1
|
Kampjut D, Sazanov LA. Structure and mechanism of mitochondrial proton-translocating transhydrogenase. Nature 2019; 573:291-295. [PMID: 31462775 DOI: 10.1038/s41586-019-1519-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 07/31/2019] [Indexed: 11/09/2022]
Abstract
Proton-translocating transhydrogenase (also known as nicotinamide nucleotide transhydrogenase (NNT)) is found in the plasma membranes of bacteria and the inner mitochondrial membranes of eukaryotes. NNT catalyses the transfer of a hydride between NADH and NADP+, coupled to the translocation of one proton across the membrane. Its main physiological function is the generation of NADPH, which is a substrate in anabolic reactions and a regulator of oxidative status; however, NNT may also fine-tune the Krebs cycle1,2. NNT deficiency causes familial glucocorticoid deficiency in humans and metabolic abnormalities in mice, similar to those observed in type II diabetes3,4. The catalytic mechanism of NNT has been proposed to involve a rotation of around 180° of the entire NADP(H)-binding domain that alternately participates in hydride transfer and proton-channel gating. However, owing to the lack of high-resolution structures of intact NNT, the details of this process remain unclear5,6. Here we present the cryo-electron microscopy structure of intact mammalian NNT in different conformational states. We show how the NADP(H)-binding domain opens the proton channel to the opposite sides of the membrane, and we provide structures of these two states. We also describe the catalytically important interfaces and linkers between the membrane and the soluble domains and their roles in nucleotide exchange. These structures enable us to propose a revised mechanism for a coupling process in NNT that is consistent with a large body of previous biochemical work. Our results are relevant to the development of currently unavailable NNT inhibitors, which may have therapeutic potential in ischaemia reperfusion injury, metabolic syndrome and some cancers7-9.
Collapse
Affiliation(s)
- Domen Kampjut
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Leonid A Sazanov
- Institute of Science and Technology Austria, Klosterneuburg, Austria.
| |
Collapse
|
2
|
Bizouarn T, van Boxel GI, Bhakta T, Jackson JB. Nucleotide binding affinities of the intact proton-translocating transhydrogenase from Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2005; 1708:404-10. [PMID: 15935988 DOI: 10.1016/j.bbabio.2005.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2005] [Revised: 04/28/2005] [Accepted: 04/29/2005] [Indexed: 12/01/2022]
Abstract
Transhydrogenase (E.C. 1.6.1.1) couples the redox reaction between NAD(H) and NADP(H) to the transport of protons across a membrane. The enzyme is composed of three components. The dI and dIII components, which house the binding site for NAD(H) and NADP(H), respectively, are peripheral to the membrane, and dII spans the membrane. We have estimated dissociation constants (K(d) values) for NADPH (0.87 microM), NADP(+) (16 microM), NADH (50 microM), and NAD(+) (100-500 microM) for intact, detergent-dispersed transhydrogenase from Escherichia coli using micro-calorimetry. This is the first complete set of dissociation constants of the physiological nucleotides for any intact transhydrogenase. The K(d) values for NAD(+) and NADH are similar to those previously reported with isolated dI, but the K(d) values for NADP(+) and NADPH are much larger than those previously reported with isolated dIII. There is negative co-operativity between the binding sites of the intact, detergent-dispersed transhydrogenase when both nucleotides are reduced or both are oxidized.
Collapse
Affiliation(s)
- Tania Bizouarn
- Laboratoire de Chimie Physique, Bat 350, Université Paris XI-Orsay, 91405 Orsay, France
| | | | | | | |
Collapse
|
3
|
Sundaresan V, Chartron J, Yamaguchi M, Stout CD. Conformational diversity in NAD(H) and interacting transhydrogenase nicotinamide nucleotide binding domains. J Mol Biol 2004; 346:617-29. [PMID: 15670609 DOI: 10.1016/j.jmb.2004.11.070] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2004] [Revised: 11/17/2004] [Accepted: 11/27/2004] [Indexed: 11/26/2022]
Abstract
Transhydrogenase (TH) couples direct and stereospecific hydride transfer between NAD(H) and NADP(H), bound within soluble domains I and III, respectively, to proton translocation across membrane bound domain II. The cocrystal structure of Rhodospirillum rubrum TH domains I and III has been determined in the presence of limiting NADH, under conditions in which the subunits reach equilibrium during crystallization. The crystals contain three heterotrimeric complexes, dI(2)dIII, in the asymmetric unit. Multiple conformations of loops and side-chains, and NAD(H) cofactors, are observed in domain I pertaining to substrate/product exchange, and highlighting electrostatic interactions during the hydride transfer. Two interacting NAD(H)-NADPH pairs are observed where alternate conformations of the NAD(H) phosphodiester and conserved arginine side-chains are correlated. In addition, the stereochemistry of one NAD(H)-NADPH pair approaches that expected for nicotinamide hydride transfer reactions. The cocrystal structure exhibits non-crystallographic symmetry that implies another orientation for domain III, which could occur in dimeric TH. Superposition of the "closed" form of domain III (PDB 1PNO, chain A) onto the dI(2)dIII complex reveals a severe steric conflict of highly conserved loops in domains I and III. This overlap, and the overlap with a 2-fold related domain III, suggests that motions of loop D within domain III and of the entire domain are correlated during turnover. The results support the concept that proton pumping in TH is driven by the difference in binding affinity for oxidized and reduced nicotinamide cofactors, and in the absence of a difference in redox potential, must occur through conformational effects.
Collapse
Affiliation(s)
- Vidyasankar Sundaresan
- Department of Molecular Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
4
|
Abstract
A new method for the synthesis of the reduced form of beta-nicotinamide [U-14C]adenine dinucleotide 2(')-phosphate([Ad-14C]NADPH) is presented. The present synthesis results in a radioactive material with a specific activity that is greater than 220 mCi/mmol. This method could easily be adapted for syntheses of 14C-labeled NADH, NADP(+), or any nicotinamide cofactors with radiolabels in other positions. Since these cofactors are so ubiquitous, the use and applications of such labeled material has broad implications. The utility of the labeled cofactor for determination of substrates for nicotinamide-dependent enzymes in the nano- to femtomole scale, in alternative enzymatic assays, and in kinetic isotope effect studies is discussed.
