1
|
Vanderwaeren L, Dok R, Voordeckers K, Nuyts S, Verstrepen KJ. Saccharomyces cerevisiae as a Model System for Eukaryotic Cell Biology, from Cell Cycle Control to DNA Damage Response. Int J Mol Sci 2022; 23:11665. [PMID: 36232965 PMCID: PMC9570374 DOI: 10.3390/ijms231911665] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/08/2022] Open
Abstract
The yeast Saccharomyces cerevisiae has been used for bread making and beer brewing for thousands of years. In addition, its ease of manipulation, well-annotated genome, expansive molecular toolbox, and its strong conservation of basic eukaryotic biology also make it a prime model for eukaryotic cell biology and genetics. In this review, we discuss the characteristics that made yeast such an extensively used model organism and specifically focus on the DNA damage response pathway as a prime example of how research in S. cerevisiae helped elucidate a highly conserved biological process. In addition, we also highlight differences in the DNA damage response of S. cerevisiae and humans and discuss the challenges of using S. cerevisiae as a model system.
Collapse
Affiliation(s)
- Laura Vanderwaeren
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
- Laboratory of Genetics and Genomics, Centre for Microbial and Plant Genetics, Department M2S, KU Leuven, 3001 Leuven, Belgium
- Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, 3001 Leuven, Belgium
| | - Rüveyda Dok
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Karin Voordeckers
- Laboratory of Genetics and Genomics, Centre for Microbial and Plant Genetics, Department M2S, KU Leuven, 3001 Leuven, Belgium
- Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, 3001 Leuven, Belgium
| | - Sandra Nuyts
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
- Department of Radiation Oncology, Leuven Cancer Institute, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Kevin J. Verstrepen
- Laboratory of Genetics and Genomics, Centre for Microbial and Plant Genetics, Department M2S, KU Leuven, 3001 Leuven, Belgium
- Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, 3001 Leuven, Belgium
| |
Collapse
|
2
|
Olkinuora AP, Peltomäki PT, Aaltonen LA, Rajamäki K. From APC to the genetics of hereditary and familial colon cancer syndromes. Hum Mol Genet 2021; 30:R206-R224. [PMID: 34329396 PMCID: PMC8490010 DOI: 10.1093/hmg/ddab208] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 11/12/2022] Open
Abstract
Hereditary colorectal cancer (CRC) syndromes attributable to high penetrance mutations represent 9-26% of young-onset CRC cases. The clinical significance of many of these mutations is understood well enough to be used in diagnostics and as an aid in patient care. However, despite the advances made in the field, a significant proportion of familial and early-onset cases remains molecularly uncharacterized and extensive work is still needed to fully understand the genetic nature of CRC susceptibility. With the emergence of next-generation sequencing and associated methods, several predisposition loci have been unraveled, but validation is incomplete. Individuals with cancer-predisposing mutations are currently enrolled in life-long surveillance, but with the development of new treatments, such as cancer vaccinations, this might change in the not so distant future for at least some individuals. For individuals without a known cause for their disease susceptibility, prevention and therapy options are less precise. Herein, we review the progress achieved in the last three decades with a focus on how CRC predisposition genes were discovered. Furthermore, we discuss the clinical implications of these discoveries and anticipate what to expect in the next decade.
