1
|
Tamir TY, Chaudhary S, Li AX, Trojan SE, Flower CT, Vo P, Cui Y, Davis JC, Mukkamala RS, Venditti FN, Hillis AL, Toker A, Vander Heiden MG, Spinelli JB, Kennedy NJ, Davis RJ, White FM. Structural and systems characterization of phosphorylation on metabolic enzymes identifies sex-specific metabolic reprogramming in obesity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.28.609894. [PMID: 39257804 PMCID: PMC11383994 DOI: 10.1101/2024.08.28.609894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Coordination of adaptive metabolism through cellular signaling networks and metabolic response is essential for balanced flow of energy and homeostasis. Post-translational modifications such as phosphorylation offer a rapid, efficient, and dynamic mechanism to regulate metabolic networks. Although numerous phosphorylation sites have been identified on metabolic enzymes, much remains unknown about their contribution to enzyme function and systemic metabolism. In this study, we stratify phosphorylation sites on metabolic enzymes based on their location with respect to functional and dimerization domains. Our analysis reveals that the majority of published phosphosites are on oxidoreductases, with particular enrichment of phosphotyrosine (pY) sites in proximity to binding domains for substrates, cofactors, active sites, or dimer interfaces. We identify phosphosites altered in obesity using a high fat diet (HFD) induced obesity model coupled to multiomics, and interrogate the functional impact of pY on hepatic metabolism. HFD induced dysregulation of redox homeostasis and reductive metabolism at the phosphoproteome and metabolome level in a sex-specific manner, which was reversed by supplementing with the antioxidant butylated hydroxyanisole (BHA). Partial least squares regression (PLSR) analysis identified pY sites that predict HFD or BHA induced changes of redox metabolites. We characterize predictive pY sites on glutathione S-transferase pi 1 (GSTP1), isocitrate dehydrogenase 1 (IDH1), and uridine monophosphate synthase (UMPS) using CRISPRi-rescue and stable isotope tracing. Our analysis revealed that sites on GSTP1 and UMPS inhibit enzyme activity while the pY site on IDH1 induces activity to promote reductive carboxylation. Overall, our approach provides insight into the convergence points where cellular signaling fine-tunes metabolism.
Collapse
Affiliation(s)
- Tigist Y Tamir
- Koch Institute for Integrative Cancer Research
- Center for Precision Cancer Medicine
- Department of Biological Engineering
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Shreya Chaudhary
- Koch Institute for Integrative Cancer Research
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Annie X Li
- Koch Institute for Integrative Cancer Research
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sonia E Trojan
- Koch Institute for Integrative Cancer Research
- Department of Biology
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Cameron T Flower
- Koch Institute for Integrative Cancer Research
- Center for Precision Cancer Medicine
- Program in Computational and Systems Biology
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Paula Vo
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Yufei Cui
- Koch Institute for Integrative Cancer Research
- Department of Biological Engineering
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jeffrey C Davis
- Koch Institute for Integrative Cancer Research
- Department of Biology
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Rachit S Mukkamala
- Koch Institute for Integrative Cancer Research
- Department of Biological Engineering
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Francesca N Venditti
- Koch Institute for Integrative Cancer Research
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alissandra L Hillis
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Alex Toker
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research
- Center for Precision Cancer Medicine
- Department of Biology
- Massachusetts Institute of Technology, Cambridge, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jessica B Spinelli
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Norman J Kennedy
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Roger J Davis
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Forest M White
- Koch Institute for Integrative Cancer Research
- Center for Precision Cancer Medicine
- Department of Biological Engineering
- Program in Computational and Systems Biology
- Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
2
|
Frame AK, Sinka JL, Courchesne M, Muhammad RA, Grahovac-Nemeth S, Bernards MA, Bartha R, Cumming RC. Altered neuronal lactate dehydrogenase A expression affects cognition in a sex- and age-dependent manner. iScience 2024; 27:110342. [PMID: 39055955 PMCID: PMC11269950 DOI: 10.1016/j.isci.2024.110342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 05/15/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
The astrocyte-neuron lactate shuttle (ANLS) model posits that astrocyte-generated lactate is transported to neurons to fuel memory processes. However, neurons express high levels of lactate dehydrogenase A (LDHA), the rate-limiting enzyme of lactate production, suggesting a cognitive role for neuronally generated lactate. It was hypothesized that lactate metabolism in neurons is critical for learning and memory. Here transgenic mice were generated to conditionally induce or knockout (KO) the Ldha gene in CNS neurons of adult mice. High pattern separation memory was enhanced by neuronal Ldha induction in young females, and by neuronal Ldha KO in aged females. In older mice, Ldha induction caused cognitive deficits whereas Ldha KO caused cognitive improvements. Genotype-associated cognitive changes were often only observed in one sex or oppositely in males and females. Thus, neuronal-generated lactate has sex-specific cognitive effects, is largely indispensable at young age, and may be detrimental to learning and memory with aging.
Collapse
Affiliation(s)
- Ariel K. Frame
- Department of Biology, Western University, London, ON N6A 5B7, Canada
| | - Jessica L. Sinka
- Department of Biology, Western University, London, ON N6A 5B7, Canada
| | - Marc Courchesne
- Department of Biology, Western University, London, ON N6A 5B7, Canada
| | | | | | - Mark A. Bernards
- Department of Biology, Western University, London, ON N6A 5B7, Canada
| | - Robert Bartha
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada
| | - Robert C. Cumming
- Department of Biology, Western University, London, ON N6A 5B7, Canada
| |
Collapse
|
3
|
Xiong T, Zhang Z, Fan T, Ye F, Ye Z. Origin, evolution, and diversification of inositol 1,4,5-trisphosphate 3-kinases in plants and animals. BMC Genomics 2024; 25:350. [PMID: 38589807 PMCID: PMC11000326 DOI: 10.1186/s12864-024-10257-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/26/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND In Eukaryotes, inositol polyphosphates (InsPs) represent a large family of secondary messengers and play crucial roes in various cellular processes. InsPs are synthesized through a series of pohophorylation reactions catalyzed by various InsP kinases in a sequential manner. Inositol 1,4,5-trisphosphate 3-kinase (IP3 3-kinase/IP3K), one member of InsP kinase, plays important regulation roles in InsPs metabolism by specifically phosphorylating inositol 1,4,5-trisphosphate (IP3) to inositol 1,3,4,5-tetrakisphosphate (IP4) in animal cells. IP3Ks were widespread in fungi, plants and animals. However, its evolutionary history and patterns have not been examined systematically. RESULTS A total of 104 and 31 IP3K orthologues were identified across 57 plant genomes and 13 animal genomes, respectively. Phylogenetic analyses indicate that IP3K originated in the common ancestor before the divergence of fungi, plants and animals. In most plants and animals, IP3K maintained low-copy numbers suggesting functional conservation during plant and animal evolution. In Brassicaceae and vertebrate, IP3K underwent one and two duplication events, respectively, resulting in multiple gene copies. Whole-genome duplication (WGD) was the main mechanism for IP3K duplications, and the IP3K duplicates have experienced functional divergence. Finally, a hypothetical evolutionary model for the IP3K proteins is proposed based on phylogenetic theory. CONCLUSION Our study reveals the evolutionary history of IP3K proteins and guides the future functions of animal, plant, and fungal IP3K proteins.
Collapse
Affiliation(s)
- Tao Xiong
- School of Life and Health Science, Huzhou College, Huzhou, Zhejiang, China
- College of Life Science, Xinyang Normal University, Xinyang, Henan, China
| | - Zaibao Zhang
- School of Life and Health Science, Huzhou College, Huzhou, Zhejiang, China.
- College of Life Science, Xinyang Normal University, Xinyang, Henan, China.
| | - Tianyu Fan
- School of Life and Health Science, Huzhou College, Huzhou, Zhejiang, China
| | - Fan Ye
- College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, Zhejiang, China
| | - Ziyi Ye
- School of Life and Health Science, Huzhou College, Huzhou, Zhejiang, China
| |
Collapse
|
4
|
Song X, Qin YG, Zhang YH, Zhou YB, Chen D, Xie DH, Li ZX. Functional characterization of alkaline phosphatases involved alarm pheromone in the vetch aphid Megoura viciae. iScience 2023; 26:108115. [PMID: 37876794 PMCID: PMC10590853 DOI: 10.1016/j.isci.2023.108115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/01/2023] [Accepted: 09/29/2023] [Indexed: 10/26/2023] Open
Abstract
The alkaline phosphatases (ALPs) are highly promiscuous enzymes and have been extensively investigated in mammals for their medical significance, but their functional promiscuity is relatively poorly understood in insects. Here, we first identified four ALP genes (designated as MvALP1-4) in the vetch aphid Megoura viciae that contained one alkaline phosphatase site, three metal-binding sites, and varied other functional sites. Phylogenetic analysis, molecular docking and the spatiotemporal expression profiling of MvALP1-4 were very different, indicating a promiscuous functionality. We also found that MvALP4 involved the biosynthesis of aphid alarm pheromones (EβF) in vitro and in vivo. Finally, transcriptome analysis in the stimulated and unstimulated aphids supported the involvement of MvALPs in the biosynthesis of aphid alarm pheromones. Our study identified a multifunctional ALP involved terpene synthase enzyme activity in the aphid, which contributes to the understanding of the functional plasticity of ALPs in insects.
Collapse
Affiliation(s)
- Xuan Song
- Department of Entomology and MOA Key Laboratory for Monitoring and Environment-Friendly Control of Crop Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yao-Guo Qin
- Department of Entomology and MOA Key Laboratory for Monitoring and Environment-Friendly Control of Crop Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yi-Han Zhang
- Department of Entomology and MOA Key Laboratory for Monitoring and Environment-Friendly Control of Crop Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yu-Bei Zhou
- Department of Entomology and MOA Key Laboratory for Monitoring and Environment-Friendly Control of Crop Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Dan Chen
- Department of Entomology and MOA Key Laboratory for Monitoring and Environment-Friendly Control of Crop Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Dong-Hai Xie
- Department of Entomology and MOA Key Laboratory for Monitoring and Environment-Friendly Control of Crop Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Zheng-Xi Li
- Department of Entomology and MOA Key Laboratory for Monitoring and Environment-Friendly Control of Crop Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China
| |
Collapse
|
5
|
Kasai F, Kako K, Maruhashi S, Uetake T, Yao Y, Daitoku H, Fukamizu A. γ-enolase (ENO2) is methylated at the Nτ position of His-190 among enolase isozymes. J Biochem 2023; 174:279-289. [PMID: 37279646 DOI: 10.1093/jb/mvad042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/16/2023] [Accepted: 06/03/2023] [Indexed: 06/08/2023] Open
Abstract
Protein methylation is mainly observed in lysine, arginine and histidine residues. Histidine methylation occurs at one of two different nitrogen atoms of the imidazole ring, producing Nτ-methylhistidine and Nπ-methylhistidine, and it has recently attracted attention with the identification of SETD3, METTL18 and METTL9 as catalytic enzymes in mammals. Although accumulating evidence had suggested the presence of more than 100 proteins containing methylated histidine residues in cells, much less information has been known regarding histidine-methylated proteins than lysine- and arginine-methylated ones, because no method has been developed to identify substrates for histidine methylation. Here, we established a method to screen novel target proteins for histidine methylation, using biochemical protein fractionation combined with the quantification of methylhistidine by LC-MS/MS. Interestingly, the differential distribution pattern of Nτ-methylated proteins was found between the brain and skeletal muscle, and identified γ-enolase where the His-190 at the Nτ position is methylated in mouse brain. Finally, in silico structural prediction and biochemical analysis showed that the His-190 in γ-enolase is involved in the intermolecular homodimeric formation and enzymatic activity. In the present study, we provide a new methodology to find histidine-methylated proteins in vivo and suggest an insight into the importance of histidine methylation.