Collapse
Affiliation(s)
- Kelli A Markham
- Department of Chemistry, University of Iowa, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
5
|
Yamaguchi M, Stout CD. Essential glycine in the proton channel of Escherichia coli transhydrogenase. J Biol Chem 2003; 278:45333-9. [PMID: 12952962 DOI: 10.1074/jbc.m308236200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The nicotinamide nucleotide transhydrogenases of mitochondria and bacteria are proton pumps that couple hydride ion transfer between NAD(H) and NADP(H) bound, respectively, to extramembranous domains I and III, to proton translocation by the membrane-intercalated domain II. Previous experiments have established the involvement of three conserved domain II residues in the proton pumping function of the enzyme: His91, Ser139, and Asn222, located on helices 9, 10, and 13, respectively. Eight highly conserved domain II glycines in helices 9, 10, 13, and 14 were mutated to alanine, and the mutant enzymes were assayed for hydride transfer between domains I and III and for proton translocation by domain II. One of the glycines on helix 14, Gly252, was further mutated to Cys, Ser, Thr, and Val, expression levels of the mutant enzymes were evaluated, and each was purified and assayed. The results show that Gly252 is essential for function and support a model for the proton channel composed of helices 9, 10, 13, and 14. Gly252 would allow spatial proximity of His91, Ser139, and Asn222 for proton conductance within the channel. Gly252 mutants are distinguished by high levels of cyclic transhydrogenation activity in the absence of added NADP(H) and by complete loss of proton pumping activity. The purified G252A mutant has <1% proton translocation and reverse transhydrogenation activity, retains 0.9 mol of NADP(H) per domain III, and has 96% intrinsic cyclic transhydrogenation activity, which does not exceed 100% upon the addition of NADP(H). These properties imply that Gly252 mutants exhibit a native-like domain II conformation while blocking proton translocation and coupled exchange of NADP(H) in domain III.
Collapse
Affiliation(s)
- Mutsuo Yamaguchi
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
6
|
Yamaguchi M, Stout CD, Hatefi Y. The proton channel of the energy-transducing nicotinamide nucleotide transhydrogenase of Escherichia coli. J Biol Chem 2002; 277:33670-5. [PMID: 12087099 DOI: 10.1074/jbc.m204170200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The nicotinamide nucleotide transhydrogenases of mitochondria and bacteria are proton pumps that couple direct hydride ion transfer between NAD(H) and NADP(H) bound, respectively, to extramembranous domains I and III to proton translocation by the membrane-intercalated domain II. To delineate the proton channel of the enzyme, 25 conserved and semiconserved prototropic amino acid residues of domain II of the Escherichia coli transhydrogenase were mutated, and the mutant enzymes were assayed for transhydrogenation from NADPH to an NAD analogue and for the coupled outward proton translocation. The results confirmed the previous findings of others and ourselves on the essential roles of three amino acid residues and identified another essential residue. Three of these amino acids, His-91, Ser-139, and Asn-222, occur in three separate membrane-spanning alpha helices of domain II of the beta subunit of the enzyme. Another residue, Asp-213, is probably located in a cytosolic-side loop that connects to the alpha helix bearing Asn-222. It is proposed that the three helices bearing His-91, Ser-139, and Asn-222 come together, possibly with another highly conserved alpha helix to form a four-helix bundle proton channel and that Asp-213 serves to conduct protons between the channel and domain III where NADPH binding energy is used via protein conformation change to initiate outward proton translocation.
Collapse
Affiliation(s)
- Mutsuo Yamaguchi
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
7
|
Venning JD, Rodrigues DJ, Weston CJ, Cotton NP, Quirk PG, Errington N, Finet S, White SA, Jackson JB. The heterotrimer of the membrane-peripheral components of transhydrogenase and the alternating-site mechanism of proton translocation. J Biol Chem 2001; 276:30678-85. [PMID: 11399770 DOI: 10.1074/jbc.m104429200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transhydrogenase undergoes conformational changes to couple the redox reaction between NAD(H) and NADP(H) to proton translocation across a membrane. The protein comprises three components: dI, which binds NAD(H); dIII, which binds NADP(H); and dII, which spans the membrane. Experiments using isothermal titration calorimetry, analytical ultracentrifugation, and small angle x-ray scattering show that, as in the crystalline state, a mixture of recombinant dI and dIII from Rhodospirillum rubrum transhydrogenase readily forms a dI(2)dIII(1) heterotrimer in solution, but we could find no evidence for the formation of a dI(2)dIII(2) tetramer using these techniques. The asymmetry of the complex suggests that there is an alternation of conformations at the nucleotide-binding sites during proton translocation by the complete enzyme. The characteristics of nucleotide interaction with the isolated dI and dIII components and with the dI(2)dIII(1) heterotrimer were investigated. (a) The rate of release of NADP(+) from dIII was decreased 5-fold when the component was incorporated into the heterotrimer. (b) The binding affinity of one of the two nucleotide-binding sites for NADH on the dI dimer was decreased about 17-fold in the dI(2)dIII(1) complex; the other binding site was unaffected. These observations lend strong support to the alternating-site mechanism.
Collapse
Affiliation(s)
- J D Venning
- School of Biosciences, University of Birmingham, Edgbaston, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Studley WK, Yamaguchi M, Hatefi Y, Saier MH. Phylogenetic analyses of proton-translocating transhydrogenases. MICROBIAL & COMPARATIVE GENOMICS 2001; 4:173-86. [PMID: 10587945 DOI: 10.1089/omi.1.1999.4.173] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The proton-translocating nicotinamide nucleotide transhydrogenases (TH) provide a simple model for understanding chemically coupled transmembrane proton translocation. To further our understanding of TH structure-function relationships, we have identified all sequenced homologous of these vectorial enzymes and have conducted sequence comparison studies. The NAD-binding domains of TH are homologous to bacterial alanine dehydrogenases (ADH) and eukaryotic saccharopine dehydrogenases (SDH) as well as N5(carboxyethyl)-L-ornithine synthase of Lactococcus lactis and dipicolinate synthase of Bacillus subtilis. A multiple alignment, a phylogenetic tree, and two signature sequences for this family, designated the TH-ADH-SDH or TAS superfamily, have been derived. Additionally, the TH family has been characterized. Phylogenetic analyses suggested that these proteins have evolved without inter-system shuffling. However, interdomain splicing-fusion events have occurred during the evolution of several of these systems. Analyses of the multiple alignment for the TH family revealed that domain conservation occurs in the order: NADP-binding domain (domain III) > NAD-binding domain (domain I) > proton-translocating transmembrane domain (domain II). A topologic model for the proton-translocating transmembrane domain consistent with published data is presented, and a possible involvement of specific transmembrane alpha-helical segments in channel formation is suggested.
Collapse
Affiliation(s)
- W K Studley
- Department of Biology, University of California at San Diego, La Jolla, USA
| | | | | | | |
Collapse
|
9
|
Cotton NP, White SA, Peake SJ, McSweeney S, Jackson JB. The crystal structure of an asymmetric complex of the two nucleotide binding components of proton-translocating transhydrogenase. Structure 2001; 9:165-76. [PMID: 11250201 DOI: 10.1016/s0969-2126(01)00571-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Membrane-bound ion translocators have important functions in biology, but their mechanisms of action are often poorly understood. Transhydrogenase, found in animal mitochondria and bacteria, links the redox reaction between NAD(H) and NADP(H) to proton translocation across a membrane. Linkage is achieved through changes in protein conformation at the nucleotide binding sites. The redox reaction takes place between two protein components located on the membrane surface: dI, which binds NAD(H), and dIII, which binds NADP(H). A third component, dII, provides a proton channel through the membrane. Intact membrane-located transhydrogenase is probably a dimer (two copies each of dI, dII, and dIII). RESULTS We have solved the high-resolution crystal structure of a dI:dIII complex of transhydrogenase from Rhodospirillum rubrum-the first from a transhydrogenase of any species. It is a heterotrimer, having two polypeptides of dI and one of dIII. The dI polypeptides fold into a dimer. The loop on dIII, which binds the nicotinamide ring of NADP(H), is inserted into the NAD(H) binding cleft of one of the dI polypeptides. The cleft of the other dI is not occupied by a corresponding dIII component. CONCLUSIONS The redox step in the transhydrogenase reaction is readily visualized; the NC4 atoms of the nicotinamide rings of the bound nucleotides are brought together to facilitate direct hydride transfer with A-B stereochemistry. The asymmetry of the dI:dIII complex suggests that in the intact enzyme there is an alternation of conformation at the catalytic sites associated with changes in nucleotide binding during proton translocation.