Collapse
Affiliation(s)
- Alisa P Olkinuora
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, 00014 Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, 00014 Helsinki, Finland
| | - Päivi T Peltomäki
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, 00014 Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, 00014 Helsinki, Finland
| | - Lauri A Aaltonen
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, 00014 Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, 00014 Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, 00014 Helsinki, Finland
| | - Kristiina Rajamäki
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, 00014 Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
3
|
Hanne J, Britton BM, Park J, Liu J, Martín-López J, Jones N, Schoffner M, Klajner P, Bundschuh R, Lee JB, Fishel R. MutS homolog sliding clamps shield the DNA from binding proteins. J Biol Chem 2018; 293:14285-14294. [PMID: 30072380 DOI: 10.1074/jbc.ra118.002264] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 07/31/2018] [Indexed: 11/06/2022] Open
Abstract
Sliding clamps on DNA consist of evolutionarily conserved enzymes that coordinate DNA replication, repair, and the cellular DNA damage response. MutS homolog (MSH) proteins initiate mismatch repair (MMR) by recognizing mispaired nucleotides and in the presence of ATP form stable sliding clamps that randomly diffuse along the DNA. The MSH sliding clamps subsequently load MutL homolog (MLH/PMS) proteins that form a second extremely stable sliding clamp, which together coordinate downstream MMR components with the excision-initiation site that may be hundreds to thousands of nucleotides distant from the mismatch. Specific or nonspecific binding of other proteins to the DNA between the mismatch and the distant excision-initiation site could conceivably obstruct the free diffusion of these MMR sliding clamps, inhibiting their ability to initiate repair. Here, we employed bulk biochemical analysis, single-molecule fluorescence imaging, and mathematical modeling to determine how sliding clamps might overcome such hindrances along the DNA. Using both bacterial and human MSH proteins, we found that increasing the number of MSH sliding clamps on a DNA decreased the association of the Escherichia coli transcriptional repressor LacI to its cognate promoter LacO. Our results suggest a simple mechanism whereby thermal diffusion of MSH sliding clamps along the DNA alters the association kinetics of other DNA-binding proteins over extended distances. These observations appear generally applicable to any stable sliding clamp that forms on DNA.
Collapse
Affiliation(s)
- Jeungphill Hanne
- From the Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210
| | - Brooke M Britton
- From the Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210
| | - Jonghyun Park
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 790-784 Korea
| | - Jiaquan Liu
- From the Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210
| | - Juana Martín-López
- From the Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210
| | - Nathan Jones
- From the Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210.,Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, Ohio 43210
| | - Matthew Schoffner
- From the Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210
| | - Piotr Klajner
- From the Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210
| | - Ralf Bundschuh
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, Ohio 43210, .,Department of Physics, The Ohio State University, Columbus, Ohio 43210.,Department of Chemistry and Biochemistry, Division of Hematology, Department of Internal Medicine, Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, and
| | - Jong-Bong Lee
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 790-784 Korea, .,School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang 790-784 Korea
| | - Richard Fishel
- From the Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210, .,Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
4
|
Abstract
Sebaceous neoplasms such as adenoma, sebaceoma, and carcinoma, although sporadic in their occurrence, are clinically significant because of their association with Muir-Torre syndrome (MTS). MTS is a rare autosomal dominant genodermatosis characterized by the occurrence of sebaceous neoplasms and/or keratoacanthomas and visceral malignancies. MTS is usually the result of germline mutations in the DNA mismatch repair genes MSH2 and, albeit less commonly, MLH1. Although less know, MSH6 is yet another key player. Evidence from Lynch syndrome indicates that pathogenic germline mutations in MSH6 are typically microsatellite stable and have a clinical presentation that differs from that associated with germline mutations in MSH2 and/or MLH1. Given this unique mutator phenotype of MSH6, the primary aim of this review was to underscore the clinical manifestations associated with pathogenic mutations in MSH6 in patients with MTS. As the current clinical and laboratory work-up of MTS is geared toward patients harboring a germline mutation in MSH2 and/or MLH1, an additional aim was to provide a scaffolding for the work-up of a patient presenting with an isolated germline mutation in MSH6.
