1
|
Flohé L. Looking Back at the Early Stages of Redox Biology. Antioxidants (Basel) 2020; 9:E1254. [PMID: 33317108 PMCID: PMC7763103 DOI: 10.3390/antiox9121254] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 11/12/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
The beginnings of redox biology are recalled with special emphasis on formation, metabolism and function of reactive oxygen and nitrogen species in mammalian systems. The review covers the early history of heme peroxidases and the metabolism of hydrogen peroxide, the discovery of selenium as integral part of glutathione peroxidases, which expanded the scope of the field to other hydroperoxides including lipid hydroperoxides, the discovery of superoxide dismutases and superoxide radicals in biological systems and their role in host defense, tissue damage, metabolic regulation and signaling, the identification of the endothelial-derived relaxing factor as the nitrogen monoxide radical (more commonly named nitric oxide) and its physiological and pathological implications. The article highlights the perception of hydrogen peroxide and other hydroperoxides as signaling molecules, which marks the beginning of the flourishing fields of redox regulation and redox signaling. Final comments describe the development of the redox language. In the 18th and 19th century, it was highly individualized and hard to translate into modern terminology. In the 20th century, the redox language co-developed with the chemical terminology and became clearer. More recently, the introduction and inflationary use of poorly defined terms has unfortunately impaired the understanding of redox events in biological systems.
Collapse
Affiliation(s)
- Leopold Flohé
- Dipartimento di Medicina Molecolare, Università degli Studi di Padova, v.le G. Colombo 3, 35121 Padova, Italy;
- Departamento de Bioquímica, Universidad de la República, Avda. General Flores 2125, 11800 Montevideo, Uruguay
| |
Collapse
|
2
|
Purification, biochemical characterization and DNA protection against oxidative damage of a novel recombinant superoxide dismutase from psychrophilic bacterium Halomonas sp. ANT108. Protein Expr Purif 2020; 173:105661. [DOI: 10.1016/j.pep.2020.105661] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/26/2020] [Accepted: 04/29/2020] [Indexed: 12/23/2022]
|
3
|
Tkáčová J, Angelovičová M, Capcarová M, Kolesárová A, Schneidgenová M, Pavelková A, Bobko M, Čuboň J. The investigation of alfaalfa effect on the activity of superoxide dismutase in chicken meat in dependence on time storage. POTRAVINARSTVO 2017. [DOI: 10.5219/800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This study was conducted in order to monitor the effect of adding lucerne meal to chicken feed mixtures. The experiment was conducted at the Department Food Hygiene and Safety, Faculty of Biotechnology and Food Science, Slovak University of Agriculture in Nitra. Chickens for meat production - final type Cobb 500 were used in the experiment. Chickens were placed in boxes all together for one group at the beginning of the experiment and from 14 days of age chickens were divided individually into floor enriched cages. Feeding of chickens lasted 38 days. The experiment was carried out without sex segregation. For the production of a feed composition was used alfalfa (Medicago sativa) as lucerne meal, which was added to the feed at a rate of 4%, namely: starter (HYD-01), growth (HYD-02) and final (HYD-03). The control group did not include the addition of lucerne meal. Chickens were fed ad libitum. Chickens were slaughtered after completion of feeding and the meat samples were taken for analysis. The collected samples were stored at -18 °C. Collected samples of meat were analyzed after slaughter chickens at time intervals of 6, 12 and 18 months. In the experiment was monitored the content of supeoxid dismutase in the chicken meat depending on the length of storage time. Superoxide dismutase content was increasing by storage time, while there were some statistically significant differences between groups.
Collapse
|
4
|
Árus D, Jancsó A, Szunyogh D, Matyuska F, Nagy NV, Hoffmann E, Körtvélyesi T, Gajda T. On the possible roles of N-terminal His-rich domains of Cu,Zn SODs of some Gram-negative bacteria. J Inorg Biochem 2012; 106:10-8. [DOI: 10.1016/j.jinorgbio.2011.09.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 09/21/2011] [Accepted: 09/21/2011] [Indexed: 12/01/2022]
|
5
|
Paksi Z, Jancsó A, Pacello F, Nagy N, Battistoni A, Gajda T. Copper and zinc binding properties of the N-terminal histidine-rich sequence of Haemophilus ducreyi Cu,Zn superoxide dismutase. J Inorg Biochem 2008; 102:1700-10. [PMID: 18565588 DOI: 10.1016/j.jinorgbio.2008.04.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Revised: 04/23/2008] [Accepted: 04/25/2008] [Indexed: 10/22/2022]
Abstract
The Cu,Zn superoxide dismutase (Cu,ZnSOD) isolated from Haemophilus ducreyi possesses a His-rich N-terminal metal binding domain, which has been previously proposed to play a copper(II) chaperoning role. To analyze the metal binding ability and selectivity of the histidine-rich domain we have carried out thermodynamic and solution structural analysis of the copper(II) and zinc(II) complexes of a peptide corresponding to the first 11 amino acids of the enzyme (H(2)N-HGDHMHNHDTK-OH, L). This peptide has highly versatile metal binding ability and provides one and three high affinity binding sites for zinc(II) and copper(II), respectively. In equimolar solutions the MHL complexes are dominant in the neutral pH-range with protonated lysine epsilon-amino group. As a consequence of its multidentate nature, L binds zinc and copper with extraordinary high affinity (K(D,Zn)=1.6x10(-9)M and K(D,Cu)=5.0x10(-12)M at pH 7.4) and appears as the strongest zinc(II) and copper(II) chelator between the His-rich peptides so far investigated. These K(D) values support the already proposed role of the N-terminal His-rich region of H. ducreyi Cu,ZnSOD in copper recruitment under metal starvation, and indicate a similar function in the zinc(II) uptake, too. The kinetics of copper(II) transfer from L to the active site of Cu-free N-deleted H. ducreyi Cu,ZnSOD showed significant pH and copper-to-peptide ratio dependence, indicating specific structural requirements during the metal ion transfer to the active site. Interestingly, the complex CuHL has significant superoxide dismutase like activity, which may suggest multifunctional role of the copper(II)-bound N-terminal His-rich domain of H. ducreyi Cu,ZnSOD.
Collapse
Affiliation(s)
- Zoltán Paksi
- Department of Inorganic and Analytical Chemistry, University of Szeged, Szeged, Hungary
| | | | | | | | | | | |
Collapse
|
6
|
Fridovich I. Superoxide dismutases. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 58:61-97. [PMID: 3521218 DOI: 10.1002/9780470123041.ch2] [Citation(s) in RCA: 176] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
7
|
Bannister JV, Calabrese L. Assays for superoxide dismutase. METHODS OF BIOCHEMICAL ANALYSIS 2006; 32:279-312. [PMID: 3033431 DOI: 10.1002/9780470110539.ch5] [Citation(s) in RCA: 290] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
8
|
Korshunov S, Imlay JA. Detection and quantification of superoxide formed within the periplasm of Escherichia coli. J Bacteriol 2006; 188:6326-34. [PMID: 16923900 PMCID: PMC1595388 DOI: 10.1128/jb.00554-06] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Accepted: 06/12/2006] [Indexed: 11/20/2022] Open
Abstract
Many gram-negative bacteria harbor a copper/zinc-containing superoxide dismutase (CuZnSOD) in their periplasms. In pathogenic bacteria, one role of this enzyme may be to protect periplasmic biomolecules from superoxide that is released by host phagocytic cells. However, the enzyme is also present in many nonpathogens and/or free-living bacteria, including Escherichia coli. In this study we were able to detect superoxide being released into the medium from growing cultures of E. coli. Exponential-phase cells do not normally synthesize CuZnSOD, which is specifically induced in stationary phase. However, the engineered expression of CuZnSOD in growing cells eliminated superoxide release, confirming that this superoxide was formed within the periplasm. The rate of periplasmic superoxide production was surprisingly high and approximated the estimated rate of cytoplasmic superoxide formation when both were normalized to the volume of the compartment. The rate increased in proportion to oxygen concentration, suggesting that the superoxide is generated by the adventitious oxidation of an electron carrier. Mutations that eliminated menaquinone synthesis eradicated the superoxide formation, while mutations in genes encoding respiratory complexes affected it only insofar as they are likely to affect the redox state of menaquinone. We infer that the adventitious autoxidation of dihydromenaquinone in the cytoplasmic membrane releases a steady flux of superoxide into the periplasm of E. coli. This endogenous superoxide may create oxidative stress in that compartment and be a primary substrate of CuZnSOD.