Collapse
Affiliation(s)
- N P Cotton
- School of Biosciences, University of Birmingham, Edgbaston, B15 2TT, Birmingham, United Kingdom
| | | | | | | | | |
Collapse
|
10
|
White SA, Peake SJ, McSweeney S, Leonard G, Cotton NP, Jackson JB. The high-resolution structure of the NADP(H)-binding component (dIII) of proton-translocating transhydrogenase from human heart mitochondria. Structure 2000; 8:1-12. [PMID: 10673423 DOI: 10.1016/s0969-2126(00)00075-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Transhydrogenase, located in the inner membranes of animal mitochondria and the cytoplasmic membranes of bacteria, couples the transfer of reducing equivalents between NAD(H) and NADP(H) to proton pumping. The protein comprises three subunits termed dI, dII and dIII. The dII component spans the membrane. The dI component, which contains the binding site for NAD(+)/NADH, and the dIII component, which has the binding site for NADP(+)/NADPH, protrude from the membrane. Proton pumping is probably coupled to changes in the binding affinities of dIII for NADP(+) and NADPH. RESULTS The first X-ray structure of the NADP(H)-binding component, dIII, of human heart transhydrogenase is described here at 2.0 A resolution. It comprises a single domain resembling the classical Rossmann fold, but NADP(+) binds to dIII with a reversed orientation. The first betaalphabetaalphabeta motif of dIII contains a Gly-X-Gly-X-X-Ala/Val 'fingerprint', but it has a different function to that in the classical Rossmann structure. The nicotinamide ring of NADP(+) is located on a ridge where it is exposed to interaction with NADH on the dI subunit. Two distinctive features of the dIII structure are helix D/loop D, which projects from the beta sheet, and loop E, which forms a 'lid' over the bound NADP(+). CONCLUSIONS Helix D/loop D interacts with the bound nucleotide and loop E, and probably interacts with the membrane-spanning dII. Changes in ionisation and conformation in helix D/loop D, resulting from proton translocation through dII, are thought to be responsible for the changes in affinity of dIII for NADP(+) and NADPH that drive the reaction.
Collapse
Affiliation(s)
- S A White
- School of Biosciences, University of Birmingham, Edgbaston, B15 2TT, UK.
| | | | | | | | | | | |
Collapse
|
11
|
Yamaguchi M, Belogrudov GI, Matsuno-Yagi A, Hatefi Y. The multiple nicotinamide nucleotide-binding subunits of bovine heart mitochondrial NADH:ubiquinone oxidoreductase (complex I). EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:329-36. [PMID: 10632702 DOI: 10.1046/j.1432-1327.2000.00999.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Direct photoaffinity labeling of purified bovine heart NADH:ubiquinone oxidoreductase (complex I) with 32P-labeled NAD(H), NADP(H) and ADP has shown that five polypeptides become labeled, with molecular masses of 51, 42, 39, 30, and 18-20 kDa. The 51 and the 30-kDa polypeptides were labeled with either [32P]NAD(H), [32P]NADP(H) or [beta-32P]ADP. The 42-kDa polypeptide was labeled with [32P]NAD(H) and to a small extent with [beta-32P]ADP. It was not labeled with [32P]NADP(H). The 39-kDa polypeptide was labeled with [32P]NADPH and to a small extent with [beta-32P]ADP. Our previous studies had shown that this subunit also binds NADP, but not NAD(H) [Yamaguchi, M., Belogrudov, G.I. & Hatefi, Y. (1998) J. Biol. Chem. 273, 8094-8098]. The 18-20-kDa polypeptide was labeled only with [32P]NADPH. Among these polypeptides, the 51-kDa subunit is known to contain FMN and a [4Fe-4S] cluster, and is the NAD(P)H-binding subunit of the primary dehydrogenase domain of complex I. The possible roles of the other nucleotide-binding subunits of complex I have been discussed.
Collapse
Affiliation(s)
- M Yamaguchi
- Division of Biochemistry, Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | | | | | | |
Collapse
|
12
|
Hu X, Zhang J, Rydström J. Interactions of reduced and oxidized nicotinamide mononucleotide with wild-type and alphaD195E mutant proton-pumping nicotinamide nucleotide transhydrogenases from Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1367:134-8. [PMID: 9784624 DOI: 10.1016/s0005-2728(98)00141-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The interaction of reduced nicotinamide mononucleotide (NMNH), constituting one half of NADH, with the wild-type and alphaD195E proton-pumping nicotinamide nucleotide transhydrogenase from Escherichia coli was investigated. Reduction of thio-NADP+ by NMNH was catalysed at approximately 30% of the rate with NADH. Other activities including proton pumping and the cyclic reduction of 3'-acetyl-pyridine-NAD+ by NMNH in the presence of NADP+ were more strongly inhibited. The alphaD195 residue is assumed to interact with the 2'-OH moiety of the adenosine-5'-phosphate, i.e., the second nucleotide of NADH. Mutation of this residue to alphaD195E resulted in a 90% decrease in activity with NMNH as well as NADH as substrate, suggesting that it produced global structural changes of the NAD(H) binding site. The results suggest that the NMN moiety of NADH is a substrate of transhydrogenase, and that the adenine nucleotide is not required for catalysis or proton pumping.
Collapse
Affiliation(s)
- X Hu
- Department of Biochemistry and Biophysics, Göteborg University and Chalmers University of Technology, Box 462, SE-405 30 Göteborg, Sweden
| | | | | |
Collapse
|
13
|
Bragg PD. Mechanism of hydride transfer during the reduction of 3-acetylpyridine adenine dinucleotide by NADH catalyzed by the pyridine nucleotide transhydrogenase of Escherichia coli. FEBS Lett 1996; 397:93-6. [PMID: 8941721 DOI: 10.1016/s0014-5793(96)01147-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The pyridine nucleotide transhydrogenase is a proton pump which catalyzes the reversible transfer of a hydride ion equivalent between NAD+ and NADP+ coupled to translocation of protons across the cytoplasmic membrane. The enzyme also catalyzes the reduction of the NAD+ analog 3-acetylpyridine adenine dinucleotide (AcPyAD+) by NADH. It has been proposed (Hutton et al. (1994) Eur. J. Biochem. 219, 1041-1051) that this reaction requires NADP(H) as an intermediate. Thus, NADP+ bound at the NADP(H)-binding site on the transhydrogenase would be reduced by NADH and reoxidized by AcPyAD+ binding alternately to the NAD(H)-binding site. The reduction of AcPyAD+ by NADPH would be a partial reaction in the reduction of AcPyAD+ by NADH. Using cytoplasmic membrane vesicles from mutants having elevated activities for transhydrogenation of AcPyAD+ by NADH in the absence of added NADP(H), the kinetics of reduction of AcPyAD+ by NADH and NADPH have been compared. The Km values for the reductants NADPH and NADH over a range of mutants, and for the non-mutant enzyme, differed to a much lesser degree than the Km for AcPyAD+ in the two reactions. The Km(AcPyAD) values for the transhydrogenation of AcPyAD+ by NADH were over an order of magnitude greater than those for the transhydrogenation of AcPyAD+ by NADPH. It is unlikely that AcPyAD+ binds at the same site in both reactions. A plausible explanation is that this substrate binds to the NADP(H)-binding site for transhydrogenation by NADH. Thus, a hydride equivalent can be transferred directly between NADH and AcPyAD+ under these conditions.
