1
|
Ghate SD, Pinto L, Alva S, Srinivasa MG, Vangala RK, Naik P, Revanasiddappa BC, Rao RSP. In silico identification of potential phytochemical inhibitors for mpox virus: molecular docking, MD simulation, and ADMET studies. Mol Divers 2024; 28:4067-4086. [PMID: 38519803 DOI: 10.1007/s11030-023-10797-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/19/2023] [Indexed: 03/25/2024]
Abstract
The mpox virus (MPXV), a member of the Poxviridae family, which recently appeared outside of the African continent has emerged as a global threat to public health. Given the scarcity of antiviral treatments for mpox disease, there is a pressing need to identify and develop new therapeutics. We investigated 5715 phytochemicals from 266 species available in IMMPAT database as potential inhibitors for six MPXV targets namely thymidylate kinase (A48R), DNA ligase (A50R), rifampicin resistance protein (D13L), palmytilated EEV membrane protein (F13L), viral core cysteine proteinase (I7L), and DNA polymerase (E9L) using molecular docking. The best-performing phytochemicals were also subjected to molecular dynamics (MD) simulations and in silico ADMET analysis. The top phytochemicals were forsythiaside for A48R, ruberythric acid for A50R, theasinensin F for D13L, theasinensin A for F13L, isocinchophyllamine for I7L, and terchebin for E9L. Interestingly, the binding energies of these potential phytochemical inhibitors were far lower than brincidofovir and tecovirimat, the standard drugs used against MPXV, hinting at better binding properties of the former. These findings may pave the way for developing new MPXV inhibitors based on natural product scaffolds. However, they must be further studied to establish their inhibitory efficacy and toxicity in in vitro and in vivo models.
Collapse
Affiliation(s)
- Sudeep D Ghate
- Center for Bioinformatics, NITTE Deemed to be University, Mangaluru, 575018, India.
- Central Research Laboratory, KS Hegde Medical Academy, NITTE Deemed to be University, Mangaluru, 575018, India.
| | - Larina Pinto
- Center for Bioinformatics, NITTE Deemed to be University, Mangaluru, 575018, India
| | - Shivakiran Alva
- Center for Bioinformatics, NITTE Deemed to be University, Mangaluru, 575018, India
| | - Mahendra Gowdru Srinivasa
- Department of Pharmaceutical Chemistry, Nitte (Deemed to be University) NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Mangaluru, 575018, India
| | - Rajani Kanth Vangala
- Institute for Applied Research and Innovation, Neuome Technologies Pvt. Ltd., Bangalore Bioinnovation Centre, IBAB Campus, Electronic City Phase 1, Bangalore, 560100, India
| | - Prashantha Naik
- Department of Biosciences, Mangalore University, Mangaluru, 574199, India
| | - B C Revanasiddappa
- Department of Pharmaceutical Chemistry, Nitte (Deemed to be University) NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Mangaluru, 575018, India
| | - R Shyama Prasad Rao
- Center for Bioinformatics, NITTE Deemed to be University, Mangaluru, 575018, India.
- Central Research Laboratory, KS Hegde Medical Academy, NITTE Deemed to be University, Mangaluru, 575018, India.
| |
Collapse
|
2
|
Sallmyr A, Bhandari SK, Naila T, Tomkinson AE. Mammalian DNA ligases; roles in maintaining genome integrity. J Mol Biol 2024; 436:168276. [PMID: 37714297 PMCID: PMC10843057 DOI: 10.1016/j.jmb.2023.168276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023]
Abstract
The joining of breaks in the DNA phosphodiester backbone is essential for genome integrity. Breaks are generated during normal processes such as DNA replication, cytosine demethylation during differentiation, gene rearrangement in the immune system and germ cell development. In addition, they are generated either directly by a DNA damaging agent or indirectly due to damage excision during repair. Breaks are joined by a DNA ligase that catalyzes phosphodiester bond formation at DNA nicks with 3' hydroxyl and 5' phosphate termini. Three human genes encode ATP-dependent DNA ligases. These enzymes have a conserved catalytic core consisting of three subdomains that encircle nicked duplex DNA during ligation. The DNA ligases are targeted to different nuclear DNA transactions by specific protein-protein interactions. Both DNA ligase IIIα and DNA ligase IV form stable complexes with DNA repair proteins, XRCC1 and XRCC4, respectively. There is functional redundancy between DNA ligase I and DNA ligase IIIα in DNA replication, excision repair and single-strand break repair. Although DNA ligase IV is a core component of the major double-strand break repair pathway, non-homologous end joining, the other enzymes participate in minor, alternative double-strand break repair pathways. In contrast to the nucleus, only DNA ligase IIIα is present in mitochondria and is essential for maintaining the mitochondrial genome. Human immunodeficiency syndromes caused by mutations in either LIG1 or LIG4 have been described. Preclinical studies with DNA ligase inhibitors have identified potentially targetable abnormalities in cancer cells and evidence that DNA ligases are potential targets for cancer therapy.
Collapse
Affiliation(s)
- Annahita Sallmyr
- University of New Mexico Comprehensive Cancer Center and the Departments of Internal Medicine, and Molecular Genetics & Microbiology, University of New Mexico Health Sciences Center, United States
| | - Seema Khattri Bhandari
- University of New Mexico Comprehensive Cancer Center and the Departments of Internal Medicine, and Molecular Genetics & Microbiology, University of New Mexico Health Sciences Center, United States
| | - Tasmin Naila
- University of New Mexico Comprehensive Cancer Center and the Departments of Internal Medicine, and Molecular Genetics & Microbiology, University of New Mexico Health Sciences Center, United States
| | - Alan E Tomkinson
- University of New Mexico Comprehensive Cancer Center and the Departments of Internal Medicine, and Molecular Genetics & Microbiology, University of New Mexico Health Sciences Center, United States.
| |
Collapse
|
3
|
Prasad R, Poltoratsky V, Hou EW, Wilson SH. Rev1 is a base excision repair enzyme with 5'-deoxyribose phosphate lyase activity. Nucleic Acids Res 2016; 44:10824-10833. [PMID: 27683219 PMCID: PMC5159550 DOI: 10.1093/nar/gkw869] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 09/16/2016] [Accepted: 09/21/2016] [Indexed: 12/28/2022] Open
Abstract
Rev1 is a member of the Y-family of DNA polymerases and is known for its deoxycytidyl transferase activity that incorporates dCMP into DNA and its ability to function as a scaffold factor for other Y-family polymerases in translesion bypass events. Rev1 also is involved in mutagenic processes during somatic hypermutation of immunoglobulin genes. In light of the mutation pattern consistent with dCMP insertion observed earlier in mouse fibroblast cells treated with a base excision repair-inducing agent, we questioned whether Rev1 could also be involved in base excision repair (BER). Here, we uncovered a weak 5′-deoxyribose phosphate (5′-dRP) lyase activity in mouse Rev1 and demonstrated the enzyme can mediate BER in vitro. The full-length Rev1 protein and its catalytic core domain are similar in their ability to support BER in vitro. The dRP lyase activity in both of these proteins was confirmed by NaBH4 reduction of the Schiff base intermediate and kinetics studies. Limited proteolysis, mass spectrometry and deletion analysis localized the dRP lyase active site to the C-terminal segment of Rev1's catalytic core domain. These results suggest that Rev1 could serve as a backup polymerase in BER and could potentially contribute to AID-initiated antibody diversification through this activity.
Collapse
Affiliation(s)
- Rajendra Prasad
- Genome Integrity and Structural Biology Laboratory, National Institutes of Health, NIEHS, 111 T.W. Alexander Drive, PO Box 12233, MD F3-01, Research Triangle Park, NC 27709, USA
| | - Vladimir Poltoratsky
- Genome Integrity and Structural Biology Laboratory, National Institutes of Health, NIEHS, 111 T.W. Alexander Drive, PO Box 12233, MD F3-01, Research Triangle Park, NC 27709, USA
| | - Esther W Hou
- Genome Integrity and Structural Biology Laboratory, National Institutes of Health, NIEHS, 111 T.W. Alexander Drive, PO Box 12233, MD F3-01, Research Triangle Park, NC 27709, USA
| | - Samuel H Wilson
- Genome Integrity and Structural Biology Laboratory, National Institutes of Health, NIEHS, 111 T.W. Alexander Drive, PO Box 12233, MD F3-01, Research Triangle Park, NC 27709, USA
| |
Collapse
|
4
|
Tomkinson AE, Sallmyr A. Structure and function of the DNA ligases encoded by the mammalian LIG3 gene. Gene 2013; 531:150-7. [PMID: 24013086 DOI: 10.1016/j.gene.2013.08.061] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Revised: 08/15/2013] [Accepted: 08/20/2013] [Indexed: 11/30/2022]
Abstract
Among the mammalian genes encoding DNA ligases (LIG), the LIG3 gene is unique in that it encodes multiple DNA ligase polypeptides with different cellular functions. Notably, this nuclear gene encodes the only mitochondrial DNA ligase and so is essential for this organelle. In the nucleus, there is significant functional redundancy between DNA ligase IIIα and DNA ligase I in excision repair. In addition, DNA ligase IIIα is essential for DNA replication in the absence of the replicative DNA ligase, DNA ligase I. DNA ligase IIIα is a component of an alternative non-homologous end joining (NHEJ) pathway for DNA double-strand break (DSB) repair that is more active when the major DNA ligase IV-dependent pathway is defective. Unlike its other nuclear functions, the role of DNA ligase IIIα in alternative NHEJ is independent of its nuclear partner protein, X-ray repair cross-complementing protein 1 (XRCC1). DNA ligase IIIα is frequently overexpressed in cancer cells, acting as a biomarker for increased dependence upon alternative NHEJ for DSB repair and it is a promising novel therapeutic target.