Collapse
Key Words
-
Nτ-methylhistidine.Abbreviations: ADMA, asymmetric dimethylarginine; DML, dimethyllysine; HEK293T, human embryonic kidney 293T; HIC, hydrophobic interaction chromatography; LC-MS/MS, liquid chromatography-tandem mass spectrometry; MALDI-TOF/MS, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry; MMA, monomethylarginine; MRM, multiple reaction monitoring; N-PLA, N-propyl-L-arginine; SAM, S-adenosylmethionine; SDMA, symmetric dimethylarginine; TML, trimethyllysine
- Mus musculus
- enolase
- histidine methylation
- γ-enolase
Collapse
Affiliation(s)
- Fumiya Kasai
- Doctoral Program in Life and Agricultural Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Koichiro Kako
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Syunsuke Maruhashi
- Degree Program in Agro-Bioresources Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Toru Uetake
- Doctoral Program in Life and Agricultural Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Yuan Yao
- Ph.D. Program in Human Biology, School of Integrative Global Majors (SIGMA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Hiroaki Daitoku
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Akiyoshi Fukamizu
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| |
Collapse
|
6
|
Ding Z, Yang J, Wu B, Wu Y, Guo F. Long non-coding RNA CCHE1 modulates LDHA-mediated glycolysis and confers chemoresistance to melanoma cells. Cancer Metab 2023; 11:10. [PMID: 37480145 PMCID: PMC10360318 DOI: 10.1186/s40170-023-00309-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 06/25/2023] [Indexed: 07/23/2023] Open
Abstract
Melanoma is considered as the most common metastatic skin cancer with increasing incidence and high mortality globally. The vital roles of long non-coding RNAs (lncRNAs) in the tumorigenesis of melanoma are elucidated by emerging evidence. The lncRNA cervical carcinoma high-expressed 1 (CCHE1) was overexpressed and acted as an oncogene in a variety of cancers, while the function of CCHE1 in melanoma remains unclear. Here, we found that CCHE1 was highly expressed in melanoma and correlated with the poorer survival of melanoma patients. Depletion of CCHE1 inhibited the proliferation, induced cell apoptosis and suppressed in vivo tumor growth. To further understand the functional mechanism of CCHE1, the interacting partners of CCHE1 were identified via RNA pull-down assay followed by mass spectrometry. CCHE1 was found to bind lactate dehydrogenase A (LDHA) and acted as a scaffold to enhance the interaction of LDHA with the fibroblast growth factor receptor type 1 (FGFR1), which consequently enhanced LDHA phosphorylation and activity of LDHA. Inhibiting CCHE1 strikingly suppressed the glycolytic flux of melanoma cells and lactate generation in vivo. Further study demonstrated that CCHE1 desensitized melanoma cells to dacarbazine and inhibition of glycolysis reversed CCHE1-induced chemoresistance. These results uncovered the novel function of CCHE1 in melanoma by reprogramming the glucose metabolism via orchestrating the activity of LDHA.
Collapse
Affiliation(s)
- Zhi Ding
- Department of Plastic Surgery, Huashan Hospital, Fudan University, Shanghai, China.
| | - Junyi Yang
- Department of Plastic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Baojin Wu
- Department of Plastic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Yingzhi Wu
- Department of Plastic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Fanli Guo
- Department of Plastic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Lin Y, Wang Y, Li PF. Mutual regulation of lactate dehydrogenase and redox robustness. Front Physiol 2022; 13:1038421. [PMID: 36407005 PMCID: PMC9672381 DOI: 10.3389/fphys.2022.1038421] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
The nature of redox is electron transfer; in this way, energy metabolism brings redox stress. Lactate production is associated with NAD regeneration, which is now recognized to play a role in maintaining redox homeostasis. The cellular lactate/pyruvate ratio could be described as a proxy for the cytosolic NADH/NAD ratio, meaning lactate metabolism is the key to redox regulation. Here, we review the role of lactate dehydrogenases in cellular redox regulation, which play the role of the direct regulator of lactate–pyruvate transforming. Lactate dehydrogenases (LDHs) are found in almost all animal tissues; while LDHA catalyzed pyruvate to lactate, LDHB catalyzed the reverse reaction . LDH enzyme activity affects cell oxidative stress with NAD/NADH regulation, especially LDHA recently is also thought as an ROS sensor. We focus on the mutual regulation of LDHA and redox robustness. ROS accumulation regulates the transcription of LDHA. Conversely, diverse post-translational modifications of LDHA, such as phosphorylation and ubiquitination, play important roles in enzyme activity on ROS elimination, emphasizing the potential role of the ROS sensor and regulator of LDHA.
Collapse
Affiliation(s)
- Yijun Lin
- *Correspondence: Yijun Lin, ; Yan Wang, ; Pei-feng Li,
| | - Yan Wang
- *Correspondence: Yijun Lin, ; Yan Wang, ; Pei-feng Li,
| | - Pei-feng Li
- *Correspondence: Yijun Lin, ; Yan Wang, ; Pei-feng Li,
| |
Collapse
|
8
|
Santana PA, Álvarez CA, Sáenz-Martínez DE, Salinas-Parra N, Guzmán F, Paradela A, Mercado L. New insight to the rol of α-enolase (Eno-1) as immunological marker in rainbow trout fry. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 123:104163. [PMID: 34118278 DOI: 10.1016/j.dci.2021.104163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/03/2021] [Accepted: 06/03/2021] [Indexed: 06/12/2023]
Abstract
α-Enolase is an enzyme of the glycolytic pathway that has also been involved in vertebrate inflammatory processes through its interaction with plasminogen. However, its participation in the immune response of lower vertebrates during early life development is unknown. Opportunistic pathogens in salmon farming are the principal cause of mortality in the fry stage. For that reason, molecular indicators of their immunological status are required to ensure the success of the large-scale cultivation. Thus, the objective of this work was to analyze if ENO-1 is involved in the immune response of rainbow trout fry. For this purpose, the coding sequence of trout ENO-1 was characterized, identifying the plasminogen-binding domain that has been described for homologs of this enzyme in higher vertebrates. A peptide-epitope of α-enolase was used for producing mice antiserum. The specificity of polyclonal antibodies was confirmed by dot blot, ELISA and Western blot. Then, the antiserum was used to evaluate α-enolase expression in fry between 152 and 264 degree-days post-hatching after 2, 8, and 12 h of challenge with lipopolysaccharide from Pseudomona auroginosa. The expression of α-enolase at both transcriptional (RT-qPCR) and protein (ELISA) levels was significantly increased after 8 h post-challenge with lipopolysaccharide. These results were confirmed by proteomic analysis by 2D-difference gel electrophoresis (DIGE). This work provides the first evidence of the involvement of α-enolase in the early immune response of salmonids. Future research will be required to understand the possible interaction of α-enolase with plasminogen in cells and tissues of the salmonid immune system.
Collapse
Affiliation(s)
- Paula A Santana
- Facultad de Ingeniería, Instituto de Ciencias Químicas Aplicadas, Universidad Autónoma de Chile, el Llano Subercaseaux 2801, San Miguel, Santiago, Chile.
| | - Claudio A Álvarez
- Lab oratorio de Fisiología y Genética Marina, Centro de Estudios Avanzados en Zonas Áridas, Coquimbo, Chile; Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile.
| | - Daniel E Sáenz-Martínez
- Grupo de Marcadores Inmunológicos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Avenida Universidad #330, 2373223,Valparaíso, Chile; Programa de Doctorado en Biotecnología Pontificia Universidad Católica de Valparaíso/Universidad Técnica Federico Santa María, Valparaíso, Chile.
| | - Nicolás Salinas-Parra
- Grupo de Marcadores Inmunológicos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Avenida Universidad #330, 2373223,Valparaíso, Chile; Programa de Doctorado en Biotecnología Pontificia Universidad Católica de Valparaíso/Universidad Técnica Federico Santa María, Valparaíso, Chile.
| | - Fanny Guzmán
- Núcleo Biotecnológico de Curauma (NBC), Pontificia Universidad Católica de Valparaíso, Avenida Universidad #330, 2373223,Valparaíso, Chile.
| | - Alberto Paradela
- Centro Nacional de Biotecnología, CSIC, C/ Darwin n°3 Cantoblanco, 28049, Madrid, España, Spain.
| | - Luis Mercado
- Grupo de Marcadores Inmunológicos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Avenida Universidad #330, 2373223,Valparaíso, Chile; Núcleo Biotecnológico de Curauma (NBC), Pontificia Universidad Católica de Valparaíso, Avenida Universidad #330, 2373223,Valparaíso, Chile.
| |
Collapse
|
9
|
Role of tyrosine phosphorylation in modulating cancer cell metabolism. Biochim Biophys Acta Rev Cancer 2020; 1874:188442. [DOI: 10.1016/j.bbcan.2020.188442] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/22/2020] [Accepted: 09/29/2020] [Indexed: 12/18/2022]
|
10
|
Abstract
Dysregulated metabolism is one of the hallmarks of cancer. Under normal physiological conditions, ATP is primarily generated by oxidative phosphorylation. Cancers commonly undergo a dramatic shift toward glycolysis, despite the presence of oxygen. This phenomenon is known as the Warburg effect, and requires the activity of LDHA. LDHA converts pyruvate to lactate in the final step of glycolysis and is often upregulated in cancer. LDHA inhibitors present a promising therapeutic option, as LDHA blockade leads to apoptosis in cancer cells. Despite this, existing LDHA inhibitors have shown limited clinical efficacy. Here, we review recent progress in LDHA structure, function and regulation as well as strategies to target this critical enzyme.
Collapse
|
11
|
Tang X, Li X, Zhai F, Xing J, Sheng X, Zhan W. Analysis and identification of tyrosine phosphorylated proteins in hemocytes of Litopenaeus vannamei infected with WSSV. FISH & SHELLFISH IMMUNOLOGY 2018; 82:84-91. [PMID: 30098445 DOI: 10.1016/j.fsi.2018.08.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 08/02/2018] [Accepted: 08/07/2018] [Indexed: 06/08/2023]
Abstract
Previous studies have demonstrated that protein tyrosine phosphorylation plays an important role in WSSV infection. In the present work, in order to further elucidate the potential role of protein tyrosine phosphorylation in white spot syndrome virus (WSSV) infection. The expression variation of tyrosine phosphorylated proteins in hemocytes of shrimp (Litopenaeus vannamei) after WSSV infection were examined by flow cytometric immunofluorescence assay (FCIFA) and enzyme linked immunosorbent assay (ELISA), and results showed that the level of protein tyrosine phosphorylation in hemocytes fluctuated significantly after WSSV infection and exhibited two peaks at 6 and 24 h post infection (hpi). Meanwhile, tyrosine phosphorylated proteins in hemocytes after WSSV infection were also detected by cell immunofluorescence, and results showed that the fluorescence intensity in hemocytes was altered with the course of WSSV infection and showed stronger fluorescent signals at 6 and 24 hpi compared to other time points. Furthermore, two dimensional gel electrophoresis (2-DE) and 2-DE western blotting were applied to identify the differentially expressed tyrosine phosphorylated proteins in hemocytes before and after WSSV infection. The result of 2-DE western blotting showed that there were nine tyrosine phosphorylated proteins in the hemocytes of healthy shrimp, whereas twenty-one tyrosine phosphorylated proteins were detected in the hemocytes of shrimp at 6hpi. Then, the differential tyrosine phosphorylated proteins were analyzed by Mass Spectrometry (MS), and eight of them were identified to be sodium/potassium-transporting ATPase subunit alpha, ubiquitin/ribosomal L40 fusion protein, actin-D, phosphopyruvate hydratase, beta-actin, ATP synthase subunit beta, receptor for activated protein kinase c1 and protein disulfide-isomerase. Moreover, the expression levels of sodium/potassium-transporting ATPase subunit alpha, ubiquitin/ribosomal L40 fusion protein, phosphopyruvate hydratase, ATP synthase subunit beta, receptor for activated protein kinase c1 and protein disulfide-isomerase were examined to be up-regulated post WSSV infection by quantitative real-time RT-PCR. Taken together, these results demonstrated that protein tyrosine phosphorylation was involved in the process of WSSV infection, which might play an important role in the immune response to WSSV infection in shrimp.
