1
|
Montenegro DE, Franklin T, Moscinski LC, Zuckerman KS, Hu XT. TGFbeta inhibits GM-CSF-induced phosphorylation of ERK and MEK in human myeloid leukaemia cell lines via inhibition of phosphatidylinositol 3-kinase (PI3-k). Cell Prolif 2009; 42:1-9. [PMID: 19143758 DOI: 10.1111/j.1365-2184.2008.00567.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVES Activation of SMAD-independent p44/42 MAPK (ERK1/2) signalling by TGFbeta has been recently reported in various cell types. However, the mechanisms for the linkage between the SMAD-dependent and -independent pathways are poorly understood. In this study, we investigated whether TGF-beta activates the ERK pathway and how TGFbeta communicates with the MAP kinase signals induced by a mitogen, in human myeloid leukaemia cells. MATERIALS AND METHODS AND RESULTS TGFbeta dramatically suppressed proliferation of MV4-11 and TF-1 cells without detectable phosphorylation of ERK1/2 and MEK1/2 for the duration of 48 h, as detected by MTT assay and Western blot analysis, respectively. In contrast, GM-CSF induced rapid and transient phosphorylation of MEK1/2 and ERK1/2 and up-regulated cell proliferation. Both GM-CSF-induced ERK1/2 activation and cell proliferation were significantly inhibited by TGFbeta. GM-CSF also induced transient phosphorylation of the p85 subunit of PI3-kinase. Corresponding to this change, phosphorylated p85 was found to bind to the GM-CSF receptor-alpha subunit, as detected by immunoprecipitation and Western blot analysis. PD98059, a selective inhibitor of MEK, blocked GM-CSF-induced phosphorylation of MEK and ERK but not p85. However, TGFbeta and LY294002, a potent inhibitor of PI3-kinase, significantly inhibited phosphorylation of both p85 and ERK1/2. CONCLUSIONS These studies thus indicate that TGFbeta does not activate the ERK pathway but turns off the GM-CSF-induced ERK signal via inhibition of the PI3-kinase-Akt pathway, in these human leukaemia cells.
Collapse
Affiliation(s)
- D E Montenegro
- School of Natural and Health Science, Barry University, Miami Shores, FL 33161, USA
| | | | | | | | | |
Collapse
|
2
|
Ahn NG, Seger R, Bratlien RL, Krebs EG. Growth factor-stimulated phosphorylation cascades: activation of growth factor-stimulated MAP kinase. CIBA FOUNDATION SYMPOSIUM 2007; 164:113-26; discussion 126-31. [PMID: 1327676 DOI: 10.1002/9780470514207.ch8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Protein phosphorylation is an important mechanism in the response of cells to growth factors by which signals can be conveyed from cell surface receptors to intracellular targets. In addition to stimulation of protein tyrosine phosphorylation, activation of growth factor receptors having protein tyrosine kinase activity leads to dramatic alterations in the levels of protein serine/threonine phosphorylation. Several growth factor-stimulated serine/threonine-specific kinases have been identified as potential mediators of such signalling. MAP (microtubule-associated protein) kinase has emerged as a very interesting member of this group, because it activates a separate kinase, pp90rsk, which is also growth factor-stimulated. MAP kinase itself appears to be regulated by protein phosphorylation, because it can be inactivated by protein phosphatases. We have identified two 60 kDa proteins that promote the phosphorylation and full activation of MAP kinase in a manner paralleling its activation by growth factors in intact cells. These 'MAP kinase activators' are themselves stimulated by growth factors, suggesting that they function as intermediates between the MAP kinase and cell surface receptors in a growth factor-stimulated kinase cascade. Identification of the components of this protein kinase cascade reveals a mechanism by which at least some of the effects of receptor tyrosine kinases can be mediated through serine/threonine phosphorylation.
Collapse
Affiliation(s)
- N G Ahn
- Department of Biochemistry, University of Washington, Seattle 98185
| | | | | | | |
Collapse
|
3
|
|
4
|
Iversen PO, Emanuel PD, Sioud M. Targeting Raf-1 gene expression by a DNA enzyme inhibits juvenile myelomonocytic leukemia cell growth. Blood 2002; 99:4147-53. [PMID: 12010819 DOI: 10.1182/blood.v99.11.4147] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Juvenile myelomonocytic leukemia (JMML) is an aggressive childhood disorder with few therapeutic options. Granulocyte-macrophage colony-stimulating factor (GM-CSF) and tumor necrosis factor-alpha (TNF-alpha) promote JMML cell growth. A hyperactive function of the ras oncogene is a hallmark of JMML. We therefore targeted the protein kinase Raf-1 downstream of Ras using a DNA enzyme that degrades mRNA-Raf-1. Western blots of JMML cell lysates revealed phosphorylated Raf-1 protein, indicating constitutive activation. Addition of GM-CSF, but not TNF-alpha, increased phosphorylation of both Raf-1 and the mitogen-activated protein kinases (MAPKs) JNK-1 and ERK-1. Depletion of Raf-1 protein markedly impaired activation of MAPKs, induced substantial inhibition of JMML cell colony formation, and virtually abolished GM-CSF hypersensitivity in JMML cells. Exogenous TNF-alpha, but not GM-CSF, restored colony formation of JMML cells pretreated with the enzyme. We could not detect any effect of the enzyme on the proliferation of normal bone marrow cells, indicating its specificity and potential safety. When immunodeficient mice engrafted with JMML cells were treated continuously with the enzyme via a peritoneal osmotic mini-pump for 4 weeks, a profound reduction in the JMML cell numbers in the recipient murine bone marrows was found. We conclude that GM-CSF is a chief regulator of JMML growth and exerts its proleukemic effects primarily via the Ras/Raf-1 signaling cascade. TNF-alpha plays a permissive role, being dependent upon GM-CSF to induce JMML cell proliferation. The DNA enzyme efficiently catabolized mRNA-Raf-1 with subsequent inhibition of JMML cell growth, suggesting its potential as a mechanism-based therapy in this fatal leukemia.
Collapse
Affiliation(s)
- Per Ole Iversen
- Institute for Nutrition Research, University of Oslo, and Department of Immunology, Molecular Medicine Group, the Norwegian Radium Hospital, Oslo, Norway.
| | | | | |
Collapse
|
5
|
von Gise A, Lorenz P, Wellbrock C, Hemmings B, Berberich-Siebelt F, Rapp UR, Troppmair J. Apoptosis suppression by Raf-1 and MEK1 requires MEK- and phosphatidylinositol 3-kinase-dependent signals. Mol Cell Biol 2001; 21:2324-36. [PMID: 11259582 PMCID: PMC86866 DOI: 10.1128/mcb.21.7.2324-2336.2001] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two Ras effector pathways leading to the activation of Raf-1 and phosphatidylinositol 3-kinase (PI3K) have been implicated in the survival signaling by the interleukin 3 (IL-3) receptor. Analysis of apoptosis suppression by Raf-1 demonstrated the requirement for mitochondrial translocation of the kinase in this process. This could be achieved either by overexpression of the antiapoptotic protein Bcl-2 or by targeting Raf-1 to the mitochondria via fusion to the mitochondrial protein Mas p70. Mitochondrially active Raf-1 is unable to activate extracellular signal-related kinase 1 (ERK1) and ERK2 but suppresses cell death by inactivating the proapoptotic Bcl-2 family member BAD. However, genetic and biochemical data also have suggested a role for the Raf-1 effector module MEK-ERK in apoptosis suppression. We thus tested for MEK requirement in cell survival signaling using the interleukin 3 (IL-3)-dependent cell line 32D. MEK is essential for survival and growth in the presence of IL-3. Upon growth factor withdrawal the expression of constitutively active MEK1 mutants significantly delays the onset of apoptosis, whereas the presence of a dominant negative mutant accelerates cell death. Survival signaling by MEK most likely results from the activation of ERKs since expression of a constitutively active form of ERK2 was as effective in protecting NIH 3T3 fibroblasts against doxorubicin-induced cell death as oncogenic MEK. The survival effect of activated MEK in 32D cells is achieved by both MEK- and PI3K-dependent mechanisms and results in the activation of PI3K and in the phosphorylation of AKT. MEK and PI3K dependence is also observed in 32D cells protected from apoptosis by oncogenic Raf-1. Additionally, we also could extend these findings to the IL-3-dependent pro-B-cell line BaF3, suggesting that recruitment of MEK is a common mechanism for survival signaling by activated Raf. Requirement for the PI3K effector AKT in this process is further demonstrated by the inhibitory effect of a dominant negative AKT mutant on Raf-1-induced cell survival. Moreover, a constitutively active form of AKT synergizes with Raf-1 in apoptosis suppression. In summary these data strongly suggest a Raf effector pathway for cell survival that is mediated by MEK and AKT.
Collapse
Affiliation(s)
- A von Gise
- Institut für Medizinische Strahlenkunde und Zellforschung, University of Würzburg, Würzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
We recently established a two-stage in vitro assay for KSR kinase activity in which KSR never comes in contact with any recombinant kinase other than c-Raf-1 and defined the epidermal growth factor (EGF) as a potent activator of KSR kinase activity (Xing, H. R., Lozano, J., and Kolesnick, R. (2000) J. Biol. Chem. 275, 17276-17280). That study, however, did not address the mechanism of c-Raf-1 stimulation by activated KSR. Here we show that phosphorylation of c-Raf-1 on Thr(269) by KSR is necessary for optimal activation in response to EGF stimulation. In vitro, KSR specifically phosphorylated c-Raf-1 on threonine residues during the first stage of the two-stage kinase assay. Using purified wild-type and mutant c-Raf-1 proteins, we demonstrate that Thr(269) is the major c-Raf-1 site phosphorylated by KSR in vitro and that phosphorylation of this site is essential for c-Raf-1 activation by KSR. KSR acts via transphosphorylation, not by increasing c-Raf-1 autophosphorylation, as kinase-inactive c-Raf-1(K375M) served as an equally effective KSR substrate. In vivo, low physiologic doses of EGF (0.001-0.1 ng/ml) stimulated KSR activation and induced Thr(269) phosphorylation and activation of c-Raf-1. Low dose EGF did not induce serine or tyrosine phosphorylation of c-Raf-1. High dose EGF (10-100 ng/ml) induced no additional Thr(269) phosphorylation, but rather increased c-Raf-1 phosphorylation on serine residues and Tyr(340)/Tyr(341). A Raf-1 mutant with valine substituted for Thr(269) was unresponsive to low dose EGF, but was serine- and Tyr(340)/Tyr(341)-phosphorylated and partially activated at high dose EGF. This study shows that Thr(269) is the major c-Raf-1 site phosphorylated by KSR. Furthermore, phosphorylation of this site is essential for c-Raf-1 activation by KSR in vitro and for optimal c-Raf-1 activation in response to physiologic EGF stimulation in vivo.