Collapse
Affiliation(s)
- Alan E Tomkinson
- Department of Internal Medicine and University of New Mexico Cancer Center, University of New Mexico, Albuquerque, NM 87131, USA.
| | | |
Collapse
|
5
|
Heacock M, Poltoratsky V, Prasad R, Wilson SH. Evidence for abasic site sugar phosphate-mediated cytotoxicity in alkylating agent treated Saccharomyces cerevisiae. PLoS One 2012; 7:e47945. [PMID: 23144716 PMCID: PMC3483300 DOI: 10.1371/journal.pone.0047945] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 09/25/2012] [Indexed: 11/18/2022] Open
Abstract
To better understand alkylating agent-induced cytotoxicity and the base lesion DNA repair process in Saccharomyces cerevisiae, we replaced the RAD27(FEN1) open reading frame (ORF) with the ORF of the bifunctional human repair enzyme DNA polymerase (Pol) β. The aim was to probe the effect of removal of the incised abasic site 5'-sugar phosphate group (i.e., 5'-deoxyribose phosphate or 5'-dRP) in protection against methyl methanesulfonate (MMS)-induced cytotoxicity. In S. cerevisiae, Rad27(Fen1) was suggested to protect against MMS-induced cytotoxicity by excising multinucleotide flaps generated during repair. However, we proposed that the repair intermediate with a blocked 5'-end, i.e., 5'-dRP group, is the actual cytotoxic lesion. In providing a 5'-dRP group removal function mediated by dRP lyase activity of Pol β, the effects of the 5'-dRP group were separated from those of the multinucleotide flap itself. Human Pol β was expressed in S. cerevisiae, and this partially rescued the MMS hypersensitivity observed with rad27(fen1)-null cells. To explore this rescue effect, altered forms of Pol β with site-directed eliminations of either the 5'-dRP lyase or polymerase activity were expressed in rad27(fen1)-null cells. The 5'-dRP lyase, but not the polymerase activity, conferred the resistance to MMS. These results suggest that after MMS exposure, the 5'-dRP group in the repair intermediate is cytotoxic and that Rad27(Fen1) protection against MMS in wild-type cells is due to elimination of the 5'-dRP group.
Collapse
Affiliation(s)
- Michelle Heacock
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | | | | | | |
Collapse
|
6
|
Prasad R, Williams JG, Hou EW, Wilson SH. Pol β associated complex and base excision repair factors in mouse fibroblasts. Nucleic Acids Res 2012; 40:11571-82. [PMID: 23042675 PMCID: PMC3526277 DOI: 10.1093/nar/gks898] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
During mammalian base excision repair (BER) of lesion-containing DNA, it is proposed that toxic strand-break intermediates generated throughout the pathway are sequestered and passed from one step to the next until repair is complete. This stepwise process is termed substrate channeling. A working model evaluated here is that a complex of BER factors may facilitate the BER process. FLAG-tagged DNA polymerase (pol) β was expressed in mouse fibroblasts carrying a deletion in the endogenous pol β gene, and the cell extract was subjected to an ‘affinity-capture’ procedure using anti-FLAG antibody. The pol β affinity-capture fraction (ACF) was found to contain several BER factors including polymerase-1, X-ray cross-complementing factor1-DNA ligase III and enzymes involved in processing 3′-blocked ends of BER intermediates, e.g. polynucleotide kinase and tyrosyl-DNA phosphodiesterase 1. In contrast, DNA glycosylases, apurinic/aprymidinic endonuclease 1 and flap endonuclease 1 and several other factors involved in BER were not present. Some of the BER factors in the pol β ACF were in a multi-protein complex as observed by sucrose gradient centrifugation. The pol β ACF was capable of substrate channeling for steps in vitro BER and was proficient in in vitro repair of substrates mimicking a 3′-blocked topoisomerase I covalent intermediate or an oxidative stress-induced 3′-blocked intermediate.
Collapse
Affiliation(s)
- Rajendra Prasad
- Laboratory of Structural Biology, NIEHS, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | | | | | | |
Collapse
|
7
|
Peng Z, Liao Z, Dziegielewska B, Matsumoto Y, Thomas S, Wan Y, Yang A, Tomkinson AE. Phosphorylation of serine 51 regulates the interaction of human DNA ligase I with replication factor C and its participation in DNA replication and repair. J Biol Chem 2012; 287:36711-9. [PMID: 22952233 DOI: 10.1074/jbc.m112.383570] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human DNA ligase I (hLigI) joins Okazaki fragments during DNA replication and completes excision repair via interactions with proliferating cell nuclear antigen and replication factor C (RFC). Unlike proliferating cell nuclear antigen, the interaction with RFC is regulated by hLigI phosphorylation. To identity of the site(s) involved in this regulation, we analyzed phosphorylated hLigI purified from insect cells by mass spectrometry. These results suggested that serine 51 phosphorylation negatively regulates the interaction with RFC. Therefore, we constructed versions of hLigI in which serine 51 was replaced with either alanine (hLigI51A) to prevent phosphorylation or aspartic acid (hLigI51D) to mimic phosphorylation. hLigI51D but not hLigI51A was defective in binding to purified RFC and in associating with RFC in cell extracts. Although DNA synthesis and proliferation of hLigI-deficient cells expressing either hLig51A or hLig51 was reduced compared with cells expressing wild-type hLigI, cellular senescence was only observed in the cells expressing hLigI51D. Notably, these cells had increased levels of spontaneous DNA damage and phosphorylated CHK2. In addition, although expression of hLigI51A complemented the sensitivity of hLigI-deficient cells to a poly (ADP-ribose polymerase (PARP) inhibitor, expression of hLig151D did not, presumably because these cells are more dependent upon PARP-dependent repair pathways to repair the damage resulting from the abnormal DNA replication. Finally, neither expression of hLigI51D nor hLigI51A fully complemented the sensitivity of hLigI-deficient cells to DNA alkylation. Thus, phosphorylation of serine 51 on hLigI plays a critical role in regulating the interaction between hLigI and RFC, which is required for efficient DNA replication and repair.
Collapse
Affiliation(s)
- Zhimin Peng
- Department of Internal Medicine and University of New Mexico Cancer Center, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Asagoshi K, Lehmann W, Braithwaite EK, Santana-Santos L, Prasad R, Freedman JH, Van Houten B, Wilson SH. Single-nucleotide base excision repair DNA polymerase activity in C. elegans in the absence of DNA polymerase β. Nucleic Acids Res 2012; 40:670-81. [PMID: 21917855 PMCID: PMC3258131 DOI: 10.1093/nar/gkr727] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 08/22/2011] [Accepted: 08/23/2011] [Indexed: 11/24/2022] Open
Abstract
The base excision DNA repair (BER) pathway known to occur in Caenorhabditis elegans has not been well characterized. Even less is known about the DNA polymerase (pol) requirement for the gap-filling step during BER. We now report on characterization of in vitro uracil-DNA initiated BER in C. elegans. The results revealed single-nucleotide (SN) gap-filling DNA polymerase activity and complete BER. The gap-filling polymerase activity was not due to a DNA polymerase β (pol β) homolog, or to another X-family polymerase, since computer-based sequence analyses of the C. elegans genome failed to show a match for a pol β-like gene or other X-family polymerases. Activity gel analysis confirmed the absence of pol β in the C. elegans extract. BER gap-filling polymerase activity was partially inhibited by both dideoxynucleotide and aphidicolin. The results are consistent with a combination of both replicative polymerase(s) and lesion bypass/BER polymerase pol θ contributing to the BER gap-filling synthesis. Involvement of pol θ was confirmed in experiments with extract from pol θ null animals. The presence of the SN BER in C. elegans is supported by these results, despite the absence of a pol β-like enzyme or other X-family polymerase.
Collapse
Affiliation(s)
- Kenjiro Asagoshi
- Laboratory of Structural Biology, Laboratory of Molecular Genetics, Laboratory of Toxicology and Pharmacology, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA and Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine and The University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Wade Lehmann
- Laboratory of Structural Biology, Laboratory of Molecular Genetics, Laboratory of Toxicology and Pharmacology, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA and Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine and The University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Elena K. Braithwaite
- Laboratory of Structural Biology, Laboratory of Molecular Genetics, Laboratory of Toxicology and Pharmacology, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA and Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine and The University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Lucas Santana-Santos
- Laboratory of Structural Biology, Laboratory of Molecular Genetics, Laboratory of Toxicology and Pharmacology, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA and Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine and The University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Rajendra Prasad
- Laboratory of Structural Biology, Laboratory of Molecular Genetics, Laboratory of Toxicology and Pharmacology, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA and Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine and The University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Jonathan H. Freedman
- Laboratory of Structural Biology, Laboratory of Molecular Genetics, Laboratory of Toxicology and Pharmacology, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA and Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine and The University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Bennett Van Houten
- Laboratory of Structural Biology, Laboratory of Molecular Genetics, Laboratory of Toxicology and Pharmacology, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA and Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine and The University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Samuel H. Wilson
- Laboratory of Structural Biology, Laboratory of Molecular Genetics, Laboratory of Toxicology and Pharmacology, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA and Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine and The University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA 15213, USA
| |
Collapse
|
9
|
Prasad R, Shock DD, Beard WA, Wilson SH. Substrate channeling in mammalian base excision repair pathways: passing the baton. J Biol Chem 2010; 285:40479-88. [PMID: 20952393 DOI: 10.1074/jbc.m110.155267] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The current model for base excision repair (BER) involves two general sub-pathways termed single-nucleotide BER and long patch BER that are distinguished by their repair patch sizes and the enzymes/co-factors involved. Both sub-pathways involve a series of sequential steps from initiation to completion of repair. The BER sub-pathways are designed to sequester the various intermediates, passing them along from one step to the next without allowing these toxic molecules to trigger cell cycle arrest, necrotic cell death, or apoptosis. Although a variety of DNA-protein and protein-protein interactions are known for the BER intermediates and enzymes/co-factors, the molecular mechanisms accounting for step-to-step coordination are not well understood. In the present study we designed an in vitro assay to explore the question of whether there is a channeling or "hand-off" of the repair intermediates during BER in vitro. The results show that when BER enzymes are pre-bound to the initial single-nucleotide BER intermediate, the DNA is channeled from apurinic/apyrimidinic endonuclease 1 to DNA polymerase β and then to DNA ligase. In the long patch BER subpathway, where the 5'-end of the incised strand is blocked, the intermediate after DNA polymerase β gap filling is not channeled to the subsequent enzyme, flap endonuclease 1. Instead, flap endonuclease 1 must recognize and bind to the intermediate in competition with other molecules.
