 12023284 DOI: 10.1074/jbc.m202668200] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Temporal expression profiling was utilized to define transcriptional regulatory pathways in vivo in a mouse muscle regeneration model. Potential downstream targets of MyoD were identified by temporal expression, promoter data base mining, and gel shift assays; Slug and calpain 6 were identified as novel MyoD targets. Slug, a member of the snail/slug family of zinc finger transcriptional repressors critical for mesoderm/ectoderm development, was further shown to be a downstream target by using promoter/reporter constructs and demonstration of defective muscle regeneration in Slug null mice.
Collapse
Affiliation(s)
- Po Zhao
- Research Center for Genetic Medicine, Children's National Medical Center, and Genetics Program, George Washington University, Washington, D. C. 20010, USA
| | | | | | | | | | | | | |
Collapse
|
5
|
Abstract
Myofibroblasts are unique mesenchymal cells with properties inherent to both muscle and nonmuscle cells. They are widely distributed in embryos, are essential for the formation of functional adult tissues, and are intimately involved in tissue homeostasis and wound healing. Cytoskeletal protein expression and contractile properties distinguish them from other cell types. Myofibroblasts also express skeletal muscle structural and regulatory proteins, including sarcomeric myosin heavy chain and MyoD. Despite the presence of such myogenic regulatory proteins, these cells do not terminally differentiate into skeletal muscle. This article focuses on the interesting biology of myofibroblasts, their origin, and the molecular mechanisms that allow these cells to maintain a state intermediate between muscle and nonmuscle cells.
Collapse
Affiliation(s)
- G A Walker
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder 80309, USA
| | | | | |
Collapse
|
6
|
Solanes G, Pedraza N, Iglesias R, Giralt M, Villarroya F. The human uncoupling protein-3 gene promoter requires MyoD and is induced by retinoic acid in muscle cells. FASEB J 2000; 14:2141-3. [PMID: 11024001 DOI: 10.1096/fj.00-0363fje] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The uncoupling protein-3 (UCP-3) gene encodes for a mitochondrial protein expressed preferentially in skeletal muscle. UCP-3 mRNA is expressed in cultured muscle cells (C2C12 or L6E9) only when differentiated, at which stage UCP-3 is highly induced by all-trans retinoic acid (RA). Here we report that human UCP-3 promoter activity is dependent on MyoD and inducible by all trans-RA. The action of all trans-RA is increased by co-transfection with RA receptor (RAR). We have characterized the RA response element that controls the induction by RA in the 5' noncoding region of the UCP-3 gene. Deletion and point-mutation analysis of the hUCP-3 promoter led us to identify a direct-repeat element with one base-pair spacing (DR1) at position -71/-59 responsible for the induction by RA of the activity of the promoter. This DR1 element bound a nuclear protein complex from muscle cells that contain RAR and retinoid X receptor (RXR). In the absence of this element, the promoter became unresponsive to RA, but it was still dependent on MyoD. In conclusion, it has been established that UCP-3 gene promoter activity is dependent on MyoD, and the first regulatory pathway for UCP-3 gene promoter regulation has been recognized by identifying RA as a transcriptional activator of the gene.
Collapse
Affiliation(s)
- G Solanes
- Departament de Bioquimica i Biologia Molecular, Universitat de Barcelona, Avda Diagonal 645, 08028 Barcelona, Spain
| | | | | | | | | |
Collapse
|
7
|
Loh SH, Chan WT, Gong Z, Lim TM, Chua KL. Characterization of a zebrafish (Danio rerio) desmin cDNA: an early molecular marker of myogenesis. Differentiation 2000; 65:247-54. [PMID: 10929203 DOI: 10.1046/j.1432-0436.2000.6550247.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Desmin is a muscle-specific protein and a constitutive subunit of the intermediate filaments (IF) in skeletal, cardiac and smooth muscles. It is an early marker of skeletal muscle myogenesis. We have characterized a clone of desmin cDNA from an embryonic zebrafish (Danio rerio) cDNA library. The full-length cDNA comprised 1798 nucleotides, encoding a protein of 473 amino acids. The predicted amino acid sequence of the zebrafish desmin shares a high degree of similarity to other vertebrate desmins, but also contains a sequence at the carboxyl terminal of the tail domain that is unique to the zebrafish. It carries many features which are distinctive of IF subunit proteins. These include the T/SSYRRXF/Y motif in the head domain, and the intermediate filament signature consensus, [I/V]-X-[T/A/C/I]-Y-[R/K/H]-X-[L/M]-L-[D/E], located in the carboxyl terminus of the central helical rod. Unlike other 3' UTR sequences, the 3' UTR of the zebrafish cDNA sequence has two CAYUG elements flanking a single polyadenylation site. The temporal and spatial expression patterns of desmin mRNA during early zebrafish development were studied. The onset of desmin expression occurred at the 1-3 somite stage (11 hpf). It increased throughout somitogenesis, with maximum expression at the Prim-6 stage (25 hpf), and decreasing expression towards the protruding-mouth stage (72 hpf). Desmin mRNA was initially localised exclusively to the somites, but was subsequently also detected in other musculature in the developing heart and fins. The onset of expression and the spatial localization of desmin mRNA in the zebrafish coincides with that reported for MyoD and myogenin.