Collapse
Affiliation(s)
- Sergei Korshunov
- Department of Microbiology, University of Illinois, Urbana, Illinois 61801, USA
| | | |
Collapse
|
9
|
De Domenico I, Lania A, Bonaccorsi di Patti MC, Battistoni A, Musci G, Desideri A. Purification and characterization of recombinant Caulobacter crescentus Cu,Zn superoxide dismutase. BIOCHIMICA ET BIOPHYSICA ACTA 2006; 1764:105-9. [PMID: 16213200 DOI: 10.1016/j.bbapap.2005.08.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2005] [Revised: 08/20/2005] [Accepted: 08/24/2005] [Indexed: 05/04/2023]
Abstract
Recombinant Cu,Zn Superoxide Dismutase from Caulobacter crescentus has been expressed in Escherichia coli and characterized. The corresponding recombinant protein has a molecular weight typical of a homodimeric Cu,ZnSODs and an activity comparable to that of other prokaryotic enzymes. The copper active site is characterized by a peculiar axial geometry as evidenced by its electron paramagnetic resonance spectrum, moreover, the copper atom displays a low accessibility toward external chelating agents indicating a lower solvent accessibility when compared to other prokaryotic enzymes. Investigation of the enzyme thermal stability through differential scanning calorimetry indicates the occurrence of two transitions at low and higher temperature that are found to be due to the apo and holo protein, respectively, confirming that the metals have a crucial role in the stabilization of this class of enzymes.
Collapse
Affiliation(s)
- Ivana De Domenico
- Department of Microbiological, Genetic and Molecular Sciences, University of Messina, Salita Sperone, 31, 98166 Messina, Italy
| | | | | | | | | | | |
Collapse
|
10
|
Langford PR, Sansone A, Valenti P, Battistoni A, Kroll JS. Bacterial superoxide dismutase and virulence. Methods Enzymol 2002; 349:155-66. [PMID: 11912905 DOI: 10.1016/s0076-6879(02)49331-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Affiliation(s)
- Paul R Langford
- Molecular Infectious Diseases Group, Department of Paediatrics, Imperial College of Science, Technology and Medicine, St. Mary's Hospital Campus, London W2 1PG, United Kingdom
| | | | | | | | | |
Collapse
|
11
|
Sansone A, Watson PR, Wallis TS, Langford PR, Kroll JS. The role of two periplasmic copper- and zinc-cofactored superoxide dismutases in the virulence of Salmonella choleraesuis. MICROBIOLOGY (READING, ENGLAND) 2002; 148:719-726. [PMID: 11882706 DOI: 10.1099/00221287-148-3-719] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Periplasmic copper- and zinc-cofactored superoxide dismutases ([Cu,Zn]-SODs, SodC) of several Gram-negative pathogens can protect against superoxide-radical-mediated host defences, and thus contribute to virulence. This role has been previously defined for one [Cu,Zn]-SOD in various Salmonella serovars. Following the recent discovery of a second periplasmic [Cu,Zn]-SOD in Salmonella, the effect of knockout mutations in one or both of the original sodC-1 and the new sodC-2 on the virulence of the porcine pathogen Salmonella choleraesuis is investigated here. In comparison to wild-type, while sodC mutants--whether single or double--showed no impairment in growth, they all showed equally enhanced sensitivity to superoxide and a dramatically increased sensitivity to the combination of superoxide and nitric oxide in vitro. This observation had its correlate in experimental infection both ex vivo and in vivo. Mutation of sodC significantly impaired survival of S. choleraesuis in interferon gamma-stimulated murine macrophages compared to wild-type organisms, and all S. choleraesuis sodC mutants persisted in significantly lower numbers than wild-type in BALB/c (Ity(s)) and C3H/HeN (Ity(r)) mice after experimental infection, but in no experimental system were sodC-1 sodC-2 double mutants more attenuated than either single mutant. These data suggest that both [Cu,Zn]-SODs are needed to protect bacterial periplasmic or membrane components. While SodC plays a role in S. choleraesuis virulence, the data presented here suggest that this is through overcoming a threshold effect, probably achieved by acquisition of sodC-1 on a bacteriophage. Loss of either sodC gene confers maximum vulnerability to superoxide on S. choleraesuis.
Collapse
Affiliation(s)
- Assunta Sansone
- Molecular Infectious Diseases Group, Department of Paediatrics, Faculty of Medicine, Imperial College, St Mary's Hospital Campus, Norfolk Place, London W2 1PG, UK1
| | - Patricia R Watson
- Institute for Animal Health, Compton, Newbury, Berkshire, RG20 7NN, UK2
| | - Timothy S Wallis
- Institute for Animal Health, Compton, Newbury, Berkshire, RG20 7NN, UK2
| | - Paul R Langford
- Molecular Infectious Diseases Group, Department of Paediatrics, Faculty of Medicine, Imperial College, St Mary's Hospital Campus, Norfolk Place, London W2 1PG, UK1
| | - J Simon Kroll
- Molecular Infectious Diseases Group, Department of Paediatrics, Faculty of Medicine, Imperial College, St Mary's Hospital Campus, Norfolk Place, London W2 1PG, UK1
| |
Collapse
|
12
|
Osatomi K, Masuda Y, Hara K, Ishihara T. Purification, N-terminal amino acid sequence, and some properties of Cu, Zn-superoxide dismutase from Japanese flounder (Paralichthys olivaceus) hepato-pancreas. Comp Biochem Physiol B Biochem Mol Biol 2001; 128:751-60. [PMID: 11290457 DOI: 10.1016/s1096-4959(01)00299-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cu, Zn-superoxide dismutase (SOD) has been purified to homogeneity from Japanese flounder Paralichthys olivaceus hepato-pancreas. The purification of the enzyme was carried out by an ethanol/chloroform treatment and acetone precipitation, and then followed by column chromatographies on Q-Sepharose, S-Sepharose and Ultrogel AcA 54. On SDS-PAGE, the purified enzyme gave a single protein band with molecular mass of 17.8 kDa under reducing conditions, and showed approximately equal proportions of 17.8 and 36 kDa molecular mass under non-reducing conditions. Three bands were obtained when the purified enzyme was subjected to native-PAGE, both on protein and activity staining, but the electrophoretic mobility of the purified enzyme differed from that of bovine erythrocyte Cu, Zn-SOD. Isoelectric point values of 5.9, 6.0 and 6.2, respectively, were obtained for the three components. The N-terminal amino acid sequence of the purified enzyme was determined for 25 amino acid residues, and the sequence was compared with other Cu, Zn-SODs. The N-terminal alanine residue was unacetylated, as in the case of swordfish SOD. Above 60 degrees C, the thermostability of the enzyme was much lower than that of bovine Cu, Zn-SOD.
Collapse
Affiliation(s)
- K Osatomi
- Graduate School of Science and Technology, Nagasaki University, Bunkyo, Nagasaki, 852-8521, Nagasaki, Japan.
| | | | | | | |
Collapse
|
13
|
Dolashka-Angelova P, Genova L, Stoeva S, Stefanov B, Angelova M, Hristova R, Pashova S, Voelter W. Isolation and characterization of a novel superoxide dismutase from fungal strain Humicola lutea 110. THE JOURNAL OF PEPTIDE RESEARCH : OFFICIAL JOURNAL OF THE AMERICAN PEPTIDE SOCIETY 1999; 54:279-89. [PMID: 10532234 DOI: 10.1034/j.1399-3011.1999.00099.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A novel thermostable MnSOD was purified to electrophoretic homogeneity from the fungal strain Humicola lutea 110. The preparation of the pure metalloenzyme was performed using treatment with acetone followed by ion exchange and gel permeation chromatography. We found that the activity of this enzyme comprises about 80% of the total superoxide dismutase activity in the crude extract, containing two proteins: MnSOD and Cu/ZnSOD. The MnSOD has a molecular mass of approximately 76 kDa and 7200 U/mg protein specific activity. It is a tetrameric enzyme with four identical subunits of 18 860 Da each as indicated by SDS-PAGE, amino acid analysis and mass spectrometry. N-terminal sequence analysis of MnSOD from the fungal strain revealed a high degree of structural homology with enzymes from other eukaryotic sources. Physicochemical properties were determined by absorption spectroscopy and circular dichroism measurements. The UV absorption spectrum was typical for an MnSOD enzyme, but displayed an increased absorption in the 280 nm region (epsilon280 = 10.4 mM(-1). cm(-1)), attributed to aromatic amino acid residues. The CD data show that MnSOD has two negative Cotton effects at 208 and 222 nm allowing the calculation of its helical content. The ellipticity at 222 nm is 6800 deg. x m(2) x dmol(-1) and thus similar to the values reported for other MnSODs. The MnSOD from H. lutea 110 is stable over a wide range of pH (4.5-8), even in the presence of EDTA. The enzyme is thermostable at 70-75 degrees C, and more stable than MnSODs from other sources.