Collapse
Affiliation(s)
- Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Xiaoai Li
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China
| | - Fude Zhai
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
12
|
Punjabi M, Bharadvaja N, Sachdev A, Krishnan V. Molecular characterization, modeling, and docking analysis of late phytic acid biosynthesis pathway gene, inositol polyphosphate 6-/ 3-/ 5-kinase, a potential candidate for developing low phytate crops. 3 Biotech 2018; 8:344. [PMID: 30073129 PMCID: PMC6064606 DOI: 10.1007/s13205-018-1343-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 07/06/2018] [Indexed: 01/08/2023] Open
Abstract
The coding sequence of inositol polyphosphate 6-/3-/5-kinase (GmIPK2) gene was identified and cloned from popular Indian soybean cultivar Pusa-16. The clone was predicted to encode 279 amino acids long, 30.97 kDa protein. Multiple sequence alignment revealed an inositol phosphate-binding motif, PxxxDxKxG throughout the IPK2 sequences along with other motifs unique to inositol phosphate kinase superfamily. Eight α-helices and eight β-strands in antiparallel β-sheets arrangement were predicted in the secondary structure of GmIPK2. The temporal analysis of GmIPK2 revealed maximum expression in the seed tissues during later stages of development while spatially the transcript levels were lowest in leaf and stem tissues. Endosperm-specific cis-regulatory motifs (GCN4 and Skn_1) which support high levels of expression, as observed in the developing seeds, were detected in its promoter region. The protein structure of GmIPK2 was modeled based on the crystal structure of inositol polyphosphate multikinase from Arabidopsis thaliana (PDB:4FRF) and subsequently docked with inositol phosphate ligands (PDB: 5GUG-I3P and PDB: 4A69-I0P). Molecular dynamics (MD) simulation established the structural stability of both, modeled enzyme and ligand-bound complexes. Docking in combination with trajectory analysis for 50 ns MD run confirmed the participation of Lys105, Lys126 and Arg153 residues in the formation of a network of hydrogen bonds to stabilize the ligand-receptor interaction. Results of the present study thus provide valuable information on structural and functional aspects of GmIPK2 which shall assist in strategizing our long-term goal of achieving phytic acid reduction in soybean by genetic modification of its biosynthetic pathway to develop a nutritionally enhanced crop in the future.
Collapse
Affiliation(s)
- Mansi Punjabi
- Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), New Delhi, 110042 India
- Division of Biochemistry, Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Navneeta Bharadvaja
- Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), New Delhi, 110042 India
| | - Archana Sachdev
- Division of Biochemistry, Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Veda Krishnan
- Division of Biochemistry, Indian Agricultural Research Institute, New Delhi, 110012 India
| |
Collapse
|
13
|
Park S, Ahn S, Shin Y, Yang Y, Yeom CH. Vitamin C in Cancer: A Metabolomics Perspective. Front Physiol 2018; 9:762. [PMID: 29971019 PMCID: PMC6018397 DOI: 10.3389/fphys.2018.00762] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 05/30/2018] [Indexed: 12/18/2022] Open
Abstract
There is an ongoing interest in cellular antioxidants and oxidants as well as cellular mechanisms underlying their effects. Several reports suggest that vitamin C (L-ascorbic acid) functions as a pro-oxidant with selective toxicity against specific types of tumor cells. In addition, reduced glutathione plays an emerging role in reducing oxidative stress due to xenobiotic toxins such as metals and oxidants associated with diseases such as cancer, cardiovascular disease, and stroke. High-dose intravenous vitamin C and intravenous glutathione have been used as complementary, alternative, and adjuvant medicines. Here, we review the molecular mechanisms underlying the regulation of oxidation/reduction systems, focusing on the altered metabolomics profile in cancer cells following treatment with pharmacological vitamin C. This review focuses on the role of vitamin C in energy metabolism in terms of adenosine triphosphate, cysteine, and reduced glutathione levels, affecting cancer cell death.
Collapse
Affiliation(s)
- Seyeon Park
- Department of Applied Chemistry, Dongduk Women's University, Seoul, South Korea
| | - Seunghyun Ahn
- Department of Applied Chemistry, Dongduk Women's University, Seoul, South Korea
| | - Yujeong Shin
- Department of Applied Chemistry, Dongduk Women's University, Seoul, South Korea
| | - Yoonjung Yang
- Department of Food and Nutrition, Dongduk Women's University, Seoul, South Korea
| | | |
Collapse
|
14
|
Tacchi JL, Raymond BBA, Haynes PA, Berry IJ, Widjaja M, Bogema DR, Woolley LK, Jenkins C, Minion FC, Padula MP, Djordjevic SP. Post-translational processing targets functionally diverse proteins in Mycoplasma hyopneumoniae. Open Biol 2016; 6:150210. [PMID: 26865024 PMCID: PMC4772806 DOI: 10.1098/rsob.150210] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycoplasma hyopneumoniae is a genome-reduced, cell wall-less, bacterial pathogen with a predicted coding capacity of less than 700 proteins and is one of the smallest self-replicating pathogens. The cell surface of M. hyopneumoniae is extensively modified by processing events that target the P97 and P102 adhesin families. Here, we present analyses of the proteome of M. hyopneumoniae-type strain J using protein-centric approaches (one- and two-dimensional GeLC–MS/MS) that enabled us to focus on global processing events in this species. While these approaches only identified 52% of the predicted proteome (347 proteins), our analyses identified 35 surface-associated proteins with widely divergent functions that were targets of unusual endoproteolytic processing events, including cell adhesins, lipoproteins and proteins with canonical functions in the cytosol that moonlight on the cell surface. Affinity chromatography assays that separately used heparin, fibronectin, actin and host epithelial cell surface proteins as bait recovered cleavage products derived from these processed proteins, suggesting these fragments interact directly with the bait proteins and display previously unrecognized adhesive functions. We hypothesize that protein processing is underestimated as a post-translational modification in genome-reduced bacteria and prokaryotes more broadly, and represents an important mechanism for creating cell surface protein diversity.
Collapse
Affiliation(s)
- Jessica L Tacchi
- The ithree Institute, University of Technology Sydney, PO Box 123, Broadway, New South Wales 2007, Australia
| | - Benjamin B A Raymond
- The ithree Institute, University of Technology Sydney, PO Box 123, Broadway, New South Wales 2007, Australia
| | - Paul A Haynes
- Department of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde, New South Wales 2109, Australia
| | - Iain J Berry
- The ithree Institute, University of Technology Sydney, PO Box 123, Broadway, New South Wales 2007, Australia
| | - Michael Widjaja
- The ithree Institute, University of Technology Sydney, PO Box 123, Broadway, New South Wales 2007, Australia
| | - Daniel R Bogema
- The ithree Institute, University of Technology Sydney, PO Box 123, Broadway, New South Wales 2007, Australia NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, New South Wales 2568, Australia
| | - Lauren K Woolley
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, New South Wales 2568, Australia School of Biological Sciences, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Cheryl Jenkins
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, New South Wales 2568, Australia
| | - F Chris Minion
- Department of Veterinary Microbiology and Preventative Medicine, Iowa State University, Ames, IA 50011, USA
| | - Matthew P Padula
- The ithree Institute, University of Technology Sydney, PO Box 123, Broadway, New South Wales 2007, Australia Proteomics Core Facility, University of Technology Sydney, PO Box 123, Broadway, New South Wales 2007, Australia
| | - Steven P Djordjevic
- The ithree Institute, University of Technology Sydney, PO Box 123, Broadway, New South Wales 2007, Australia Proteomics Core Facility, University of Technology Sydney, PO Box 123, Broadway, New South Wales 2007, Australia
| |
Collapse
|
15
|
Kim EY, Choi HJ, Park MJ, Jung YS, Lee SO, Kim KJ, Choi JH, Chung TW, Ha KT. Myristica fragrans Suppresses Tumor Growth and Metabolism by Inhibiting Lactate Dehydrogenase A. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2016; 44:1063-79. [PMID: 27430914 DOI: 10.1142/s0192415x16500592] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Most cancer cells predominantly produce ATP by maintaining a high rate of lactate fermentation, rather than by maintaining a comparatively low rate of tricarboxylic acid cycle, i.e., Warburg's effect. In the pathway, the pyruvate produced by glycolysis is converted to lactic acid by lactate dehydrogenase (LDH). Here, we demonstrated that water extracts from the seeds of Myristica fragrans Houtt. (MF) inhibit the in vitro enzymatic activity of LDH. MF effectively suppressed cell growth and the overall Warburg effect in HT29 human colon cancer cells. Although the expression of LDH-A was not changed by MF, both lactate production and LDH activity were decreased in MF-treated cells under both normoxic and hypoxic conditions. In addition, intracellular ATP levels were also decreased by MF treatment, and the uptake of glucose was also reduced by MF treatment. Furthermore, the experiment on tumor growth in the in vivo mice model revealed that MF effectively reduced the growth of allotransplanted Lewis lung carcinoma cells. Taken together, these results suggest that MF effectively inhibits cancer growth and metabolism by inhibiting the activity of LDH, a major enzyme responsible for regulating cancer metabolism. These results implicate MF as a potential candidate for development into a novel drug against cancer through inhibition of LDH activity.
Collapse
Affiliation(s)
- Eun-Yeong Kim
- * Healthy Aging Korean Medical Research Center, School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, Republic of Korea
| | - Hee-Jung Choi
- * Healthy Aging Korean Medical Research Center, School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, Republic of Korea
| | - Mi-Ju Park
- * Healthy Aging Korean Medical Research Center, School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, Republic of Korea
| | - Yeon-Seop Jung
- † Department of Food Science and Technology, Keimyung University, Daegu, Republic of Korea
| | - Syng-Ook Lee
- † Department of Food Science and Technology, Keimyung University, Daegu, Republic of Korea
| | - Keuk-Jun Kim
- ‡ Department of Clinical Pathology, TaeKyeung University, Gyeongsan, Gyeongsangbuk-do, Republic of Korea
| | - Jung-Hye Choi
- § Department of Life and Nanopharmaceutical Sciences and Department of Oriental Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Tae-Wook Chung
- * Healthy Aging Korean Medical Research Center, School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, Republic of Korea
| | - Ki-Tae Ha
- * Healthy Aging Korean Medical Research Center, School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, Republic of Korea
| |
Collapse
|
16
|
Grossi G, Grimaldi A, Cardone RA, Monné M, Reshkin SJ, Girardello R, Greco MR, Coviello E, Laurino S, Falabella P. Extracellular matrix degradation via enolase/plasminogen interaction: Evidence for a mechanism conserved in Metazoa. Biol Cell 2016; 108:161-78. [PMID: 26847147 DOI: 10.1111/boc.201500095] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 01/29/2016] [Indexed: 01/21/2023]
Abstract
BACKGROUND INFORMATION While enolase is a ubiquitous metalloenzyme involved in the glycolytic pathway, it is also known as a multifunctional protein, since enolases anchored on the outer surface of the plasma membrane are involved in tissue invasion. RESULTS We have identified an extracellular enolase (Ae-ENO) produced by the teratocytes, embryonic cells of the insect parasitoid Aphidius ervi. We demonstrate that Ae-ENO, although lacking a signal peptide, accumulates in cytoplasmic vesicles oriented towards the cell membrane. Ae-ENO binds to and activates a plasminogen-like molecule inducing digestion of the host tissue and thereby ensuring successful parasitism. CONCLUSIONS These results support the hypothesis that plasminogen-like proteins exist in invertebrates. Interestingly the activation of a plasminogen-like protein is mediated by a mechanisms involving the surface enolase/fibrinolytic system considered, until now, exclusive of vertebrates, and that instead is conserved across species. SIGNIFICANCE To our knowledge, this is the first example of enolase mediated Plg-like binding and activation in insect cells, demonstrating the existence of an ECM degradation process via a Plg-like protein in invertebrates.