Collapse
Affiliation(s)
- S H Loh
- Department of Biological Sciences, National University of Singapore
| | | | | | | | | |
Collapse
|
8
|
Gao J, Li Z, Paulin D. A novel site, Mt, in the human desmin enhancer is necessary for maximal expression in skeletal muscle. J Biol Chem 1998; 273:6402-9. [PMID: 9497371 DOI: 10.1074/jbc.273.11.6402] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous investigations have shown that expression of the muscle-specific intermediate filament desmin gene in skeletal muscle is controlled in part by a 5' muscle-specific enhancer. This enhancer activity can be divided into myoblast-specific and myotube-specific activation domains. The myotube-specific region contains a MyoD and MEF2 sites, whereas the myoblast-specific region contains Sp1, Krox, and Mb sites. In the present study, we designed mutations in the conserved portion of the myotube-specific region; transfection analysis of these mutations showed that a novel site located between the MyoD and MEF2 sites, named Mt (GGTATTT), is required for full transcriptional activity of the desmin enhancer in skeletal muscle. Although gel mobility shift assays demonstrate that myotube, myoblast, fibroblast, and HeLa nuclear extracts contain a nuclear factor that binds specifically to Mt, four copies of the Mt site function as the native enhancer only in myotubes. Functional synergism among the MyoD, MEF2, and Mt sites in myotubes has been demonstrated. These results show that the novel Mt site cooperates with MyoD and MEF2 to give maximal expression of the desmin gene.
Collapse
Affiliation(s)
- J Gao
- Laboratoire de Biologie Mol culaire de la Différentiation Cellulaire, Université Paris VII, 25 rue du Dr. Roux, Paris cedex 15, France
| | | | | |
Collapse
|
9
|
Schmoelzl S, Leeb T, Brinkmeier H, Brem G, Brenig B. Regulation of tissue-specific expression of the skeletal muscle ryanodine receptor gene. J Biol Chem 1996; 271:4763-9. [PMID: 8617743 DOI: 10.1074/jbc.271.9.4763] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The ryanodine receptors (RYR) are a family of calcium release channels that are expressed in a variety of tissues. Three genes, i. e. ryr1, ryr2, and ryr3, have been identified coding for a skeletal muscle, cardiac muscle, and brain isoform, respectively. Although, the skeletal muscle isoform (RYR1) was shown to be expressed predominantly in skeletal muscle, expression was also detected in the esophagus and brain. To analyze the transcriptional regulation of the RYR1 gene, we have constructed chimeric genes composed of the upstream region of the RYR1 gene and the bacterial chloramphenicol acetyltransferase (CAT) gene and transiently transfected them into primary cultured porcine myoblasts, myotubes, and fibroblasts. A 443-base pair region upstream from the transcription start site was sufficient to direct CAT activity without tissue specificity. Deletion of a 61-base pair fragment from the 5'-end of the promoter resulted in a marked reduction of CAT activity in all three tissue types. A similar reduction of expression was observed when using a construct with the first intron in antisense orientation upstream from the promoter. In contrast, the first intron in sense orientation enhanced expression only in myotubes, while expression was repressed in fibroblasts and myoblasts. Gel retardation analyses showed DNA binding activity in nuclear extracts for two upstream DNA sequence elements. Our data suggest that (i) RYR1 gene expression is regulated by at least two novel transcription factors (designated RYREF-1 and RYREF-2), and (ii) tissue specificity results from a transcriptional repression in nonmuscle cells mediated by the first intron.