Collapse
Affiliation(s)
- P D Bragg
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
14
|
Bragg PD, Hou C. The role of conserved histidine residues in the pyridine nucleotide transhydrogenase of Escherichia coli. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 241:611-8. [PMID: 8917463 DOI: 10.1111/j.1432-1033.1996.00611.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The pyridine nucleotide transhydrogenase of Escherichia coli catalyzes the reversible transfer of hydride ion equivalents between NAD+ and NADP+, coupled to translocation of protons across the cytoplasmic membrane. The role of histidine residues in catalysis was investigated by chemical modification with diethylpyrocarbonate and by site-directed mutagenesis. Diethylpyrocarbonate inhibited both hydride ion transfer and coupled proton translocation. Histidine residues were modified as shown spectroscopically and by the ability of hydroxylamine to cause reversal of inhibition. Complete inhibition of hydride ion transfer occurred following modification of 10 residues/enzyme molecule. Site-directed mutagenesis of single conserved histidine residues or the presence of substrates did not provide resistance to inhibition by diethylpyrocarbonate. It is concluded that diethylpyrocarbonate inhibition was a consequence of the structural changes brought about by modification of many histidine residues. With the exception of beta-subunit residue His91 (beta His91), in which mutation can result in specific loss of proton translocation activity [Glavas, N. A., Hou, C. & Bragg, P. D. (1995) Biochemistry 34, 7694-7702], site-directed mutation of the remaining conserved residues alpha His450, beta His161, beta His345 and beta His354 did not demonstrate a direct role for these residues in catalysis. Mutation of beta His161 had relatively little effect on the properties of the enzyme. By contrast, mutation of alpha His450, beta His345 and beta His354 caused major loss of enzyme activities which was probably due to alterations in the structure of the enzyme. These alterations were reflected in changes in the K(m) values for transhydrogenation.
Collapse
Affiliation(s)
- P D Bragg
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
15
|
Diggle C, Bizouarn T, Cotton NP, Jackson JB. Properties of the purified, recombinant, NADP(H)-binding domain III of the proton-translocating nicotinamide nucleotide transhydrogenase from Rhodospirillum rubrum. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 241:162-70. [PMID: 8898902 DOI: 10.1111/j.1432-1033.1996.0162t.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Transhydrogenase comprises three domains. Domains I and III are peripheral to the membrane and possess the NAD(H)- and NADP(H)-binding sites, respectively, and domain II spans the membrane. Domain III of transhydrogenase from Rhodospirillum rubrum was expressed at high levels in Escherichia coli, and purified. The purified protein was associated with substoichiometric quantities of tightly bound NADP+ and NADPH. Fluorescence spectra of the domain III protein revealed emissions due to Tyr residues. Energy transfer was detected between Tyr residue(s) and the bound NADPH, indicating that the amino acid residue(s) and the nucleotide are spatially close. The rate constants for NADP+ release and NADPH release from domain III were 0.03 s-1 and 5.6 x 10(4) s-1, respectively. In the absence of domain II a mixture of the recombinant domain III protein, plus the previously described recombinant domain I protein, catalysed reduction of acetylpyridine-adenine dinucleotide (AcPdAD+) by NADPH (reverse transhydrogenation) at a rate that was limited by the release of NADP+ from domain III. Similarly, the mixture catalysed reduction of thio-NADP+ by NADH (forward transhydrogenation) at a rate limited by release of thio-NADPH from domain III. The mixture also catalysed very rapid reduction of AcPdAD+ by NADH, probably by way of a cyclic reaction mediated by the tightly bound NADP(H). Measurement of the rates of the transhydrogenation reactions during titrations of domain I with domain III and vice versa indicated (a) that during reduction of AcPdAD+ by NADPH, a single domain I protein can visit and transfer H equivalents to about 60 domain III proteins during the time taken for a single domain III to release its NADP+, whereas (b) the cyclic reaction is rapid on the timescale of formation and break-down of the domain I. III complex. The rate of the hydride transfer reaction was similar in the domain I.III complex to that in the complete membrane-bound transhydrogenase, but the rates of forward and reverse transhydrogenation were much slower in the I.III complex due to the greatly decreased rates of release of NADP+ and NADPH. It is concluded that, in the complete enzyme, conformational changes in the membrane-spanning domain II, which result from proton translocation, lead to changes in the binding affinity of domain III for NADP+ and for NADPH.
Collapse
Affiliation(s)
- C Diggle
- School of Biochemistry, University of Birmingham, UK
| | | | | | | |
Collapse
|
16
|
Bizouarn T, Diggle C, Jackson JB. The binding of nucleotides to domain I proteins of the proton-translocating transhydrogenases from Rhodospirillum rubrum and Escherichia coli as measured by equilibrium dialysis. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 239:737-41. [PMID: 8774721 DOI: 10.1111/j.1432-1033.1996.0737u.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Transhydrogenase catalyses the transfer of reducing equivalents between NAD(H) and NADP(H) coupled to the translocation of protons across a membrane. The NAD(H)-binding domain of transhydrogenase (domain I protein) from Rhodospirillum rubrum and from Escherichia coli were overexpressed and purified. Nucleotide binding to the domain I proteins was determined by equilibrium dialysis. NADH and its analogue, acetylpyridine adenine dinucleotide (reduced form), bound with relatively high affinity (Kd = 32 microM and 120 microM, respectively, for the R. rubrum protein). The binding affinity was similar at pH 8.0 and pH 9.0 in zwitterionic buffers, and at pH 7.5 in sodium phosphate buffer. NAD+ bound with lower affinity (Kd = 300 microM). NADPH bound only very weakly (Kd > 1 mM). Using a centrifugation procedure, Yamaguchi and Hatefi [Yamaguchi, M. & Hatefi, Y. (1993) J. Biol. Chem. 268. 17871-17877] found that mitochondrial transhydrogenase, and a proteolytically derived domain I fragment from that enzyme, bound one NADH per dimer. They suggested that this result implied half-of-the-site reactivity for the interaction between the nucleotide ligand and the protein. However, our studies on both the E. coli and the R. rubrum recombinant transhydrogenase domain I proteins using equilibrium dialysis show that the binding stoichiometry for both NADH and the reduced form of acetylpyridine adenine dinucleotide (AcPdADH) is two nucleotides per dimer: no interaction between the monomeric units is evident. Reasons for the discrepancies between the work on bacterial and mitochondrial transhydrogenases are discussed.