Collapse
|
14
|
Dolashka-Angelova P, Angelova M, Genova L, Stoeva S, Voelter W. A novel Cu,Zn superoxide dismutase from the fungal strain Humicola lutea 110: isolation and physico-chemical characterization. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 1999; 55A:2249-2260. [PMID: 10581736 DOI: 10.1016/s1386-1425(99)00036-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The fungal strain Humicola lutea 110 produces a mangan- and a copper zinc-containing superoxide dismutases (SOD). In this study, the purification, N-terminal sequence and spectroscopic properties of the new Cu,Zn SOD are described. The preparation of the pure metalloenzyme was achieved via treatment of the strain with acetone followed by gel and ion exchange chromatography. The protein consists of 302 amino acid residues and has a molecular mass of approximately 32 kDa, as determined by PAG electrophoresis and 3100 U mg-1 protein-specific activity. It is a dimeric enzyme with two identical subunits of 15,950 Da, as indicated by SDS-PAGE, mass spectroscopic and amino acid analysis. The N-terminal sequence analysis of the Cu,Zn SOD from the fungal strain revealed a high degree of structural homology with enzymes from other eukaryotic sources. Conformational stability and reversibility of unfolding of the dimeric enzyme were determined by fluorescence and circular dichroism (CD) spectroscopy. The critical temperature of deviation from linearity (Tc) of the Arrhenius plot ln (Q-1(-1)) vs. 1/T was calculated to be 68 degrees C and the respective activation energy for the thermal deactivation of the excited indole chromophores is 42 kcal mol-1. The melting temperatures (Tm) were determined by CD measurements to be 69 degrees C for the holo- and 61 degrees C for the apo-enzyme. The fluorescence emission of the Cu,Zn SOD is dominated by 'buried' tryptophyl chromophores. Removal of the copper-dioxygen system from the active site caused a 4-fold increase of the fluorescence quantum yield and a 10 nm shift of the emission maximum position towards higher wavelength.
Collapse
Affiliation(s)
- P Dolashka-Angelova
- Institute of Organic Chemistry, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| | | | | | | | | |
Collapse
|
15
|
Kumar R, Sidhu MK, Ganguly NK, Chakraborti A. Identification of copper-zinc superoxide dismutase gene from enteroaggregative Escherichia coli. Microbiol Immunol 1999; 43:481-4. [PMID: 10449254 DOI: 10.1111/j.1348-0421.1999.tb02431.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We describe here the identification of sodC gene from enteroaggregative Escherichia coli (EAggEC). A 294 bp gene-specific fragment was amplified from the organism by DNA as well as RT-PCR using primers from bacterial sodC sequences. The metal co-factor present in the protein was confirmed by running samples in native gels and inhibiting with 2 mM potassium cyanide. However, the nonpathogenic E. coli possesses the gene but does not express it. Thus, the presence of copper-zinc superoxide dismutase encoded by sodC was demonstrated for the first time in EAggEC, which means it could be a novel candidate for a virulence marker.
Collapse
Affiliation(s)
- R Kumar
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | | | | | | |
Collapse
|
16
|
Gort AS, Ferber DM, Imlay JA. The regulation and role of the periplasmic copper, zinc superoxide dismutase of Escherichia coli. Mol Microbiol 1999; 32:179-91. [PMID: 10216871 DOI: 10.1046/j.1365-2958.1999.01343.x] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The discovery of superoxide dismutase (CuZnSOD) within the periplasms of several Gram-negative pathogens suggested that this enzyme evolved to protect cells from exogenous sources of superoxide, such as the oxidative burst of phagocytes. However, its presence in some non-pathogenic bacteria implies that there may be a role for this SOD during normal growth conditions. We found that sodC, the gene that encodes the periplasmic SOD of Escherichia coli, is repressed anaerobically by Fnr and is among the many antioxidant genes that are induced in stationary phase by RpoS. Surprisingly, the entry of wild-type E. coli into stationary phase is accompanied by a several-hour-long period of acute sensitivity to hydrogen peroxide. Induction of the RpoS regulon helps to diminish that sensitivity. While mutants of E. coli and Salmonella typhimurium that lacked CuZnSOD were not detectably sensitive to exogenous superoxide, both were killed more rapidly than their parent strains by exogenous hydrogen peroxide in early stationary phase. This sensitivity required prior growth in air. Evidently, periplasmic superoxide is generated during stationary phase by endogenous metabolism and, if it is not scavenged by CuZnSOD, it causes an unknown lesion that augments or accelerates the damage done by peroxide. The molecular details await elucidation.
Collapse
Affiliation(s)
- A S Gort
- Department of Microbiology, University of Illinois, Urbana 61801, USA
| | | | | |
Collapse
|
17
|
Bordo D, Matak D, Djinovic-Carugo K, Rosano C, Pesce A, Bolognesi M, Stroppolo ME, Falconi M, Battistoni A, Desideri A. Evolutionary constraints for dimer formation in prokaryotic Cu,Zn superoxide dismutase. J Mol Biol 1999; 285:283-96. [PMID: 9878406 DOI: 10.1006/jmbi.1998.2267] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Prokaryotic Cu,Zn superoxide dismutases are characterized by a distinct quaternary structure, as compared to that of the homologous eukaryotic enzymes. Here we report a newly determined crystal structure of the dimeric Cu,Zn superoxide dismutase from Photobacterium leiognathi (crystallized in space group R32, refined at 2.5 A resolution, R-factor 0.19) and analyse it in comparison with that of the monomeric enzyme from Escherichia coli. The dimeric assembly, observed also in a previously studied monoclinic crystal form of P. leiognathi Cu,Zn superoxide dismutase, is based on a ring-shaped subunit contact region, defining a solvated interface cavity. Three clusters of neighbouring residues play a direct role in the stabilization of the quaternary assembly. The present analysis, extended to the amino acid sequences of the other 11 known prokaryotic Cu,Zn superoxide dismutases, shows that at least in five other prokaryotic enzymes the interface residue clusters are under strong evolutionary constraint, suggesting the attainment of a quaternary structure coincident with that of P. leiognathi Cu,Zn superoxide dismutase. Calculation of electrostatic fields for both the enzymes from E. coli and P. leiognathi shows that the monomeric/dimeric association behaviour displayed by prokaryotic Cu, Zn superoxide dismutases is related to the distribution of surface charged residues. Moreover, Brownian dynamics simulations reproduce closely the observed enzyme:substrate association rates, highlighting the role of the active site neighbouring residues in determining the dismutase catalytic properties.
Collapse
Affiliation(s)
- D Bordo
- Department of Physics - INFM and Advanced Biotechnology Center - IST, University of Genova, Largo R. Benzi, 10, Genova, I-16132, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Wu CH, Tsai-Wu JJ, Huang YT, Lin CY, Lioua GG, Lee FJ. Identification and subcellular localization of a novel Cu,Zn superoxide dismutase of Mycobacterium tuberculosis. FEBS Lett 1998; 439:192-6. [PMID: 9849904 DOI: 10.1016/s0014-5793(98)01373-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Periplasmic copper, zinc superoxide dismutases (Cu,ZnSOD) of several Gram-negative pathogens have been shown to play an important role in protection against exogenous superoxide radicals and in determining virulence of the pathogens. Here we report the cloning and characterization of the sodC gene, encoding Cu,ZnSOD, from the Gram-positive Mycobacterium tuberculosis. The predicted protein sequence contains 240 amino acids with a putative signal peptide at the N-terminus and shows approximately 25% identity to other bacterial sodC. Recombinant proteins of a full-length sodC and a truncated form lacking the putative signal peptide were overexpressed in Escherichia coli and affinity purified. Renatured recombinant M. tuberculosis sodC protein possessed characteristics of a Cu,ZnSOD. Immunoblotting with an antiserum against the recombinant M. tuberculosis Cu,ZnSOD allowed detection of a single polypeptide in the lysate of M. tuberculosis. This polypeptide has a similar size as the recombinant protein without the putative signal peptide indicating that the endogenous Cu,ZnSOD in M. tuberculosis might be processed and secreted. Furthermore, immunogold electron microscopic image showed that Cu,ZnSOD is located in the periphery of M. tuberculosis. The enzymatic activity and subcellular localization of this novel Cu,ZnSOD suggest that it may play a role in determining virulence of M. tuberculosis.
Collapse
Affiliation(s)
- C H Wu
- Institute of Molecular Medicine, School of Medicine, National Taiwan University, Taipei
| | | | | | | | | | | |
Collapse
|
19
|
Hernández-Saavedra NY, Egly JM, Ochoa JL. Cloning and sequencing of a cDNA encoding a copper-zinc superoxide dismutase enzyme from the marine yeast Debaryomyces hansenii. Yeast 1998; 14:573-81. [PMID: 9605507 DOI: 10.1002/(sici)1097-0061(19980430)14:6<573::aid-yea244>3.0.co;2-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Cu-Zn superoxide dismutase (SOD-1) is a ubiquitously occurring eukaryotic enzyme with a variety of important effects on respiring organisms. A gene (dhsod-1) encoding a Cu-Zn superoxide dismutase of the marine yeast Debaryomyces hansenii was cloned using mRNA by the RT-PCR technique. The deduced amino-acid sequence shows approximately 70% homology with that of cytosolic superoxide dismutase from Saccharomyces cerevisiae and Neurospora crassa, as well as lower homologies (between 55 and 65%) with the corresponding enzyme of other eukaryotic organisms, including human. The gene sequence encodes a protein of 153 amino acids with a calculated molecular mass of 15-92 kDa, in agreement with the observed characteristics of the purified protein from D. hansenii.