Collapse
Affiliation(s)
- Gerarda Grossi
- Department of Sciences, University of Basilicata, Potenza, 85100, Italy
| | - Annalisa Grimaldi
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, 21100, Italy
| | - Rosa A Cardone
- Department of Bioscience, Biotechnologies and Biopharmaceutics, University of Bari, Bari, 70126, Italy
| | - Magnus Monné
- Department of Sciences, University of Basilicata, Potenza, 85100, Italy
| | - Stephan J Reshkin
- Department of Bioscience, Biotechnologies and Biopharmaceutics, University of Bari, Bari, 70126, Italy
| | - Rossana Girardello
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, 21100, Italy
| | - Maria R Greco
- Department of Bioscience, Biotechnologies and Biopharmaceutics, University of Bari, Bari, 70126, Italy
| | - Elena Coviello
- Department of Sciences, University of Basilicata, Potenza, 85100, Italy
| | - Simona Laurino
- Department of Sciences, University of Basilicata, Potenza, 85100, Italy
| | | |
Collapse
|
17
|
Identification of Glioblastoma Phosphotyrosine-Containing Proteins with Two-Dimensional Western Blotting and Tandem Mass Spectrometry. BIOMED RESEARCH INTERNATIONAL 2015; 2015:134050. [PMID: 26090378 PMCID: PMC4450212 DOI: 10.1155/2015/134050] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 08/25/2014] [Accepted: 08/25/2014] [Indexed: 12/24/2022]
Abstract
To investigate the presence of, and the potential biological roles of, protein tyrosine phosphorylation in the glioblastoma pathogenesis, two-dimensional gel electrophoresis- (2DGE-) based Western blotting coupled with liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) analysis was used to detect and identify the phosphotyrosine immunoreaction-positive proteins in a glioblastoma tissue. MS/MS and Mascot analyses were used to determine the phosphotyrosine sites of each phosphopeptide. Protein domain and motif analysis and systems pathway analysis were used to determine the protein domains/motifs that contained phosphotyrosine residue and signal pathway networks to clarify the potential biological functions of protein tyrosine phosphorylation. A total of 24 phosphotyrosine-containing proteins were identified. Each phosphotyrosine-containing protein contained at least one tyrosine kinase phosphorylation motif and a certain structural and functional domains. Those phosphotyrosine-containing proteins were involved in the multiple signal pathway systems such as oxidative stress, stress response, and cell migration. Those data show 2DGE-based Western blotting, MS/MS, and bioinformatics are a set of effective approaches to detect and identify glioblastoma tyrosine-phosphorylated proteome and to effectively rationalize the biological roles of tyrosine phosphorylation in the glioblastoma biological systems. It provides novel insights regarding tyrosine phosphorylation and its potential role in the molecular mechanism of a glioblastoma.
Collapse
|
18
|
Zhu Y, Chen M, Gong Y, Liu Z, Li A, Kang D, Han F, Liu J, Liu J, Yuan Y. Helicobacter pylori FKBP-type PPIase promotes gastric epithelial cell proliferation and anchorage-independent growth through activation of ERK-mediated mitogenic signaling pathway. FEMS Microbiol Lett 2015; 362:fnv023. [DOI: 10.1093/femsle/fnv023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
19
|
Lactate dehydrogenase 5: an old friend and a new hope in the war on cancer. Cancer Lett 2014; 358:1-7. [PMID: 25528630 DOI: 10.1016/j.canlet.2014.12.035] [Citation(s) in RCA: 178] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 11/24/2014] [Accepted: 12/15/2014] [Indexed: 12/19/2022]
Abstract
A hallmark of most cancer cells is an altered metabolism involving a shift to aerobic glycolysis with lactate production coupled with a higher uptake of glucose as the main source of energy. Lactate dehydrogenase 5 (LDH-5) catalyzes the reduction of pyruvate by NADH to form lactate, thus determining the availability of NAD(+) to maintain the continuity of glycolysis. It is therefore an important control point in the system of cellular energy release. Its upregulation is common in many malignant tumors. Inhibiting LDH-5 activity has an anti-proliferative effect on cancer cells. It may reverse their resistance to conventional chemo- and radiotherapy. Recent research has renewed interest in LDH-5 as an anticancer drug target. This review summarizes recent studies exploring the role of LDH-5 in cancer growth, its utility as a tumor marker, and developments made in identifying and designing anti-LDH-5 therapeutic agents.
Collapse
|
20
|
Bui-Nguyen TM, Dennis WE, Jackson DA, Stallings JD, Lewis JA. Detection of Dichlorvos Adducts in a Hepatocyte Cell Line. J Proteome Res 2014; 13:3583-95. [DOI: 10.1021/pr5000076] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Tri M. Bui-Nguyen
- Oak Ridge Institute
for Science and Education (ORISE) Postdoctoral Researcher, U.S. Army
Center for Environmental Health Research, 568 Doughten Drive, Fort Detrick, Maryland 21702, United States
| | - William E. Dennis
- U.S. Army Center for Environmental Health Research, 568 Doughten Drive, Fort
Detrick, Maryland 21702, United States
| | - David A. Jackson
- U.S. Army Center for Environmental Health Research, 568 Doughten Drive, Fort
Detrick, Maryland 21702, United States
| | - Jonathan D. Stallings
- U.S. Army Center for Environmental Health Research, 568 Doughten Drive, Fort
Detrick, Maryland 21702, United States
| | - John A. Lewis
- U.S. Army Center for Environmental Health Research, 568 Doughten Drive, Fort
Detrick, Maryland 21702, United States
| |
Collapse
|
21
|
Zhang Z, Zhao H, Tang J, Li Z, Li Z, Chen D, Lin W. A proteomic study on molecular mechanism of poor grain-filling of rice (Oryza sativa L.) inferior spikelets. PLoS One 2014; 9:e89140. [PMID: 24586550 PMCID: PMC3931721 DOI: 10.1371/journal.pone.0089140] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Accepted: 01/15/2014] [Indexed: 12/19/2022] Open
Abstract
Cultivars of rice (Oryza sativa L.), especially of the type with large spikelets, often fail to reach the yield potential as expected due to the poor grain-filling on the later flowering inferior spikelets (in contrast to the earlier-flowering superior spikelets). The present study showed that the size and grain weight of superior spikelets (SS) was greater than those of inferior spikelets (IS), and the carbohydrate supply should not be the major problem for the poor grain-filling because there was adequate amount of sucrose in IS at the initial grain-filling stage. High resolution two-dimensional gel electrophoresis (2-DE) in combination with Coomassie-brilliant blue (CBB) and Pro-Q Diamond phosphoprotein fluorescence stain revealed that 123 proteins in abundance and 43 phosphoproteins generated from phosphorylation were significantly different between SS and IS. These proteins and phosphoproteins were involved in different cellular and metabolic processes with a prominently functional skew toward metabolism and protein synthesis/destination. Expression analyses of the proteins and phosphoproteins associated with different functional categories/subcategories indicated that the starch synthesis, central carbon metabolism, N metabolism and cell growth/division were closely related to the poor grain-filling of IS. Functional and expression pattern studies also suggested that 14-3-3 proteins played important roles in IS poor grain-filling by regulating the activity of starch synthesis enzymes. The proteome and phosphoproteome obtained from this study provided a better understanding of the molecular mechanism of the IS poor grain-filling. They were also expected to be highly useful for improving the grain filling of rice.
Collapse
Affiliation(s)
- Zhixing Zhang
- College of Life Science, Fujian Agricultural and Forestry University, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Hong Zhao
- College of Life Science, Fujian Agricultural and Forestry University, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jun Tang
- College of Life Science, Fujian Agricultural and Forestry University, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Zhong Li
- College of Life Science, Fujian Agricultural and Forestry University, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Zhou Li
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Dongmei Chen
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Wenxiong Lin
- College of Life Science, Fujian Agricultural and Forestry University, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
22
|
Birth weight alters the response to postnatal high-fat diet-induced changes in meat quality traits and skeletal muscle proteome of pigs. Br J Nutr 2014; 111:1738-47. [DOI: 10.1017/s0007114513004431] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Low birth weight (LBW) exerts persistent effects on the growth and development of offspring. The present study was conducted to test the hypothesis that LBW alters the response of pigs to high-fat (HF) diet-induced changes in meat quality and skeletal muscle proteome. Normal-birth weight (NBW) and LBW piglets were fed a control diet or a HF diet from weaning to slaughter at 110 kg body weight. Most of the meat quality traits were influenced by LBW. Meat quality analysis revealed that LBW piglets had a greater ability to deposit intramuscular lipids than their heavier littermates when fed a HF diet. Increased shear force, lower pH45min and drip loss were observed in the skeletal muscle of LBW piglets compared with NBW piglets. Proteomic analysis revealed forty-six differentially expressed proteins in the skeletal muscle of LBW and NBW piglets fed the control diet or HF diet. These proteins play a central role in cell structure and motility, glucose and energy metabolism, lipid metabolism, and cellular apoptosis, as well as stress response. Of particular interest is the finding that LBW altered the response to HF diet-induced changes in the expression of proteins related to stress response (heat shock protein) and glucose and energy metabolism (pyruvate kinase, phosphoglycerate mutase, enolase and triosephosphate isomerase). Taken together, our findings revealed that the HF diet-induced changes in the expression of glucose and energy metabolism-related proteins varied between NBW and LBW piglets, which provides a possible mechanism to explain higher intramuscular fat store in LBW pigs when fed a HF diet.
Collapse
|
23
|
Hitosugi T, Chen J. Post-translational modifications and the Warburg effect. Oncogene 2013; 33:4279-85. [DOI: 10.1038/onc.2013.406] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 08/13/2013] [Accepted: 08/26/2013] [Indexed: 12/23/2022]
|
24
|
Stress response and adaptation: A new molecular toolkit for the 21st century. Comp Biochem Physiol A Mol Integr Physiol 2013; 165:417-28. [DOI: 10.1016/j.cbpa.2013.01.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/15/2013] [Accepted: 01/17/2013] [Indexed: 12/18/2022]
|
25
|
Ceruti P, Principe M, Capello M, Cappello P, Novelli F. Three are better than one: plasminogen receptors as cancer theranostic targets. Exp Hematol Oncol 2013; 2:12. [PMID: 23594883 PMCID: PMC3640925 DOI: 10.1186/2162-3619-2-12] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 03/28/2013] [Indexed: 12/22/2022] Open
Abstract
Activation of plasminogen on the cell surface initiates a cascade of protease activity with important implications for several physiological and pathological events. In particular, components of the plasminogen system participate in tumor growth, invasion and metastasis. Plasminogen receptors are in fact expressed on the cell surface of most tumors, and their expression frequently correlates with cancer diagnosis, survival and prognosis. Notably, they can trigger multiple specific immune responses in cancer patients, highlighting their role as tumor-associated antigens. In this review, three of the most characterized plasminogen receptors involved in tumorigenesis, namely Annexin 2 (ANX2), Cytokeratin 8 (CK8) and alpha-Enolase (ENOA), are analyzed to ascertain an overall view of their role in the most common cancers. This analysis emphasizes the possibility of delineating new personalized therapeutic strategies to counteract tumor growth and metastasis by targeting plasminogen receptors, as well as their potential application as cancer predictors.
Collapse
Affiliation(s)
- Patrizia Ceruti
- Center for Experimental Research and Medical Studies (CeRMS), Azienda Ospedaliera Città della Salute e della Scienza, Via Cherasco 15, Turin, 10126, Italy.,Department of Molecular Biotechnology and Health Science, University of Turin, Turin, Italy
| | - Moitza Principe
- Center for Experimental Research and Medical Studies (CeRMS), Azienda Ospedaliera Città della Salute e della Scienza, Via Cherasco 15, Turin, 10126, Italy.,Department of Molecular Biotechnology and Health Science, University of Turin, Turin, Italy
| | - Michela Capello
- Center for Experimental Research and Medical Studies (CeRMS), Azienda Ospedaliera Città della Salute e della Scienza, Via Cherasco 15, Turin, 10126, Italy.,Department of Molecular Biotechnology and Health Science, University of Turin, Turin, Italy
| | - Paola Cappello
- Center for Experimental Research and Medical Studies (CeRMS), Azienda Ospedaliera Città della Salute e della Scienza, Via Cherasco 15, Turin, 10126, Italy.,Department of Molecular Biotechnology and Health Science, University of Turin, Turin, Italy
| | - Francesco Novelli
- Center for Experimental Research and Medical Studies (CeRMS), Azienda Ospedaliera Città della Salute e della Scienza, Via Cherasco 15, Turin, 10126, Italy.,Department of Molecular Biotechnology and Health Science, University of Turin, Turin, Italy
| |
Collapse
|
26
|
Purification and Properties of White Muscle Lactate Dehydrogenase from the Anoxia-Tolerant Turtle, the Red-Eared Slider, Trachemys scripta elegans. Enzyme Res 2013; 2013:784973. [PMID: 23533717 PMCID: PMC3594981 DOI: 10.1155/2013/784973] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 12/17/2012] [Accepted: 01/17/2013] [Indexed: 11/22/2022] Open
Abstract
Lactate dehydrogenase (LDH; E.C. 1.1.1.27) is a crucial enzyme involved in energy metabolism in muscle, facilitating the production of ATP via glycolysis during oxygen deprivation by recycling NAD+. The present study investigated purified LDH from the muscle of 20 h anoxic and normoxic T. s. elegans, and LDH from anoxic muscle showed a significantly lower (47%) Km for L-lactate and a higher Vmax value than the normoxic form. Several lines of evidence indicated that LDH was converted to a low phosphate form under anoxia: (a) stimulation of endogenously present protein phosphatases decreased the Km of L-lactate of control LDH to anoxic levels, whereas (b) stimulation of kinases increased the Km of L-lactate of anoxic LDH to normoxic levels, and (c) dot blot analysis shows significantly less serine (78%) and threonine (58%) phosphorylation in anoxic muscle LDH as compared to normoxic LDH. The physiological consequence of anoxia-induced LDH dephosphorylation appears to be an increase in LDH activity to promote the reduction of pyruvate in muscle tissue, converting the glycolytic end product to lactate to maintain a prolonged glycolytic flux under energy-stressed anoxic conditions.