Collapse
Affiliation(s)
- T Bizouarn
- School of Biochemistry, University of Birmingham, England
| | | | | |
Collapse
|
17
|
Abstract
Codon usage and base composition in sequences from the A + T-rich genome of Rickettsia prowazekii, a member of the alpha Proteobacteria, have been investigated. Synonymous codon usage patterns are roughly similar among genes, even though the data set includes genes expected to be expressed at very different levels, indicating that translational selection has been ineffective in this species. However, multivariate statistical analysis differentiates genes according to their G + C contents at the first two codon positions. To study this variation, we have compared the amino acid composition patterns of 21 R. prowazekii proteins with that of a homologous set of proteins from Escherichia coli. The analysis shows that individual genes have been affected by biased mutation rates to very different extents: genes encoding proteins highly conserved among other species being the least affected. Overall, protein coding and intergenic spacer regions have G + C content values of 32.5% and 21.4%, respectively. Extrapolation from these values suggests that R. prowazekii has around 800 genes and that 60-70% of the genome may be coding.
Collapse
Affiliation(s)
- S G Andersson
- Department of Molecular Biology, Uppsala University, Sweden
| | | |
Collapse
|
18
|
Bizouarn T, Diggle C, Quirk PG, Grimley RL, Cotton NP, Thomas CM, Jackson JB. Interaction of nucleotides with the NAD(H)-binding domain of the proton-translocating transhydrogenase of Rhodospirillum rubrum. J Biol Chem 1996; 271:10103-8. [PMID: 8626568 DOI: 10.1074/jbc.271.17.10103] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Transhydrogenase catalyzes the reduction of NADP+ by NADH coupled to the translocation of protons across a membrane. The polypeptide composition of the enzyme in Rhodospirillum rubrum is unique in that the NAD(H)-binding domain (called Ths) exists as a separate polypeptide. Ths was expressed in Escherichia coli and purified. The binding of nucleotide substrates and analogues to Ths was examined by one-dimensional proton nuclear magnetic resonance (NMR) spectroscopy and by measuring the quenching of fluorescence of its lone Trp residue. NADH and reduced acetylpyridine adenine dinucleotide bound tightly to Ths, whereas NAD+, oxidized acetylpyridine adenine dinucleotide, deamino-NADH, 5'-AMP and adenosine bound less tightly. Reduced nicotinamide mononucleotide, NADPH and 2'-AMP bound only very weakly to Ths. The difference in the binding affinity between NADH and NAD+ indicates that there may be an energy requirement for the transfer of reducing equivalents into this site in the complete enzyme under physiological conditions. Earlier results had revealed a mobile loop at the surface of Ths (Diggle, C., Cotton, N. P. J., Grimley, R. L., Quirk, P. G., Thomas, C. M., and Jackson, J. B. (1995) Eur. J. Biochem. 232, 315-326); the loop loses mobility when Ths binds nucleotide; the reaction involves two steps. This was more clearly evident, even for tight-binding nucleotides, when experiments were carried out at higher temperatures (37 degrees C), where the resonances of the mobile loop were substantially narrower. The binding of adenosine was sufficient to initiate loop closure; the presence of a reduced nicotinamide moiety in the dinucleotide apparently serves to tighten the binding. Two-dimensional 1H NMR spectroscopy of the Ths-5'-AMP complex revealed nuclear Overhauser effect interactions between protons of amino acid residues in the mobile loop (including those in a Tyr residue) and the nucleotide. This suggests that, in the complex, the loop has closed down to within 0.5 nm of the nucleotide.
Collapse
Affiliation(s)
- T Bizouarn
- Schools of Biochemistry and Biological Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
19
|
Yamaguchi M, Hatefi Y. Proton-translocating nicotinamide nucleotide transhydrogenase. Reconstitution of the extramembranous nucleotide-binding domains. J Biol Chem 1995; 270:28165-8. [PMID: 7499307 DOI: 10.1074/jbc.270.47.28165] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The nicotinamide nucleotide transhydrogenase of bovine mitochondria is a homodimer of monomer M(r) = 109,065. The monomer is composed of three domains, an NH2-terminal 430-residue-long hydrophilic domain I that binds NAD(H), a central 400-residue-long hydrophobic domain II that is largely membrane intercalated and carries the enzyme's proton channel, and a COOH-terminal 200-residue-long hydrophilic domain III that binds NADP(H). Domains I and III protrude into the mitochondrial matrix, where they presumably come together to form the enzyme's catalytic site. The two-subunit transhydrogenase of Escherichia coli and the three-subunit transhydrogenase of Rhodospirillum rubrum have each the same overall tridomain hydropathy profile as the bovine enzyme. Domain I of the R. rubrum enzyme (the alpha 1 subunit) is water soluble and easily removed from the chromatophore membranes. We have isolated domain I of the bovine transhydrogenase after controlled trypsinolysis of the purified enzyme and have expressed in E. coli and purified therefrom domain III of this enzyme. This paper shows that an active bidomain transhydrogenase lacking domain II can be reconstituted by the combination of purified bovine domains I plus III or R. rubrum domain I plus bovine domain III.