Collapse
Affiliation(s)
- H R Xing
- Laboratory of Signal Transduction, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | |
Collapse
|
7
|
Abstract
AbstractWe have developed a gene trap approach to select specific cytokine receptor/ligand responsive genes in the cell line TF-1. This cell line exhibits a dependency on granulocyte-macrophage colony-stimulating factor (GM-CSF) or interleukin-3 (IL-3) and responds to interleukin-5 (IL-5). In an attempt to detect genes modulated by one of these factors, cells were infected with the Rosaβgeo retrovirus in the presence of GM-CSF, IL-3, or IL-5 and clones were selected for retroviral integration on the basis of G418 resistance. Housekeeping and cytokine-regulated trapped genes were then differentiated on the basis of G418 resistance versus sensitivity in the presence of the different cytokines. To determine the reliability of this screen, DNA sequences upstream of the proviral integration site were identified by 5′ rapid amplification of DNA ends polymerase chain reaction (RACE PCR) from selected GM-CSF–treated and –infected clones. Comparison of the sequences with those in the Genbank database revealed that 2 sequences correspond to known genes: NACA and RBM3. NACAwas recently defined as a coactivator of c-jun–mediated transcription factors in osteoblasts, and RBM3 as a protein from the heterogeneous nuclear ribonucleoprotein family. Data from transcriptional analysis of these 2 genes in TF-1 cells showed a specific up-regulation by GM-CSF. Both transcripts were also found to be up-regulated in purified CD34+ cells, suggesting their involvement in proliferative processes during hematopoiesis. Interestingly, down-regulation was observed during monocytic differentiation of TF-1 cells, suggesting their extinction could contribute to monocytic lineage development. This study demonstrates that this gene trap approach is a useful method for identifying novel, specific cytokine-responsive genes that are involved in the regulation of hematopoiesis.
Collapse
|
8
|
Abstract
We have developed a gene trap approach to select specific cytokine receptor/ligand responsive genes in the cell line TF-1. This cell line exhibits a dependency on granulocyte-macrophage colony-stimulating factor (GM-CSF) or interleukin-3 (IL-3) and responds to interleukin-5 (IL-5). In an attempt to detect genes modulated by one of these factors, cells were infected with the Rosaβgeo retrovirus in the presence of GM-CSF, IL-3, or IL-5 and clones were selected for retroviral integration on the basis of G418 resistance. Housekeeping and cytokine-regulated trapped genes were then differentiated on the basis of G418 resistance versus sensitivity in the presence of the different cytokines. To determine the reliability of this screen, DNA sequences upstream of the proviral integration site were identified by 5′ rapid amplification of DNA ends polymerase chain reaction (RACE PCR) from selected GM-CSF–treated and –infected clones. Comparison of the sequences with those in the Genbank database revealed that 2 sequences correspond to known genes: NACA and RBM3. NACAwas recently defined as a coactivator of c-jun–mediated transcription factors in osteoblasts, and RBM3 as a protein from the heterogeneous nuclear ribonucleoprotein family. Data from transcriptional analysis of these 2 genes in TF-1 cells showed a specific up-regulation by GM-CSF. Both transcripts were also found to be up-regulated in purified CD34+ cells, suggesting their involvement in proliferative processes during hematopoiesis. Interestingly, down-regulation was observed during monocytic differentiation of TF-1 cells, suggesting their extinction could contribute to monocytic lineage development. This study demonstrates that this gene trap approach is a useful method for identifying novel, specific cytokine-responsive genes that are involved in the regulation of hematopoiesis.
Collapse
|
9
|
Mihály A, Endrész V. Neuronal expression of Raf protooncogene in the brain stem of adult guinea pig. Acta Histochem 2000; 102:203-17. [PMID: 10824613 DOI: 10.1078/s0065-1281(04)70029-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The Raf protooncogenes encode for cytoplasmic serine/threonine-specific protein kinases which can be activated via growth factor receptors by phosphorylation. Immunohistochemical and Western blotting studies have proven the existence of Raf protein kinases in neurons of the cerebral cortex of rats and guinea pigs. The aim of the present study was to map the immunohistochemical distribution of Raf kinase-like staining in the brain stem of guinea pig. Polyclonal antibodies were used that were raised against a recombinant viral protein in combination with the avidin-biotin-peroxidase system for detection of immunoreactivity. Specificity of the antibodies was tested in Western blotting experiments. Cytoplasmic immunostaining was observed in motor nuclei of hypoglossal, accessory, vagus, facial, trigeminal, abducent, oculomotor and trochlear nerves, and in the nucleus ambiguus, nucleus retroambigualis, lateral vestibular nucleus, mesencephalic nucleus of the trigeminal nerve, the red nucleus, raphe nuclei and reticular formation. Scattered neurons were stained in other sensory nuclei, such as solitary tract nuclei, medial, dorsal and ventral vestibular nuclei and cochlear nuclei. The spinal trigeminal nucleus and the main sensory nucleus of the trigeminal nerve contained few medium-sized immunoreactive cells. In general, staining was mainly somatodendritic; the axonal plexus was not positive. It is concluded, that the widespread neuronal appearance of cytoplasmic Raf kinase suggests an important role in transmission of trophic and growth factor signals in these neurons.
Collapse
Affiliation(s)
- A Mihály
- Department of Anatomy, Albert Szent-Györgyi Health Science Center, Faculty of Medicine, University of Szeged, Hungary.
| | | |
Collapse
|
10
|
Granulocyte-macrophage colony-stimulating factor stimulation results in phosphorylation of cAMP response element-binding protein through activation of pp90RSK. Blood 2000. [DOI: 10.1182/blood.v95.8.2552] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractGranulocyte-macrophage colony-stimulating factor (GM-CSF) activates several kinases and transcription factors through interaction with a heterodimeric receptor complex. We previously demonstrated that phosphorylation of the cyclic adenosine monophosphate (cAMP) response element-binding protein, CREB, occurs through a protein kinase A-independent pathway and is required for GM-CSF–induced transcriptional activation of the immediate early gene, early growth response-1 (egr-1). Recent reports indicate that receptor tyrosine kinases can induce CREB phosphorylation through activation of pp90RSK. We performed immune complex kinase assays in the human myeloid leukemic cell line, TF-1, which revealed that GM-CSF induced pp90RSK activation and phosphorylation of CREB within 5 minutes of stimulation. Transfection with the kinase-defective pp90RSK expression plasmid demonstrated a statistically significant decrease in transcriptional activation of a −116 CAT/egr-1 promoter construct in response to GM-CSF. Furthermore, activation of pp90RSK, CREB and egr-1in GM-CSF–treated cells was inhibited by the presence of the inhibitor, PD98059. In this study, we report that GM-CSF induces CREB phosphorylation and egr-1 transcription by activating pp90RSK through an MEK-dependent signaling pathway.
Collapse
|
11
|
Granulocyte-macrophage colony-stimulating factor stimulation results in phosphorylation of cAMP response element-binding protein through activation of pp90RSK. Blood 2000. [DOI: 10.1182/blood.v95.8.2552.008k30_2552_2558] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF) activates several kinases and transcription factors through interaction with a heterodimeric receptor complex. We previously demonstrated that phosphorylation of the cyclic adenosine monophosphate (cAMP) response element-binding protein, CREB, occurs through a protein kinase A-independent pathway and is required for GM-CSF–induced transcriptional activation of the immediate early gene, early growth response-1 (egr-1). Recent reports indicate that receptor tyrosine kinases can induce CREB phosphorylation through activation of pp90RSK. We performed immune complex kinase assays in the human myeloid leukemic cell line, TF-1, which revealed that GM-CSF induced pp90RSK activation and phosphorylation of CREB within 5 minutes of stimulation. Transfection with the kinase-defective pp90RSK expression plasmid demonstrated a statistically significant decrease in transcriptional activation of a −116 CAT/egr-1 promoter construct in response to GM-CSF. Furthermore, activation of pp90RSK, CREB and egr-1in GM-CSF–treated cells was inhibited by the presence of the inhibitor, PD98059. In this study, we report that GM-CSF induces CREB phosphorylation and egr-1 transcription by activating pp90RSK through an MEK-dependent signaling pathway.
Collapse
|
12
|
Hirama T, Miller CW, Koeffler HP. Translocon-associated protein alpha transcripts are induced by granulocyte-macrophage colony-stimulating factor and exhibit complex alternative polyadenylation. FEBS Lett 1999; 455:223-7. [PMID: 10437777 DOI: 10.1016/s0014-5793(99)00885-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The cloning of full length cDNA for the translocon-associated protein alpha subunit, previously called signal sequence receptor alpha, is reported as a result of differential display experiments in search of genes induced by granulocyte-macrophage colony-stimulating factor. Its messenger RNA was more abundant in growing cells than in either factor-deprived cells or quiescent cells and comprised four species, each having microheterogeneity, as a result of complex alternative polyadenylation apparently dependent on arrays of non-canonical polyadenylation signals. Radiation hybrid mapping of the gene showed that the gene is on the short arm of chromosome 6.