Collapse
|
27
|
α-Enolase, a multifunctional protein: its role on pathophysiological situations. J Biomed Biotechnol 2012; 2012:156795. [PMID: 23118496 PMCID: PMC3479624 DOI: 10.1155/2012/156795] [Citation(s) in RCA: 274] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 06/25/2012] [Indexed: 12/29/2022] Open
Abstract
α-Enolase is a key glycolytic enzyme in the cytoplasm of prokaryotic and eukaryotic cells and is considered a multifunctional protein. α-enolase is expressed on the surface of several cell types, where it acts as a plasminogen receptor, concentrating proteolytic plasmin activity on the cell surface. In addition to glycolytic enzyme and plasminogen receptor functions, α-Enolase appears to have other cellular functions and subcellular localizations that are distinct from its well-established function in glycolysis. Furthermore, differential expression of α-enolase has been related to several pathologies, such as cancer, Alzheimer's disease, and rheumatoid arthritis, among others. We have identified α-enolase as a plasminogen receptor in several cell types. In particular, we have analyzed its role in myogenesis, as an example of extracellular remodelling process. We have shown that α-enolase is expressed on the cell surface of differentiating myocytes, and that inhibitors of α-enolase/plasminogen binding block myogenic fusion in vitro and skeletal muscle regeneration in mice. α-Enolase could be considered as a marker of pathological stress in a high number of diseases, performing several of its multiple functions, mainly as plasminogen receptor. This paper is focused on the multiple roles of the α-enolase/plasminogen axis, related to several pathologies.
Collapse
|
28
|
Zhang X, Højlund K, Luo M, Meyer C, Thangiah G, Yi Z. Novel tyrosine phosphorylation sites in rat skeletal muscle revealed by phosphopeptide enrichment and HPLC-ESI-MS/MS. J Proteomics 2012; 75:4017-26. [PMID: 22609512 PMCID: PMC3398612 DOI: 10.1016/j.jprot.2012.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 04/16/2012] [Accepted: 05/07/2012] [Indexed: 01/15/2023]
Abstract
Tyrosine phosphorylation plays a fundamental role in many cellular processes including differentiation, growth and insulin signaling. In insulin resistant muscle, aberrant tyrosine phosphorylation of several proteins has been detected. However, due to the low abundance of tyrosine phosphorylation (<1% of total protein phosphorylation), only a few tyrosine phosphorylation sites have been identified in mammalian skeletal muscle to date. Here, we used immunoprecipitation of phosphotyrosine peptides prior to HPLC-ESI-MS/MS analysis to improve the discovery of tyrosine phosphorylation in relatively small skeletal muscle biopsies from rats. This resulted in the identification of 87 distinctly localized tyrosine phosphorylation sites in 46 muscle proteins. Among them, 31 appear to be novel. The tyrosine phosphorylated proteins included major enzymes in the glycolytic pathway and glycogen metabolism, sarcomeric proteins, and proteins involved in Ca(2+) homeostasis and phosphocreatine resynthesis. Among proteins regulated by insulin, we found tyrosine phosphorylation sites in glycogen synthase, and two of its inhibitors, GSK-3α and DYRK1A. Moreover, tyrosine phosphorylation sites were identified in several MAP kinases and a protein tyrosine phosphatase, SHPTP2. These results provide the largest catalogue of mammalian skeletal muscle tyrosine phosphorylation sites to date and provide novel targets for the investigation of human skeletal muscle phosphoproteins in various disease states.
Collapse
Affiliation(s)
- Xiangmin Zhang
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy & Health Sciences, Wayne State University, Detroit, MI, US
- Center for Metabolic and Vascular Biology, Arizona State University, Tempe, Arizona, US
| | - Kurt Højlund
- Diabetes Research Centre, Department of Endocrinology, Odense University Hospital, Odense, Denmark
| | - Moulun Luo
- Center for Metabolic and Vascular Biology, Arizona State University, Tempe, Arizona, US
| | - Christian Meyer
- Center for Metabolic and Vascular Biology, Arizona State University, Tempe, Arizona, US
| | - Geetha Thangiah
- Center for Metabolic and Vascular Biology, Arizona State University, Tempe, Arizona, US
| | - Zhengping Yi
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy & Health Sciences, Wayne State University, Detroit, MI, US
- Center for Metabolic and Vascular Biology, Arizona State University, Tempe, Arizona, US
| |
Collapse
|
29
|
D'Alessandro A, Marrocco C, Rinalducci S, Mirasole C, Failla S, Zolla L. Chianina beef tenderness investigated through integrated Omics. J Proteomics 2012; 75:4381-98. [PMID: 22510581 DOI: 10.1016/j.jprot.2012.03.052] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Revised: 03/12/2012] [Accepted: 03/27/2012] [Indexed: 12/25/2022]
Abstract
In the present study we performed an integrated proteomics, interactomics and metabolomics analysis of Longissimus dorsi tender and tough meat samples from Chianina beef cattle. Results were statistically handled as to obtain Pearson's correlation coefficients of the results from Omics investigation in relation to canonical tenderness-related parameters, including Warner Bratzler shear force, myofibrillar degradation (at 48 h and 10 days after slaughter), sarcomere length and total collagen content. As a result, we could observe that the tender meat group was characterized by higher levels of glycolytic enzymes, which were over-phosphorylated and produced accumulation of glycolytic intermediates. Oxidative stress promoted meat tenderness and elicited heat shock protein responses, which in turn triggered apoptosis-like cascades along with PARP fragmentation. Phosphorylation was found to be a key process in post mortem muscle conversion to meat, as it was shown not only to modulate glycolytic enzyme activities, but also mediate the stability of structural proteins at the Z-disk. On the other hand, phosphorylation of HSPs has been supposed to alter their functions through changing their affinity for target interactors. Analogies and breed-specific differences are highlighted throughout the text via a direct comparison of the present results against the ones obtained in a parallel study on Maremmana Longissimus dorsi. It emerges that, while the main cornerstones and the final outcome are maintained, post mortem metabolism in tender and tough meat yielding individuals is subtly modulated via specific higher levels of enzymes and amino acidic residue phosphorylation in a breed-specific fashion, and whether calcium homeostasis dysregulation was a key factor in Maremmana, higher early post mortem phosphocreatine levels in the Chianina tender group could favor a slower and prolonged glycolytic rate, prolonging the extent of the minimum hanging period necessary to obtain tender meat from this breed by a few days.
Collapse
Affiliation(s)
- Angelo D'Alessandro
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell'Università, snc, 01100 Viterbo, Italy
| | | | | | | | | | | |
Collapse
|
30
|
Ferrero GO, Velazquez FN, Caputto BL. The kinase c-Src and the phosphatase TC45 coordinately regulate c-Fos tyrosine phosphorylation and c-Fos phospholipid synthesis activation capacity. Oncogene 2011; 31:3381-91. [PMID: 22105363 DOI: 10.1038/onc.2011.510] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Our previous work showed that in T98G cells, a human glioblastoma multiforme-derived cell line, the association of c-Fos to the endoplasmic reticulum (ER) and consequently, the capacity of c-Fos to activate phospholipid synthesis, is regulated by the phosphorylation state of tyrosine (tyr) residues #10 and #30 of c-Fos. The small amount of c-Fos present in quiescent cells is tyr-phosphorylated, is dissociated from the ER membranes and does not activate phospholipid synthesis. However, on induction of the cell to re-enter growth, c-Fos expression is rapidly induced, it is found dephosphorylated, associated to ER membranes and activating phospholipid synthesis (Portal et al., 2007). Herein, using in vivo and in vitro experimental strategies, we show that the kinase c-Src is capable of phosphorylating tyr residues of c-Fos whereas the phosphatase TC45 T-cell protein-tyr phosphatase (TC-PTP) dephosphorylates them, thus enabling c-Fos/ER association and activation of phospholipid synthesis. Results also suggest that the regulation of the phosphorylation/dephosphorylation cycle of c-Fos occurs at the TC-PTP level: induction of cells to re-enter growth promotes the translocation of TC45 from a nuclear to a cytoplasmic location concomitant with its activation. Activated TC45 in its turn promotes dephosphorylation of pre-formed c-Fos, enabling cells to rapidly activate phospholipid synthesis to respond to its growth demands.
Collapse
Affiliation(s)
- G O Ferrero
- CIQUIBIC (CONICET), Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | | |
Collapse
|
31
|
Naegle KM, Welsch RE, Yaffe MB, White FM, Lauffenburger DA. MCAM: multiple clustering analysis methodology for deriving hypotheses and insights from high-throughput proteomic datasets. PLoS Comput Biol 2011; 7:e1002119. [PMID: 21799663 PMCID: PMC3140961 DOI: 10.1371/journal.pcbi.1002119] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 05/25/2011] [Indexed: 01/22/2023] Open
Abstract
Advances in proteomic technologies continue to substantially accelerate capability for generating experimental data on protein levels, states, and activities in biological samples. For example, studies on receptor tyrosine kinase signaling networks can now capture the phosphorylation state of hundreds to thousands of proteins across multiple conditions. However, little is known about the function of many of these protein modifications, or the enzymes responsible for modifying them. To address this challenge, we have developed an approach that enhances the power of clustering techniques to infer functional and regulatory meaning of protein states in cell signaling networks. We have created a new computational framework for applying clustering to biological data in order to overcome the typical dependence on specific a priori assumptions and expert knowledge concerning the technical aspects of clustering. Multiple clustering analysis methodology (‘MCAM’) employs an array of diverse data transformations, distance metrics, set sizes, and clustering algorithms, in a combinatorial fashion, to create a suite of clustering sets. These sets are then evaluated based on their ability to produce biological insights through statistical enrichment of metadata relating to knowledge concerning protein functions, kinase substrates, and sequence motifs. We applied MCAM to a set of dynamic phosphorylation measurements of the ERRB network to explore the relationships between algorithmic parameters and the biological meaning that could be inferred and report on interesting biological predictions. Further, we applied MCAM to multiple phosphoproteomic datasets for the ERBB network, which allowed us to compare independent and incomplete overlapping measurements of phosphorylation sites in the network. We report specific and global differences of the ERBB network stimulated with different ligands and with changes in HER2 expression. Overall, we offer MCAM as a broadly-applicable approach for analysis of proteomic data which may help increase the current understanding of molecular networks in a variety of biological problems. Proteomic measurements, especially modification measurements, are greatly expanding the current knowledge of the state of proteins under various conditions. Harnessing these measurements to understand how these modifications are enzymatically regulated and their subsequent function in cellular signaling and physiology is a challenging new problem. Clustering has been very useful in reducing the dimensionality of many types of high-throughput biological data, as well inferring function of poorly understood molecular species. However, its implementation requires a great deal of technical expertise since there are a large number of parameters one must decide on in clustering, including data transforms, distance metrics, and algorithms. Previous knowledge of useful parameters does not exist for measurements of a new type. In this work we address two issues. First, we develop a framework that incorporates any number of possible parameters of clustering to produce a suite of clustering solutions. These solutions are then judged on their ability to infer biological information through statistical enrichment of existing biological annotations. Second, we apply this framework to dynamic phosphorylation measurements of the ERBB network, constructing the first extensive analysis of clustering of phosphoproteomic data and generating insight into novel components and novel functions of known components of the ERBB network.