Collapse
Affiliation(s)
- M Yamaguchi
- Department of Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
20
|
Sazanov LA, Jackson JB. Cyclic reactions catalysed by detergent-dispersed and reconstituted transhydrogenase from beef-heart mitochondria; implications for the mechanism of proton translocation. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1231:304-12. [PMID: 7578218 DOI: 10.1016/0005-2728(95)00096-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Transhydrogenase from beef-heart mitochondria was solubilised with Triton X-100 and purified by column chromatography. The detergent-dispersed enzyme catalysed the reduction of acetylpyridine adenine dinucleotide (AcPdAD+) by NADH, but only in the presence of NADP+. Experiments showed that this reaction was cyclic; NADP(H), whilst remaining bound to the enzyme, was alternately reduced by NADH and oxidised by AcPdAD+. A period of incubation of the enzyme with NADPH at pH 6.0 led to inhibition of the simple transhydrogenation reaction between AcPdAD+ and NADPH. However, after such treatment, transhydrogenase acquired the ability to catalyse the (NADPH-dependent) reduction of AcPdAD+ by NADH. It is suggested that this is a similar cycle to the one described above. Evidently, the binding affinity for NADP+ increases as a consequence of the inhibition process resulting from prolonged incubation with NADPH. The pH dependences of simple and cyclic transhydrogenation reactions are described. Though more complex than those in Escherichia coli transhydrogenase, they are consistent with the view [Hutton, M., Day, J.M., Bizouarn, T. and Jackson, J.B. (1994) Eur. J. Biochem. 219, 1041-1051] that, also in the mitochondrial enzyme, binding and release of NADP+ and NADPH are accompanied by binding and release of a proton. The enzyme was successfully reconstituted into liposomes by a cholate dilution procedure. The proteoliposomes catalysed cyclic NADPH-dependent reduction of AcPdAD+ by NADH only when they were tightly coupled. However, they catalysed cyclic NADP(+)-dependent reduction of AcPdAD+ by NADH only when they were uncoupled eg. by addition of carbonylcyanide-p-trifluoromethoxyphenyl hydrazone.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- L A Sazanov
- School of Biochemistry, University of Birmingham, Edgbaston, UK
| | | |
Collapse
|
21
|
Glavas NA, Bragg PD. The mechanism of hydride transfer between NADH and 3-acetylpyridine adenine dinucleotide by the pyridine nucleotide transhydrogenase of Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1231:297-303. [PMID: 7578217 DOI: 10.1016/0005-2728(95)00089-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The pyridine nucleotide transhydrogenase of Escherichia coli catalyzes the reversible transfer of hydride ion equivalents between NAD+ and NADP+ coupled to translocation of protons across the cytoplasmic membrane. Recently, transhydrogenation of 3-acetylpyridine adenine dinucleotide (AcPyAD+), an analog of NAD+, by NADH has been described using a solubilized preparation of E. coli transhydrogenase [Hutton, M., Day, J.M., Bizouarn, T., and Jackson, J.B. (1994) Eur. J. Biochem. 219, 1041-1051]. This reaction depended on the presence of NADP(H). We show that (a) this reaction did not require NADP(H) at pH 6 in contrast to pH 8; (b) the reaction occurred at pH 8 in the absence of NADP(H) in the mutant beta H91K and in a mutant in which six amino acids of the carboxy-terminus of the alpha subunit had been deleted; (c) the mutant transhydrogenases contained bound NADP+ and were in a conformation in which the beta subunit was digestible by trypsin; (d) the conformation of the beta subunit of the wild-type enzyme was made susceptible to trypsin digestion by NADP(H) or by placing the enzyme at pH 6 in the absence of NADP(H). It is concluded that reduction of AcPyAD+ by NADH does not involve NADPH as an intermediate and that the role of NADP(H) in this reaction at pH 8 is to cause the transhydrogenase to adopt a conformation favouring transhydrogenation between NADH and AcPyAD+.
Collapse
Affiliation(s)
- N A Glavas
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
22
|
Diggle C, Cotton NP, Grimley RL, Quirk PG, Thomas CM, Jackson JB. Conformational dynamics of a mobile loop in the NAD(H)-binding subunit of proton-translocating transhydrogenases from Rhodospirillum rubrum and Escherichia coli. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 232:315-26. [PMID: 7556167 DOI: 10.1111/j.1432-1033.1995.tb20814.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Transhydrogenase catalyses the reversible transfer of reducing equivalents between NAD(H) and NADP(H) to the translocation of protons across a membrane. Uniquely in Rhodospirillum rubrum, the NAD(H)-binding subunit (called Ths) exists as a separate subunit which can be reversibly dissociated from the membrane-located subunits. We have expressed the gene for R. rubrum Ths in Escherichia coli to yield large quantities of protein. Low concentrations of either trypsin or endoproteinase Lys-C lead to cleavage of purified Ths specifically at Lys227-Thr228 and Lys237-Glu238. Observations on the one-dimensional 1H-NMR spectra of Ths before and after proteolysis indicate that the segment which straddles the cleavage sites forms a mobile loop protruding from the surface of the protein. Alanine dehydrogenase, which is very similar in sequence to the NAD(H)-binding subunit of transhydrogenase, lacks this segment. Limited proteolytic cleavage has little effect on some of the structural characteristics of Ths (its dimeric nature, its ability to bind to the membrane-located subunits of transhydrogenase, and the short-wavelength fluorescence emission of a unique Trp residue) but does decrease the NADH-binding affinity, and does lower the catalytic activity of the reconstituted complex. The presence of NADH protects against trypsin or Lys-C cleavage, and leads to broadening, and in some cases, shifting, of NMR spectral signals associated with amino acid residues in the surface loop. This indicates that the loop becomes less mobile after nucleotide binding. Observation by NMR during a titration of Ths with NAD+ provides evidence of a two-step nucleotide binding reaction. By introducing an appropriate stop codon into the gene coding for the polypeptide of E. coli transhydrogenase cloned into an expression vector, we have prepared the NAD(H)-binding domain equivalent to Ths. The E. coli protein is sensitive to proteolysis by either trypsin or Lys-C in the mobile loop. Judging by the effect of NADH on its NMR spectrum and on the fluorescence of its Trp residues, the protein is capable of binding the nucleotide though it is unable to dock with the membrane-located subunits of transhydrogenase from R. rubrum.
Collapse
Affiliation(s)
- C Diggle
- School of Biochemistry, University of Birmingham, UK
| | | | | | | | | | | |
Collapse
|
23
|
Olausson T, Fjellström O, Meuller J, Rydström J. Molecular biology of nicotinamide nucleotide transhydrogenase--a unique proton pump. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1231:1-19. [PMID: 7640288 DOI: 10.1016/0005-2728(95)00058-q] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- T Olausson
- Department of Biochemistry and Biophysics, Chalmers University of Technology, Göteborg, Sweden
| | | | | | | |
Collapse
|
24
|
Yamaguchi M, Hatefi Y. Proton-translocating nicotinamide nucleotide transhydrogenase of Escherichia coli. Involvement of aspartate 213 in the membrane-intercalating domain of the beta subunit in energy transduction. J Biol Chem 1995; 270:16653-9. [PMID: 7622474 DOI: 10.1074/jbc.270.28.16653] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Mutations in the beta subunit of Escherichia coli proton-translocating nicotinamide nucleotide transhydrogenase of the conserved residue beta Asp-213 to Asn (beta D213N) and Ile (beta D213I) resulted in the loss, respectively, of about 70% and 90% NADPH-->3-acetylpyridine adenine dinucleotide (AcPyAD) transhydrogenation and coupled proton translocation activities. However, the cyclic NADP(H)-dependent NADH-->AcPyAD transhydrogenase activities of the mutants were only approximately 35% inhibited. The latter transhydrogenation, which is not coupled to proton translocation, occurs apparently via NADP under conditions that enzyme-NADP(H) complex is stabilized. Mutations beta D213N and beta D213I also resulted in decreases in apparent KmNADPH for the NADPH-->AcPyAD and S0.5NADPH (NADPH concentration needed for half-maximal activity) for the cyclic NADH-->AcPyAD transhydrogenation reactions, and in KdNADPH, as determined by equilibrium binding studies on the purified wild-type and the beta D213I mutant enzymes. These results point to a structural role of beta Asp-213 in energy transduction and are discussed in relation to our previous suggestion that proton translocation coupled to NADPH-->NAD (or AcPyAD) transhydrogenation is driven mainly by the difference in the binding energies of NADPH and NADP.