Collapse
Affiliation(s)
- T Hirama
- Hematology/Oncology Division, Cedars-Sinai Research Institute, UCLA School of Medicine, Los Angeles, CA, USA.
| | | | | |
Collapse
|
13
|
Xia K, Lee RS, Narsimhan RP, Mukhopadhyay NK, Neel BG, Roberts TM. Tyrosine phosphorylation of the proto-oncoprotein Raf-1 is regulated by Raf-1 itself and the phosphatase Cdc25A. Mol Cell Biol 1999; 19:4819-24. [PMID: 10373531 PMCID: PMC84280 DOI: 10.1128/mcb.19.7.4819] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
There is a growing body of evidence demonstrating that Raf-1 is phosphorylated on tyrosines upon stimulation of a variety of receptors. Although detection of Raf-1 tyrosine phosphorylation has remained elusive, genetic analyses have demonstrated it to be important for Raf-1 activation. Here we report new findings which indicate that Raf-1 tyrosine phosphorylation is regulated in vivo. In both a mammalian and baculovirus expression system, a kinase-inactive allele of Raf-1 was found to be tyrosine phosphorylated at levels much greater than that of wild-type Raf-1. The level of tyrosine phosphate on Raf-1 was markedly increased upon treatment with phosphatase inhibitors either before or after cell lysis. Cdc25A was found to dephosphorylate Raf-1 on tyrosines that resulted in a significant decrease in Raf-1 kinase activity. In NIH 3T3 cells, coexpression of wild-type Raf-1 and phosphatase-inactive Cdc25A led to a marked increase in Raf-1 tyrosine phosphorylation in response to platelet-derived growth factor. These data suggest that the tyrosine phosphorylation of Raf-1 is regulated not only by itself but also by Cdc25A.
Collapse
Affiliation(s)
- K Xia
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
14
|
Altman A, Deckert M. The function of small GTPases in signaling by immune recognition and other leukocyte receptors. Adv Immunol 1999; 72:1-101. [PMID: 10361572 DOI: 10.1016/s0065-2776(08)60017-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- A Altman
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, San Diego, California 92121, USA
| | | |
Collapse
|
15
|
Yoshida H, Nishiura T, Karasuno T, Matsumura I, Ishikawa J, Yoshimura M, Yokota T, Okajima Y, Ogawa M, Kanakura Y, Tomiyama Y, Matsuzawa Y. Effect of the interaction between fibronectin and VLA-4 on the proliferation of human B cells, especially a novel human B-cell line, OPM-3. Br J Haematol 1998; 103:804-12. [PMID: 9858236 DOI: 10.1046/j.1365-2141.1998.01049.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Very late antigen (VLA)-4 integrin has been suggested to play an important role in haemopoiesis. However, little is known concerning the roles of the fibronectin (FN)/VLA-4 interaction in the proliferation of human B cells. In this study we investigated the effect of immobilized FN on the proliferation of various B-cell lines, including a newly-established B-cell line, OPM-3, and human tonsillar B cells, that primarily express VLA-4 but not VLA-5. Immobilized FN significantly promoted the proliferation of OPM-3 cells and normal B cells via VLA-4. The cross-linking of beta1 integrins of OPM-3 cells resulted in the phosphorylation of the focal adhesion kinase (FAK) associated 90 kD protein, an increase in FAK-associated kinase activity, and the phosphorylation of Raf-1. Furthermore, the MEK1 inhibitor, PD98059, inhibited the FN-promoted proliferation of OPM-3 cells. These results demonstrate that the FN/VLA-4 interaction transmits the growth signal(s) which may be mediated by Ras pathway in OPM-3 cells, and suggest that OPM-3 cells may be of great value in studying the roles of the FN/VLA-4 interaction in human B-cell growth.
Collapse
Affiliation(s)
- H Yoshida
- The Second Department of Internal Medicine, Osaka University Medical School, Suita, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Mizuguchi R, Hatakeyama M. Conditional activation of Janus kinase (JAK) confers factor independence upon interleukin-3-dependent cells. Essential role of Ras in JAK-triggered mitogenesis. J Biol Chem 1998; 273:32297-303. [PMID: 9822709 DOI: 10.1074/jbc.273.48.32297] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytokines play crucial roles in the growth and differentiation of hematopoietic cells. They bind to specific cell membrane receptors that usually do not possess intrinsic protein-tyrosine kinase activity. Janus kinases (JAKs) are cytoplasmic protein-tyrosine kinases that physically interact with intracellular domains of the cytokine receptors and have been implicated in playing important roles in signal transduction triggered by the cytokine-cytokine receptor interaction. However, it is still uncertain whether JAK activation alone suffices to induce cell proliferation. In this work, we modified Tyk2, a member of the JAK family, by adding a membrane localization sequence and a chemical dimerizer (coumermycin)-dependent dimerization sequence. The modified Tyk2 was activated in a coumermycin-dependent manner, and the activated Tyk2 conferred cytokine independence upon interleukin-3-dependent pro-B lymphoid cells. This cytokine-independent proliferation was completely inhibited by dominant-negative Ras. These results indicate that activation of JAK through membrane-proximal dimerization is sufficient to induce cell cycle progression and that Ras is essentially involved in JAK-triggered mitogenesis.
Collapse
Affiliation(s)
- R Mizuguchi
- Department of Viral Oncology, Cancer Institute, Japanese Foundation for Cancer Research, 1-37-1 Kami-Ikebukuro, Toshima-ku, Tokyo 170-8455, Japan
| | | |
Collapse
|
17
|
de Groot RP, Coffer PJ, Koenderman L. Regulation of proliferation, differentiation and survival by the IL-3/IL-5/GM-CSF receptor family. Cell Signal 1998; 10:619-28. [PMID: 9794243 DOI: 10.1016/s0898-6568(98)00023-0] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The receptors for the I1-3/IL-5/GM-CSF cytokine family are composed of a heterodimeric complex of a cytokine-specific alpha chain and a common beta chain (betac). Binding of IL-3/IL-5/GM-CSF to their respective receptors rapidly induces activation of multiple intracellular signalling pathways, including the Ras-Raf-ERK, the JAK/STAT, the phosphatidylinositol 3-kinase PKB, and the JNK/SAPK and p38 signalling pathways. This review focuses on recent advancements in understanding how these different signalling pathways are activated by IL-3/IL-5/GM-CSF receptors, and how the individual pathways contribute to the pleiotropic effects of IL-3/IL-5/GM-CSF on their target cells, including proliferation, differentiation, survival, and effector functions.
Collapse
Affiliation(s)
- R P de Groot
- Department of Pulmonary Diseases, University Hospital Utrecht, The Netherlands.
| | | | | |
Collapse
|
18
|
Abstract
Cytokines are important regulators of hematopoiesis. They exert their actions by binding to specific receptors on the cell surface. Interleukin-5 (IL-5) is a critical cytokine that regulates the growth, activation, and survival of eosinophils. Because eosinophils play a seminal role in the pathogenesis of asthma and allergic diseases, an understanding of the signal transduction mechanism of IL-5 is of paramount importance. The IL-5 receptor is a heterodimer of alpha- and beta-subunits. The alpha-subunit is specific, whereas the beta-subunit is common to IL-3, IL-5, and granulocyte/macrophage colony-stimulating factor (GM-CSF) receptors and is crucial for signal transduction. It has been shown that there are two major signaling pathways of IL-5 in eosinophils. IL-5 activates Lyn, Syk, and JAK2 and propagates signals through the Ras-MAPK and JAK-STAT pathways. Studies suggest that Lyn, Syk, and JAK2 tyrosine kinases and SHP-2 tyrosine phosphatase are important for eosinophil survival. In contrast to their survival-promoting activity, Lyn and JAK2 appear to have no role in eosinophil degranulation or expression of surface adhesion molecules. Raf-1 kinase, on the other hand, is critical for eosinophil degranulation and adhesion molecule expression. Btk is involved in IL-5 stimulation of B cell function. However, it does not appear to be important for eosinophil function. Thus a clear segregation of signaling molecules based on their functional importance is emerging. This review describes the signal transduction mechanism of the IL-3/GM-CSF/IL-5 receptor system and compares and contrasts IL-5 signaling between eosinophils and B cells.
Collapse
Affiliation(s)
- T Adachi
- The University of Texas Medical Branch, Division of Allergy and Immunology, Department of Internal Medicine, Galveston, Texas 77555-0762, USA
| | | |
Collapse
|
19
|
Sanders MR, Lu H, Walker F, Sorba S, Dainiak N. The Raf-1 protein mediates insulin-like growth factor-induced proliferation of erythroid progenitor cells. Stem Cells 1998; 16:200-7. [PMID: 9617895 DOI: 10.1002/stem.160200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Previous studies from this and other laboratories have shown that insulin-like growth factor-1 (IGF-I) and insulin-like growth factor-2 (IGF-II) support erythroid colony formation in cultures supplemented with serum substitute and recombinant erythropoietin. Subpopulations of IGF-I- and IGF-II-dependent, erythropoietin-independent colony-forming unit-erythroid (CFU-E)-derived colonies and BFU-E-derived colonies were identified under serum-substituted conditions for adult bone-marrow-derived erythroid progenitors which proliferate in the absence and presence of exogenous anti-erythropoietin receptor monoclonal antibody and in serum-substituted medium that was preadsorbed with anti-erythropoietin IgG. To assess whether Raf-1 is required for the formation of IGF-dependent, erythropoietin-independent human erythroid colonies, 5-15 microM sense or antisense oligomer to raf-1 were added to serum-substituted cultures containing either 2 U/ml recombinant human erythropoietin (rHuEpo) alone or 0-1,000 ng/ml IGF-I or IGF-II with/without 2 U/ml rHuEpo. Both erythropoietin-induced and IGF-induced erythroid colony formation were completely blocked by antisense (but not sense) oligomers to raf-1. Purified human CFU-Es were examined for Raf-1 message and protein. Total RNA was extracted, and raf-1 mRNA was detected on Northern blots. Furthermore, a 74 kD protein, corresponding to Raf-1, was also detected in CFU-Es purified from human adult sources. Together, these studies support the hypothesis that the Raf-1 protein mediates both erythropoietin-induced and IGF-induced signal transduction in human erythroid progenitor cells.