Collapse
Affiliation(s)
- N Y Hernández-Saavedra
- Center for Biological Research of the Northwest, Laboratory of Marine Yeast, La Paz, BCS, México
| | | | | |
Collapse
|
20
|
Kim EJ, Chung HJ, Suh B, Hah YC, Roe JH. Transcriptional and post-transcriptional regulation by nickel of sodN gene encoding nickel-containing superoxide dismutase from Streptomyces coelicolor Müller. Mol Microbiol 1998; 27:187-95. [PMID: 9466266 DOI: 10.1046/j.1365-2958.1998.00674.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A novel type of superoxide dismutase containing nickel as a cofactor (NiSOD) has been discovered in several Streptomyces spp. The gene for NiSOD (sodN) was cloned from S. coelicolor Müller using degenerate oligonucleotide probes designed from the N-terminal peptide sequence of the purified enzyme. It encodes a polypeptide of 131 amino acids (14703 Da), without any apparent sequence similarity to other known proteins. The N-terminus of the purified NiSOD was located 14 amino acids downstream from the initiation codon of the deduced open reading frame (ORF), indicating the involvement of protein processing. The molecular mass of the processed polypeptide was predicted to be 13201 Da, in close agreement with that of the purified NiSOD (13.4 kDa). The transcription start site of the sodN gene was determined by S1 mapping and primer extension analysis. Ni2+ regulates the synthesis of NiSOD polypeptide. S1 mapping of both 5' and 3' ends of sodN mRNA revealed that Ni2+ increased the level of monocistronic sodN mRNA by more than ninefold without changing its half-life, thus demonstrating that Ni2+ regulates transcription. Both precursor and processed NiSOD polypeptides with little SOD activity were produced from the cloned sodN gene in S. lividans in the absence of sufficient Ni2+; however, on addition of Ni2+, active NiSOD consisting of only processed polypeptide was formed. Expression of the full-length sodN gene in E. coli produced NiSOD polypeptide without any SOD activity even in the presence of Ni2+. However, deletion of nucleotides encoding the N-terminal 14 amino acids from the sodN gene allowed the production of active NiSOD in E. coli, indicating that N-terminal processing is required to produce active NiSOD. These results reveal the unique role of nickel as a multifaceted regulator in S. coelicolor controlling sodN transcription and protein processing, as well as acting as a catalytic cofactor.
Collapse
MESH Headings
- Amino Acid Sequence
- Amino Acids/analysis
- Base Sequence
- Blotting, Western
- Cloning, Molecular
- Electrophoresis, Agar Gel
- Electrophoresis, Polyacrylamide Gel
- Gene Expression Regulation, Bacterial/genetics
- Gene Expression Regulation, Enzymologic/genetics
- Molecular Sequence Data
- Nickel/chemistry
- Nickel/physiology
- Nucleic Acid Hybridization
- Open Reading Frames/genetics
- RNA Processing, Post-Transcriptional
- RNA, Bacterial/chemistry
- RNA, Bacterial/metabolism
- RNA, Messenger/chemistry
- RNA, Messenger/metabolism
- Single-Strand Specific DNA and RNA Endonucleases/chemistry
- Single-Strand Specific DNA and RNA Endonucleases/pharmacology
- Streptomyces/enzymology
- Streptomyces/genetics
- Superoxide Dismutase/chemistry
- Superoxide Dismutase/genetics
- Superoxide Dismutase/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- E J Kim
- Department of Microbiology, College of Natural Sciences, Seoul National University, Korea
| | | | | | | | | |
Collapse
|
21
|
Purification and Characterization of Cu, Zn Superoxide Dismutase from Ark Shell Scapharca broughtonii. Biosci Biotechnol Biochem 1998; 62:2211-6. [PMID: 27393591 DOI: 10.1271/bbb.62.2211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A superoxide dismutase has been purified to apparent homogeneity from the muscular tissue of the ark shell, Scapharca broughtonii, by ammonium sulfate fractionation, and consecutive column chromatographies using DEAE-Sephadex and Sephadex G-100. This enzyme has a molecular weight of 71,700 and is composed of two identical subunits of M r 35,800, which are joined by noncovalent interactions. The purified enzyme was stable over the range of pH 5.0-10.0 at 4°C for 24 h and at temperatures below 45°C. Cyanide at 0.1 and 1 mM inhibited the activity of the superoxide dismutase 56 and 100%, but 5 mM azide caused 8% inhibition. The optical spectrum of this enzyme had a maximum at 265 nm, and the amino acid composition of the enzyme was similar to that of the other Cu, Zn superoxide dismutases except for the contents of threonine, serine, proline, and leucine. Atomic absorption spectroscopy showed that this enzyme has approximately 2 atoms of Cu(2+) and Zn(2+) per mole of enzyme. These results indicate that the purified enzyme from ark shell, Scapharca broughtonii, is a Cu, Zn superoxide dismutase.
Collapse
|
22
|
San Mateo LR, Hobbs MM, Kawula TH. Periplasmic copper-zinc superoxide dismutase protects Haemophilus ducreyi from exogenous superoxide. Mol Microbiol 1998; 27:391-404. [PMID: 9484894 DOI: 10.1046/j.1365-2958.1998.00687.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Haemophilus ducreyi causes chancroid, a sexually transmitted genital ulcer disease implicated in increased heterosexual transmission of HIV. As part of an effort to identify H. ducreyi gene products involved in virulence and pathogenesis, we created random TnphoA insertion mutations in an H. ducreyi 35000 library cloned in Escherichia coli. Inserts encoding exported or secreted PhoA fusion proteins were characterized by DNA sequencing. One such clone encoded a Cu-Zn superoxide dismutase (SOD) enzyme. The Cu-Zn SOD was periplasmic in H. ducreyi and accounted for most of the detectable SOD activity in whole-cell lysates of H. ducreyi grown in vitro. To investigate the function of the Cu-Zn SOD, we created a Cu-Zn SOD-deficient H. ducreyi strain by inserting a cat cassette into the sodC gene. The wild-type and Cu-Zn SOD null mutant strains were equally resistant to excess cytoplasmic superoxide induced by paraquat, demonstrating that the Cu-Zn SOD did not function in the detoxification of cytoplasmic superoxide. However, the Cu-Zn SOD null strain was significantly more susceptible to killing by extracellular superoxide than the wild type. This result suggests that the H. ducreyi Cu-Zn SOD may play a role in bacterial defence against oxidative killing by host immune cells during infection.
Collapse
Affiliation(s)
- L R San Mateo
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill 27599, USA
| | | | | |
Collapse
|
23
|
Hirai A, Minamiyama Y, Hamada T, Ishii M, Inoue M. Glutathione metabolism in mice is enhanced more with hapten-induced allergic contact dermatitis than with irritant contact dermatitis. J Invest Dermatol 1997; 109:314-8. [PMID: 9284097 DOI: 10.1111/1523-1747.ep12335833] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cutaneous inflammation induced by electrophilic compounds involves irritant contact dermatitis (ICD) and allergic contact dermatitis (ACD). Reduced glutathione (GSH) and related thiols have been postulated to play important roles in detoxification of electrophilic xenobiotics, protection of tissues against reactive oxygen species, and modulation of immunologic functions in normal and diseased subjects. The dynamic aspects of GSH metabolism, however, and its significance in patients with ICD and ACD remain to be clarified. The current study was carried out to elucidate the pathogenesis and possible involvement of GSH in both types of inflammation. Normal mice and mice sensitized with dinitrochlorobenzene (DNCB) were challenged by cutaneous administration of DNCB, and changes in GSH metabolism in skin and liver were determined. Kinetic analysis revealed that 24 h after challenge with DNCB, levels of hepatic glutathione and its secretion increased more markedly in the sensitized mice than in the unsensitized animals. Administration of buthionine-L-sulfoximine (BSO), a specific inhibitor of GSH synthesis, inhibited the increase in glutathione levels in the liver and the skin of both groups. Histologic examination revealed that cutaneous inflammation was enhanced by BSO more significantly in mice with ACD than with ICD. These results suggest that GSH might play an important role in the suppression of the immune reaction in mice with ACD.