Collapse
Affiliation(s)
- Rajendra Prasad
- Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | |
Collapse
|
10
|
Paran N, De Silva FS, Senkevich TG, Moss B. Cellular DNA ligase I is recruited to cytoplasmic vaccinia virus factories and masks the role of the vaccinia ligase in viral DNA replication. Cell Host Microbe 2010; 6:563-9. [PMID: 20006844 DOI: 10.1016/j.chom.2009.11.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Revised: 09/16/2009] [Accepted: 11/02/2009] [Indexed: 12/17/2022]
Abstract
Vaccinia virus (VACV) encodes DNA polymerase and additional proteins that enable cytoplasmic replication. We confirmed the ability of VACV DNA ligase mutants to replicate and tested the hypothesis that cellular ligases compensate for loss of viral gene expression. RNA silencing of human DNA ligase I expression and a small molecule inhibitor of human DNA ligase I [corrected] severely reduced replication of viral DNA in cells infected with VACV ligase-deficient mutants, indicating that the cellular enzyme plays a complementary role. Replication of ligase-deficient VACV was greatly reduced and delayed in resting primary cells, correlating with initial low levels of ligase I and subsequent viral induction and localization of ligase I in virus factories. These studies indicate that DNA ligation is essential for poxvirus replication and explain the ability of ligase deletion mutants to replicate in dividing cells but exhibit decreased pathogenicity in mice. Encoding its own ligase might allow VACV to "jump-start" DNA synthesis.
Collapse
Affiliation(s)
- Nir Paran
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
11
|
Prasad R, Longley MJ, Sharief FS, Hou EW, Copeland WC, Wilson SH. Human DNA polymerase theta possesses 5'-dRP lyase activity and functions in single-nucleotide base excision repair in vitro. Nucleic Acids Res 2009; 37:1868-77. [PMID: 19188258 PMCID: PMC2665223 DOI: 10.1093/nar/gkp035] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 12/26/2008] [Accepted: 01/11/2009] [Indexed: 12/18/2022] Open
Abstract
DNA polymerase theta (Pol theta) is a low-fidelity DNA polymerase that belongs to the family A polymerases and has been proposed to play a role in somatic hypermutation. Pol theta has the ability to conduct translesion DNA synthesis opposite an AP site or thymine glycol, and it was recently proposed to be involved in base excision repair (BER) of DNA damage. Here, we show that Pol theta has intrinsic 5'-deoxyribose phosphate (5'-dRP) lyase activity that is involved in single-nucleotide base excision DNA repair (SN-BER). Full-length human Pol theta is a approximately 300-kDa polypeptide, but we show here that the 98-kDa C-terminal region of Pol theta possesses both DNA polymerase activity and dRP lyase activity and is sufficient to carry out base excision repair in vitro. The 5'-dRP lyase activity is independent of the polymerase activity, in that a polymerase inactive mutant retained full 5'-dRP lyase activity. Domain mapping of the 98-kDa enzyme by limited proteolysis and NaBH(4) cross-linking with a BER intermediate revealed that the dRP lyase active site resides in a 24-kDa domain of Pol theta. These results are consistent with a role of Pol theta in BER.
Collapse
Affiliation(s)
- Rajendra Prasad
- Laboratory of Structural Biology and Laboratory of Molecular Genetics, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Matthew J. Longley
- Laboratory of Structural Biology and Laboratory of Molecular Genetics, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Farida S. Sharief
- Laboratory of Structural Biology and Laboratory of Molecular Genetics, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Esther W. Hou
- Laboratory of Structural Biology and Laboratory of Molecular Genetics, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - William C. Copeland
- Laboratory of Structural Biology and Laboratory of Molecular Genetics, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Samuel H. Wilson
- Laboratory of Structural Biology and Laboratory of Molecular Genetics, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|
12
|
Phosphorylation of human DNA ligase I regulates its interaction with replication factor C and its participation in DNA replication and DNA repair. Mol Cell Biol 2009; 29:2042-52. [PMID: 19223468 DOI: 10.1128/mcb.01732-08] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Human DNA ligase I (hLigI) participates in DNA replication and excision repair via an interaction with proliferating cell nuclear antigen (PCNA), a DNA sliding clamp. In addition, hLigI interacts with and is inhibited by replication factor C (RFC), the clamp loader complex that loads PCNA onto DNA. Here we show that a mutant version of hLigI, which mimics the hyperphosphorylated M-phase form of hLigI, does not interact with and is not inhibited by RFC, demonstrating that inhibition of ligation is dependent upon the interaction between hLigI and RFC. To examine the biological relevance of hLigI phosphorylation, we isolated derivatives of the hLigI-deficient cell line 46BR.1G1 that stably express mutant versions of hLigI in which four serine residues phosphorylated in vivo were replaced with either alanine or aspartic acid. The cell lines expressing the phosphorylation site mutants of hLigI exhibited a dramatic reduction in proliferation and DNA synthesis and were also hypersensitive to DNA damage. The dominant-negative effects of the hLigI phosphomutants on replication and repair are due to the activation of cellular senescence, presumably because of DNA damage arising from replication abnormalities. Thus, appropriate phosphorylation of hLigI is critical for its participation in DNA replication and repair.
Collapse
|
13
|
Prasad R, Liu Y, Deterding LJ, Poltoratsky VP, Kedar PS, Horton JK, Kanno SI, Asagoshi K, Hou EW, Khodyreva SN, Lavrik OI, Tomer KB, Yasui A, Wilson SH. HMGB1 is a cofactor in mammalian base excision repair. Mol Cell 2007; 27:829-41. [PMID: 17803946 PMCID: PMC2799894 DOI: 10.1016/j.molcel.2007.06.029] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2007] [Revised: 04/30/2007] [Accepted: 06/20/2007] [Indexed: 01/24/2023]
Abstract
Deoxyribose phosphate (dRP) removal by DNA polymerase beta (Pol beta) is a pivotal step in base excision repair (BER). To identify BER cofactors, especially those with dRP lyase activity, we used a Pol beta null cell extract and BER intermediate as bait for sodium borohydride crosslinking. Mass spectrometry identified the high-mobility group box 1 protein (HMGB1) as specifically interacting with the BER intermediate. Purified HMGB1 was found to have weak dRP lyase activity and to stimulate AP endonuclease and FEN1 activities on BER substrates. Coimmunoprecipitation experiments revealed interactions of HMGB1 with known BER enzymes, and GFP-tagged HMGB1 was found to accumulate at sites of oxidative DNA damage in living cells. HMGB1(-/-) mouse cells were slightly more resistant to MMS than wild-type cells, probably due to the production of fewer strand-break BER intermediates. The results suggest HMGB1 is a BER cofactor capable of modulating BER capacity in cells.
Collapse
Affiliation(s)
- Rajendra Prasad
- Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Yuan Liu
- Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Leesa J. Deterding
- Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Vladimir P. Poltoratsky
- Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Padmini S. Kedar
- Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Julie K. Horton
- Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Shin-ichiro Kanno
- Department of Molecular Genetics, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Kenjiro Asagoshi
- Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Esther W. Hou
- Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Svetlana N. Khodyreva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Olga I. Lavrik
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Kenneth B. Tomer
- Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Akira Yasui
- Department of Molecular Genetics, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Samuel H. Wilson
- Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA
- Correspondence: ; Tel.: 919-541-3267; Fax.: 919-541-3592
| |
Collapse
|
14
|
Song W, Levin DS, Varkey J, Post S, Bermudez VP, Hurwitz J, Tomkinson AE. A Conserved Physical and Functional Interaction between the Cell Cycle Checkpoint Clamp Loader and DNA Ligase I of Eukaryotes. J Biol Chem 2007; 282:22721-30. [PMID: 17561505 DOI: 10.1074/jbc.m703774200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA ligase I joins Okazaki fragments during DNA replication and completes certain excision repair pathways. The participation of DNA ligase I in these transactions is directed by physical and functional interactions with proliferating cell nuclear antigen, a DNA sliding clamp, and, replication factor C (RFC), the clamp loader. Here we show that DNA ligase I also interacts with the hRad17 subunit of the hRad17-RFC cell cycle checkpoint clamp loader, and with each of the subunits of its DNA sliding clamp, the heterotrimeric hRad9-hRad1-hHus1 complex. In contrast to the inhibitory effect of RFC, hRad17-RFC stimulates joining by DNA ligase I. Similar results were obtained with the homologous Saccharomyces cerevisiae proteins indicating that the interaction between the replicative DNA ligase and checkpoint clamp is conserved in eukaryotes. Notably, we show that hRad17 preferentially interacts with and specifically stimulates dephosphorylated DNA ligase I. Moreover, there is an increased association between DNA ligase I and hRad17 in S phase following DNA damage and replication blockage that occurs concomitantly with DNA damage-induced dephosphorylation of chromatin-associated DNA ligase I. Thus, our results suggest that the in vivo interaction between DNA ligase I and the checkpoint clamp loader is regulated by post-translational modification of DNA ligase I.
Collapse
Affiliation(s)
- Wei Song
- Molecular Medicine Graduate Program, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Sobti RC, Kaur P, Kaur S, Janmeja AK, Jindal SK, Kishan J, Raimondi S. No association of DNA ligase-I polymorphism with the risk of lung cancer in north-Indian population. DNA Cell Biol 2006; 25:484-9. [PMID: 16907646 DOI: 10.1089/dna.2006.25.484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
DNA ligases play an essential role in repair, replication, and recombination of DNA, and catalyzes the formation of a phosphodiester bond at a nick junction on single- and double-strand breaks. We have conducted a hospital-based case-control study to examine the role of polymorphism of DNA repair gene ligase I (LIGI) in the context of lung cancer risk for north Indian population. One hundred, fifty-one primary lung cancer cases and an equal number of matching hospital controls were collected. The LIGI polymorphism was determined by using the PCR-RFLP method. The association between polymorphisms in the LIGI gene with the risk of lung cancer was estimated by computing odds ratios (ORs) and a 95% confidence interval (CI) using a Multivariate Logistic Regression Analysis. The risk for lung cancer was not associated for individuals featuring LIGI (AC) (OR -0.8, 95% CI = 0.44-1.40) and (AA) (OR -0.8, 95% CI = 0.41-1.80) genotypes. The DNA repair gene (LIGI) may not be playing an important role in modulating the risk of lung cancer in the north Indian population.