Collapse
Affiliation(s)
- Kristen M Naegle
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | | | | | | |
Collapse
|
32
|
Razani-Boroujerdi S, Langley RJ, Singh SP, Pena-Philippides JC, Rir-sima-ah J, Gundavarapu S, Mishra NC, Sopori ML. The role of IL-1β in nicotine-induced immunosuppression and neuroimmune communication. J Neuroimmune Pharmacol 2011; 6:585-96. [PMID: 21671006 DOI: 10.1007/s11481-011-9284-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 05/27/2011] [Indexed: 11/27/2022]
Abstract
Although a number of inflammatory cytokines are increased during sepsis, the clinical trials aimed at down-regulating these mediators have not improved the outcome. These paradoxical results are attributed to loss of the "tolerance" phase that normally follows the proinflammatory response. Chronic nicotine (NT) suppresses both adaptive and innate immune responses, and the effects are partly mediated by the nicotinic acetylcholine receptors in the brain; however, the mechanism of neuroimmune communication is not clear. Here, we present evidence that, in rats and mice, NT initially increases IL-1β in the brain, but the expression is downregulated within 1-2 week of chronic exposure, and the animals become resistant to proinflammatory/pyrogenic stimuli. To examine the relationship between NT, IL-1β, and immunosuppression, we hypothesized that NT induces IL-1β in the brain, and its constant presence produces immunological "tolerance". Indeed, unlike wild-type C57BL/6 mice, chronic NT failed to induce immunosuppression or downregulation of IL-1β expression in IL-1β-receptor knockout mice. Moreover, while acute intracerebroventricular administration of IL-1β in Lewis (LEW) rats activated Fyn and protein tyrosine kinase activities in the spleen, chronic administration of low levels of IL-1β progressively diminished the pyrogenic and T cell proliferative responses of treated animals. Thus, IL-1β may play a critical role in the perception of inflammation by the CNS and the induction of an immunologic "tolerant" state. Moreover, the immunosuppressive effects of NT might be at least partly mediated through its effects on the brain IL-1β. This represents a novel mechanism for neuroimmune communication.
Collapse
Affiliation(s)
- Seddigheh Razani-Boroujerdi
- Respiratory Immunology Program, Lovelace Respiratory Research Institute, 2425 Ridgecrest Dr., S.E., Albuquerque, NM 87108, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Hernández-Pérez L, Depardón F, Fernández-Ramírez F, Sánchez-Trujillo A, Bermúdez-Crúz RM, Dangott L, Montañez C. α-Enolase binds to RNA. Biochimie 2011; 93:1520-8. [PMID: 21621582 DOI: 10.1016/j.biochi.2011.05.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2011] [Accepted: 05/11/2011] [Indexed: 11/18/2022]
Abstract
To detect proteins binding to CUG triplet repeats, we performed magnetic bead affinity assays and North-Western analysis using a (CUG)(10) ssRNA probe and either nuclear or total extracts from rat L6 myoblasts. We report the isolation and identification by mass spectrometry and immunodetection of α-enolase, as a novel (CUG)n triplet repeat binding protein. To confirm our findings, rat recombinant α-enolase was cloned, expressed and purified; the RNA binding activity was verified by electrophoretic mobility shift assays using radiolabeled RNA probes. Enolase may play other roles in addition to its well described function in glycolysis.
Collapse
Affiliation(s)
- Liliana Hernández-Pérez
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del IPN., Avenida Instituto Politécnico Nacional 2508, Apartado postal 14-740, DF CP 07360, Mexico
| | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Otto Warburg pioneered quantitative investigations of cancer cell metabolism, as well as photosynthesis and respiration. Warburg and co-workers showed in the 1920s that, under aerobic conditions, tumour tissues metabolize approximately tenfold more glucose to lactate in a given time than normal tissues, a phenomenon known as the Warburg effect. However, this increase in aerobic glycolysis in cancer cells is often erroneously thought to occur instead of mitochondrial respiration and has been misinterpreted as evidence for damage to respiration instead of damage to the regulation of glycolysis. In fact, many cancers exhibit the Warburg effect while retaining mitochondrial respiration. We re-examine Warburg's observations in relation to the current concepts of cancer metabolism as being intimately linked to alterations of mitochondrial DNA, oncogenes and tumour suppressors, and thus readily exploitable for cancer therapy.
Collapse
Affiliation(s)
- Willem H Koppenol
- Institute of Inorganic Chemistry, Swiss Federal Institute of Technology, Zurich, Switzerland. koppenol@inorg. chem.ethz.ch
| | | | | |
Collapse
|
35
|
Amyloid beta resistance in nerve cell lines is mediated by the Warburg effect. PLoS One 2011; 6:e19191. [PMID: 21541279 PMCID: PMC3082554 DOI: 10.1371/journal.pone.0019191] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 03/21/2011] [Indexed: 12/20/2022] Open
Abstract
Amyloid beta (Aβ) peptide accumulation in the brains of patients with Alzheimer's disease (AD) is closely associated with increased nerve cell death. However, many cells survive and it is important to understand the mechanisms involved in this survival response. Recent studies have shown that an anti-apoptotic mechanism in cancer cells is mediated by aerobic glycolysis, also known as the Warburg effect. One of the major regulators of aerobic glycolysis is pyruvate dehydrogenase kinase (PDK), an enzyme which represses mitochondrial respiration and forces the cell to rely heavily on glycolysis, even in the presence of oxygen. Recent neuroimaging studies have shown that the spatial distribution of aerobic glycolysis in the brains of AD patients strongly correlates with Aβ deposition. Interestingly, clonal nerve cell lines selected for resistance to Aβ exhibit increased glycolysis as a result of activation of the transcription factor hypoxia inducible factor 1. Here we show that Aβ resistant nerve cell lines upregulate Warburg effect enzymes in a manner reminiscent of cancer cells. In particular, Aβ resistant nerve cell lines showed elevated PDK1 expression in addition to an increase in lactate dehydrogenase A (LDHA) activity and lactate production when compared to control cells. In addition, mitochondrial derived reactive oxygen species (ROS) were markedly diminished in resistant but not sensitive cells. Chemically or genetically inhibiting LDHA or PDK1 re-sensitized resistant cells to Aβ toxicity. These findings suggest that the Warburg effect may contribute to apoptotic-resistance mechanisms in the surviving neurons of the AD brain. Loss of the adaptive advantage afforded by aerobic glycolysis may exacerbate the pathophysiological processes associated with AD.
Collapse
|
36
|
Sedoris KC, Thomas SD, Miller DM. Hypoxia induces differential translation of enolase/MBP-1. BMC Cancer 2010; 10:157. [PMID: 20412594 PMCID: PMC2873388 DOI: 10.1186/1471-2407-10-157] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Accepted: 04/22/2010] [Indexed: 12/19/2022] Open
Abstract
Background Hypoxic microenvironments in tumors contribute to transformation, which may alter metabolism, growth, and therapeutic responsiveness. The α-enolase gene encodes both a glycolytic enzyme (α-enolase) and a DNA-binding tumor suppressor protein, c-myc binding protein (MBP-1). These divergent α-enolase gene products play central roles in glucose metabolism and growth regulation and their differential regulation may be critical for tumor adaptation to hypoxia. We have previously shown that MBP-1 and its binding to the c-myc P2 promoter regulates the metabolic and cellular growth changes that occur in response to altered exogenous glucose concentrations. Results To examine the regulation of α-enolase and MBP-1 by a hypoxic microenvironment in breast cancer, MCF-7 cells were grown in low, physiologic, or high glucose under 1% oxygen. Our results demonstrate that adaptation to hypoxia involves attenuation of MBP-1 translation and loss of MBP-1-mediated regulation of c-myc transcription, evidenced by decreased MBP-1 binding to the c-myc P2 promoter. This allows for a robust increase in c-myc expression, "early c-myc response", which stimulates aerobic glycolysis resulting in tumor acclimation to oxidative stress. Increased α-enolase mRNA and preferential translation/post-translational modification may also allow for acclimatization to low oxygen, particularly under low glucose concentrations. Conclusions These results demonstrate that malignant cells adapt to hypoxia by modulating α-enolase/MBP-1 levels and suggest a mechanism for tumor cell induction of the hyperglycolytic state. This important "feedback" mechanism may help transformed cells to escape the apoptotic cascade, allowing for survival during limited glucose and oxygen availability.
Collapse
Affiliation(s)
- Kara C Sedoris
- James Graham Brown Cancer Center, Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| | | | | |
Collapse
|
37
|
Alvarez-Errico D, Yamashita Y, Suzuki R, Odom S, Furumoto Y, Yamashita T, Rivera J. Functional analysis of Lyn kinase A and B isoforms reveals redundant and distinct roles in Fc epsilon RI-dependent mast cell activation. THE JOURNAL OF IMMUNOLOGY 2010; 184:5000-8. [PMID: 20308635 DOI: 10.4049/jimmunol.0904064] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Engagement of FcepsilonRI causes its phosphorylation by Lyn kinase. Two alternatively spliced variants, Lyn A and B, are expressed in mast cells, and both isoforms interact with FcepsilonRI. Unlike Lyn A, Lyn B lacks a 21-aa region in the N-terminal unique domain. In this study, we investigated the role of Lyn A and B isoforms in mast cell signaling and responses. Lyn B was found to be a poor inducer of mast cell degranulation and was less potent in both inositol 1,4,5-triphosphate production and calcium responses. Expression of Lyn B alone showed reduced phosphorylation of both phospholipase Cgamma-1 and -2 and decreased interaction of phospholipase Cgamma-1 with the phosphorylated linker for activation of T cells. Lyn B also showed increased binding of tyrosine-phosphorylated proteins, which included the negative regulatory lipid phosphatase SHIP-1. In contrast, both Lyn A and B caused similar total cellular tyrosine phosphorylation and FcepsilonRI phosphorylation and neither Lyn A nor Lyn B alone could completely restore mast cell degranulation or dampen the excessive cytokine production seen in the absence of Lyn. However, expression of both isoforms showed complementation and normalized responses. These findings demonstrate that Lyn B differs from Lyn A in its association with SHIP-1 and in the regulation of calcium responses. However, complementation of both isoforms is required in mast cell activation.
Collapse
Affiliation(s)
- Damiana Alvarez-Errico
- Laboratory of Molecular Immunogenetics, Department of Health and Human Services, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Højlund K, Bowen BP, Hwang H, Flynn CR, Madireddy L, Geetha T, Langlais P, Meyer C, Mandarino LJ, Yi Z. In vivo phosphoproteome of human skeletal muscle revealed by phosphopeptide enrichment and HPLC-ESI-MS/MS. J Proteome Res 2010; 8:4954-65. [PMID: 19764811 DOI: 10.1021/pr9007267] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein phosphorylation plays an essential role in signal transduction pathways that regulate substrate and energy metabolism, contractile function, and muscle mass in human skeletal muscle. Abnormal phosphorylation of signaling enzymes has been identified in insulin-resistant muscle using phosphoepitope-specific antibodies, but its role in other skeletal muscle disorders remains largely unknown. This may be in part due to insufficient knowledge of relevant targets. Here, we therefore present the first large-scale in vivo phosphoproteomic study of human skeletal muscle from 3 lean, healthy volunteers. Trypsin digestion of 3-5 mg human skeletal muscle protein was followed by phosphopeptide enrichment using SCX and TiO(2). The resulting phosphopeptides were analyzed by HPLC-ESI-MS/MS. Using this unbiased approach, we identified 306 distinct in vivo phosphorylation sites in 127 proteins, including 240 phosphoserines, 53 phosphothreonines, and 13 phosphotyrosines in at least 2 out of 3 subjects. In addition, 61 ambiguous phosphorylation sites were identified in at least 2 out of 3 subjects. The majority of phosphoproteins detected are involved in sarcomeric function, excitation-contraction coupling (the Ca(2+)-cycle), glycolysis, and glycogen metabolism. Of particular interest, we identified multiple novel phosphorylation sites on several sarcomeric Z-disk proteins known to be involved in signaling and muscle disorders. These results provide numerous new targets for the investigation of human skeletal muscle phosphoproteins in health and disease and demonstrate feasibility of phosphoproteomics research of human skeletal muscle in vivo.