Collapse
Affiliation(s)
- M R Sanders
- Department of Pediatrics, University of Connecticut School of Medicine, Farmington, USA
| | | | | | | | | |
Collapse
|
20
|
Wheadon H, Roberts PJ, Linch DC. Differentiation-linked changes in granulocyte-macrophage colony-stimulating factor receptor mediated signalling in the HL-60 promyelocytic cell line. Br J Haematol 1998; 101:82-9. [PMID: 9576187 DOI: 10.1046/j.1365-2141.1998.00668.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF) induces the proliferation and maturation of immature myeloid progenitor cells and primes mature cell function in phagocytes. To investigate whether the biochemical events following the binding of GM-CSF to its receptor are differentiation dependent we analysed GM-CSF mediated activation of the JAK 2-STAT 5 and MAP kinase pathways in undifferentiated HL-60 cells and HL-60 cells induced to differentiate with dimethyl sulphoxide (DMSO) or retinoic acid (RA). GM-CSF stimulated MAP kinase activation in both the undifferentiated and differentiated HL-60 cells. Activation of MAP kinase (expressed as a proportion of total cellular MAP kinase) was maximal at 5 min and of similar magnitude in both cell types. There was, however, a marked difference in the later kinetics of activation, with the response being transient in the undifferentiated cells and disappearing within 15 min, whereas it was prolonged and persisted for at least 60 min in the differentiated cells. GM-CSF mediated activation of STAT 5 was markedly increased (15-20-fold) after differentiation of HL-60 cells but the kinetics of activation did not change. The increase in STAT 5 activation was not due to a change in total cellular STAT 5 expression but correlated with increased JAK-2 protein levels. These data show that in the HL-60 cell model, differentiation modulates the activation of signalling molecules downstream of the GM-CSF receptor.
Collapse
Affiliation(s)
- H Wheadon
- Department of Haematology, University College London Medical School
| | | | | |
Collapse
|
21
|
Overexpression of Protein Kinase C Isoform but not δ in Human Interleukin-3–Dependent Cells Suppresses Apoptosis and Induces bcl-2 Expression. Blood 1998. [DOI: 10.1182/blood.v91.3.823] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractHematopoietic progenitor cells die by apoptosis after removal of the appropriate colony-stimulating factor (CSF). Recent pharmacologic data have implicated protein kinase C (PKC) in the suppression of apoptosis in interleukin-3 (IL-3) and granulocyte-macrophage (GM)-CSF–dependent human myeloid cells. Because IL-3 and GM-CSF induce increases in diacylglycerol without mobilizing intracellular Ca++, it seemed that one of the novel Ca++ independent isoforms of PKC was involved. We report here that overexpression of PKC in factor-dependent human TF-1 cells extends cell survival in the absence of cytokine. Overexpression of PKCδ does not have this effect. By 72 to 96 hours after cytokine withdrawal, the PKC transfectants remain distributed in all phases of the cell cycle, as shown by fluorescence-activated cell sorting (FACS) analysis, while little intact cellular DNA is detectable in vector or PKCδ transfectants. PKC induces bcl-2 protein expression fivefold to sixfold over the levels in empty vector transfectants, whereas the levels in PKCδ transfectants are similar to those in vector controls.
Collapse
|
22
|
Overexpression of Protein Kinase C Isoform but not δ in Human Interleukin-3–Dependent Cells Suppresses Apoptosis and Induces bcl-2 Expression. Blood 1998. [DOI: 10.1182/blood.v91.3.823.823_823_829] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hematopoietic progenitor cells die by apoptosis after removal of the appropriate colony-stimulating factor (CSF). Recent pharmacologic data have implicated protein kinase C (PKC) in the suppression of apoptosis in interleukin-3 (IL-3) and granulocyte-macrophage (GM)-CSF–dependent human myeloid cells. Because IL-3 and GM-CSF induce increases in diacylglycerol without mobilizing intracellular Ca++, it seemed that one of the novel Ca++ independent isoforms of PKC was involved. We report here that overexpression of PKC in factor-dependent human TF-1 cells extends cell survival in the absence of cytokine. Overexpression of PKCδ does not have this effect. By 72 to 96 hours after cytokine withdrawal, the PKC transfectants remain distributed in all phases of the cell cycle, as shown by fluorescence-activated cell sorting (FACS) analysis, while little intact cellular DNA is detectable in vector or PKCδ transfectants. PKC induces bcl-2 protein expression fivefold to sixfold over the levels in empty vector transfectants, whereas the levels in PKCδ transfectants are similar to those in vector controls.
Collapse
|
23
|
Lopes-Virella MF, Binzafar N, Rackley S, Takei A, La Via M, Virella G. The uptake of LDL-IC by human macrophages: predominant involvement of the Fc gamma RI receptor. Atherosclerosis 1997; 135:161-70. [PMID: 9430365 DOI: 10.1016/s0021-9150(97)00157-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The incubation of human macrophages with antigen antibody complexes prepared with rabbit anti-LDL and human LDL (LDL-IC) is followed by ingestion of those immune complexes (IC), massive cholesterol ester accumulation, cytokine release and overexpression of the LDL receptor. The massive accumulation of cholesterol esters and overexpression of the native LDL receptor are specifically induced by immune complexes containing native or modified LDL, but not by any other type of IC. We report the results of a series of experiments aimed at defining the receptor preferentially involved in LDL-IC uptake. Flow cytometry studies using CD16, CD32 and CD64 monoclonal antibodies showed a sharp reduction on the expression of CD64 (Fc gamma RI) both by human monocyte-derived macrophages and THP-1 cells after incubation with LDL-IC, suggesting preferential engagement of this type of Fc receptor. Blocking experiments with aggregate-free IgG1 and CD32 monoclonal antibody confirmed that blocking Fc gamma RI prevented both LDL-IC uptake and the upregulation of LDL receptors on THP-1 cells. In contrast, blocking Fc gamma RII did not affect either the uptake of LDL-IC or the expression of LDL receptors on the same cells. The preferential engagement of Fc gamma R-I by LDL-IC suggests a biological difference of LDL-IC relative to other types of IC and opsonized particles. The precise molecular mechanism(s) responsible for the paradoxical upregulation of LDL receptor after the uptake of LDL-IC remain to be elucidated.
Collapse
Affiliation(s)
- M F Lopes-Virella
- Ralph H. Johnson Department of Veterans Affairs Medical Center, Charleston, SC 29403, USA
| | | | | | | | | | | |
Collapse
|
24
|
Tuyt LM, Dokter WH, Vellenga E. Gene expression, biological effects and clinical aspects of lymphokines. Crit Rev Oncol Hematol 1997; 26:175-213. [PMID: 9481523 DOI: 10.1016/s1040-8428(97)10006-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- L M Tuyt
- Department of Hematology, University Hospital, Groningen, Netherlands
| | | | | |
Collapse
|
25
|
Craddock BL, Welham MJ. Interleukin-3 induces association of the protein-tyrosine phosphatase SHP2 and phosphatidylinositol 3-kinase with a 100-kDa tyrosine-phosphorylated protein in hemopoietic cells. J Biol Chem 1997; 272:29281-9. [PMID: 9361008 DOI: 10.1074/jbc.272.46.29281] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have observed previously the co-immunoprecipitation of the p85 subunit of phosphatidylinositol-3 kinase (PI3K) and SHP2 in murine lymphohemopoietic cells after stimulation with interleukin-3. We have investigated this interaction in more detail and now report the identification of a potentially novel 100-kDa protein (termed p100), which is inducibly phosphorylated on tyrosine after interleukin-3 treatment and which co-immunoprecipitates with both p85 PI3K and SHP2. The Src homology region 2 domains of both p85 and SHP2 appear to mediate their interactions with p100. Sequential precipitation analyses suggest that these interactions are direct and do not involve Grb2, and that the same p100 protein, or a portion of it, interacts with both p85 and SHP2, implying that p100 may serve to link these two proteins. Far Western blotting with both full-length p85 and isolated p85 Src homology region 2 domains supports this view. Interestingly, p100 also appears to be a substrate for the SHP2 phosphatase activity. In addition, p100 is precipitated by Grb2-glutathione S-transferase fusion proteins, an interaction largely mediated by the Grb2 SH3 domains. p100 appears to be distinct from JAK2, Vav, STAT5, and c-Cbl. Although largely cytosolic, p100 can be detected associated with SHP2 and PI3K in crude membrane fractions after interleukin-3 stimulation. We propose that p100 plays a role as an adaptor molecule, linking PI3K and SHP2 in IL-3 signaling.
Collapse
Affiliation(s)
- B L Craddock
- Pharmacology Group, Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, United Kingdom
| | | |
Collapse
|
26
|
Abstract
The AML14.3D10 human myeloid leukemic cell line expresses receptors for granulocyte-macrophage colony stimulating factor (GM-CSF) and interleukin-5 (IL-5), but not IL-3. We have found that this cell line produces GM-CSF in amounts up to 113 pg/ml in culture supernatants. Deprivation of endogenous GM-CSF by addition of neutralizing anti-GM-CSF antibody strongly inhibits proliferation of the cells, suggesting a GM-CSF autocrine growth mechanism. To examine whether endogenously produced GM-CSF activates intracellular GM-CSF/IL-3/IL-5-related signal transduction pathways, we performed antiphosphotyrosine immunoblotting of cell lysates of AML14.3D10 cells before and after deprivation of endogenous GM-CSF. We found constitutive tyrosine-phosphorylation of a number of proteins in AML14.3D10 that could not be detectably increased by the addition of exogenous GM-CSF, IL-3, or IL-5. However, GM-CSF-deprived cells demonstrated a marked increase in phosphorylation of proteins of identical molecular mass following addition of GM-CSF and IL-5, but not IL-3, consistent with the receptor expression of the cells and the known use of the same signaling pathways by the three cytokines. This suggests that AML14.3D10 cells use endogenously produced GM-CSF to activate signal transduction pathways, interfering with activation by exogenous cytokine until the endogenous stimulation is removed. We then assessed the activation of the beta-subunit common to the GM-CSF/IL-3/IL-5 receptors (beta c), JAK2 and p53/56 lyn, known to be involved in the common signaling pathways of the three cytokines. We found that phosphorylation of beta c and JAK2 in response to GM-CSF and IL-5 could be markedly enhanced by depriving cells of endogenous GM-CSF. Constitutive hyperphosphorylation of lyn was found in AML14.3D10 cells, and no further activation of lyn in response to cytokine was demonstrable in GM-CSF-deprived cells, suggesting that lyn is activated in this cell line by a mechanism other than GM-CSF. These studies represent the first demonstration of autocrine activation of intracellular cytokine signaling pathways by malignant hematopoietic cells. Because the addition of anti-GM-CSF to cell cultures improved responsiveness of intracellular signal transducing molecules to exogenous GM-CSF and IL-5, it can be inferred that endogenously produced GM-CSF exerts its effects by secretion and binding to surface GM-CSF receptors, although an intracellular component to signaling cannot be excluded. These observations provide further information regarding an autocrine contribution to leukemic cell growth, and establish a new model for study of these events.