Collapse
|
16
|
Puebla-Osorio N, Lacey DB, Alt FW, Zhu C. Early embryonic lethality due to targeted inactivation of DNA ligase III. Mol Cell Biol 2006; 26:3935-41. [PMID: 16648486 PMCID: PMC1489003 DOI: 10.1128/mcb.26.10.3935-3941.2006] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2005] [Revised: 12/21/2005] [Accepted: 03/02/2006] [Indexed: 11/20/2022] Open
Abstract
DNA ligases catalyze the joining of strand breaks in the phosphodiester backbone of duplex DNA and play essential roles in DNA replication, recombination, repair, and maintenance of genomic integrity. Three mammalian DNA ligase genes have been identified, and their corresponding ligases play distinct roles in DNA metabolism. DNA ligase III is proposed to be involved in the repairing of DNA single-strand breaks, but its precise role has not yet been demonstrated directly. To determine its role in DNA repair, cellular growth, and embryonic development, we introduced targeted interruption of the DNA ligase III (LIG3) gene into the mouse. Mice homozygous for LIG3 disruption showed early embryonic lethality. We found that the mutant embryonic developmental process stops at 8.5 days postcoitum (dpc), and excessive cell death occurs at 9.5 dpc. LIG3 mutant cells have relatively normal XRCC1 levels but elevated sister chromatid exchange. These findings indicate that DNA ligase III is involved in essential DNA repair activities required for early embryonic development and therefore cannot be replaced by other DNA ligases.
Collapse
Affiliation(s)
- Nahum Puebla-Osorio
- Department of Immunology, Unit 902, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
17
|
Abstract
DNA polymerase beta plays an essential role in the base excision repair pathway necessary to cleanse the genome of simple base lesions and abasic sites. Abasic sites arise in DNA from spontaneous base loss (depurination) and DNA-damage specific glycosylases that hydrolyze the N-glycosidic bond between the deoxyribose and the damaged base. DNA polymerase beta contributes two enzymatic activities: DNA synthesis and deoxyribose-phosphate removal through nucleotidyl transferase and lyase mechanisms, respectively. The active site for each of these activities resides on a distinct domain of the protein: 31-kDa polymerase domain and amino-terminal 8-kDa lyase domain. The simple organization of each domain and the ability to assay each activity have hastened our understanding of the faithful replication of DNA during repair synthesis and the flux of intermediates through single nucleotide base excision repair and its alternate pathways.
Collapse
Affiliation(s)
- William A Beard
- Enzymology Section, Laboratory of Structural Biology, NIEHS-NIH, North Carolina, USA
| | | | | |
Collapse
|
18
|
Chen X, Pascal J, Vijayakumar S, Wilson GM, Ellenberger T, Tomkinson AE. Human DNA ligases I, III, and IV-purification and new specific assays for these enzymes. Methods Enzymol 2006; 409:39-52. [PMID: 16793394 DOI: 10.1016/s0076-6879(05)09003-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The joining of DNA strand breaks by DNA ligases is required to seal Okazaki fragments during DNA replication and to complete almost all DNA repair pathways. In human cells, there are multiple species of DNA ligase encoded by the LIG1, LIG3, and LIG4 genes. Here we describe protocols to overexpress and purify recombinant DNA ligase I, DNA ligase IIIbeta, and DNA ligase IV/XRCC4 and the assays used to purify and distinguish between these enzymes. In addition, we describe a fluorescence-based ligation assay that can be used for high throughput screening of chemical libraries.
Collapse
Affiliation(s)
- Xi Chen
- Radiation Oncology, Research Laboratory and the Marlene and Stewart Greenebaum Cancer Center, Universtiy of Maryland School of Medicine, Baltimore, USA
| | | | | | | | | | | |
Collapse
|
19
|
Braithwaite EK, Prasad R, Shock DD, Hou EW, Beard WA, Wilson SH. DNA Polymerase λ Mediates a Back-up Base Excision Repair Activity in Extracts of Mouse Embryonic Fibroblasts. J Biol Chem 2005; 280:18469-75. [PMID: 15749700 DOI: 10.1074/jbc.m411864200] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammalian DNA polymerase (pol) lambda is a member of the X-family of DNA polymerases and has striking enzymatic and structural similarities to mammalian DNA pol beta. Because pol beta provides two important enzymatic activities for base excision repair (BER), we examined whether pol lambda might also contribute to BER. We used extracts from mouse embryonic fibroblasts representing wild-type and null genotypes for pol beta and pol lambda. In combination with neutralizing antibodies against pol beta and pol lambda, our results show a BER deficiency in the pol lambda -/- cell extract compared with extract from isogenic wild-type cells. In addition, the pol lambda antibody strongly reduced in vitro BER in the pol beta -/- cell extract. These data indicate that pol lambda is able to contribute to BER in mouse fibroblast cell extract.
Collapse
Affiliation(s)
- Elena K Braithwaite
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | | | |
Collapse
|
20
|
Levin DS, Vijayakumar S, Liu X, Bermudez VP, Hurwitz J, Tomkinson AE. A Conserved Interaction between the Replicative Clamp Loader and DNA Ligase in Eukaryotes. J Biol Chem 2004; 279:55196-201. [PMID: 15502161 DOI: 10.1074/jbc.m409250200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The recruitment of DNA ligase I to replication foci and the efficient joining of Okazaki fragments is dependent on the interaction between DNA ligase I and proliferating cell nuclear antigen (PCNA). Although the PCNA sliding clamp tethers DNA ligase I to nicked duplex DNA circles, the interaction does not enhance DNA joining. This suggests that other factors may be involved in the joining of Okazaki fragments. In this study, we describe an association between replication factor C (RFC), the clamp loader, and DNA ligase I in human cell extracts. Subsequently, we demonstrate that there is a direct physical interaction between these proteins that involves both the N- and C-terminal domains of DNA ligase I, the N terminus of the large RFC subunit p140, and the p36 and p38 subunits of RFC. Although RFC inhibited DNA joining by DNA ligase I, the addition of PCNA alleviated inhibition by RFC. Notably, the effect of PCNA on ligation was dependent on the PCNA-binding site of DNA ligase I. Together, these results provide a molecular explanation for the key in vivo role of the DNA ligase I/PCNA interaction and suggest that the joining of Okazaki fragments is coordinated by pairwise interactions among RFC, PCNA, and DNA ligase I.
Collapse
Affiliation(s)
- David S Levin
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center, San Antonio, TX 78245, USA
| | | | | | | | | | | |
Collapse
|
21
|
|
22
|
Lim JH, Choi J, Kim W, Ahn BY, Han YS. Mutational analyses of Aquifex pyrophilus DNA ligase define essential domains for self-adenylation and DNA binding activity. Arch Biochem Biophys 2001; 388:253-60. [PMID: 11368162 DOI: 10.1006/abbi.2001.2291] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We constructed nine deletion mutants of NAD+-dependent DNA ligase from Aquifex pyrophilus to characterize the functional domains. All of DNA ligase deletion mutants were analyzed in biochemical assays for NAD+-dependent self-adenylation, DNA binding, and nick-closing activity. Although the mutant lsub1 (91-362) included the active site lysine (KxDG), self-adenylation was not shown. However, the mutants lsub6 (1-362), lsub7 (1-516), and lsub9 (1-635) showed the same adenylation activity as that of wild type. The lsub5 (91-719), which has the C-terminal domain (487-719) as to lsub4 (91-486), showed minimal adenylation activity. These results suggest that the presence of N-terminal 90 residues is essential for the formation of an enzyme-AMP complex, while C-terminal domain (487-719) appears to play a minimal role in adenylation. It was found that the presence of C-terminal domain (487-719) is indispensable for DNA binding activity of lsub5 (91-719). The mutant lsub9 (1-635) showed reduced DNA binding activity compared to that of wild type, suggesting the contribution of the domain (636-719) for the DNA binding activity. Thus, we concluded that the N-terminal 90 residues and C-terminal domain (487-719) of NAD+-dependent DNA ligase from A. pyrophilus are mutually indispensable for binding of DNA substrate.
Collapse
Affiliation(s)
- J H Lim
- Structural Biology Research Center, Korea Institute of Science and Technology, Seoul
| | | | | | | | | |
Collapse
|
23
|
Shuman S. Structure, mechanism, and evolution of the mRNA capping apparatus. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2001; 66:1-40. [PMID: 11051760 DOI: 10.1016/s0079-6603(00)66025-7] [Citation(s) in RCA: 218] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- S Shuman
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10021, USA
| |
Collapse
|
24
|
Chen L, Trujillo K, Sung P, Tomkinson AE. Interactions of the DNA ligase IV-XRCC4 complex with DNA ends and the DNA-dependent protein kinase. J Biol Chem 2000; 275:26196-205. [PMID: 10854421 DOI: 10.1074/jbc.m000491200] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The DNA-dependent protein kinase (DNA-PK), consisting of Ku and the DNA-PK catalytic subunit (DNA-PKcs), and the DNA ligase IV-XRCC4 complex function together in the repair of DNA double-strand breaks by non-homologous end joining. These protein complexes are also required for the completion of V(D)J recombination events in immune cells. Here we demonstrate that the DNA ligase IV-XRCC4 complex binds specifically to the ends of duplex DNA molecules and can act as a bridging factor, linking together duplex DNA molecules with complementary but non-ligatable ends. Although the DNA end-binding protein Ku inhibited DNA joining by DNA ligase IV-XRCC4, it did not prevent this complex from binding to DNA. Instead, DNA ligase IV-XRCC4 and Ku bound simultaneously to the ends of duplex DNA molecules. DNA ligase IV-XRCC4 and DNA-PKcs also formed complexes at the ends of DNA molecules, but DNA-PKcs did not inhibit ligation. Interestingly, DNA-PKcs stimulated intermolecular ligation by DNA ligase IV-XRCC4. In the presence of DNA-PK, the majority of the joining events catalyzed by DNA ligase IV-XRCC4 were intermolecular because Ku inhibited intramolecular ligation, but DNA-PKcs still stimulated intramolecular ligation. We suggest that DNA-PKcs-containing complexes formed at DNA ends enhance the association of DNA ends via protein-protein interactions, thereby stimulating intermolecular ligation.