Collapse
Affiliation(s)
- A Hirai
- Department of Dermatology, Osaka City University Medical School, Osaka, Japan
| | | | | | | | | |
Collapse
|
24
|
Gabbianelli R, Battistoni A, Capo C, Polticelli F, Rotilio G, Meier B, Desideri A. Effect of Val 73 --> Trp mutation on the reaction of "cambialistic" superoxide dismutase from Propionibacterium shermanii with hydrogen peroxide. Arch Biochem Biophys 1997; 345:156-9. [PMID: 9281323 DOI: 10.1006/abbi.1997.0235] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The H2O2 inactivation of the "cambialistic" superoxide dismutases from Propionibacterium shermanii, which is active with either iron or manganese at the active site, has been studied in the native and Val 73 --> Trp mutant enzymes. The wild-type iron-containing form of this enzyme is much more resistant to treatment with H2O2 with respect to the other metal-specific Fe superoxide dismutase isoenzymes. After incubation with high amounts of H2O2 the enzyme maintains more than 40% of the initial activity. The activity of the Val 73 --> Trp mutant drastically decreases to less than 5% of the initial activity after incubation with hydrogen peroxide. Amino acid analysis of the H2O2-treated mutant enzyme evidenced the loss of the Trp 73 residue which is shown to play a critical role in the stabilization of the monomer fold of the enzyme. On the other hand, the manganese-containing wild-type and mutant enzymes were completely resistant toward H2O2 demonstrating the specific role of iron in the inactivation process.
Collapse
Affiliation(s)
- R Gabbianelli
- INFM, Department of Biology, University of Rome "Tor Vergata,", Via della Ricerca Scientifica e Tecnologica, Rome, 00133, Italy
| | | | | | | | | | | | | |
Collapse
|
25
|
Foti D, Lo Curto B, Cuzzocrea G, Stroppolo ME, Polizio F, Venanzi M, Desideri A. Spectroscopic characterization of recombinant Cu,Zn superoxide dismutase from Photobacterium leiognathi expressed in Escherichia coli: evidence for a novel catalytic copper binding site. Biochemistry 1997; 36:7109-13. [PMID: 9188710 DOI: 10.1021/bi963020f] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Cu,Zn superoxide dismutase from Photobacterium leiognathi has been cloned and expressed in Escherichia coli. The circular dichroism spectrum in the UV region of the recombinant protein indicates an higher content of random coil structure with respect to the eukaryotic enzymes. Investigation of the active site by optical, CD, and EPR spectroscopy indicates a different coordination geometry around the catalytic copper site with respect to the eukaryotic enzymes. In particular a different orientation of the metal bridging histidine is suggested. The pH dependence of the copper EPR spectrum shows the presence of a single equilibrium which is at least one unit lower than the pK value observed for the bovine enzyme. Despite such structural differences the catalytic rate of this enzyme is identical to that observed for the eukaryotic Cu,Zn superoxide dismutase, suggesting that the overall electric field distribution is similar to that observed in the eukaryotic enzymes.
Collapse
Affiliation(s)
- D Foti
- Department of Biological and Organic Chemistry, University of Messina, Italy
| | | | | | | | | | | | | |
Collapse
|
26
|
Benov L, Sage H, Fridovich I. The copper- and zinc-containing superoxide dismutase from Escherichia coli: molecular weight and stability. Arch Biochem Biophys 1997; 340:305-10. [PMID: 9143335 DOI: 10.1006/abbi.1997.9940] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The periplasmic Cu,Zn superoxide dismutase (Cu,ZnSOD) from Escherichia coli has been shown by sedimentation equilibrium to be a monomer with a molecular weight of approximately 17,000. The enzyme suffered a reversible inactivation when heated to 70 degrees C. This was minimized by added Cu(II) or Zn(II). Heat lability was greater in phosphate than in Tris buffer. The enzyme exhibited a time-dependent inactivation by Hg(II) and this too was greater in phosphate than in Tris. This behavior can be explained by a modest affinity of the enzyme for Cu(II) and Zn(II) which results in a dissociation/association equilibrium. Elevation of the temperature shifts this equilibrium toward dissociation and phosphate sequesters the released metals making them less available for reinsertion at the active site. Hg(II) competes for occupancy of the active site and there were more unoccupied sites in phosphate than in Tris. A parallel was drawn between the E. coli Cu,ZnSOD and FALS varients of human Cu,ZnSOD, which are also relatively unstable and exhibit low affinity for Cu(II).
Collapse
Affiliation(s)
- L Benov
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
27
|
Stevens MK, Hassett DJ, Radolf JD, Hansen EJ. Cloning and sequencing of the gene encoding the Cu,Zn-superoxide dismutase of Haemophilus ducreyi. Gene 1996; 183:35-40. [PMID: 8996084 DOI: 10.1016/s0378-1119(96)00417-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The sodC gene of Haemophilus ducreyi was cloned and sequenced. The deduced amino acid sequence of this protein exhibited 71.6% identity and 81.8% similarity to the H. influenzae and H. parainfluenzae copper (Cu), zinc (Zn)-superoxide dismutase (SOD) enzymes. This gene was localized to a 2.2-kb H. ducreyi chromosomal DNA insert in plasmid pHdSOD. SOD activity was expressed in cell-free extracts of Escherichia coli containing the recombinant plasmid pHdSOD and was localized to the periplasmic space. The Cu,Zn-SOD produced by the H. ducreyi sodC gene did not complement the aerobic growth defect of an E. coli SOD-deficient mutant.
Collapse
Affiliation(s)
- M K Stevens
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas 75235-9048, USA
| | | | | | | |
Collapse
|
28
|
Michalski WP. Chromatographic and electrophoretic methods for analysis of superoxide dismutases. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL APPLICATIONS 1996; 684:59-75. [PMID: 8906466 DOI: 10.1016/0378-4347(96)00072-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A brief overview of the family of superoxide dismutase (SOD) enzymes and their biomedical significance is presented. Methodology for the purification and electrophoretic analysis of superoxide dismutases is reviewed and discussed, with emphasis on the specific problems raised by the separation of individual superoxide dismutase isoenzymes. Purification methods and their performance, as reported in the literature are summarised in table form. Generally used methods for measuring SOD activity in vitro and SOD visualisation after electrophoresis are outlined, particularly those relevant to the monitoring of progress of SOD purification.
Collapse
Affiliation(s)
- W P Michalski
- CSIRO, Division of Animal Health, Parkville, Vic, Australia
| |
Collapse
|
29
|
Imlay KR, Imlay JA. Cloning and analysis of sodC, encoding the copper-zinc superoxide dismutase of Escherichia coli. J Bacteriol 1996; 178:2564-71. [PMID: 8626323 PMCID: PMC177980 DOI: 10.1128/jb.178.9.2564-2571.1996] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Benov and Fridovich recently reported the existence of a copper- and zinc-containing superoxide dismutase (CuZnSOD) in Escherichia coli (L. T. Benov and I. Fridovich, J. Biol. Chem. 269:25310-25314,1994). We have used the N-terminal protein sequence to isolate the gene encoding this enzyme. The gene, denoted sodC, is located at 37.1 min on the chromosome, adjacent to lhr and sodB. A monocistronic transcript of sodC accumulates only in stationary phase. The presence of a conventional leader sequence is consistent with physical data indicating that the E. coli enzyme, like other bacterial CuZnSODs, is secreted into the periplasm. Because superoxide cannot cross membranes, this localization indicates that the enzyme has evolved to defend periplasmic biomolecules against an extracytoplasmic superoxide source. Neither the source nor the target of the superoxide is known. Although once considered an exclusively eukaryotic enzyme, CuZnSOD has now been found in species that span three subdivisions of the purple bacteria. The bacterial CuZnSODs are more homologous to one another than to the eukaryotic enzymes, but active-site residues and structural motifs are clearly shared by both families of enzymes. The use of copper and an invariant disulfide bond suggest that the ancestral gene of present-day CuZnSODs evolved in an aerobic environment, long after the evolutionary split between the eukaryotes and the eubacteria. If so, a CuZnSOD gene must have been transferred laterally between members of these domains. The eukaryotic SODs most closely resemble that of Caulobacter crescentus, a relatively close descendant of the mitochondrial ancestor, suggesting that sodC may have entered the eukaryotes during the establishment of mitochondria.