Collapse
Affiliation(s)
- C C Paul
- Research Service, VA Medical Center, Wright State University, Dayton, Ohio 45428, USA
| | | | | | | |
Collapse
|
27
|
Abstract
The protooncogene Bcl-2 functions as a suppressor of apoptosis in growth factor-dependent cells, but a post-receptor signaling mechanism is not known. We recently reported that interleukin 3 (IL-3) and erythropoietin, or the protein kinase C activator bryostatin-1 (Bryo), not only suppresses apoptosis but also stimulates the phosphorylation of Bcl-2 (May, W. S., Tyler, P. G., Ito, T., Armstrong, D. K., Qatsha, K. A., and Davidson, N. E. (1994) J. Biol. Chem. 269, 26865-26870). To test whether phosphorylation is required for Bcl-2 function, conservative serine --> alanine mutations were produced at the seven putative protein kinase C phosphorylation sites in Bcl-2. Results indicate that the S70A Bcl-2 mutant fails to be phosphorylated after IL-3 or Bryo stimulation and is unable to support prolonged cell survival either upon IL-3 deprivation or etoposide treatment when compared with wild-type Bcl-2. In contrast, a Ser --> Glu mutant, S70E, which may mimic a potential phosphate charge, more potently suppressed the etoposide-induced apoptosis than wild type in the absence of IL-3. Since the loss of function S70A mutant can heterodimerize with its partner protein and death effector Bax, these findings demonstrate that Bcl-2:Bax heterodimerization is not sufficient and Bcl-2 phosphorylation is required for full Bcl-2 death suppressor signaling activity.
Collapse
Affiliation(s)
- T Ito
- Sealy Center for Oncology and Hematology and Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas 77555-1048, USA
| | | | | | | |
Collapse
|
28
|
Holland J, Owens T. Signaling through intercellular adhesion molecule 1 (ICAM-1) in a B cell lymphoma line. The activation of Lyn tyrosine kinase and the mitogen-activated protein kinase pathway. J Biol Chem 1997; 272:9108-12. [PMID: 9083038 DOI: 10.1074/jbc.272.14.9108] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Intercellular adhesion molecule 1 (ICAM-1) (CD54) is an adhesion molecule of the immunoglobulin superfamily. The interaction between ICAM-1 on B lymphocytes and leukocyte function-associated antigen 1 on T cells plays a major role in several aspects of the immune response, including T-dependent B cell activation. While it was originally believed that ICAM-1 played a purely adhesive role, recent evidence suggests that it can itself transduce biochemical signals. We demonstrate that cross-linking of ICAM-1 results in the up-regulation of class II major histocompatibility complex, and we investigate the biochemical mechanism for the signaling role of ICAM-1. We show that cross-linking of ICAM-1 on the B lymphoma line A20 induces an increase in tyrosine phosphorylation of several cellular proteins, including the Src family kinase p53/p56(lyn). In vitro kinase assays showed that Lyn kinase was activated within 1 min after ICAM-1 cross-linking. In addition, ICAM-1 cross-linking resulted in activation of Raf-1 and mitogen-activated protein kinases, as determined by gel mobility shift. Activation of these kinases may represent important components in the cascade of signals that link ICAM-1 to various ICAM-1-elicited cellular responses. These data confirm the important role of ICAM-1 as a signaling molecule in B cell activation.
Collapse
Affiliation(s)
- J Holland
- Department of Microbiology and Immunology, McGill University, Neuroimmunology Unit, Montreal Neurological Institute, 3801 University, Montreal, Quebec, Canada H3A 2B4
| | | |
Collapse
|
29
|
Abstract
Interleukin-2 (IL-2), secreted principally by activated helper T-cells, plays a pivotal role in the generation and regulation of the immune response. The various biologic functions of IL-2 have been the focus of intensive study over the years and have been well worked out. By contrast, an understanding of the intracellular signals coupled to the IL-2 receptor and responsible for mediating IL-2 effects in T-cells is far less developed, and the role that protein kinase C (PKC) may play in the various cellular responses to IL-2 receptor activation is unclear. In this article we will discuss IL-2, its receptors, and IL-2 signal transduction in relation to the physiological roles PKC activation may play in IL-2-mediated activation of T-cells and other hematopoietic cells.
Collapse
Affiliation(s)
- Y Lu
- Cellular Neurobiology Group, Institute for Biological Sciences, National Research Council of Canada, Ottawa, Canada
| | | |
Collapse
|
30
|
Muszynski KW, Ruscetti FW, Gooya JM, Linnekin DM, Keller JR. Raf-1 protein is required for growth factor-induced proliferation of primitive hematopoietic progenitors stimulated with synergistic combinations of cytokines. Stem Cells 1997; 15:63-72. [PMID: 9007224 DOI: 10.1002/stem.150063] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Raf-1 is a serine/threonine kinase that has been identified as a component of growth factor-activated signal transduction pathways, and is required for growth factor-induced proliferation of leukemic cell lines and colony formation of hematopoietic progenitors stimulated with single colony-stimulating factors, which promote the growth of committed hematopoietic progenitor cells. However, it is known that the most primitive progenitors in the bone marrow require stimulation with multiple cytokines to promote cell growth. We have determined that c-raf antisense oligonucleotides inhibit the growth of murine lineage-negative progenitors stimulated with two-, three- and four-factor combinations of growth factors, including GM-CSF + interleukin (IL)- 1, IL-3 + steel factor (SLF), IL-3 + IL-11 + SLF and IL-3 + IL-11 + SLF + G-CSF. In addition, c-raf antisense oligonucleotides inhibit the synergistic response of the MO7e human progenitor cell line induced to proliferate with IL-3 + SLF (99%) or GM-CSF + SLF (99%). In contrast, c-raf antisense oligonucleotides only partially inhibited day 14 colony formation of CD34+ human progenitors stimulated with IL-3 + SLF (50%) or GM-CSF + SLF (55%) but completely inhibited day 7 colony formation. However, pulsing CD34+ cells with additional oligonucleotides on day 7 of the colony assay further inhibited day 14 colony formation (70%-80%). Furthermore, a comparison of the effect of c-raf antisense oligonucleotides on the synergistic response of normal human fetal liver cells in [3H]thymidine incorporation assays and colony assays showed strong inhibition in short-term proliferation assays and partial inhibition in 14-day colony assays. Taken together, these results demonstrate that partial inhibition of colony formation of primitive human progenitors stimulated with multiple growth factors is a result of the length (14 days) of the human colony assay and does not represent a differential requirement of primitive progenitors for Raf-1. Thus Raf-1 is required for the proliferation and differentiation of primitive hematopoietic progenitor cells stimulated with synergistic combinations of cytokines.
Collapse
Affiliation(s)
- K W Muszynski
- Intramural Research Support Program, SAIC Frederick, National Cancer Institute-Frederick Cancer Research and Development Center, Maryland 21702-1201, USA
| | | | | | | | | |
Collapse
|
31
|
Abstract
The activation of the serine/threonine kinase, Raf-1, serves to connect upstream protein tyrosine kinases to downstream signaling events. We previously reported that FcgammaRI stimulation of interferon gamma-differentiated U937 cells (termed U937IF cells) induces a mobility shift in Erk2. Herein, we report that cross-linking of FcgammaRI receptor in U937IF cells induces a marked tyrosine phosphorylation of Raf-1 (10-fold increase). Tyrosine phosphorylation of Raf-1 is induced by FcgammaRI activation and not by PMA (1 microg/ml), N-formyl-Met-Leu-Phe (1 microM), calcium ionophore (1 microM), thrombin (0.05 unit/ml), FcgammaRII, or FcgammaRIII stimulation. The kinetics of Raf-1 tyrosine phosphorylation is rapid, reaching peak levels 1-2 min after FcgammaRI activation, and the tyrosine phosphorylation of Raf-1 precedes the activation of the respiratory burst. FcgammaRI cross-linking induces the tyrosine phosphorylation of Shc; tyrosine-phosphorylated Shc binds to Grb2 forming a Shc-Grb2 complex. The data provide evidence that the FcgammaRI receptor signals via the upstream activation of nonreceptor protein tyrosine kinases, which leads to the subsequent activation of Ras family GTPases and serine/threonine kinases, Raf-1 and mitogen-activated protein kinase.
Collapse
Affiliation(s)
- R K Park
- Neil Bogart Memorial Laboratories, Division of Hematology-Oncology, Childrens Hospital Los Angeles and University of Southern California School of Medicine, Los Angeles, California 90027, USA
| | | | | |
Collapse
|
32
|
Joseph DE, Paul CC, Baumann MA, Gomez-Cambronero J. S6 kinase p90rsk in granulocyte-macrophage colony-stimulating factor-stimulated proliferative and mature hematopoietic cells. J Biol Chem 1996; 271:13088-93. [PMID: 8662788 DOI: 10.1074/jbc.271.22.13088] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The ribosomal S6 kinase p90(rsk) was studied in mature and proliferating hemopoietic cells in response to the human cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF). In neutrophils, GM-CSF induced time-dependent electrophoretic mobility shifts in immunoreactive p90(rsk). Although these shifts suggested changes in the phosphorylation status of the molecule, a kinase assay with whole cell lysates detected minimal (1.5-fold) increments in enzymatic activity. Only immunoprecipitation followed by immune complex kinase assay or in-gel kinase assay performed against the RSK substrate RRLSSLRA evidenced an increase in p90(rsk) activity (3.4-fold). p90(rsk) was also detected in the GM-CSF-dependent erythroleukemia cell line TF-1. Normally cultured, cytokine-supplemented cells did not respond to further GM-CSF stimulation. However, the activity of p90(rsk) in cytokine-starved cells increased dramatically in response to short term GM-CSF challenge. This effect was readily observable in total cell lysates (6.6-fold increase over controls) and was paralleled by changes in mitogen-activated protein kinase activity (a substrate of p90(rsk)). Thus, p90(rsk) is present in mature hemopoietic cells, but the extent of the enzymatic response to GM-CSF is significantly lower than that seen in proliferative cells.