Collapse
Affiliation(s)
- Kurt Højlund
- Center for Metabolic Biology, Arizona State University, Tempe, Arizona 85287-3704, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Chung S, Arrell DK, Faustino RS, Terzic A, Dzeja PP. Glycolytic network restructuring integral to the energetics of embryonic stem cell cardiac differentiation. J Mol Cell Cardiol 2010; 48:725-34. [PMID: 20045004 DOI: 10.1016/j.yjmcc.2009.12.014] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 12/15/2009] [Accepted: 12/16/2009] [Indexed: 11/20/2022]
Abstract
Decoding of the bioenergetic signature underlying embryonic stem cell cardiac differentiation has revealed a mandatory transformation of the metabolic infrastructure with prominent mitochondrial network expansion and a distinctive switch from glycolysis to oxidative phosphorylation. Here, we demonstrate that despite reduction in total glycolytic capacity, stem cell cardiogenesis engages a significant transcriptome, proteome, as well as enzymatic and topological rearrangement in the proximal, medial, and distal modules of the glycolytic pathway. Glycolytic restructuring was manifested by a shift in hexokinase (Hk) isoforms from Hk-2 to cardiac Hk-1, with intracellular and intermyofibrillar localization mapping mitochondrial network arrangement. Moreover, upregulation of cardiac-specific enolase 3, phosphofructokinase, and phosphoglucomutase and a marked increase in glyceraldehyde 3-phosphate dehydrogenase (GAPDH) phosphotransfer activity, along with apparent post-translational modifications of GAPDH and phosphoglycerate kinase, were all distinctive for derived cardiomyocytes compared to the embryonic stem cell source. Lactate dehydrogenase (LDH) isoforms evolved towards LDH-2 and LDH-3, containing higher proportions of heart-specific subunits, and pyruvate dehydrogenase isoforms rearranged between E1alpha and E1beta, transitions favorable for substrate oxidation in mitochondria. Concomitantly, transcript levels of fetal pyruvate kinase isoform M2, aldolase 3, and transketolase, which shunt the glycolytic with pentose phosphate pathways, were reduced. Collectively, changes in glycolytic pathway modules indicate active redeployment, which would facilitate connectivity of the expanding mitochondrial network with ATP utilization sites. Thus, the delineated developmental dynamics of the glycolytic phosphotransfer network is integral to the remodeling of cellular energetic infrastructure underlying stem cell cardiogenesis.
Collapse
Affiliation(s)
- Susan Chung
- Marriott Heart Disease Research Program, Division of Cardiovascular Diseases, Departments of Medicine, Molecular Pharmacology and Experimental Therapeutics, and Medical Genetics, Mayo Clinic College of Medicine, Mayo Clinic, 200 First Street SW, Stabile 5, Rochester, MN 55905, USA
| | | | | | | | | |
Collapse
|
40
|
Butterfield DA, Lange MLB. Multifunctional roles of enolase in Alzheimer's disease brain: beyond altered glucose metabolism. J Neurochem 2009; 111:915-33. [PMID: 19780894 DOI: 10.1111/j.1471-4159.2009.06397.x] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Enolase enzymes are abundantly expressed, cytosolic carbon-oxygen lyases known for their role in glucose metabolism. Recently, enolase has been shown to possess a variety of different regulatory functions, beyond glycolysis and gluconeogenesis, associated with hypoxia, ischemia, and Alzheimer's disease (AD). AD is an age-associated neurodegenerative disorder characterized pathologically by elevated oxidative stress and subsequent damage to proteins, lipids, and nucleic acids, appearance of neurofibrillary tangles and senile plaques, and loss of synapse and neuronal cells. It is unclear if development of a hypometabolic environment is a consequence of or contributes to AD pathology, as there is not only a significant decline in brain glucose levels in AD, but also there is an increase in proteomics identified oxidatively modified glycolytic enzymes that are rendered inactive, including enolase. Previously, our laboratory identified alpha-enolase as one the most frequently up-regulated and oxidatively modified proteins in amnestic mild cognitive impairment (MCI), early-onset AD, and AD. However, the glycolytic conversion of 2-phosphoglycerate to phosphoenolpyruvate catalyzed by enolase does not directly produce ATP or NADH; therefore it is surprising that, among all glycolytic enzymes, alpha-enolase was one of only two glycolytic enzymes consistently up-regulated from MCI to AD. These findings suggest enolase is involved with more than glucose metabolism in AD brain, but may possess other functions, normally necessary to preserve brain function. This review examines potential altered function(s) of brain enolase in MCI, early-onset AD, and AD, alterations that may contribute to the biochemical, pathological, clinical characteristics, and progression of this dementing disorder.
Collapse
Affiliation(s)
- D Allan Butterfield
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, USA.
| | | |
Collapse
|
41
|
Zheng YH, Rengaraj D, Choi JW, Park KJ, Lee SI, Han JY. Expression pattern of meiosis associated SYCP family members during germline development in chickens. Reproduction 2009; 138:483-92. [PMID: 19525366 DOI: 10.1530/rep-09-0163] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Synaptonemal complexes (SCs) are associated with synapsis of homologous chromosomes, chiasmata distribution, recombination and segregation of chromosomes during the extended prophase of meiosis I. Three isoforms of SC proteins, SYCP1, SYCP2 and SYCP3, were identified as the structural proteins of SCs, and may be involved in the assembly and disassembly of SCs. The aim of this present study is to determine the pattern of expression of chicken homologues of SYCP family members during ovarian and testicular development. Protein sequence analysis using CLUSTAL X revealed that the sequences and potential phosphorylation sites of chicken SYCP family proteins were highly conserved with mammalian homologues of SYCP family proteins. Quantitative real-time-PCR and in situ hybridisation analysis revealed that chicken SYCP family members were differentially expressed during ovarian and testicular development. During ovarian development, all chicken SYCP family members were detected in primordial germ cells (PGCs) until embryonic day (E) 8.0; the expression continued in proliferating pre-meiotic oogonia until E15.5 and was upregulated in meiotic prophase I oocytes until hatching. After hatching, all chicken SYCP family members were detected at a low level until 24-weeks-old. During testicular development, all chicken SYCP family members were detected in PGCs until E13.0; the expression continued in pro-spermatogonia and proliferating spermatogonia for up to 8 weeks, and was upregulated in meiotic prophase I spermatocytes in adults. Our data demonstrate the expression pattern of meiosis associated SYCP family members during ovarian and testicular development in chickens.
Collapse
Affiliation(s)
- Ying Hui Zheng
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151921, South Korea
| | | | | | | | | | | |
Collapse
|
42
|
Boivin D, Labbé D, Fontaine N, Lamy S, Beaulieu É, Gingras D, Béliveau R. The Stem Cell Marker CD133 (Prominin-1) is Phosphorylated on Cytoplasmic Tyrosine-828 and Tyrosine-852 by Src and Fyn Tyrosine Kinases. Biochemistry 2009; 48:3998-4007. [DOI: 10.1021/bi900159d] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Dominique Boivin
- Laboratoire de Médecine Moléculaire, Chemistry Department, Université du Québec à Montréal, C.P. 8888, succ. centre-ville, Montréal, Québec, Canada H3C 3P8
| | - David Labbé
- Laboratoire de Médecine Moléculaire, Chemistry Department, Université du Québec à Montréal, C.P. 8888, succ. centre-ville, Montréal, Québec, Canada H3C 3P8
| | - Nicolas Fontaine
- Laboratoire de Médecine Moléculaire, Chemistry Department, Université du Québec à Montréal, C.P. 8888, succ. centre-ville, Montréal, Québec, Canada H3C 3P8
| | - Sylvie Lamy
- Laboratoire de Médecine Moléculaire, Chemistry Department, Université du Québec à Montréal, C.P. 8888, succ. centre-ville, Montréal, Québec, Canada H3C 3P8
| | - Édith Beaulieu
- Laboratoire de Médecine Moléculaire, Chemistry Department, Université du Québec à Montréal, C.P. 8888, succ. centre-ville, Montréal, Québec, Canada H3C 3P8
| | - Denis Gingras
- Laboratoire de Médecine Moléculaire, Chemistry Department, Université du Québec à Montréal, C.P. 8888, succ. centre-ville, Montréal, Québec, Canada H3C 3P8
| | - Richard Béliveau
- Laboratoire de Médecine Moléculaire, Chemistry Department, Université du Québec à Montréal, C.P. 8888, succ. centre-ville, Montréal, Québec, Canada H3C 3P8
- Holder of the “Chaire en prévention et traitement du cancer” from Université du Québec à Montréal and of the Claude-Bertrand Chair in Neurosurgery from Université de Montréal
| |
Collapse
|
43
|
Yamasaki Y, Akimitsu K. In situ localization of gene transcriptions for monoterpene synthesis in irregular parenchymic cells surrounding the secretory cavities in rough lemon (Citrus jambhiri). JOURNAL OF PLANT PHYSIOLOGY 2007; 164:1436-48. [PMID: 17223221 DOI: 10.1016/j.jplph.2006.10.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Revised: 10/24/2006] [Accepted: 10/24/2006] [Indexed: 05/13/2023]
Abstract
A cDNA (RlemispF) encoding 2-C-methyl-d-erythritol 2,4-cyclodiphosphate synthase, an enzyme of the methyl erythritol phosphate (MEP) pathway, and two homologs (RlemTPS1 and RlemTPS2) of citrus monoterpene synthase cDNA were isolated from the rough lemon (Citrus jambhiri). Transient localization of all or a part of RlemispF fused to a green fluorescence protein using particle gun-mediated DNA delivery localized RlemispF in the chloroplast. Transcripts of RlemispF and other monoterpene synthase genes are constitutively expressed in leaves of rough lemon. Transcript accumulations of RlemispF and RlemTPS1 were not induced by microbe attacks, but microbe attack weakly induced RlemTPS2 expression. Wounding decreased RlemispF expression. RlemispF and two different monoterpene synthase genes were specifically expressed in the epithelial tissue cells with dense cytoplasm that surround secretory cavities, which form a broadly round package containing a large volume of essential oils composed of monoterpenes. Interestingly, although expressions of RlemTPS1 and RlemTPS2 were detected at both mature and developing secretory cavities, the RlemispF-expressing cells were found more at around developing secretory cavities.
Collapse
Affiliation(s)
- Yumiko Yamasaki
- Laboratory of Plant Pathology, United Graduate School and Faculty of Agriculture, Kagawa University, Miki, Kagawa 761-0795, Japan
| | | |
Collapse
|
44
|
Sub-cellular localization and post-translational modifications of the Plasmodium yoelii enolase suggest moonlighting functions. Malar J 2007; 6:45. [PMID: 17437631 PMCID: PMC1868031 DOI: 10.1186/1475-2875-6-45] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2006] [Accepted: 04/16/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Enolase (2-Phospho-D-glycerate hydrolase; EC 4.2.1.11) is one of the glycolytic enzymes, whose levels are highly elevated in malaria parasite infected red blood cells. In several organisms, enolases have been shown to have diverse non glycolytic (moonlighting) biological functions. As functional diversity of a protein would require diverse sub-cellular localization, the possibility of involvement of Plasmodium enolase in moonlighting functions was examined by investigating its sub-cellular distribution in the murine malarial parasite, Plasmodium yoelii. METHODS Cellular extracts of P. yoelii were fractionated in to soluble (cytosolic) and particulate (membranes, nuclear and cytoskeletal) fractions and were analysed by one and two-dimensional gel electrophoresis. These were probed by Western blotting using antibodies raised against recombinant Plasmodium falciparum enolase. Immunofluorescence assay was used for in situ localization. Fe+3 based metal affinity chromatography was used to isolate the phospho-proteome fraction from P. yoelii extracts. RESULTS Apart from the expected presence of enolase in cytosol, this enzyme was also found to be associated with membranes, nuclei and cytoskeletal fractions. Nuclear presence was also confirmed by in situ immunofluorescence. Five different post translationally modified isoforms of enolase could be identified, of which at least three were due to the phosphorylation of the native form. in situ phosphorylation of enolase was also evident from the presence of enolase in purified phosphor-proteome of P. yoelii. Different sub-cellular fractions showed different isoform profiles. CONCLUSION Association of enolase with nuclei, cell membranes and cytoskeletal elements suggests non-glycolytic functions for this enzyme in P. yoelii. Sub-cellular fraction specific isoform profiles indicate the importance of post-translational modifications in diverse localization of enolase in P. yoelii. Further, it is suggested that post-translational modifications of enolase may govern the recruitment of enolase for non-glycolytic functions.