Collapse
Affiliation(s)
- L Chen
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center, San Antonio, Texas 78245, USA
| | | | | | | |
Collapse
|
25
|
Matsumoto Y, Kim K, Hurwitz J, Gary R, Levin DS, Tomkinson AE, Park MS. Reconstitution of proliferating cell nuclear antigen-dependent repair of apurinic/apyrimidinic sites with purified human proteins. J Biol Chem 1999; 274:33703-8. [PMID: 10559261 DOI: 10.1074/jbc.274.47.33703] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An apurinic/apyrimidinic (AP) site is one of the most abundant lesions spontaneously generated in living cells and is also a reaction intermediate in base excision repair. In higher eukaryotes, there are two alternative pathways for base excision repair: a DNA polymerase beta-dependent pathway and a proliferating cell nuclear antigen (PCNA)-dependent pathway. Here we have reconstituted PCNA-dependent repair of AP sites with six purified human proteins: AP endonuclease, replication factor C, PCNA, flap endonuclease 1 (FEN1), DNA polymerase delta, and DNA ligase I. The length of nucleotides replaced during the repair reaction (patch size) was predominantly two nucleotides, although longer patches of up to seven nucleotides could be detected. Neither replication protein A nor Ku70/80 enhanced the repair activity in this system. Disruption of the PCNA-binding site of either FEN1 or DNA ligase I significantly reduced efficiency of AP site repair but did not affect repair patch size.
Collapse
Affiliation(s)
- Y Matsumoto
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA.
| | | | | | | | | | | | | |
Collapse
|
26
|
Willer M, Rainey M, Pullen T, Stirling CJ. The yeast CDC9 gene encodes both a nuclear and a mitochondrial form of DNA ligase I. Curr Biol 1999; 9:1085-94. [PMID: 10531002 DOI: 10.1016/s0960-9822(99)80477-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND The yeast CDC9 gene encodes a DNA ligase I activity required during nuclear DNA replication to ligate the Okazaki fragments formed when the lagging DNA strand is synthesised. The only other DNA ligase predicted from the yeast genome sequence, DNL4/LIG4, is specifically involved in a non-homologous DNA end-joining reaction. What then is the source of the DNA ligase activity required for replication of the yeast mitochondrial genome? RESULTS We report that CDC9 encodes two distinct polypeptides expressed from consecutive in-frame AUG codons. Translational initiation at these two sites gives rise to polypeptides differing by a 23 residue amino-terminal extension, which corresponds to a functional mitochondrial pre-sequence sufficient to direct import into yeast mitochondria. Initiation at the first AUG codon results in a 755 amino-acid polypeptide that is imported into mitochondria, whereupon the pre-sequence is proteolytically removed to yield the mature mitochondrial form of Cdc9p. Initiation at the second AUG codon produces a 732 amino-acid polypeptide, which is localised to the nucleus. Cells expressing only the nuclear isoform were found to be specifically defective in the maintenance of the mitochondrial genome. CONCLUSIONS CDC9 encodes two distinct forms of DNA ligase I. The first is targeted to the mitochondrion and is required for propagation and maintenance of mitochondrial DNA, the second localises to the nucleus and is sufficient for the essential cell-division function associated with this gene.
Collapse
Affiliation(s)
- M Willer
- School of Biological Sciences 2.205 Stopford Building University of Manchester Oxford Road, Manchester, M13 9PT, UK
| | | | | | | |
Collapse
|
27
|
Tong J, Cao W, Barany F. Biochemical properties of a high fidelity DNA ligase from Thermus species AK16D. Nucleic Acids Res 1999; 27:788-94. [PMID: 9889274 PMCID: PMC148248 DOI: 10.1093/nar/27.3.788] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
NAD+-dependent DNA ligases from thermophilic bacteria Thermus species are highly homologous with amino acid sequence identities ranging from 85 to 98%. Thermus species AK16D ligase, the most divergent of the seven Thermus isolates collected worldwide, was cloned, expressed in Escherichia coli and purified to homogeneity. This Thermus ligase is similar to Thermus thermophilus HB8 ligase with respect to pH, salt, NAD+, divalent cation profiles and steady-state kinetics.However, the former is more discriminative toward T/G mismatches at the 3'-side of the ligation junction, as judged by the ratios of initial ligation rates of matched and mismatched substrates. The two wild-type Thermus ligases and a Tth ligase mutant (K294R) demonstrate 1-2 orders of magnitude higher fidelity than viral T4 DNA ligase. Both Thermus ligases are active with either the metal cofactor Mg2+, Mn2+or Ca2+but not with Co2+, Ni2+, Cu2+or Zn2+. While the nick closure step with Ca2+becomes rate-limiting which results in the accumulation of DNA-adenylate intermediate, Ni2+only supports intermediate formation to a limited extent. Both Thermus ligases exhibit enhanced mismatch ligation when Mn2+is substituted for Mg2+, but the Tsp. AK16D ligase remains more specific toward perfectly matched substrate.
Collapse
Affiliation(s)
- J Tong
- Department of Microbiology, Hearst Microbiology Research Center, Strang Cancer Prevention Center, The Joan and Sanford I. Weill Medical College of Cornell University, 1300 York Avenue, Box 62, New York, NY 10021, USA
| | | | | |
Collapse
|
28
|
Abstract
DNA repair systems act to maintain genome integrity in the face of replication errors, environmental insults, and the cumulative effects of age. More than 70 human genes directly involved in the five major pathways of DNA repair have been described, including chromosomal location and cDNA sequence. However, a great deal of information as to the precise functions of these genes and their role in human health is still lacking. Hence, we summarize what is known about these genes and their contra part in bacterial, yeast, and rodent systems and discuss their involvement in human disease. While some associations are already well understood, it is clear that additional diseases will be found which are linked to DNA repair defects or deficiencies.
Collapse
Affiliation(s)
- Z Yu
- Centre for Environmental Health, Department of Biology, University of Victoria, BC, Canada.
| | | | | | | | | |
Collapse
|
29
|
|
30
|
Prieto-Alamo MJ, Laval F. Deficient DNA-ligase activity in the metabolic disease tyrosinemia type I. Proc Natl Acad Sci U S A 1998; 95:12614-8. [PMID: 9770534 PMCID: PMC22879 DOI: 10.1073/pnas.95.21.12614] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hereditary tyrosinemia type I (HT1) is an autosomal recessive inborn error of metabolism caused by the deficiency of fumarylacetoacetate hydrolase, the last enzyme in the tyrosine catabolism pathway. This defect results in accumulation of succinylacetone (SA) that reacts with amino acids and proteins to form stable adducts via Schiff base formation, lysine being the most reactive amino acid. HT1 patients surviving beyond infancy are at considerable risk for the development of hepatocellular carcinoma, and a high level of chromosomal breakage is observed in HT1 cells, suggesting a defect in the processing of DNA. In this paper we show that the overall DNA-ligase activity is low in HT1 cells (about 20% of the normal value) and that Okazaki fragments are rejoined at a reduced rate compared with normal fibroblasts. No mutation was found by sequencing the ligase I cDNA from HT1 cells, and the level of expression of the ligase I mRNA was similar in normal and HT1 fibroblasts, suggesting the presence of a ligase inhibitor. SA was shown to inhibit in vitro the overall DNA-ligase activity present in normal cell extracts. The activity of purified T4 DNA-ligase, whose active site is also a lysine residue, was inhibited by SA in a dose-dependent manner. These results suggest that accumulation of SA reduces the overall ligase activity in HT1 cells and indicate that metabolism errors may play a role in regulating enzymatic activities involved in DNA replication and repair.
Collapse
Affiliation(s)
- M J Prieto-Alamo
- Unité 347 Institut National de la Santé et de la Recherche Médicale, 80 Rue du Général Leclerc, 94276 Le Kremlin Bicêtre, France
| | | |
Collapse
|
31
|
Longley MJ, Prasad R, Srivastava DK, Wilson SH, Copeland WC. Identification of 5'-deoxyribose phosphate lyase activity in human DNA polymerase gamma and its role in mitochondrial base excision repair in vitro. Proc Natl Acad Sci U S A 1998; 95:12244-8. [PMID: 9770471 PMCID: PMC22816 DOI: 10.1073/pnas.95.21.12244] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mitochondria have been proposed to possess base excision repair processes to correct oxidative damage to the mitochondrial genome. As the only DNA polymerase (pol) present in mitochondria, pol gamma is necessarily implicated in such processes. Therefore, we tested the ability of the catalytic subunit of human pol gamma to participate in uracil-provoked base excision repair reconstituted in vitro with purified components. Subsequent to actions of uracil-DNA glycosylase and apurinic/apyrimidinic endonuclease, human pol gamma was able to fill a single nucleotide gap in the presence of a 5' terminal deoxyribose phosphate (dRP) flap. We report here that the catalytic subunit of human pol gamma catalyzes release of the dRP residue from incised apurinic/apyrimidinic sites to produce a substrate for DNA ligase. The heat sensitivity of this activity suggests the dRP lyase function requires a three-dimensional protein structure. The dRP lyase activity does not require divalent metal ions, and the ability to trap covalent enzyme-DNA complexes with NaBH4 strongly implicates a Schiff base intermediate in a beta-elimination reaction mechanism.