Collapse
Affiliation(s)
- D E Joseph
- Department of Physiology, Wright State University School of Medicine, Dayton, Ohio 45435 USA
| | | | | | | |
Collapse
|
33
|
Abstract
Hematopoiesis is largely regulated by the binding of cytokines to receptors of the cytokine receptor superfamily. Although lacking catalytic domains, members of the cytokine receptor superfamily mediate ligand dependent activation of tyrosine phosphorylation which is critical for all receptor functions. Recent studies have demonstrated that this is mediated through the association and activation of members of the Janus kinase (Jak) family of protein tyrosine kinases. The activated Jaks phosphorylate the receptors, creating docking sites for SH2 containing signalling proteins which are tyrosine phosphorylated following their association with the receptor complex. Among the substrates of tyrosine phosphorylation are members of the signal transducers and activators of transcription family of proteins (Stats). Various cytokines induce the tyrosine phosphorylation and activation of one or more of the six family members. The pattern of Stat activation provides a level of cytokine individuality that is not observed in the activation of other signalling pathways. Although not required for mitogenic responses, it is speculated that the Stats may mediate many of the cytokine specific functional responses of hematopoietic cells.
Collapse
Affiliation(s)
- J N Ihle
- Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, Tennessee 38101, USA
| |
Collapse
|
34
|
Brizzi MF, Aronica MG, Rosso A, Bagnara GP, Yarden Y, Pegoraro L. Granulocyte-macrophage colony-stimulating factor stimulates JAK2 signaling pathway and rapidly activates p93fes, STAT1 p91, and STAT3 p92 in polymorphonuclear leukocytes. J Biol Chem 1996; 271:3562-7. [PMID: 8631962 DOI: 10.1074/jbc.271.7.3562] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF), supports proliferation, differentiation, and functional activation of hemopoietic cells by its interaction with a heterodimeric receptor. Although GM-CSF receptor is devoid of tyrosine kinase enzymatic activity, GM-CSF-induced peripheral blood polymorphonuclear leukocytes (PMN) functional activation is mediated by the phosphorylation of a large number of intracellular signaling molecules. We have previously shown that JAK2 becomes tyrosine-phosphorylated in response to GM-CSF in PMN. In the present study we demonstrate that also the signal transducers and activators of transcription (STAT) family members STAT1 p91 and STAT3 p92 and the product of the c-fps/fes protooncogene become tyrosine-phosphorylated upon GM-CSF stimulation and physically associated with both GM-CSF receptor beta common subunit and JAK2. Moreover GM-CSF was able to induce JAK2 and p93fes catalytic activity. We also demonstrate that the association of the GM-CSF receptor beta common subunit with JAK2 is ligand-dependent. Finally we demonstrate that GM-CSF induces a DNA-binding complex that contains both p91 and p92. These results identify a new signal transduction pathway activated by GM-CSF and provide a mechanism for rapid activation of gene expression in GM-CSF-stimulated PMN.
Collapse
Affiliation(s)
- M F Brizzi
- Dipartimento di Scienze Biomediche e Oncologia Umana, Università di Torino, 10126 Torino, Italy
| | | | | | | | | | | |
Collapse
|
35
|
Affiliation(s)
- J P Liu
- Department of Medical Oncology, Newcastle Mater Misericordiae Hospital, New South Wales, Australia
| |
Collapse
|
36
|
Ihle JN. Signaling by the cytokine receptor superfamily in normal and transformed hematopoietic cells. Adv Cancer Res 1996; 68:23-65. [PMID: 8712070 DOI: 10.1016/s0065-230x(08)60351-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- J N Ihle
- Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| |
Collapse
|
37
|
Sunohara M, Tanzawa H, Kaneko Y, Fuse A, Sato K. Expression patterns of Raf-1 suggest multiple roles in tooth development. Calcif Tissue Int 1996; 58:60-4. [PMID: 8825240 DOI: 10.1007/bf02509547] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Raf-1, the product of proto-oncogene c-raf-1, has key roles in the signal transduction pathways within the cell. The molecular mechanisms of tooth development in the mouse embryo are not known in detail. We examined the expression of Raf-1 during subsequent tooth development by immunohistochemical analysis. In mouse embryos at days 12.5 post-coitum (p.c.), Raf-1 was expressed in the dental invaginating epithelium. At p.c. 13.5 (bud stage), Raf-1 was also expressed in the epithelial cells of the enamel organ, but not in the mesenchyme of the dental papilla. We added anti-proliferating cell nuclear antigen (PCNA) antibody as a marker for proliferating cells at early stages of tooth development. At p.c. 12.5 and p.c. 13.5, the staining patterns were very similar to that for Raf-1. At p.c. 15.5 (cap stage), Raf-1 could not be detected. At p.c. 17.5 (bell stage), Raf-1 was expressed in both the odontoblastic and subodontoblastic cells of the dental papilla. However, Raf-1 was not found in the epithelial cells of the enamel organ. We also added anti-type I collagen antibody as a marker for odontoblasts differentiation. The staining pattern for type I collagen antibody as a marker for odontoblasts differentiation. The staining pattern for type I collagen in odontoblasts was almost the same as for Raf-1. The results suggest that Raf-1 may play some roles in both cell proliferation and differentiation at different stages of tooth germ development.
Collapse
Affiliation(s)
- M Sunohara
- Department of Oral Surgery, Chiba University, Japan
| | | | | | | | | |
Collapse
|
38
|
Keller JR, Ruscetti FW, Heidecker G, Linnekin DM, Rapp U, Troppmair J, Gooya J, Muszynski KW. The effect of c-raf antisense oligonucleotides on growth factor-induced proliferation of hematopoietic cells. Curr Top Microbiol Immunol 1996; 211:43-53. [PMID: 8585963 DOI: 10.1007/978-3-642-85232-9_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
While it is well established that Raf-1 kinase is activated by phosphorylation in growth factor-dependent hematopoietic cell lines stimulated with a variety of hematopoietic growth factors, little is known about the biological effects of Raf-1 activation on normal hematopoietic cells. Therefore, we examined the requirement for Raf-1 in growth factor-regulated proliferation and differentiation of hematopoietic cells using c-faf antisense oligonucleotide. Raf-1 required for the proliferation of growth factor dependent cell lines stimulated by IL-2, IL-3, G-CSF, GM-CSF and EPO that bind to the hematopoietin class of receptors. Raf-1 is also required for the proliferation of cell lines stimulated by growth factors that use the tyrosine kinase containing receptor class, including SLF and CSF-1. In addition, Raf-1 is also required for IL-6, LIF- and OSM-induced proliferation whose receptors share the gp 130 subunit. In contrast to previous results which demonstrated that IL-4 could not activate Raf-1 kinase, c-raf antisense oligonucleotides also inhibited IL-4-induced proliferation of T cell and myeloid cell lines. Using normal hematopoietic cells, c-raf antisense oligonucleotides completely suppressed the colony formation of murine hematopoietic progenitors in response to single growth factors, such as IL-3, CSF-1 or GM-CSF. Further, c-raf antisense oligonucleotides inhibited the growth of murine progenitors stimulated with synergistic combinations of growth factors (required for primitive progenitor growth) including two, three and four factor combinations. In comparison to murine hematopoietic cells, c-raf antisense oligonucleotides also inhibited both IL-3 and GM-CSF-induced colony formation of CD 34+ purified human progenitors. In addition, Raf-1 is required for the synergistic response of CD 34+ human bone marrow progenitors to multiple cytokines; however, this effect was only observed when additional antisense oligonucleotides were added to the cultures at day 7 of a 14 day assay. Finally, Raf-1 is required for the synergistic response of human Mo-7e cells and of normal human fetal liver cells to five factor combinations. Thus, Raf-1 is required to transduce growth factor-induced proliferative signals in factor-dependent progenitor cells lines for all known classes of hematopoietic growth factor receptors, and is required for the growth of normal murine and human bone marrow-derived progenitors.
Collapse
Affiliation(s)
- J R Keller
- Biological Carcinogenesis and Development Program, SAIC Frederick, MD 21702-1201, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Wong A, Sakamoto KM. Granulocyte-macrophage colony-stimulating factor induces the transcriptional activation of egr-1 through a protein kinase A-independent signaling pathway. J Biol Chem 1995; 270:30271-3. [PMID: 8530445 DOI: 10.1074/jbc.270.51.30271] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF) rapidly and transiently induces the transcriptional activation of the early growth response gene-1 (egr-1) in the human factor-dependent myeloid leukemic cell line, TF-1. We previously demonstrated that the cAMP response element (CRE) is required for GM-CSF-induced egr-1 expression and that phosphorylation of CREB on serine 133 plays a critical role during GM-CSF signal transduction. To determine whether GM-CSF activates signaling pathways through a protein kinase A-dependent or -independent pathway, we measured cAMP levels following GM-CSF or forskolin treatment of TF-1 cells. Forskolin but not GM-CSF stimulation resulted in an increase in cAMP levels. Transient transfection assays with TF-1 cells were also performed with a -116-nucleotide egr-1 promoter construct and the protein kinase inhibitor, PKI. Although PKI inhibited forskolin induction of the -116-nucleotide construct, it did not affect GM-CSF stimulation of this construct. In the present study, we demonstrated that GM-CSF induces egr-1 expression through a protein kinase A-independent pathway.