Collapse
Affiliation(s)
- K R Imlay
- Department of Microbiology, University of Illinois, Urbana 61801, USA
| | | |
Collapse
|
30
|
St John G, Steinman HM. Periplasmic copper-zinc superoxide dismutase of Legionella pneumophila: role in stationary-phase survival. J Bacteriol 1996; 178:1578-84. [PMID: 8626284 PMCID: PMC177841 DOI: 10.1128/jb.178.6.1578-1584.1996] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Copper-zinc superoxide dismutases (CuZnSODs) are infrequently found in bacteria although widespread in eukaryotes. Legionella pneumophila, the causative organism of Legionnaires' disease, is one of a small number of bacterial species that contain a CuZnSOD, residing in the periplasm, in addition to an iron SOD (FeSOD) in their cytoplasm. To investigate CuZnSOD function, we purified the enzyme from wild-type L. pneumophila, obtained amino acid sequence data from isolated peptides, cloned and sequenced the gene from a L. pneumophila library, and then constructed and characterized a CuZnSOD null mutant. In contrast to the cytoplasmic FeSOD, the CuZnSOD of L. pneumophila is not essential for viability. However, CuZnSOD is critical for survival during the stationary phase of growth. The CuZnSOD null mutant survived 10(4)- to 10(6)-fold less than wild-type L. pneumophila. In wild-type L. pneumophila, the specific activity of CuZnSOD increased during the transition from exponential to stationary-phase growth while the FeSOD activity was constant. These data support a role of periplasmic CuZnSOD in survival of L. pneumophila during stationary phase. Since L. pneumophila survives extensive periods of dormancy between growth within hosts. CuZnSOD may contribute to the ability of this bacterium to be a pathogen. In exponential phase, wild-type and CuZnSOD null strains grew with comparable doubling times. In cultured HL-60 and THP-1 macrophage-like cell lines and in primary cultures of human monocytes, multiplication of the CuZnSOD null mutant was comparable to that of wild type. This indicated that CuZnSOD is not essential for intracellular growth within macrophages or for killing of macrophages in those systems.
Collapse
Affiliation(s)
- G St John
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | |
Collapse
|
31
|
Canvin J, Langford PR, Wilks KE, Kroll JS. Identification of sodC encoding periplasmic [Cu,Zn]-superoxide dismutase in Salmonella. FEMS Microbiol Lett 1996; 136:215-20. [PMID: 8869506 DOI: 10.1111/j.1574-6968.1996.tb08052.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
sodC, encoding [Cu,Zn]-cofactored superoxide dismutase, once thought to be virtually confined to eukaryotes, has now been described in many Gram-negative pathogens that have their primary niche of colonization in the upper respiratory tract. Their role in host-parasite interactive biology is unknown. We here show that members of the major human and animal enteric pathogenic species Salmonella harbour a version of sodC most closely resembling that found in Brucella abortus. The enzyme it encodes is a novel candidate determinant of virulence in Salmonella, an intracellular pathogen potentially exposed to toxic oxygen free radicals within its intracellular niche.
Collapse
Affiliation(s)
- J Canvin
- Department of Paediatrics, Imperial College School of Medicine at St Mary's, London, UK
| | | | | | | |
Collapse
|
32
|
Benov LT, Beyer WF, Stevens RD, Fridovich I. Purification and characterization of the Cu,Zn SOD from Escherichia coli. Free Radic Biol Med 1996; 21:117-21. [PMID: 8791100 DOI: 10.1016/0891-5849(95)02217-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The periplasmic Cu,Zn superoxide dismutase has been purified to homogeneity by a procedure, which depended upon osmotic shock followed by two chromatographic columns. Its subunit weight, determined by electrospray ionization mass spectrometry, was found to be 15,737 +/- 1.6. The second derivative ultraviolet spectrum indicated a lack of tryptophan. The amino acid composition as well as a partial N-terminal amino acid sequence is reported. The specific activity was 3700 U/mg and the corresponding copper content was 0.77 atoms Cu/subunit. The enzyme was quite unstable and overnight dialysis against EDTA or even prolonged dialysis against neutral phosphate buffer caused partial loss of activity and of copper and visible precipitation. It is likely that some losses occurred during the isolation procedure, and if these could have been prevented the copper content would have been 1.0 Cu/subunit and the specific activity would have been 4800 U/mg. It now appears likely that gram negative bacteria will commonly be found to contain a periplasmic Cu,Zn SOD.
Collapse
Affiliation(s)
- L T Benov
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
33
|
Battistoni A, Rotilio G. Isolation of an active and heat-stable monomeric form of Cu,Zn superoxide dismutase from the periplasmic space of Escherichia coli. FEBS Lett 1995; 374:199-202. [PMID: 7589534 DOI: 10.1016/0014-5793(95)01106-o] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We have purified the Cu,Zn superoxide dismutase (CuZnSOD) from the periplasmic space of an Escherichia coli strain unable to synthesize MnSOD and FeSOD. Gel filtration chromatography evidenced that under all the experimental conditions tested the enzyme was monomeric. The catalytic activity of this CuZnSOD was comparable to that of other well characterized dimeric eukaryotic isoenzymes, indicating that a dimeric structure is not essential to ensure enzymatic efficiency. Furthermore the purified enzyme proved to be highly heat-stable and, uniquely among CuZnSODs, protease-sensitive. The latter property may explain the previously described lability of this protein in cell extracts.
Collapse
Affiliation(s)
- A Battistoni
- Department of Biology, University of Rome Tor Vergata, Italy
| | | |
Collapse
|
34
|
Nakano T, Sato M, Takeuchi M. Unique molecular properties of superoxide dismutase from teleost fish skin. FEBS Lett 1995; 360:197-201. [PMID: 7875330 DOI: 10.1016/0014-5793(95)00084-m] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A unique Cu,Zn-SOD was found and isolated from plaice Paralichthys olivaceus skin. Surprisingly, the properties of purified fish skin SOD were very different from those of SOD from other sources reported so far. The purified SOD was composed of four same subunits of 16 kDa and the molecular weight of the native SOD was found to be around 65 kDa. The dominant amino acids of the SOD were Ser, Thr, Pro and Glu. Above 70 degrees C, thermostability of the SOD was much lower than that of bovine erythrocyte Cu,Zn-SOD.
Collapse
Affiliation(s)
- T Nakano
- Marine Biochemistry Laboratory, Faculty of Agriculture, Tohoku University, Sendai, Japan
| | | | | |
Collapse
|
35
|
Benov LT, Fridovich I. Escherichia coli expresses a copper- and zinc-containing superoxide dismutase. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)47248-1] [Citation(s) in RCA: 144] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
36
|
Sadosky AB, Wilson JW, Steinman HM, Shuman HA. The iron superoxide dismutase of Legionella pneumophila is essential for viability. J Bacteriol 1994; 176:3790-9. [PMID: 8206858 PMCID: PMC205569 DOI: 10.1128/jb.176.12.3790-3799.1994] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Legionella pneumophila, the causative agent of Legionnaires' disease, contains two superoxide dismutases (SODs), a cytoplasmic iron enzyme (FeSOD) and a periplasmic copper-zinc SOD. To study the role of the FeSOD in L. pneumophila, the cloned FeSOD gene (sodB) was inactivated with Tn903dIIlacZ, forming a sodB::lacZ gene fusion. By using this fusion, expression of sodB was shown to be unaffected by a variety of conditions, including several that influence sod expression in Escherichia coli: aeration, oxidants, the redox cycling compound paraquat, manipulation of iron levels in the medium, and the stage of growth. A reproducible twofold decrease in sodB expression was found during growth on agar medium containing charcoal, a potential scavenger of oxyradicals, in comparison with growth on the same medium without charcoal. No induction was seen during growth in human macrophages. Additional copies of sodB+ in trans increased resistance to paraquat. Construction of a sodB mutant was attempted by allelic exchange of the sodB::lacZ fusion with the chromosomal copy of sodB. The mutant could not be isolated, and the allelic exchange was possible only if wild-type sodB was present in trans. These results indicate that the periplasmic copper-zinc SOD cannot replace the FeSOD. The data strongly suggest that sodB is an essential gene and that FeSOD is required for the viability of L. pneumophila. In contrast, Sod- mutants of E. coli and Streptococcus mutans grow aerobically and SOD is not required for viability in these species.
Collapse
Affiliation(s)
- A B Sadosky
- Department of Microbiology, College of Physicians and Surgeons of Columbia University, New York, New York 10032
| | | | | | | |
Collapse
|
37
|
Tang L, Ou X, Henkle-Dührsen K, Selkirk ME. Extracellular and cytoplasmic CuZn superoxide dismutases from Brugia lymphatic filarial nematode parasites. Infect Immun 1994; 62:961-7. [PMID: 8112870 PMCID: PMC186210 DOI: 10.1128/iai.62.3.961-967.1994] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We have isolated full-length cDNAs encoding two distinct types of CuZn superoxide dismutases (SODs) from the filarial nematode parasite Brugia pahangi. The derived amino acid sequences suggested that one class of cDNAs represented a cytoplasmic form of SOD and the second class represented an extracellular (EC) variant. The predicted proteins were highly homologous to each other, but the sequence of the latter contained an additional 43 residues at the N terminus, the first 16 of which were markedly hydrophobic, and four potential sites for N-linked glycosylation. Western blotting (immunoblotting) with an antiserum to a partial SOD expressed in Escherichia coli revealed two proteins with estimated molecular masses of 19 and 29 kDa. Digestion with N-glycanase indicated that the latter protein corresponded to the EC form, as it possessed N-linked oligosaccharide chains at three sites, leaving a peptide backbone with an estimated molecular mass of 22 kDa, which was consistent with the additional 27 amino acids predicted from the cDNA sequence. Gel filtration indicated that both enzymes were dimeric in their native forms, in contrast to the human EC-SOD, which is tetrameric. Comparison of the primary structure of the parasite EC-SOD with that of the human EC enzyme revealed two major differences: the N-terminal extension of the parasite enzyme was shorter by 25 residues, and it also lacked the C-terminal charged extension which mediates binding to cell surface sulfated proteoglycans. Lavage of Mongolian jirds infected intraperitoneally with Brugia malayi resulted in the recovery of filarial CuZn SODs, principally the EC form, indicating that this form of SOD is secreted in vivo. This EC enzyme may contribute to parasite persistence by neutralizing superoxide generated by activated leukocytes, thus acting as both an antioxidant and an anti-inflammatory factor.