Collapse
Affiliation(s)
- M Yamaguchi
- Department of Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
25
|
Bizouarn T, Grimley RL, Cotton NP, Stilwell SN, Hutton M, Jackson JB. The involvement of NADP(H) binding and release in energy transduction by proton-translocating nicotinamide nucleotide transhydrogenase from Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1229:49-58. [PMID: 7703263 DOI: 10.1016/0005-2728(94)00186-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Proton-translocating transhydrogenase was solubilised and purified from membranes of Escherichia coli. Consistent with recent evidence [Hutton, M., Day, J., Bizouarn, T. and Jackson, J.B. (1994) Eur. J. Biochem. 219, 1041-1051], at low pH and salt concentration, the enzyme catalysed rapid reduction of the NAD+ analogue AcPdAD+ by a combination of NADH and NADPH. At saturating concentrations of NADPH, the dependence of the steady-state rate on the concentrations of NADH and AcPdAD+ indicated that, with respect to these two nucleotides, the reaction proceeds by a ping-pong mechanism. High concentrations of either NADH or AcPdAD+ led to substrate inhibition. These observations support the view that, in this reaction, NADP(H) remains bound to the enzyme: AcPdAD+ is reduced by enzyme-bound NADPH, and NADH is oxidised by enzyme-bound NADP+, in a cyclic process. When this reaction was carried out with [4A-2H]NADH replacing [4A-1H]NADH, the rate was decreased by 46%, suggesting that the H- transfer steps are rate-limiting. In simple 'reverse' transhydrogenation, the reduction of AcPdAD+ was slower with [4B-2H]NADPH than with [4B-1H]NADPH when the reaction was performed at pH 8.0, but there was no deuterium isotope effect at pH 6.0. This indicates that H- transfer is rate-limiting at pH 8.0 and supports our earlier suggestion that NADP+ release from the enzyme is rate-limiting at low pH. The lack of a deuterium isotope effect in the reduction of thio-NADP+ by NADH at low pH is also consistent with the view that NADPH release from the enzyme is slow under these conditions. A steady-state rate equation is derived for the reduction of AcPdAD+ by NADPH plus NADH, assuming operation of the cyclic pathway. It adequately accounts for the pH dependence of the enzyme, for the features described above and for kinetic characteristics of E. coli transhydrogenase described in the literature.
Collapse
Affiliation(s)
- T Bizouarn
- School of Biochemistry, University of Birmingham, Edgbaston, UK
| | | | | | | | | | | |
Collapse
|
26
|
Diggle C, Hutton M, Jones GR, Thomas CM, Jackson JB. Properties of the soluble polypeptide of the proton-translocating transhydrogenase from Rhodospirillum rubrum obtained by expression in Escherichia coli. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 228:719-26. [PMID: 7737169 DOI: 10.1111/j.1432-1033.1995.tb20315.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Transhydrogenase, which catalyses the reduction of NADP+ by NADH coupled to proton translocation across a membrane, may be unique in the photosynthetic bacterium Rhodospirillum rubrum. Unlike the homologous enzyme from animal mitochondria and other bacterial sources, it has a water-soluble polypeptide, which exists as a dimer (Ths), that can be reversibly dissociated from the membrane component [Williams, R., Cotton, N. P. J., Thomas, C. M. & Jackson, J. B. (1994) Microbiology, 140, 1595-1604]. We have expressed the gene for Ths in cells of Escherichia coli under control of the tac promoter and a strong ribosome binding site. The protein, purified by column chromatography, fully reconstituted transhydrogenation activity to everted membrane vesicles of Rhs. rubrum that had been washed to remove Ths. The purified expressed protein was prepared in quantities over 100-fold greater than were obtained from wild-type Rhs. rubrum. The fluorescence spectrum of purified expressed Ths had an intense and unusually short wavelength emission maximum at 310 nm with shoulders at 298 and 322 nm. Time-resolved measurements indicated that the fluorescence decay was almost monoexponential with a lifetime of 5.2 ns. On denaturation with 4 M guanidine hydrochloride, the emission band shifted to 352 nm and decreased in intensity. In the native protein, the fluorophore was relatively inaccessible to quenching solutes, such as iodide ions and acrylamide. It is concluded that the fluorescence emission arises mainly from the single tryptophan residue of Ths (Trp72), which is locked into a rigid conformation and is located in highly non-polar environment. The 310-nm fluorescence of Ths was quenched by NADH, maximally to 46%. The apparent binding constant was 18 microM. The fluorescence of Ths-bound NADH was enhanced relative to the nucleotide in free solution and its emission maximum was shifted to a shorter wavelength (440 nm). These data support previous indications that the NADH binding site is located in domain I of proton-translocating transhydrogenase. Excitation of Ths at 280 nm did not lead to sensitized emission at 440 nm from bound NADH. This indicates that the quenching of fluorescence of Ths by NADH does not result from resonance energy transfer from Trp72 to the bound nucleotide. NAD+, NADP+ and NADPH had little effect on the protein fluorescence. The kinetics of quenching of Ths fluorescence by NADH were examined after mixing in a stopped-flow device. The 'on' rate constant for nucleotide binding was approximately 8 x 10(6) M-1 s-1 and the 'off' constant approximately 150 s-1.
Collapse
Affiliation(s)
- C Diggle
- School of Biochemistry, University of Birmingham, England
| | | | | | | | | |
Collapse
|
27
|
Fjellström O, Olausson T, Hu X, Källebring B, Ahmad S, Bragg PD, Rydström J. Three-dimensional structure prediction of the NAD binding site of proton-pumping transhydrogenase from Escherichia coli. Proteins 1995; 21:91-104. [PMID: 7777492 DOI: 10.1002/prot.340210203] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A three-dimensional structure of the NAD site of Escherichia coli transhydrogenase has been predicted. The model is based on analysis of conserved residues among the transhydrogenases from five different sources, homologies with enzymes using NAD as cofactors or substrates, hydrophilicity profiles, and secondary structure predictions. The present model supports the hypothesis that there is one binding site, located relatively close to the N-terminus of the alpha-subunit. The proposed structure spans residues alpha 145 to alpha 287, and it includes five beta-strands and five alpha-helices oriented in a typical open twisted alpha/beta conformation. The amino acid sequence following the GXGXXG dinucleotide binding consensus sequence (residues alpha 172 to alpha 177) correlates exactly to a typical fingerprint region for ADP binding beta alpha beta folds in dinucleotide binding enzymes. In the model, aspartic acid alpha 195 forms hydrogen bonds to one or both hydroxyl groups on the adenosine ribose sugar moiety. Threonine alpha 196 and alanine alpha 256, located at the end of beta B and beta D, respectively, create a hydrophobic sandwich with the adenine part of NAD buried inside. The nicotinamide part is located in a hydrophobic cleft between alpha A and beta E. Mutagenesis work has been carried out in order to test the predicted model and to determine whether residues within this domain are important for proton pumping directly. All data support the predicted structure, and no residue crucial for proton pumping was detected. Since no three-dimensional structure of transhydrogenase has been solved, a well based tertiary structure prediction is of great value for further experimental design in trying to elucidate the mechanism of the energy-linked proton pump.