Collapse
Affiliation(s)
- M J Longley
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, P.O. Box 12233, Research Triangle Park, NC 27709, USA
| | | | | | | | | |
Collapse
|
32
|
Srivastava DK, Berg BJ, Prasad R, Molina JT, Beard WA, Tomkinson AE, Wilson SH. Mammalian abasic site base excision repair. Identification of the reaction sequence and rate-determining steps. J Biol Chem 1998; 273:21203-9. [PMID: 9694877 DOI: 10.1074/jbc.273.33.21203] [Citation(s) in RCA: 296] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Base excision repair (BER) is one of the cellular defense mechanisms repairing damage to nucleoside 5'-monophosphate residues in genomic DNA. This repair pathway is initiated by spontaneous or enzymatic N-glycosidic bond cleavage creating an abasic or apurinic-apyrimidinic (AP) site in double-stranded DNA. Class II AP endonuclease, deoxyribonucleotide phosphate (dRP) lyase, DNA synthesis, and DNA ligase activities complete repair of the AP site. In mammalian cell nuclear extract, BER can be mediated by a macromolecular complex containing DNA polymerase beta (beta-pol) and DNA ligase I. These two enzymes are capable of contributing the latter three of the four BER enzymatic activities. In the present study, we found that AP site BER can be reconstituted in vitro using the following purified human proteins: AP endonuclease, beta-pol, and DNA ligase I. Examination of the individual enzymatic steps in BER allowed us to identify an ordered reaction pathway: subsequent to 5' "nicking" of the AP site-containing DNA strand by AP endonuclease, beta-pol performs DNA synthesis prior to removal of the 5'-dRP moiety in the gap. Removal of the dRP flap is strictly required for DNA ligase I to seal the resulting nick. Additionally, the catalytic rate of the reconstituted BER system and the individual enzymatic activities was measured. The reconstituted BER system performs repair of AP site DNA at a rate that is slower than the respective rates of AP endonuclease, DNA synthesis, and ligation, suggesting that these steps are not rate-determining in the overall reconstituted BER system. Instead, the rate-limiting step in the reconstituted system was found to be removal of dRP (i.e. dRP lyase), catalyzed by the amino-terminal domain of beta-pol. This work is the first to measure the rate of BER in an in vitro reaction. The potential significance of the dRP-containing intermediate in the regulation of BER is discussed.
Collapse
Affiliation(s)
- D K Srivastava
- Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Dimitriadis EK, Prasad R, Vaske MK, Chen L, Tomkinson AE, Lewis MS, Wilson SH. Thermodynamics of human DNA ligase I trimerization and association with DNA polymerase beta. J Biol Chem 1998; 273:20540-50. [PMID: 9685411 DOI: 10.1074/jbc.273.32.20540] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The interaction between human DNA polymerase beta (pol beta) and DNA ligase I, which appear to be responsible for the gap filling and nick ligation steps in short patch or simple base excision repair, has been examined by affinity chromatography and analytical ultracentrifugation. Domain mapping studies revealed that complex formation is mediated through the non-catalytic N-terminal domain of DNA ligase I and the N-terminal 8-kDa domain of pol beta that interacts with the DNA template and excises 5'-deoxyribose phosphate residue. Intact pol beta, a 39-kDa bi-domain enzyme, undergoes indefinite self-association, forming oligomers of many sizes. The binding sites for self-association reside within the C-terminal 31-kDa domain. DNA ligase I undergoes self-association to form a homotrimer. At temperatures over 18 degreesC, three pol beta monomers attached to the DNA ligase I trimer, forming a stable heterohexamer. In contrast, at lower temperatures (<18 degreesC), pol beta and DNA ligase I formed a stable 1:1 binary complex only. In agreement with the domain mapping studies, the 8-kDa domain of pol beta interacted with DNA ligase I, forming a stable 3:3 complex with DNA ligase I at all temperatures, whereas the 31-kDa domain of pol beta did not. Our results indicate that the association between pol beta and DNA ligase I involves both electrostatic binding and an entropy-driven process. Electrostatic binding dominates the interaction mediated by the 8-kDa domain of pol beta, whereas the entropy-driven aspect of interprotein binding appears to be contributed by the 31-kDa domain.
Collapse
Affiliation(s)
- E K Dimitriadis
- Biomedical Engineering and Physical Sciences Program, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Prasad R, Beard WA, Strauss PR, Wilson SH. Human DNA polymerase beta deoxyribose phosphate lyase. Substrate specificity and catalytic mechanism. J Biol Chem 1998; 273:15263-70. [PMID: 9614142 DOI: 10.1074/jbc.273.24.15263] [Citation(s) in RCA: 158] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA polymerase beta (beta-pol) cleaves the sugar-phosphate bond 3' to an intact apurinic/apyrimidinic (AP) site (i.e. AP lyase activity). The same bond is cleaved even if the AP site has been previously 5'-incised by AP endonuclease, resulting in a 5' 2-deoxyribose 5-phosphate (i.e. dRP lyase activity). We characterized these lyase reactions by steady-state kinetics with the amino-terminal 8-kDa domain of beta-pol and with the entire 39-kDa polymerase. Steady-state kinetic analyses show that the Michaelis constants for both the dRP and AP lyase activities of beta-pol are similar. However, kcat is approximately 200-fold lower for the AP lyase activity on an intact AP site than for an AP endonuclease-preincised site. The 8-kDa domain was also less efficient with an intact AP site than on a preincised site. The full-length enzyme and the 8-kDa domain efficiently remove the 5' dRP from a preincised AP site in the absence of Mg2+, and the pH profiles of beta-pol and 8-kDa domain dRP lyase catalytic efficiency exhibit a broad alkaline pH optimum. An inhibitory effect of pyridoxal 5'-phosphate on the dRP lyase activity is consistent with involvement of a primary amine (Lys72) as the Schiff base nucleophile during lyase chemistry.
Collapse
Affiliation(s)
- R Prasad
- Sealy Center for Molecular Science, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | | | | | | |
Collapse
|
35
|
Abstract
DNA joining events are required for the completion of DNA replication, DNA excision repair and genetic recombination. Five DNA ligase activities, I-V, have been purified from mammalian cell extracts and three mammalian LIG genes, LIG1 LIG3 and LIG4, have been cloned. During DNA replication, the joining of Okazaki fragments by the LIG1 gene product appears to be mediated by an interaction with proliferating cell nuclear antigen (PCNA). This interaction may also occur during the completion of mismatch, nucleotide excision and base excision repair (BER). In addition, DNA ligase I participates in a second BER pathway that is carried out by a multiprotein complex in which DNA ligase I interacts directly with DNA polymerase beta. DNA ligase III alpha and DNA ligase III beta, which are generated by alternative splicing of the LIG3 gene, can be distinguished by their ability to bind to the DNA repair protein, XRCC1. The interaction between DNA ligase III alpha and XRCC1, which occurs through BRCT motifs in the C-termini of these polypeptides, implicates this isoform of DNA ligase III in the repair of DNA single-strand breaks and BER. DNA ligase II appears to be a proteolytic fragment of DNA ligase III alpha. The restricted expression of DNA ligase III beta suggests that this enzyme may function in the completion of meiotic recombination or in a postmeiosis DNA repair pathway. Complex formation between DNA ligase IV and the DNA repair protein XRCC4 involves the C-terminal region of DNA ligase IV, which contains two BRCT motifs. This interaction, which stimulates DNA joining activity, implies that DNA ligase IV functions in V(D)J recombination and non-homologous end-joining of DNA double-strand breaks. At the present time, it is not known whether DNA ligase V is derived from one of the known mammalian LIG genes or is the product of a novel gene.
Collapse
Affiliation(s)
- A E Tomkinson
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio 78245, USA.
| | | |
Collapse
|
36
|
Levin DS, Bai W, Yao N, O'Donnell M, Tomkinson AE. An interaction between DNA ligase I and proliferating cell nuclear antigen: implications for Okazaki fragment synthesis and joining. Proc Natl Acad Sci U S A 1997; 94:12863-8. [PMID: 9371766 PMCID: PMC24229 DOI: 10.1073/pnas.94.24.12863] [Citation(s) in RCA: 178] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Although three human genes encoding DNA ligases have been isolated, the molecular mechanisms by which these gene products specifically participate in different DNA transactions are not well understood. In this study, fractionation of a HeLa nuclear extract by DNA ligase I affinity chromatography resulted in the specific retention of a replication protein, proliferating cell nuclear antigen (PCNA), by the affinity resin. Subsequent experiments demonstrated that DNA ligase I and PCNA interact directly via the amino-terminal 118 aa of DNA ligase I, the same region of DNA ligase I that is required for localization of this enzyme at replication foci during S phase. PCNA, which forms a sliding clamp around duplex DNA, interacts with DNA pol delta and enables this enzyme to synthesize DNA processively. An interaction between DNA ligase I and PCNA that is topologically linked to DNA was detected. However, DNA ligase I inhibited PCNA-dependent DNA synthesis by DNA pol delta. These observations suggest that a ternary complex of DNA ligase I, PCNA and DNA pol delta does not form on a gapped DNA template. Consistent with this idea, the cell cycle inhibitor p21, which also interacts with PCNA and inhibits processive DNA synthesis by DNA pol delta, disrupts the DNA ligase I-PCNA complex. Thus, we propose that after Okazaki fragment DNA synthesis is completed by a PCNA-DNA pol delta complex, DNA pol delta is released, allowing DNA ligase I to bind to PCNA at the nick between adjacent Okazaki fragments and catalyze phosphodiester bond formation.