Collapse
Affiliation(s)
- L Tang
- Wellcome Research Centre for Parasitic Infections, Department of Biochemistry, Imperial College of Science, Technology and Medicine, London, United Kingdom
| | | | | | | |
Collapse
|
38
|
|
39
|
Abstract
Caulobacter crescentus is one of a small number of bacterial species that contain a periplasmic copper-zinc superoxide dismutase (CuZnSOD). A C. crescentus mutant, with the CuZnSOD gene interrupted by a promoterless cat gene, was constructed and characterized to analyze CuZnSOD function. Periplasmic SOD does not protect against oxyradical damage in the cytosol or play a major role in maintaining the integrity of the cell envelope. Studies of the effect of sodium citrate on plating efficiency suggest that CuZnSOD protects a periplasmic or membrane function(s) requiring magnesium or calcium.
Collapse
Affiliation(s)
- H M Steinman
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461
| |
Collapse
|
40
|
Kroll JS, Langford PR, Loynds BM. Copper-zinc superoxide dismutase of Haemophilus influenzae and H. parainfluenzae. J Bacteriol 1991; 173:7449-57. [PMID: 1938942 PMCID: PMC212509 DOI: 10.1128/jb.173.23.7449-7457.1991] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Copper-zinc superoxide dismutase ([Cu,Zn]-SOD) is widely found in eukaryotes but has only rarely been identified in bacteria. Here we describe sodC, encoding [Cu,Zn]-SOD in Haemophilus influenzae and H. parainfluenzae, frequent colonists and pathogens of the human respiratory tract. In capsulate H. influenzae, sodC was found in only one division of the bacterial population, and although the protein it encoded was clearly [Cu,Zn]-SOD from its deduced sequence, it lacked enzymatic activity. In H. parainfluenzae, in contrast, active enzyme was synthesized which appeared to be secreted beyond the cytoplasm when the gene was expressed in Escherichia coli minicells. The origin of gene transcription differed between the Haemophilus species, but protein synthesis from cloned genes in vitro was comparable. A C-T transition was found in the H. influenzae sequence compared with the H. parainfluenzae sequence, leading to a histidine, known to be crucial in eukaryotic [Cu,Zn]-SOD for copper ion coordination and so for enzymatic activity, to be changed to tyrosine. This is speculated to be the cause of inactivity of the H. influenzae enzyme. Secreted SODs have only been described in a few bacterial species, and this is the first identification of [Cu,Zn]-SOD in a common human upper respiratory tract colonist. The role of secreted bacterial SODs is unknown, and we speculate that in Haemophilus species the enzyme may confer survival advantage by accelerating dismutation of superoxide of environmental origin to hydrogen peroxide, disruptive to the normal mucociliary clearance process in the host.
Collapse
Affiliation(s)
- J S Kroll
- Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, United Kingdom
| | | | | |
Collapse
|
41
|
Beyer W, Imlay J, Fridovich I. Superoxide dismutases. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1991; 40:221-53. [PMID: 1851570 DOI: 10.1016/s0079-6603(08)60843-0] [Citation(s) in RCA: 258] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- W Beyer
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710
| | | | | |
Collapse
|
42
|
Abstract
The structural comparison of copper-containing proteins has provided a new dimension to the relationships suggested by sequence similarities. Ryden (1988) summarized the putative relationships, suggesting that a primordial single-domain cupredoxin evolved into the multidomain copper oxidases. The structures have revealed the fact that the differences reside primarily in insertions and deletions at junctions between secondary-structure elements. The mechanism of evolution (e.g., integration of new sequences into regions not essential to the Greek key fold) remains unknown. Which of the properties of a cupredoxin fold are necessary for function is the subject of site-directed mutagenesis studies. Can two of the ligands be interchanged (e.g., the upstream histidine and partially answered by the multidomain copper oxidase structure. The Tyr-Cys-Thr sequence in plastocyanin (in which threonine is a member of the hydrogen-bonding pair) is homologous with the His-Cys-His sequence in ascorbate oxidase. In the latter electron transfer is believed to flow from the type I copper (bound by the cysteine) to the trinuclear cluster, probably via these histidine residues. Hence, one might infer that the tyrosine and threonine have some role in electron transfer. Tyr-83 has been previously implicated in NMR studies as a primary site of electron transfer. The multi-copper protein structures have revealed interesting new features. The extra coppers are bound at domain interfaces, and can be single metals or the novel trinuclear cluster, depending on the availability of liganding histidines. A structural model of ceruloplasmin suggests that it will have at least two type I sites and, possibly, a third type I site such as stellacyanin (no methionine ligand), as well as a binding site for a trinuclear cluster. The similarity of the sequences of N2O reductases and a domain of cytochrome oxidase to the sequences of proteins with known structures suggests that these, too, will have Greek key domains. Galactose oxidase and hemocyanin do not have Greek key folds in their functional domains, although each does have a Greek key domain. The need for a Greek key fold remains obscure. The apoproteins are clearly stable without metals; there are examples other than immunoglobulins of Greek key folds. So far copper seems to be found in a very limited subset of structures; other chapters in this volume show that zinc, for example, has a much wider variety of environments in proteins, as does iron. It may be that the copper-containing Greek key proteins represent a very small evolutionary niche.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- E T Adman
- Department of Biological Structure, University of Washington, Seattle 98115
| |
Collapse
|
43
|
Bannister WH, Bannister JV, Barra D, Bond J, Bossa F. Evolutionary aspects of superoxide dismutase: the copper/zinc enzyme. FREE RADICAL RESEARCH COMMUNICATIONS 1991; 12-13 Pt 1:349-61. [PMID: 2071039 DOI: 10.3109/10715769109145804] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Copper/zinc superoxide dismutase is typically an enzyme of eukaryotes. The presence of the enzyme in the ponyfish symbiont Photobacterium leiognathi and some free living bacteria does not have an immediate explanation. Amino acid sequence alignment of 19 Cu/Zn superoxide dismutases shows 21 invariant residues in key positions related to maintenance of the beta-barrel fold, the active site structure including the electrostatic channel loop, and dimer contacts. Nineteen other residues are invariant in 18 of the 19 sequences. Thirteen of these nearly invariant residues show substitutions in Photobacterium Cu/Zn superoxide dismutase. Copper/zinc superoxide dismutase from the trematode Schistosoma mansoni shows an N-terminal sub-domain with a hydrophobic leader peptide, as in human extracellular superoxide dismutase which is a Cu/Zn enzyme. The latter also has a C-terminal sub-domain with preponderance of hydrophilic and positively charged residues. The amino acid sequence of this superoxide dismutase between the N-terminal and C-terminal regions shares many features of cytosolic Cu/Zn superoxide dismutase, including 20 of the 21 invariant residues found in 19 Cu/Zn enzymes, suggesting a similar type of beta-barrel fold and active site structure for the extracellular enzyme.