Collapse
Affiliation(s)
- A Wong
- Gwynne Hazen Cherry Memorial Laboratories, Department of Pediatrics, UCLA School of Medicine 90095-1752, USA
| | | |
Collapse
|
40
|
Liu L, Cutler RL, Krystal G. Identification and characterization of an interleukin-3 receptor-associated 110-kDa serine/threonine kinase. J Biol Chem 1995; 270:22422-7. [PMID: 7545678 DOI: 10.1074/jbc.270.38.22422] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We recently reported that interleukin-3 (IL-3) stimulation of the murine IL-3-responsive cell line, B6SUtA1, results in the rapid phosphorylation of the beta subunit of the IL-3 receptor (IL-3R), not only on tyrosine residues but on serine/threonine (Ser/Thr) residues as well. Since this occurred even at 4 degrees C, it suggested that a Ser/Thr-specific kinase might be closely associated with the IL-3R. To test this possibility, IL-3R complexes were isolated with anti-IL-3R (alpha IL-3R) antibodies, and in vitro phosphorylation studies were undertaken. These revealed the presence of a 110-kDa protein that was heavily phosphorylated in vitro on serine and threonine residues and that bound selectively to gamma-ATP-Sepharose beads. Moreover, this protein, which was not the 110-kDa subunit of phosphatidylinositol 3-kinase, was tyrosine phosphorylated in response to IL-3 and was specifically labeled in vitro with azido-[32P]ATP. These data, together with in vitro kinase inhibitor studies, suggest that an as yet uncharacterized H7- and staurosporine-sensitive 110-kDa Ser/Thr kinase may be constitutively associated with the IL-3R and activated following IL-3 stimulation. A comparison of IL-3R and erythropoietin receptor complexes suggests that this 110-kDa protein may be preferentially associated with the IL-3R.
Collapse
Affiliation(s)
- L Liu
- Terry Fox Laboratory, British Columbia Cancer Research Centre, Vancouver, Canada
| | | | | |
Collapse
|
41
|
Abstract
The addition of interleukin-3 (IL-3) and granulocyte-macrophage colony-stimulating factor (GM-CSF) to hormone-dependent cells induces tyrosine phosphorylation of Janus protein kinase 2 (Jak2) and activates its in vitro kinase activity. To explore the role of Jak2 in IL-3/GM-CSF-mediated signal transduction, we constructed a CD16/CD7/Jak2 (CD16/Jak2) fusion gene containing the external domain of CD16 and the entire Jak2 molecule and expressed this fusion protein using a recombinant vaccinia virus. The clustering of CD16/Jak2 fusion protein by cross-linking with an anti-CD16 antibody induced autophosphorylation of the fusion protein but did not induce the phosphorylation of either the endogenous Jak2 or the beta chain. Cross-linking of CD16/Jak2 stimulates the tyrosine phosphorylation of a large group of proteins that are also phosphorylated after the addition of IL-3 or GM-CSF and include proteins of 145, 97, 67, 52, and 42 kDa. Closer analysis demonstrated that the CD16/Jak2 phosphorylates Shc, a 52-kDa protein, and the 145-kDa protein associated tightly with Shc, as well as mitogen-associated protein kinase (pp42). Electrophoretic mobility shift assays demonstrate that CD16/Jak2 activates the ability of signal transduction and activation of transcription (STAT) proteins to bind to an interferon-gamma-activated sequence oligonucleotide in a manner similar to that seen after IL-3 treatment. Cross-linking of the CD16/Jak2 protein stimulated increases in c-fos and junB similar to IL-3 but did not cause major changes in the levels of the c-myc message, which normally increases after IL-3 treatment. Thus, a transmembrane CD16/Jak2 fusion is capable of activating protein phosphorylation and mRNA transcription in a manner similar but not identical to hematopoietic growth factors.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, CD7
- Antigens, Differentiation, T-Lymphocyte/genetics
- Antigens, Differentiation, T-Lymphocyte/metabolism
- B-Lymphocytes
- Base Sequence
- Calcium-Calmodulin-Dependent Protein Kinases/metabolism
- Cell Line
- Cross-Linking Reagents
- Enzyme Activation
- Hematopoietic Stem Cells
- Janus Kinase 2
- Mice
- Molecular Sequence Data
- Phosphoproteins/biosynthesis
- Phosphorylation
- Protein-Tyrosine Kinases/genetics
- Protein-Tyrosine Kinases/metabolism
- Proto-Oncogene Proteins
- Proto-Oncogene Proteins c-myc/biosynthesis
- Receptors, IgG/genetics
- Receptors, IgG/metabolism
- Recombinant Fusion Proteins/metabolism
- Signal Transduction
- Transcription, Genetic
Collapse
Affiliation(s)
- I Sakai
- Department of Medicine, University of Alabama, Birmingham 35223
| | | | | |
Collapse
|
42
|
Lee HJ, Mignacca RC, Sakamoto KM. Transcriptional activation of egr-1 by granulocyte-macrophage colony-stimulating factor but not interleukin 3 requires phosphorylation of cAMP response element-binding protein (CREB) on serine 133. J Biol Chem 1995; 270:15979-83. [PMID: 7608156 DOI: 10.1074/jbc.270.27.15979] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin 3 (IL-3) stimulate the proliferation and maturation of myeloid progenitor cells following interaction with heterodimeric receptors that share a common beta subunit required for signal transduction. Our previous studies have demonstrated that GM-CSF and IL-3 activate signaling pathways which converge upon a cAMP response element-binding protein (CREB)-binding site of the human immediate early response gene (early growth response gene-1, egr-1) promoter. Using electromobility supershift assays and antibodies directed against CREB phosphorylated on serine 133, we show that CREB is phosphorylated on serine 133 in response to GM-CSF or IL-3 stimulation. We demonstrate that phosphorylation of CREB on serine 133 substantially contributes to transcriptional activation of egr-1 in response to GM-CSF but not IL-3. These studies suggest that phosphorylation of CREB may play different roles during signal transduction, resulting in unique and overlapping biological functions in myeloid cells.
Collapse
Affiliation(s)
- H J Lee
- Gwynne Hazen Cherry Memorial Laboratories, Department of Pediatrics, UCLA School of Medicine 90095-1752, USA
| | | | | |
Collapse
|
43
|
Watanabe S, Ito Y, Miyajima A, Arai K. Granulocyte macrophage-colony stimulating factor-dependent replication of polyoma virus replicon in hematopoietic cells. Analyses of receptor signals for replication and transcription. J Biol Chem 1995; 270:9615-21. [PMID: 7721893 DOI: 10.1074/jbc.270.16.9615] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Granulocyte macrophage-colony stimulating factor (GM-CSF) stimulates proliferation of various hematopoietic cells. Using cytoplasmic deletion mutants of the human GM-CSF receptor (hGMR) beta subunit and tyrosine kinase inhibitors, we previously showed that distinct signaling pathways of hGMR are involved in the induction of c-fos/c-jun mRNAs and of c-myc mRNA/cell proliferation. We used polyoma virus (Py) replicon to analyze the initiation of DNA replication induced by hGM-CSF in mouse BA/F3 pro-B cells expressing hGMR. hGM-CSF efficiently stimulated Py replication in the presence of Py enhancer and Py large T antigen supplied in trans. Analyses of Py enhancer mutants revealed that hGM-CSF promoted Py replication and activated transcription of the Py early promoter through the PEA3/PEBP5 region of Py enhancer. The membrane proximal region of hGMR beta subunit is required for activation of PEA3/PEBP5-dependent replication which is also required for activation of DNA synthesis in the host cells. In contrast, a more distal region which is essential for activation of c-fos and c-jun genes is required for the PEA3/PEBP5-dependent transcription of Py early promoter. These results indicate that distinct signaling pathways of hGMR are required to activate PEA3/PEBP5-dependent replication and transcription although the same enhancer is required for both activities.
Collapse
Affiliation(s)
- S Watanabe
- Department of Molecular and Developmental Biology, University of Tokyo, Japan
| | | | | | | |
Collapse
|
44
|
Owen-Lynch PJ, Wong AK, Whetton AD. v-Abl-mediated apoptotic suppression is associated with SHC phosphorylation without concomitant mitogen-activated protein kinase activation. J Biol Chem 1995; 270:5956-62. [PMID: 7534303 DOI: 10.1074/jbc.270.11.5956] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
A temperature-sensitive mutant of the v-Abl protein has previously been shown to exhibit tyrosine protein kinase activity in Interleukin 3 (IL-3)-dependent IC.DP cells grown at the permissive temperature (32 degrees C) but not at the restrictive temperature (39 degrees C). These IC.DP cells are dependent on IL-3 for suppression of apoptosis at 39 degrees C, but at 32 degrees C cells will survive without added growth factor. Both IL-3 and v-Abl stimulated the tyrosine phosphorylation of SHC and GTPase-activating protein. However, while IL-3 stimulated similar levels of tyrosine phosphorylation in p46shc and p52shc, v-Abl preferentially phosphorylated p52shc, an event that occurred within 1 h of temperature switch. v-Abl also differentially associated with p46shc in a temperature-independent manner. In contrast, only IL-3 stimulated detectable increases in both myelin basic protein kinase and mitogen-activated protein (MAP) kinase kinase in in vitro assays, although in more specific MAP kinase activity assays a very slight increase in the activity of this enzyme was observed after 6 h at the permissive temperature. Time course studies suggest that phosphorylation and association of SHC with v-Abl is insufficient to lead to significant activation of MAP kinase and that activation of the MAP kinase kinase/MAP kinase pathway is not required for apoptotic suppression.