Collapse
Affiliation(s)
- D S Levin
- Department of Molecular Medicine, Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, 78245, USA
| | | | | | | | | |
Collapse
|
37
|
Abstract
DNA joining enzymes play an essential role in the maintenance of genomic integrity and stability. Three mammalian genes encoding DNA ligases, LIG1, LIG3 and LIG4, have been identified. Since DNA ligase II appears to be derived from DNA ligase III by a proteolytic mechanism, the three LIG genes can account for the four biochemically distinct DNA ligase activities, DNA ligases I, II, III and IV, that have been purified from mammalian cell extracts. It is probable that the specific cellular roles of these enzymes are determined by the proteins with which they interact. The specific involvement of DNA ligase I in DNA replication is mediated by the non-catalytic amino-terminal domain of this enzyme. Furthermore, DNA ligase I participates in DNA base excision repair as a component of a multiprotein complex. Two forms of DNA ligase III are produced by an alternative splicing mechanism. The ubiqitously expressed DNA ligase III-alpha forms a complex with the DNA single-strand break repair protein XRCC1. In contrast, DNA ligase III-beta, which does not interact with XRCC1, is only expressed in male meiotic germ cells, suggesting a role for this isoform in meiotic recombination. At present, there is very little information about the cellular functions of DNA ligase IV.
Collapse
Affiliation(s)
- A E Tomkinson
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio 78245, USA.
| | | |
Collapse
|
38
|
Rumbaugh JA, Murante RS, Shi S, Bambara RA. Creation and removal of embedded ribonucleotides in chromosomal DNA during mammalian Okazaki fragment processing. J Biol Chem 1997; 272:22591-9. [PMID: 9278414 DOI: 10.1074/jbc.272.36.22591] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Mammalian RNase HI has been shown to specifically cleave the initiator RNA of Okazaki fragments at the RNA-DNA junction, leaving a single ribonucleotide attached to the 5'-end of the downstream DNA segment. This monoribonucleotide can then be removed by the mammalian 5'- to 3'-exo-/endonuclease, a RAD2 homolog-1 (RTH-1) class nuclease, also known as flap endonuclease-1 (FEN-1). Although FEN-1/RTH-1 nuclease often requires an upstream primer for efficient activity, the presence of an upstream primer is usually inhibitory or neutral for removal of this 5'-monoribonucleotide. Using model Okazaki fragment substrates, we found that DNA ligase I can seal a 5'-monoribonucleotide into DNA. When both ligase and FEN-1/RTH-1 were present simultaneously, some of the 5'-monoribonucleotides were ligated into DNA, while others were released. Thus, a 5'-monoribonucleotide, particularly one that is made resistant to FEN-1/RTH-1-directed cleavage by extension of an inhibitory upstream primer, can be ligated into the chromosome, despite the presence of FEN-1/RTH-1 nuclease. DNA ligase I was able to seal different monoribonucleotides into the DNA for all substrates tested, with an efficiency of 1-13% that of ligating DNA. These embedded monoribonucleotides can be removed by the combined action of RNase HI, cutting on the 5'-side, and FEN-1/RTH-1 nuclease, cleaving on the 3'-side. After FEN-1/RTH-1 action and extension by polymerization, DNA ligase I can join the entirely DNA strands to complete repair.
Collapse
Affiliation(s)
- J A Rumbaugh
- Department of Biochemistry, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | | | | | |
Collapse
|
39
|
Critchlow SE, Bowater RP, Jackson SP. Mammalian DNA double-strand break repair protein XRCC4 interacts with DNA ligase IV. Curr Biol 1997; 7:588-98. [PMID: 9259561 DOI: 10.1016/s0960-9822(06)00258-2] [Citation(s) in RCA: 329] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Mammalian cells deficient in the XRCC4 DNA repair protein are impaired in DNA double-strand break repair and are consequently hypersensitive to ionising radiation. These cells are also defective in site-specific V(D)J recombination, a process that generates the diversity of antigen receptor genes in the developing immune system. These features are shared by cells lacking components of the DNA-dependent protein kinase (DNA-PK). Although the XRCC4 gene has been cloned, the function(s) of XRCC4 in DNA end-joining has remained elusive. RESULTS We found that XRCC4 is a nuclear phosphoprotein and was an effective substrate in vitro for DNA-PK. Human XRCC4 associated extremely tightly with another protein(s) even in the presence of 1 M NaCl. Co-immunoprecipitation and adenylylation assays demonstrated that this associated factor was the recently identified human DNA ligase IV. Consistent with this, XRCC4 and DNA ligase IV copurified exclusively and virtually quantitatively over a variety of chromatographic steps. Protein mapping studies revealed that XRCC4 interacted with ligase IV via the unique carboxy-terminal ligase IV extension that comprises two tandem BRCT (BRCA1 carboxyl terminus) homology motifs, which are also found in other DNA repair-associated factors and in the breast cancer susceptibility protein BRCA1. CONCLUSIONS Our findings provide a function for the carboxy-terminal region of ligase IV and suggest that BRCT domains of other proteins may mediate contacts between DNA repair components. In addition, our data implicate mammalian ligase IV in V(D)J recombination and the repair of radiation-induced DNA damage, and provide a model for the potentiation of these processes by XRCC4.
Collapse
|
40
|
Abstract
V(D)J recombination generates diversity in the immune system through the lymphoid-specific assembly of multiple gene segments into functional immunoglobulin and T-cell receptor genes. The first step in V(D)J recombination is cleavage of DNA at recombination signal sequences. Cleavage produces a blunt DNA end on each signal sequence and a hairpin end on adjacent coding gene segments, and can be reproduced in vitro by using purified RAG and RAG2 proteins. The later steps involve processing and joining of the cleaved DNA ends, and until now have been studied only in cells. Here we reconstitute the complete V(D)J recombination reaction in a cell-free system. We find that the RAG proteins are not only involved in cleavage, but are also needed in the later steps for efficient joining of coding ends. Joining is largely directed by short pieces of identical sequence in the coding flanks, but addition of human DNA ligase I results in greater diversity. Coding junctions contain short deletions as well as additions complementary to a coding flank (P nucleotides). Addition of non-templated nucleotides into coding junctions is mediated by terminal deoxyribonucleotidyl transferase. The cell-free reaction can therefore reproduce the complete set of processing events that occur in cells.
Collapse
Affiliation(s)
- D A Ramsden
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0540, USA
| | | | | |
Collapse
|
41
|
Ramos W, Tappe N, Talamantez J, Friedberg EC, Tomkinson AE. Two distinct DNA ligase activities in mitotic extracts of the yeast Saccharomyces cerevisiae. Nucleic Acids Res 1997; 25:1485-92. [PMID: 9092653 PMCID: PMC146610 DOI: 10.1093/nar/25.8.1485] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Four biochemically distinct DNA ligases have been identified in mammalian cells. One of these enzymes, DNA ligase I, is functionally homologous to the DNA ligase encoded by the Saccharomyces cerevisiae CDC9 gene. Cdc9 DNA ligase has been assumed to be the only species of DNA ligase in this organism. In the present study we have identified a second DNA ligase activity in mitotic extracts of S. cerevisiae with chromatographic properties different from Cdc9 DNA ligase, which is the major DNA joining activity. This minor DNA joining activity, which contributes 5-10% of the total cellular DNA joining activity, forms a 90 kDa enzyme-adenylate intermediate which, unlike the Cdc9 enzyme-adenylate intermediate, reacts with an oligo (pdT)/poly (rA) substrate. The levels of the minor DNA joining activity are not altered by mutation or by overexpression of the CDC9 gene. Furthermore, the 90 kDa polypeptide is not recognized by a Cdc9 antiserum. Since this minor species does not appear to be a modified form of Cdc9 DNA ligase, it has been designated as S. cerevisiae DNA ligase II. Based on the similarities in polynucleotide substrate specificity, this enzyme may be the functional homolog of mammalian DNA ligase III or IV.
Collapse
Affiliation(s)
- W Ramos
- Department of Molecular Medicine, Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245, USA
| | | | | | | | | |
Collapse
|
42
|
Johnson AP, Fairman MP. The identification and characterization of mammalian proteins involved in the rejoining of DNA double-strand breaks in vitro. Mutat Res 1996; 364:103-16. [PMID: 8879276 DOI: 10.1016/0921-8777(96)00028-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Using a combination of specific assays and biochemical fractionation of mammalian extracts, we have identified multiple activities involved in the rejoining of DNA double-strand breaks. Fractionation of whole cell extracts from calf thymus has identified four biochemically distinct fractions capable of joining double-strand breaks, and an activity Rejoin Enhancement Protein (REP-1), that stimulates this process. We also show that REP-1 directly stimulates a DNA ligase and that this stimulation is associated with the increased turnover of the adenylated intermediate formed by all ATP-dependent DNA ligases. Activity relationships between the rejoining fractions and REP-1 indicates that the joining of double-strand breaks is carried out by protein complexes of which REP-1 is a component. In support of this, the cellular activities identified here that can efficiently rejoin double-strand breaks, do not show detectable adenylation products. Western analysis also shows that several proteins that have been suggested to be involved in the joining of double-strand breaks, such as the Ku heterodimer, are not present in all fractions that contain rejoining activity. These data strongly suggests that many different activities exist that can rejoin double-strand breaks and that this process is not dependent on the presence of proteins such as the end-binding protein Ku.
Collapse
Affiliation(s)
- A P Johnson
- MRC Radiation and Genome Stability Unit, Harwell, Didcot, Oxon, UK
| | | |
Collapse
|
43
|
Abstract
A human cDNA encoding a previously unrecognized DNA ligase IV has been identified (Wei, Y.-F., Robins, P., Carter, K., Caldecott, K., Pappin, D. J. C., Yu, G.-L., Wang, R.-P., Shell, B. K., Nash, R. A., Schär, P., Barnes, D. E., Haseltine, W. A., and Lindahl, T. (1995) Mol. Cell. Biol. 15, 3206-3216). Antibodies have been raised against predicted peptide sequences of DNA ligase IV and used to identify the enzyme during purification from HeLa cell nuclei. The 96-kDa DNA ligase IV and the 103-kDa DNA ligase III co-migrate during SDS-polyacrylamide gel electrophoresis and have similar column fractionation properties, which complicates the distinction between the two enzymes, but they have been separated by Mono S liquid chromatography. During initial size fractionation by gel chromatography in 1 M NaCl, DNA ligase IV elutes in the same position as the DNA ligase III-XRCC1 protein complex, indicating that DNA ligase IV is also bound to another protein or occurs as a dimer. DNA ligase IV has been purified free from other DNA ligases, and its enzymatic properties have been examined. The purified protein effectively joins single-strand breaks in a double-stranded polydeoxynucleotide in an ATP-dependent reaction. The substrate specificity of DNA ligase IV differs from those of the other two cloned human DNA ligases, I and III, with regard to their ability to join the hybrid substrates oligo(dT).poly(rA) and oligo(rA).poly(dT). DNA ligase IV occurs in part as an enzyme-adenylate complex in HeLa cell nuclear extracts.