Collapse
Affiliation(s)
- W H Bannister
- Department of Physiology and Biochemistry, University of Malta, Msida
| | | | | | | | | |
Collapse
|
44
|
Barra D, Schininà ME, Bossa F, Puget K, Durosay P, Guissani A, Michelson AM. A tetrameric iron superoxide dismutase from the eucaryote Tetrahymena pyriformis. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(18)38217-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
45
|
Barkley KB, Gregory EM. Tetrameric manganese superoxide dismutases from anaerobic Actinomyces. Arch Biochem Biophys 1990; 280:192-200. [PMID: 2112898 DOI: 10.1016/0003-9861(90)90535-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Superoxide dismutase was isolated from each of the anaerobically grown organisms Actinomyces naeslundii, Actinomyces strain E1S.25D, and Actinomyces odontolyticus. The enzymes were 100,000-110,000 mol wt acidic proteins (pI 4.3-4.6) and contained Mn and Zn, but no detectable Fe. The Mn and Zn content varied with the enzyme source. A. naeslundii superoxide dismutase, specific activity 2200 U/mg, contained 2.3 g atoms Mn and 1.4 g atoms Zn per mole tetramer whereas A. odontolyticus SOD, specific activity 700 U/mg, contained 1.4 g atoms Mn and 1.8 g atoms Zn per mole tetramer. Actinomyces strain E1S.25D, specific activity 1300 U/mg, contained 1.8 g atoms Mn and 1.2 g atoms Zn per mole tetramer. The amino acid compositions of the enzymes were comparable except for arginine, lysine, and tryptophan content. The enzymatic activity of each enzyme was stable in 5 mM H2O2 at 23 degrees C for 2 h. The enzymes were only modestly inhibited by 20 mM NaN3. The enzymatic activity was increased at low ionic strength but was markedly decreased at increased ionic strength with each salt tested except sodium perchlorate, which caused marked inhibition even at low ionic strength. Polyclonal antibodies to A. naeslundii and Actinomyces strain E1S.25D precipitated and inactivated their respective antigens whereas the precipitated A. odontolyticus superoxide dismutase-antibody complex retained virtually full catalytic activity. Immunological studies revealed that the native A. naeslundii and Actinomyces strain E1S.25D MnSODs share common epitopes and cross-reacted with precipitin lines of complete identity in Ouchterlony double diffusion gels. Antibody to the A. odontolyticus enzyme displayed only partial cross-reactivity with superoxide dismutase from the two other Actinomyces. Western blotting of the denatured antigens revealed reactivities of the antibodies that differed only slightly from the results of the Ouchterlony gels.
Collapse
Affiliation(s)
- K B Barkley
- Department of Biochemistry, Virginia Polytechnic Institute, Blacksburg
| | | |
Collapse
|
46
|
Steinman HM, Ely B. Copper-zinc superoxide dismutase of Caulobacter crescentus: cloning, sequencing, and mapping of the gene and periplasmic location of the enzyme. J Bacteriol 1990; 172:2901-10. [PMID: 2345128 PMCID: PMC209087 DOI: 10.1128/jb.172.6.2901-2910.1990] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Although widely found in the cytoplasm of eucaryotes, the copper-zinc form of superoxide dismutase (CuZnSOD) has been identified in only a small number of bacterial species. One species is the freshwater bacterium Caulobacter crescentus, which also contains an SOD with iron as the metal cofactor (FeSOD). To investigate the function of this CuZnSOD and its structural relationship to the eucaryotic CuZnSODs, the gene encoding CuZnSOD (sodC) of C. crescentus CB15 was cloned and sequenced. By hybridization to pulsed-field electrophoresis gels, sodC was mapped near cysE in the C. crescentus chromosome. Through analysis of spheroplasts, the two SODs of C. crescentus were shown to be differently localized, CuZnSOD in the periplasm and FeSOD in the cytoplasm. In its natural habitat, C. crescentus is frequently associated with blue-green algae (cyanobacteria). The oxygen evolved by these photosynthetic algae may create an extracellular oxidative stress against which the periplasmic CuZnSOD may defend more effectively than the cytoplasmic FeSOD. Amino acid sequence alignments of C. crescentus CuZnSOD with eucaryotic CuZnSODs and with CuZnSOD of Photobacterium leiognathi (the only other bacterium from which CuZnSOD has been isolated and sequenced) suggest similar supersecondary structures for bacterial and eucaryotic CuZnSODs but reveal four novel substitutions in C. crescentus CuZnSOD: a phenylalanine critical to intrasubunit hydrophobic bonding replaced by alanine, a histidine ligand of zinc replaced by aspartate, and substitutions of two other previously invariant residues that stabilize zinc or both copper and zinc. These amino acid substitutions in C. crescentus CuZnSOD may have implications for its catalysis and stability.
Collapse
Affiliation(s)
- H M Steinman
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461
| | | |
Collapse
|
47
|
Redford SM, McRee DE, Getzoff ED, Steinman HM, Tainer JA. Crystallographic characterization of a Cu,Zn superoxide dismutase from Photobacterium leiognathi. J Mol Biol 1990; 212:449-51. [PMID: 2325128 DOI: 10.1016/0022-2836(90)90323-e] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Crystals of a copper-zinc superoxide dismutase from Photobacterium leiognathi, a luminescent marine bacterium that is the species-specific symbiont of the ponyfish, have been obtained from 2-methyl-2,4-pentanediol solutions. The space group was determined using screenless small-angle precession photographs, and was confirmed by analyzing area detector diffraction data with the XENGEN programs for indexing and refinement. The crystals are monoclinic, space group C2 (a = 126.4 A, b = 87.0 A, c = 44.4 A, beta = 92.8 A), and have two 32,000 Mr dimers per asymmetric unit. The crystals diffract to at least 2.7 A resolution, are resistant to radiation damage, and are suitable for determination of the structure by X-ray diffraction.
Collapse
Affiliation(s)
- S M Redford
- Department of Molecular Biology, Research Institute of Scripps Clinic, La Jolla, CA 92037
| | | | | | | | | |
Collapse
|
48
|
Denariaz G, Payne WJ, LeGall J. Characterization of the superoxide dismutase of the denitrifying bacterium,Bacillus halodenitrificans. ACTA ACUST UNITED AC 1990. [DOI: 10.1007/bf01141171] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
49
|
Grace SC. Phylogenetic distribution of superoxide dismutase supports an endosymbiotic origin for chloroplasts and mitochondria. Life Sci 1990; 47:1875-86. [PMID: 2266771 DOI: 10.1016/0024-3205(90)90399-c] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Three isozymes of superoxide dismutase (SOD) have been identified and characterized. The iron and manganese isozymes (Fe-SOD and Mn-SOD, respectively) show extensive primary sequence and structural homology, suggesting a common evolutionary ancestor. In contrast, the copper/zinc isozyme (CuZn-SOD) shows no homology with Fe-SOD or Mn-SOD, suggesting an independent origin for this enzyme. The three isozymes are unequally distributed throughout the biological kingdoms and are located in different subcellular compartments. Obligate anaerobes and aerobic diazotrophs contain Fe-SOD exclusively. Facultative aerobes contain either Fe-SOD or Mn-SOD or both. Fe-SOD is found in the cytosol of cyanobacteria while the thylakoid membranes of these organisms contain a tightly bound Mn-SOD. Similarly, most eukaryotic algae contain Fe-SOD in the chloroplast stroma and Mn-SOD bound to the thylakoids. Most higher plants contain a cytosol-specific and a chloroplast-specific CuZn-SOD, and possibly a thylakoid-bound Mn-SOD as well. Plants also contain Mn-SOD in their mitochondria. Likewise, animals and fungi contain a cytosolic CuZn-SOD and a mitochondrial Mn-SOD. The Mn-SOD found in the mitochondria of eukaryotes shows strong homology to the prokaryotic form of the enzyme. Taken together, the phylogenetic distribution and subcellular localization of the SOD isozymes provide strong support for the hypothesis that the chloroplasts and mitochondria of eukaryotic cells arose from prokaryotic endosymbionts.
Collapse
Affiliation(s)
- S C Grace
- Department of Botany, Duke University, Durham, N.C. 27706
| |
Collapse
|
50
|
Laudenbach DE, Trick CG, Straus NA. Cloning and characterization of an Anacystis nidulans R2 superoxide dismutase gene. MOLECULAR & GENERAL GENETICS : MGG 1989; 216:455-61. [PMID: 2501651 DOI: 10.1007/bf00334390] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The E. coli iron superoxide dismutase gene (sodB) was utilized as a heterologous probe to isolate a superoxide dismutase (sod) gene from Anacystis nidulans R2. Nucleotide sequence analysis revealed a 603 bp open reading frame with deduced amino acid sequence similar to other sod genes and to cyanobacterial superoxide dismutase amino-terminal sequences. Assuming proteolytic cleavage of the initial methionine residue, the molecular mass of the mature A. nidulans R2 sodB polypeptide is 22,000 daltons. Only a single copy of the superoxide dismutase sequence was detected in the A. nidulans R2 genome using Southern hybridization. Northern hybridization analysis indicated a single, monocistronic RNA transcript of approximately 720 bases. Primer extension mapping localized the transcription start site to 46 bases upstream from the initial methionine residue. A single orientation of a 2.1 kb PstI fragment containing the entire sod gene cloned into pUC18 was able to complement E. coli sodAsodB mutants. Complementation of the E. coli mutants was based on the ability of the cells to grow aerobically on minimal glucose medium. Growth curves of the complemented E. coli sodAsodB mutants showed that these cells exhibited levels of resistance to paraquat comparable to that of the wild-type E. coli phenotype.
Collapse
Affiliation(s)
- D E Laudenbach
- University of Toronto, Department of Botany, Ontario, Canada
| | | | | |
Collapse
|