Collapse
|
45
|
Sawada Y, Tamada M, Dubin-Thaler BJ, Cherniavskaya O, Sakai R, Tanaka S, Sheetz MP. Force sensing by mechanical extension of the Src family kinase substrate p130Cas. Cell 2007; 127:1015-26. [PMID: 17129785 PMCID: PMC2746973 DOI: 10.1016/j.cell.2006.09.044] [Citation(s) in RCA: 714] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Revised: 08/20/2006] [Accepted: 09/25/2006] [Indexed: 11/23/2022]
Abstract
How physical force is sensed by cells and transduced into cellular signaling pathways is poorly understood. Previously, we showed that tyrosine phosphorylation of p130Cas (Cas) in a cytoskeletal complex is involved in force-dependent activation of the small GTPase Rap1. Here, we mechanically extended bacterially expressed Cas substrate domain protein (CasSD) in vitro and found a remarkable enhancement of phosphorylation by Src family kinases with no apparent change in kinase activity. Using an antibody that recognized extended CasSD in vitro, we observed Cas extension in intact cells in the peripheral regions of spreading cells, where higher traction forces are expected and where phosphorylated Cas was detected, suggesting that the in vitro extension and phosphorylation of CasSD are relevant to physiological force transduction. Thus, we propose that Cas acts as a primary force sensor, transducing force into mechanical extension and thereby priming phosphorylation and activation of downstream signaling.
Collapse
Affiliation(s)
- Yasuhiro Sawada
- Department of Biological Sciences, Columbia University, Sherman Fairchild Center Room 715, MC-2416, 1212 Amsterdam Avenue, New York, NY 10027, USA.
| | | | | | | | | | | | | |
Collapse
|
46
|
Gangenahalli GU, Singh VK, Verma YK, Gupta P, Sharma RK, Chandra R, Luthra PM. Hematopoietic stem cell antigen CD34: role in adhesion or homing. Stem Cells Dev 2006; 15:305-13. [PMID: 16846369 DOI: 10.1089/scd.2006.15.305] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
CD34 is highly glycosylated surface antigen of enormous clinical utility in the identification, enumeration, and purification of engraftable lymphohematopoietic progenitors for transplantation. However, recently its importance in the specific marking of most immature hematopoietic stem/progenitor cells have been questioned by addressing long-term reconstitution capability of CD34(-) hematopoietic cellular fractions. These controversies have stimulated a demand for elucidation of the structure, function, and molecular interactions of CD34 to define exactly its biological significance in clinical regimens. There is accumulating data showing the participation of CD34 in adhesion or perhaps homing of lymphohematopoietic progenitors. On the other hand, CD34 has been demonstrated to down-regulate cytokine-induced differentiation and proliferation of CD34(+) cells. Studies in CD34 knockout mice revealed normal hematopoiesis but a profound delay in hematopoietic reconstitution after sublethal irradiation of the mice. In short, CD34 expression is likely to represent a specific state of hematopoietic development that may have altered adhering properties with expanding and differentiating capabilities in both in vitro and in vivo conditions. This article focuses on the adhesive properties of CD34 and its potential role in homing, which are likely to mimic lymphocyte homing to the inflammatory sites.
Collapse
Affiliation(s)
- Gurudutta U Gangenahalli
- Stem-Cell Gene Therapy Research Group, Institute of Nuclear Medicine & Allied Sciences, Delhi, India.
| | | | | | | | | | | | | |
Collapse
|
47
|
Fiechter A, Gmünder FK. Metabolic control of glucose degradation in yeast and tumor cells. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2006; 39:1-28. [PMID: 2510472 DOI: 10.1007/bfb0051950] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Regulation of glucose degradation in both yeasts and tumor cells is very similar in many respects. In both cases it leads to excretion of intermediary metabolites (e.g., ethanol, lactate) in those cell types where uptake of glucose is unrestricted (Saccharomyces cerevisiae, Bowes melanoma cells). The similarities between glucose metabolism observed in yeast and tumor cells is explained by the fact that cell transformation of animal cells leads to inadequate expression of (proto-)oncogenes, which force the cell to enter the cell cycle. These events are accompanied by alterations at the signal transduction level, a marked increase of glucose transporter synthesis, enhancement of glycolytic key enzyme activities, and slightly reduced respiration of the tumor cell. In relation to homologous glucose degradation found in yeast and tumor cells there exist strong similarities on the level of cell division cycle genes, signal transduction and regulation of glycolytic key enzymes. It has been demonstrated that ethanol and lactate excretion in yeast and tumor cells, respectively, result from an overflow reaction at the point of pyruvate that is due to a carbon flux exceeding the capacity of oxidative breakdown. Therefore, the respiratory capacity of a cell determines the amount of glycolytic breakdown products if ample glucose is available. This restricted flux is also referred to as the respiratory bottleneck. The expression "catabolite repression", which is often used in textbooks to explain ethanol and acid excretion, should be abandoned, unless specific mechanisms can be demonstrated. Furthermore, it was shown that maximum respiration and growth rates are only obtained under optimum culture conditions, where the carbon source is limiting.
Collapse
|
48
|
Kathiresan T, Krishnan K, Krishnakumar V, Agrawal R, Anand A, Muralidhar D, Mishra AK, Dhople VM, Aggrawal RK, Sharma Y. Triose phosphate isomerase, a novel enzyme-crystallin, and tau-crystallin in crocodile cornea. FEBS J 2006; 273:3370-80. [PMID: 16857018 DOI: 10.1111/j.1742-4658.2006.05344.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Several enzymes are known to accumulate in the cornea in unusually high concentrations. Based on the analogy with lens crystallins, these enzymes are called corneal crystallins, which are diverse and species-specific. Examining crystallins in lens and cornea in multiple species provides great insight into their evolution. We report data on major proteins present in the crocodile cornea, an evolutionarily distant taxon. We demonstrate that tau-crystallin/alpha-enolase and triose phosphate isomerase (TIM) are among the major proteins expressed in the crocodile cornea as resolved by 2D gel electrophoresis and identified by MALDI-TOF. These proteins might be classified as putative corneal crystallins. tau-Crystallin, known to be present in turtle and crocodile lens, has earlier been identified in chicken and bovine cornea, whereas TIM has not been identified in the cornea of any species. Immunostaining showed that tau-crystallin and TIM are concentrated largely in the corneal epithelium. Using western blot, immunofluorescence and enzymatic activity, we demonstrate that high accumulation of tau-crystallin and TIM starts in the late embryonic development (after the 24th stage of embryonic development) with maximum expression in a two-week posthatched animal. The crocodile corneal extract exhibits significant alpha-enolase and TIM activities, which increases in the corneal extract with development. Our results establishing the presence of tau-crystallin in crocodile, in conjunction with similar reports for other species, suggest that it is a widely prevalent corneal crystallin. Identification of TIM in the crocodile cornea reported here adds to the growing list of corneal crystallins.
Collapse
|
49
|
Pitarch A, Jiménez A, Nombela C, Gil C. Decoding Serological Response to Candida Cell Wall Immunome into Novel Diagnostic, Prognostic, and Therapeutic Candidates for Systemic Candidiasis by Proteomic and Bioinformatic Analyses. Mol Cell Proteomics 2006; 5:79-96. [PMID: 16195222 DOI: 10.1074/mcp.m500243-mcp200] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In an effort to bring novel diagnostic and prognostic biomarkers or even potential targets for vaccine design for systemic candidiasis (SC) into the open, a systematic proteomic approach coupled with bioinformatic analysis was used to decode the serological response to Candida wall immunome in SC patients. Serum levels of IgG antibodies against Candida wall-associated proteins (proteins secreted from protoplasts in active wall regeneration, separated by two-dimensional gel electrophoresis, and identified by mass spectrometry) were measured in 45 SC patients, 57 non-SC patients, and 61 healthy subjects by Western blotting. Two-way hierarchical clustering and principal component analysis of their serum anti-Candida wall antibody expression patterns discriminated SC patients from controls and highlighted the heterogeneity of their expression profiles. Multivariate logistic regression models demonstrated that high levels of antibodies against glucan 1,3-beta-glucosidase (Bgl2p) and the anti-wall phosphoglycerate kinase antibody seropositivity were the only independent predictors of SC. Receiver operating characteristic curve analysis revealed no difference between their combined evaluation and measurement of anti-Bgl2p antibodies alone. In a logistic regression model adjusted for known prognostic factors for mortality, SC patients with high anti-Bgl2p antibody levels or a positive anti-wall enolase antibody status, which correlated with each other, had a reduced 2-month risk of death. After controlling for each other, only the seropositivity for anti-wall enolase antibodies was an independent predictor of a lower risk of fatality, supporting that these mediated the protective effect. No association between serum anti-cytoplasmic enolase antibody levels and outcomes was established, suggesting a specific mechanism of enolase processing during wall biogenesis. We conclude that serum anti-Bgl2p antibodies are a novel accurate diagnostic biomarker for SC and that, at high levels, they may provide protection by modulating the anti-wall enolase antibody response. Furthermore serum anti-wall enolase antibodies are a new prognostic indicator for SC and confer protection against it. Bgl2p and wall-associated enolase could be valuable candidates for future vaccine development.
Collapse
MESH Headings
- Aged
- Antibodies, Fungal/blood
- Antigens, Fungal/immunology
- Candida albicans/immunology
- Candidiasis/immunology
- Candidiasis/therapy
- Case-Control Studies
- Cell Wall/immunology
- Computational Biology
- Databases, Protein
- Electrophoresis, Gel, Two-Dimensional
- Female
- Fungal Proteins/immunology
- Glucan 1,3-beta-Glucosidase/immunology
- Humans
- Immunoglobulin G/blood
- Male
- Phosphopyruvate Hydratase/immunology
- Proteomics
- Sensitivity and Specificity
- Spectrometry, Mass, Electrospray Ionization
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
Collapse
Affiliation(s)
- Aida Pitarch
- Department of Microbiology II, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | | | | | | |
Collapse
|
50
|
Bates MD, Wells JM, Venkatesh B. Comparative genomics of the Hlx homeobox gene and protein: conservation of structure and expression from fish to mammals. Gene 2005; 352:45-56. [PMID: 15935575 DOI: 10.1016/j.gene.2005.03.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2004] [Revised: 02/08/2005] [Accepted: 03/01/2005] [Indexed: 11/24/2022]
Abstract
Hlx is a homeobox transcription factor gene that is expressed in intestinal and hepatic mesenchyme of the developing mouse embryo and is essential for normal intestinal and hepatic development. Because of the morphological and molecular similarities in the development of the digestive system across species, we hypothesized that the Hlx gene and protein sequences and expression patterns would be conserved among vertebrates. Comparison of the Hlx gene orthologues of human, chimpanzee, mouse, rat, pufferfish (Fugu) and zebrafish demonstrates that these six genes share an identical organization with four exons and three introns. Comparison of the inferred Hlx protein sequences from these and three additional species (chick, Spanish ribbed newt and rainbow trout) reveals significant sequence identity, with identical homeodomains. The expression of Hlx in the mesenchyme of developing chick embryos is highly similar to that of mouse. Fugu Hlx is expressed in a tissue-specific manner that is similar though not identical to that of mouse, suggesting a conservation of Hlx function between mammals and birds. The mammalian and fish Hlx genes share a putative 5' upstream enhancer as well as an inverted repeat containing CCAAT boxes on opposite strands that we have previously shown to be important for mouse Hlx gene expression. These results suggest that the function of Hlx and the mechanisms regulating its expression are highly conserved in mammals, birds, amphibians and fish.
Collapse
Affiliation(s)
- Michael D Bates
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.
| | | | | |
Collapse
|