Collapse
Affiliation(s)
- P Robins
- Imperial Cancer Research Fund, Clare Hall Laboratories, South Mimms, Hertfordshire EN6 3LD, United Kingdom
| | | |
Collapse
|
44
|
Prasad R, Singhal RK, Srivastava DK, Molina JT, Tomkinson AE, Wilson SH. Specific interaction of DNA polymerase beta and DNA ligase I in a multiprotein base excision repair complex from bovine testis. J Biol Chem 1996; 271:16000-7. [PMID: 8663274 DOI: 10.1074/jbc.271.27.16000] [Citation(s) in RCA: 196] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Base excision repair (BER) is a cellular defense mechanism repairing modified bases in DNA. Recently, a G:U repair reaction has been reconstituted with several purified enzymes from Escherichia coli (Dianov, G., and Lindahl, T.(1994) Curr. Biol. 4, 1069-1076). Using bovine testis crude nuclear extract, we have shown that G:U is repaired efficiently in vitro, and DNA polymerase beta (beta-pol) is responsible for the single nucleotide gap-filling synthesis (Singhal, R. K., Prasad, R., and Wilson, S. H.(1995) J. Biol. Chem. 270, 949-957). To investigate potential interaction of beta-pol with other BER protein(s), we developed affinity chromatography matrices by cross-linking purified rat beta-pol or antibody against beta-pol to solid supports. Crude nuclear extract from bovine testis was applied to these affinity columns, which were then extensively washed. Proteins that bound specifically to the affinity columns were co-eluted in a complex with beta-pol. This complex had a molecular mass of approximately 180 kDa and was able to conduct the complete uracil-initiated BER reaction. The BER complex contained both beta-pol and DNA ligase I. An antibody to beta-pol was able to shift the complex in sucrose gradients to a much larger molecular mass (>300 kDa) that again contained both beta-pol and DNA ligase I. Furthermore, DNA ligase I and beta-pol were co-immunoprecipitated from the testis nuclear extract with anti beta-pol IgG. Thus, we conclude that beta-pol and DNA ligase I are components of a multiprotein complex that performs BER.
Collapse
Affiliation(s)
- R Prasad
- Sealy Center for Molecular Science, University of Texas Medical Branch at Galveston, Galveston, Texas 77555-1068, USA
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
A DNA ligase-encoding gene (Ca CDC9) was cloned from Candida albicans by complementation of an ime-1 mutation in Saccharomyces cerevisiae. In this system, IME1 function was assayed using a S. cerevisiae strain with a ime2-promoter-lacZ gene fusion such that following transformation with a C. albicans genomic library, the presence of positive clones was indicated upon the addition of X-gal to sporulation media. Transforming fragments were subcloned in pGEM7 and sequenced. Sequence homology with several ATP-dependent DNA ligases from viruses, fission yeast, human, baker yeast and bacteria was observed.
Collapse
Affiliation(s)
- E Andaluz
- Departamento de Microbiologia, F. Ciencias, Universidad de Extremadura, Badajoz, Spain
| | | | | |
Collapse
|
46
|
Doherty AJ, Ashford SR, Wigley DB. Characterization of proteolytic fragments of bacteriophage T7 DNA ligase. Nucleic Acids Res 1996; 24:2281-7. [PMID: 8710497 PMCID: PMC145956 DOI: 10.1093/nar/24.12.2281] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Treatment of T7 DNA ligase with a range of proteases generates two major fragments which are resistant to further digestion. These fragments, of molecular weight 16 and 26 kDa, are derived from the N- and C-termini of the protein, respectively. The presence of ATP or a non-hydrolysable analogue, ADPNP, during limited proteolysis greatly reduces the level of digestion. The N-terminal 16 kDa region of the intact T7 ligase is labelled selectively in the presence of [alpha-32P]ATP, confirming that it contains the active site lysine residue. In common with the intact enzyme, the C-terminal portion of the protein retains the ability to band shift DNA fragments of various lengths, implicating it in DNA binding. It can also inhibit ligation by the intact protein, apparently by competing for target sites on DNA. We conclude that the N-terminal region, which contains the putative active site lysine, plays a role in the transfer of AMP from the enzyme-adenylate complex to the 5'phosphate at the nick site, while the C-terminal 26 kDa fragment appears to position the enzyme at the target site on DNA.
Collapse
Affiliation(s)
- A J Doherty
- Laboratory of Molecular Biophysics, University of Oxford, UK
| | | | | |
Collapse
|
47
|
Matsuda S, Sakaguchi K, Tsukada K, Teraoka H. Characterization of DNA ligase from the fungus Coprinus cinereus. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 237:691-7. [PMID: 8647114 DOI: 10.1111/j.1432-1033.1996.0691p.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
DNA ligase was highly purified from the fungus Coprinus cinereus at the miotic recombination stage, pachytene. The pachytene DNA ligase showed three polypeptides with molecular masses of 88, 84 and 80 kDa, as estimated by the [32P]AMP-labeling assay. These three polypeptides were susceptible to reaction with an mAb against a 16-amino-acid sequence in human DNA ligase I, which is conserved in C-terminal regions of mammalian, vaccinia virus and yeast DNA ligases. Since rapidly purified preparations from fresh pachytene cells exhibited a single polypeptide of DNA ligase with a molecular mass of 88 kDa, the smaller polypeptides seemed to be limited-degradation products of the 88-kDa polypeptide during the isolation and purification procedures. K(m) values for ATP and (dT)20 hybridized with (dA)n were 1.5 microM and 90 nM, respectively. This enzyme was capable of joining (dT)20.(rA)n and (rA)12-18 (dT)n as well as (dT)20.(dA)n and able to ligate blunt-ended DNA in the presence of poly(ethylene glycol) 6000. DNA ligases were also partially purified from zygotene cells at the meiotic pairing stage and mitotic mycelium cells. In their molecular mass, immuno-reactivity, K(m) value and substrate specificity, they were indistinguishable from pachytene DNA ligase. These results suggest that the fungus C. cinereus at the pachytene stage contains DNA ligase with a molecular mass of 88 kDa as a main or a single species, which is quite similar to DNA ligases from the zygotene and mycelium cells in molecular and catalytic properties.
Collapse
Affiliation(s)
- S Matsuda
- Department of Applied Biological Science, Faculty of Science and Technology, Science University of Tokyo, Japan
| | | | | | | |
Collapse
|
48
|
Yang SW, Becker FF, Chan JY. Inhibition of human DNA ligase I activity by zinc and cadmium and the fidelity of ligation. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 1996; 28:19-25. [PMID: 8698042 DOI: 10.1002/(sici)1098-2280(1996)28:1<19::aid-em5>3.0.co;2-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Heavy metals, including zinc (Zn) and cadmium (Cd), are potentially important genotoxic agents in our environment. Here we report that human DNA ligase I, the major form of the enzyme in replicative cells, is a target for Zn and Cd ions. ZnCl2 at 0.8 mM caused complete inhibition of DNA ligase I activity, whereas only 0.04 mM CdCl2 was required to achieve a similar effect. Both metals affected all three steps of the reaction, namely, the formation of ligase-AMP intermediate, the transfer of the AMP to DNA and the ligation reaction that succeeds the formation of the AMP-DNA complex. Unlike F-ara-ATP and the natural protein inhibitor of DNA ligase-I, these metals may affect different domains of the enzyme. Moreover, these metal ions did not increase the rate of misligation of F-ara-A-modified DNA or mismatched DNA substrates, but considerable misligation was observed for the T:C mispairing. These data support the notion of high fidelity of the human DNA ligases and that the major action of these metal ions on the enzyme is their inhibitory function.
Collapse
Affiliation(s)
- S W Yang
- Department of Molecular Pathology, University of Texas M.D. Anderson Cancer Center, Houston, USA
| | | | | |
Collapse
|
49
|
Husain I, Tomkinson AE, Burkhart WA, Moyer MB, Ramos W, Mackey ZB, Besterman JM, Chen J. Purification and characterization of DNA ligase III from bovine testes. Homology with DNA ligase II and vaccinia DNA ligase. J Biol Chem 1995; 270:9683-90. [PMID: 7721901 DOI: 10.1074/jbc.270.16.9683] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Mammalian cell nuclei contain three biochemically distinct DNA ligases. In the present study we have found high levels of DNA ligase I and DNA ligase III activity in bovine testes and have purified DNA ligase III to near homogeneity. The high level of DNA ligase III suggests a role for this enzyme in meiotic recombination. In assays measuring the fidelity of DNA joining, we detected no significant differences between DNA ligases II and III, whereas DNA ligase I was clearly a more faithful enzyme and was particularly sensitive to 3' mismatches. Amino acid sequences of peptides derived from DNA ligase III demonstrated that this enzyme, like DNA ligase II, is highly homologous with vaccinia DNA ligase. The absence of unambiguous differences between homologous peptides from DNA ligases II and III (10 pairs of peptides, 136 identical amino acids) indicates that these enzymes are either derived from a common precursor polypeptide or are encoded from the same gene by alternative splicing. Based on similarities in amino acid sequence and biochemical properties, we suggest that DNA ligases II and III, Drosophila DNA ligase II, and the DNA ligases encoded by the pox viruses constitute a distinct family of DNA ligases that perform specific roles in DNA repair and genetic recombination.
Collapse
Affiliation(s)
- I Husain
- Department of Cell Biology, Glaxo Research Institute, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | | | | | | | |
Collapse
|