Collapse
Affiliation(s)
- O Fjellström
- Department of Biochemistry and Biophysics, Göteborg University, Sweden
| | | | | | | | | | | | | |
Collapse
|
28
|
Yamaguchi M, Hatefi Y. Energy-transducing nicotinamide nucleotide transhydrogenase: nucleotide sequences of the genes and predicted amino acid sequences of the subunits of the enzyme from Rhodospirillum rubrum. J Bioenerg Biomembr 1994; 26:435-45. [PMID: 7844118 DOI: 10.1007/bf00762784] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Based on the amino acid sequence of the N-terminus of the soluble subunit of the Rhodospirillum rubrum nicotinamide nucleotide transhydrogenase, two oligonucleotide primers were synthesized and used to amplify the corresponding DNA segment (110 base pairs) by the polymerase chain reaction. Using this PCR product as a probe, one clone with the insert of 6.4 kbp was isolated from a genomic library of R. rubrum and sequenced. This sequence contained three open reading frames, constituting the genes nntA1, nntA2, and nntB of the R. rubrum transhydrogenase operon. The polypeptides encoded by these genes were designated alpha 1, alpha 2, and beta, respectively, and are considered to be the subunits of the R. rubrum transhydrogenase. The predicted amino acid sequence of the alpha 1 subunit (384 residues; molecular weight 40276) has considerable sequence similarity to the alpha subunit of the Escherichia coli and the N-terminal 43-kDa segment of the bovine transhydrogenases. Like the latter, it has a beta alpha beta fold in the corresponding region, and the purified, soluble alpha 1 subunit cross-reacts with antibody to the bovine N-terminal 43-kDa fragment. The predicted amino acid sequence of the beta subunit of the R. rubrum transhydrogenase (464 residues; molecular weight 47808) has extensive sequence identity with the beta subunit of the E. coli and the corresponding C-terminal sequence of the bovine transhydrogenases. The chromatophores of R. rubrum contain a 48-kDa polypeptide, which cross-reacts with antibody to the C-terminal 20-kDa fragment of the bovine transhydrogenase. The predicted amino acid sequence of the alpha 2 subunit of the R. rubrum enzyme (139 residues; molecular weight 14888) has considerable sequence identity in its C-terminal half to the corresponding segments of the bovine and the alpha subunit of the E. coli transhydrogenases.
Collapse
Affiliation(s)
- M Yamaguchi
- Department of Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, California 92037
| | | |
Collapse
|
29
|
Holmberg E, Olausson T, Hultman T, Rydström J, Ahmad S, Glavas NA, Bragg PD. Prediction and site-specific mutagenesis of residues in transmembrane alpha-helices of proton-pumping nicotinamide nucleotide transhydrogenases from Escherichia coli and bovine heart mitochondria. Biochemistry 1994; 33:7691-700. [PMID: 8011636 DOI: 10.1021/bi00190a024] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Nicotinamide nucleotide transhydrogenase from bovine heart consists of a single polypeptide of 109 kD. The complete gene for this transhydrogenase was constructed, and the protein primary structure was determined from the cDNA. As compared to the previously published sequences of partially overlapping clones, three residues differed: Ala591 (previously Phe), Val777 (previously Glu), and Ala782 (previously Arg). The Escherichia coli transhydrogenase consists of an alpha subunit of 52 kD and a beta subunit of 48 kD. Alignment of the protein primary structure of the bovine trashydrogenase with that of the transhydrogenase from E. coli showed an identity of 52%, indicating similarly folded structures. Prediction of transmembrane-spanning alpha-helices, obtained by applying several prediction algorithms to the primary structures of the revised bovine heart and E. coli transhydrogenases, yielded a model containing 10 transmembrane alpha-helices in both transhydrogenases. In E. coli transhydrogenase, four predicted alpha-helices were located in the alpha subunit and six alpha-helices were located in the beta subunit. Various conserved amino acid residues of the E. coli transhydrogenase located in or close to predicted transmembrane alpha-helixes were replaced by site-specific mutagenesis. Conserved negatively charged residues in predicted transmembrane alpha-helices possibly participating in proton translocation were identified as beta Glu82 (Asp655 in the bovine enzyme) and beta Asp213 (asp787 in the bovine enzyme) located close to the predicted alpha-helices 7 and 9 of the beta subunit. beta Glu82 was replaced by Lys or Gln and beta Asp213 by Asn or His. However, the catalytic as well as the proton pumping activity was retained. In contrast, mutagenesis of the conserved beta His91 residue (His664 in the bovine enzyme) to Ser, Thr, and Cys gave an essentially inactive enzyme. Mutation of alpha His450 (corresponding to His481 in the bovine enzyme) to Thr greatly lowered catalytic activity without abolishing proton pumping. Since no other conserved acidic or basic residues were predicted in transmembrane alpha-helices regardless of the prediction algorithm used, proton translocation by transhydrogenase was concluded to involve a basic rather than an acidic residue. The only conserved cysteine residue, beta Cys260 (Cys834 in the bovine enzyme), located in the predicted alpha-helix 10 of the E. coli transhydrogenase, previously suggested to function as a redox-active dithiol, proved not to be essential, suggesting that redox-active dithiols do not play a role in the mechanism of transhydrogenase.
Collapse
Affiliation(s)
- E Holmberg
- Biochemistry Department, Kabi Pharmacia, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
30
|
Hutton M, Day JM, Bizouarn T, Jackson JB. Kinetic resolution of the reaction catalysed by proton-translocating transhydrogenase from Escherichia coli as revealed by experiments with analogues of the nucleotide substrates. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 219:1041-51. [PMID: 8112317 DOI: 10.1111/j.1432-1033.1994.tb18587.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The mechanism, by which transhydrogenase couples transfer of H- equivalents between NAD(H) and NADP(H) to the translocation of protons across a membrane, has been investigated in the solubilised, purified enzyme from Escherichia coli using analogues of the nucleotide substrates. The key observation was that, at low pH and ionic strength, solubilised transhydrogenase catalysed the very rapid reduction of acetylpyridine adenine dinucleotide (an analogue of NAD+) by NADH, but only in the presence of either NADP+ or NADPH. This indicates that the rates of release of NADP+ and NADPH from their binary complexes with the enzyme are slow. The dependences on pH and salt concentration suggest that (a) release of both NADP+ and NADPH are accompanied by the release of H+ from the enzyme and (b) increased ionic strength decreases the value of the pKa of the group responsible for H+ release. Modification of the enzyme with N,N1-dicyclohexylcarbodiimide led to inhibition of the rate of release of NADP+ and NADPH from the enzyme, but had a much smaller effect on the binding and release of NAD+, NADH and their analogues and on the interconversion of the ternary complexes of the enzyme with its substrates. It is considered that the binding and release of H+, which accompany the binding and release of NADP+/NADPH, might be central to the mechanism of proton translocation by the enzyme in its membrane-bound state.
Collapse
Affiliation(s)
- M Hutton
- School of Biochemistry, University of Birmingham, England
| | | | | | | |
Collapse
|