Collapse
Affiliation(s)
- P J Owen-Lynch
- Department of Biochemistry and Applied Molecular Biology, University of Manchester, United Kingdom
| | | | | |
Collapse
|
45
|
Callans LS, Naama H, Khandelwal M, Plotkin R, Jardines L. Raf-1 protein expression in human breast cancer cells. Ann Surg Oncol 1995; 2:38-42. [PMID: 7834453 DOI: 10.1007/bf02303700] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND The Raf-1 kinase, a 72-kDa cytoplasmic serine-threonine kinase, plays a central role as a second messenger in signal transduction. After ligand binding to a variety of transmembrane tyrosine kinase growth factor receptors including epidermal growth factor (EGF) receptor, the 72-kDa kinase is activated through phosphorylation to a 74-kDa phosphoprotein. The Raf-1 kinase is constitutively activated in many transformed cells either directly, by mutations within its amino-terminus regulatory region, or indirectly, due to overstimulation by autocrine growth factors or activated proximal oncogenes. The role of Raf-1 kinase in breast cancer has not been studied. METHODS To investigate the role of Raf-1 kinase expression and its activation in breast cancer, we studied three human breast cancer cell lines expressing varying amounts of EGF receptor to determine the level of Raf-1 protein and the proportion expressed in the higher molecular weight form. Effects of serum starvation and stimulation with EGF on the Raf-1 protein were studied in T47D, BT474, and MDA-MB231 cells by precipitation of cell lysates with an anti-Raf-1 antibody followed by immunoblotting. [3H]Thymidine incorporation by these cells after EGF stimulation was also determined as a measure of DNA synthesis. RESULTS In all three breast cancer cell lines studied, the Raf-1 protein was identified in a 70- and a 74-kDa form. The level of Raf-1 was similar in all three cell lines and appeared unrelated to EGF receptor expression on the cell surface. The majority of the protein was found in the 74-kDa form even after serum starvation. A minor shift from the lower to higher molecular weight form of Raf-1 was apparent in cells treated with EGF, and increased [3H] thymidine incorporation could be demonstrated in two of the cell lines after EGF stimulation. CONCLUSION Baseline expression of the 74-kDa or activated form of the Raf-1 kinase appeared to be elevated in the breast cancer cells studied, indicating constitutive activation. Further investigation into the role of Raf-1 protein in the pathogenesis of breast cancer is indicated.
Collapse
Affiliation(s)
- L S Callans
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia 19104
| | | | | | | | | |
Collapse
|
46
|
Abstract
During the past 2 years, research from quite divergent areas has converged to provide the first insights into the mechanisms by which cytokines that utilize receptors of the cytokine receptor superfamily function. On the one hand, the obscure Jak family of cytoplasmic protein tyrosine kinases was independently implicated in IFN and hematopoietic growth factor signaling. Recent studies have expanded these initial observations to demonstrate that Jaks are critical to the functioning of all the receptors of the cytokine receptor superfamily. A variety of questions remain to be explored regarding the structure and function of Jaks and their interaction with receptors. It will also be important to pursue additional approaches to determine if the Jaks are necessary for various biological responses, particularly for mitogenic responses. The second major area of convergence has been the demonstration that members of the Stat family of transcription factors, initially identified in IFN-regulated gene expression, are generally involved in cytokine signaling. Clearly, a number of Stat-like activities remain to be cloned and it can be anticipated that the family contains additional members. Although a variety of genes are known to be regulated by the Stats association with IFN responses, much less is known concerning the genes regulated by the new Stats in cytokine signaling. Of particular importance is information relating to their potential contribution to mitogenic responses. From a biochemical standpoint, the Stats represent a remarkable family of proteins with regard to the ability of the modification of a single tyrosine residue to so dramatically affect cellular localization and DNA binding activity. Studies to identify the domains involved, and associated proteins that might contribute to either property, will be of considerable interest. More generally, it can hypothesized that Jaks and Stats, if important for proliferation and differentiation, may be the targets for malignant transformation. Although none of the genes map to chromosomal breakpoints that have been implicated in transformation, gain of function mutations is a likely mechanism that needs to be explored. Similarly, the Jak-Stat pathway would appear to be an excellent target for the development of drugs that affect a variety of cytokine functions.
Collapse
Affiliation(s)
- J N Ihle
- Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, Tennessee 38101, USA
| |
Collapse
|
47
|
Brizzi MF, Zini MG, Aronica MG, Blechman JM, Yarden Y, Pegoraro L. Convergence of signaling by interleukin-3, granulocyte-macrophage colony-stimulating factor, and mast cell growth factor on JAK2 tyrosine kinase. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)31749-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
48
|
Calvo V, Wood M, Gjertson C, Vik T, Bierer BE. Activation of 70-kDa S6 kinase, induced by the cytokines interleukin-3 and erythropoietin and inhibited by rapamycin, is not an absolute requirement for cell proliferation. Eur J Immunol 1994; 24:2664-71. [PMID: 7957559 DOI: 10.1002/eji.1830241115] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The cytokines interleukin (IL)-3 and erythropoietin (EPO) are critical regulators of the proliferation and differentiation of cells of the hematopoietic system, but their intracellular mechanisms of action are not fully understood. Binding of IL-3 to the IL-3 receptor (IL-3R) and binding of EPO to the EPOR both induce changes in intracellular tyrosine and serine/threonine phosphorylation; the phosphorylation of a number of polypeptides appears to be a shared response upon cytokine stimulation. We have previously shown that binding of IL-2 to the IL-2R activates the 70-kDa (p70) S6 kinase, a serine/threonine kinase whose activity is regulated by serine/threonine phosphorylation; the immunosuppressant rapamycin inhibits IL-2-dependent proliferation and IL-2-triggered activation of p70 S6 kinase. We, therefore, sought to examine whether induction of p70 S6 kinase activity is a conserved response upon cytokine triggering, and whether this activity is essential for cell proliferation. Proliferation of the IL-3-dependent pro-B cell line Ba/F3 transfected with the EPOR (Ba/F3-EPOR) can be supported by either IL-3 or EPO. In this cell line, both IL-3 and EPO induced p70 S6 kinase activity; rapamycin inhibited both the IL-3 and EPO-induced activation of the 70-kDa S6 kinase as well as cellular proliferation. Thus, p70 S6 kinase activation appears to be a common intermediate triggered by the stimulation of IL-3, EPO, and IL-2 receptors. The Friend spleen focus-forming virus gp55 renders the EPOR constitutively active, and confers growth factor independence on cells expressing EPOR. Ba/F3-EPOR cotransfected with gp55 (Ba/F3-EpoRgp55) and the erythroleukemia cell line MEL, which also expresses both the EPOR and gp55, were analyzed. Rapamycin inhibited the activation of p70 S6 kinase in both cell lines. However, rapamycin inhibited proliferation of Ba/F3-EpoRgp55 but not of MEL cells despite inhibition of p70 S6 kinase activity in both cells. Thus, p70 S6 kinase activation is not an absolute requirement for cell proliferation. These results are discussed in relation to the role of the activation of the 70-kDa S6 kinase activation pathway in the regulation of cell cycle progression.
Collapse
Affiliation(s)
- V Calvo
- Division of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115
| | | | | | | | | |
Collapse
|
49
|
Lisbona C, Alemany S, Calvo V, Fernandez-Renart M. Raf-1 and ERK2 kinases are required for phorbol 12,13-dibutyrate-stimulated proliferation of rat lymphoblasts. ERK2 activation precedes Raf-1 hyperphosphorylation. Eur J Immunol 1994; 24:2746-54. [PMID: 7957567 DOI: 10.1002/eji.1830241126] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Rat lymphoblasts are arrested in the G1 phase of the cell cycle and can be promoted to proceed up to the S phase, when they are stimulated by phorbol ester. In this work, we have studied some details of the phorbol 12,13-dibutyrate (PBu2)-stimulated proliferation. We show that in response to PBu2 at least four different protein kinase C (PKC) isoforms translocate to the membrane. A specific PKC zeta antibody recognizes two bands of 75 and 82 kDa. These two activities are separated using a Mono Q chromatography and we show that p75 is the classical PKC zeta isoform, while p82 might be a related isoform which is PBu2 sensitive. Our data show that there is a correlation between the ability of PBu2 to promote mitogenesis and to activate ERK2 kinase, suggesting that ERK2 kinase might be the limiting step of the process. We also show that ERK kinase activation precedes Raf-1 kinase hyperphosphorylation, suggesting that Raf-1 kinase activation is not required for ERK kinase activation. This idea was checked using a Raf-1 kinase antisense (AS) oligonucleotide. The results obtained with the Raf-1 AS oligonucleotide indicate that this serine/threonine kinase is dispensable for ERK kinase activation, but needed for the PBu2 mitogenic signaling even as late as 7 h after the delivery of the signal.
Collapse
Affiliation(s)
- C Lisbona
- Dpto de Bioquímica de la Universidad Autónoma de Madrid, Spain
| | | | | | | |
Collapse
|
50
|
Sakamaki K, Yonehara S. Serum alleviates the requirement of the granulocyte-macrophage colony-stimulating factor (GM-CSF)-induced Ras activation for proliferation of BaF3 cells. FEBS Lett 1994; 353:133-7. [PMID: 7926037 DOI: 10.1016/0014-5793(94)01024-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Deletion analysis of the beta subunit of the human granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor previously defined two cytoplasmic regions required for distinct signaling. The membrane-proximal region is responsible for induction of c-myc and pim-1, and is indispensable for GM-CSF-dependent proliferation of mouse BaF3 transfectants. The distal region is required for activation of Ras, Raf-1, MAP kinase and p70 S6 kinase as well as induction of c-fos and c-jun, but is dispensable for GM-CSF-dependent proliferation of transfectants under normal culture conditions containing serum. Here we show that signals induced by the distal region of the beta subunit are also required for proliferation. GM-CSF supported proliferation of BaF3 transfectants expressing the normal beta subunit, even in serum-free medium. However, in the absence of seru, GM-CSF did not support proliferation of BaF3 transfectants that have the beta deletion mutants lacking the distal region. Serum-induced activation of Ras, phosphorylation of MAP kinase and expression of c-fos in parental BaF3 cells and antisense oligonucleotide against c-raf blocked DNA synthesis of BaF3 cells. These results indicate that proliferation of BaF3 cells requires signals induced by the proximal as well as the distal region of the beta subunit of the GM-CSF receptor, and that serum alleviates the requirement of signals induced by the distal region.
Collapse
Affiliation(s)
- K Sakamaki
- Pharmaceutical Basic Research Laboratory, JT Inc., Yokohama, Japan
| | | |
Collapse
|