Collapse
Affiliation(s)
- S Schmoelzl
- Institute of Veterinary Medicine, University of Göttingen, 37073 Göttingen, Federal Republic of Germany
| | | | | | | | | |
Collapse
|
10
|
Abstract
The past year has seen significant progress in the characterization of intermediate filament proteins. New proteins have been identified and physiologically significant differences between known proteins have been revealed. Changes in intermediate filament organization have been linked to changes in cell behavior, and mutational analyses are beginning to reveal the connection between intermediate filament expression, network formation, cellular behavior and disease.
Collapse
|
11
|
Elamrani N, Brustis JJ, Dourdin N, Balcerzak D, Poussard S, Cottin P, Ducastaing A. Desmin degradation and Ca(2+)-dependent proteolysis during myoblast fusion. Biol Cell 1995; 85:177-83. [PMID: 8785519 DOI: 10.1016/0248-4900(96)85278-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
It has already been reported that, in vitro, intermediate filaments such as desmin and vimentin are very susceptible to proteolysis by calpains (Ca(2+)-activated cysteine proteinases). On the other hand, desmin and m-calpain are both present at the onset of myoblast fusion and throughout this phenomenon. Based on these observations, the aim of this study was to demonstrate, with cultured rat myoblasts, that the amount of desmin decreased significantly as multinucleated myotubes were formed. Using immunoblot analysis, it has been shown that the desmin concentration decreased 41% as myoblasts fuse. Moreover, under conditions which stimulate myoblast fusion, desmin concentration was reduced by 21% compared to the control culture. Under our experimental conditions, which lead to a reduced desmin level, the amount of m-calpain was increased about three-fold. These results suggested that m-calpain could be involved in myoblast fusion via desmin cleavage. This hypothesis was confirmed by the results obtained after calpeptin treatment. In the presence of this cell-penetrating inhibitor of calpains, desmin seems not to be degraded. Taking into account the observations obtained after different hydrolysis assays and as compared to those observed on cultured cells, it seems conceivable that m-calpain would be able to initiate desmin cleavage leading to the formation of proteolytic fragments which should be immediately degraded.
Collapse
Affiliation(s)
- N Elamrani
- ISTAB, UA-INRA Laboratoire de Biochimie et Technologie des Aliments, Université Bordeaux I, Talence, France
| | | | | | | | | | | | | |
Collapse
|
12
|
Van De Klundert FA, Bloemendal H. SV40 large T antigen-induced inhibition of terminal differentiation of primary skeletal muscle cells is associated with a block in the expression of MyoD and myogenin. Mol Biol Rep 1994; 20:143-8. [PMID: 7565654 DOI: 10.1007/bf00990546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Transformation of hamster primary myoblasts with the SV40 large T antigen leads to inhibition of terminal differentiation. This process is associated with a block in the transcription of the muscle-specific determinator genes MyoD and myogenin. The effect of SV40 large T antigen on the terminal differentiation is dominant and cannot be bypassed by re-expression of retrovirally encoded MyoD. The intermediate filament protein desmin is normally up-regulated when myoblasts differentiate into myotubes. Surprisingly, desmin is expressed at relatively high levels in transformed hamster muscle cells grown under proliferative conditions. So desmin expression can be independent of the onset of differentiation. This is in accordance with the expression of the protein in fibroblasts, infected with a MyoD-encoding retrovirus and grown under proliferative conditions, when no other muscle-specific proteins are present.
Collapse
MESH Headings
- Animals
- Antigens, Polyomavirus Transforming/genetics
- Antigens, Polyomavirus Transforming/physiology
- Blotting, Northern
- Blotting, Western
- Cell Differentiation
- Cells, Cultured
- Cricetinae
- Desmin/biosynthesis
- Fluorescent Antibody Technique
- Gene Expression Regulation, Developmental
- Muscle Development
- Muscle, Skeletal/cytology
- Muscle, Skeletal/growth & development
- Muscle, Skeletal/metabolism
- MyoD Protein/biosynthesis
- Myogenin/biosynthesis
- RNA, Messenger/analysis
- Stem Cells/cytology
- Transformation, Genetic
Collapse
Affiliation(s)
- F A Van De Klundert
- Department of Biochemistry, Faculty of Science, University of Nijmegen, The Netherlands
| | | |
Collapse
|