Collapse
|
5
|
Affiliation(s)
- Guo-Min Li
- Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, University of Southern California, Los Angeles, CA 90033.
| |
Collapse
|
6
|
Bregenhorn S, Kallenberger L, Artola-Borán M, Peña-Diaz J, Jiricny J. Non-canonical uracil processing in DNA gives rise to double-strand breaks and deletions: relevance to class switch recombination. Nucleic Acids Res 2016; 44:2691-705. [PMID: 26743004 PMCID: PMC4824095 DOI: 10.1093/nar/gkv1535] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 12/23/2015] [Indexed: 12/24/2022] Open
Abstract
During class switch recombination (CSR), antigen-stimulated B-cells rearrange their immunoglobulin constant heavy chain (CH) loci to generate antibodies with different effector functions. CSR is initiated by activation-induced deaminase (AID), which converts cytosines in switch (S) regions, repetitive sequences flanking the CH loci, to uracils. Although U/G mispairs arising in this way are generally efficiently repaired to C/Gs by uracil DNA glycosylase (UNG)-initiated base excision repair (BER), uracil processing in S-regions of activated B-cells occasionally gives rise to double strand breaks (DSBs), which trigger CSR. Surprisingly, genetic experiments revealed that CSR is dependent not only on AID and UNG, but also on mismatch repair (MMR). To elucidate the role of MMR in CSR, we studied the processing of uracil-containing DNA substrates in extracts of MMR-proficient and –deficient human cells, as well as in a system reconstituted from recombinant BER and MMR proteins. Here, we show that the interplay of these repair systems gives rise to DSBs in vitro and to genomic deletions and mutations in vivo, particularly in an S-region sequence. Our findings further suggest that MMR affects pathway choice in DSB repair. Given its amenability to manipulation, our system represents a powerful tool for the molecular dissection of CSR.
Collapse
Affiliation(s)
- Stephanie Bregenhorn
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland Department of Biology, Swiss Federal Institute of Technology (ETH) Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Lia Kallenberger
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Mariela Artola-Borán
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Javier Peña-Diaz
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland University of Copenhagen, Faculty of Health Sciences Center for Healthy Aging, Department of Neuroscience and Pharmacology, Blegdamsvej 3b, DK-2200 Copenhagen N, Denmark
| | - Josef Jiricny
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland Department of Biology, Swiss Federal Institute of Technology (ETH) Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
7
|
Edelbrock MA, Kaliyaperumal S, Williams KJ. Structural, molecular and cellular functions of MSH2 and MSH6 during DNA mismatch repair, damage signaling and other noncanonical activities. Mutat Res 2013; 743-744:53-66. [PMID: 23391514 DOI: 10.1016/j.mrfmmm.2012.12.008] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 12/28/2012] [Accepted: 12/31/2012] [Indexed: 11/18/2022]
Abstract
The field of DNA mismatch repair (MMR) has rapidly expanded after the discovery of the MutHLS repair system in bacteria. By the mid 1990s yeast and human homologues to bacterial MutL and MutS had been identified and their contribution to hereditary non-polyposis colorectal cancer (HNPCC; Lynch syndrome) was under intense investigation. The human MutS homologue 6 protein (hMSH6), was first reported in 1995 as a G:T binding partner (GTBP) of hMSH2, forming the hMutSα mismatch-binding complex. Signal transduction from each DNA-bound hMutSα complex is accomplished by the hMutLα heterodimer (hMLH1 and hPMS2). Molecular mechanisms and cellular regulation of individual MMR proteins are now areas of intensive research. This review will focus on molecular mechanisms associated with mismatch binding, as well as emerging evidence that MutSα, and in particular, MSH6, is a key protein in MMR-dependent DNA damage response and communication with other DNA repair pathways within the cell. MSH6 is unstable in the absence of MSH2, however it is the DNA lesion-binding partner of this heterodimer. MSH6, but not MSH2, has a conserved Phe-X-Glu motif that recognizes and binds several different DNA structural distortions, initiating different cellular responses. hMSH6 also contains the nuclear localization sequences required to shuttle hMutSα into the nucleus. For example, upon binding to O(6)meG:T, MSH6 triggers a DNA damage response that involves altered phosphorylation within the N-terminal disordered domain of this unique protein. While many investigations have focused on MMR as a post-replication DNA repair mechanism, MMR proteins are expressed and active in all phases of the cell cycle. There is much more to be discovered about regulatory cellular roles that require the presence of MutSα and, in particular, MSH6.
Collapse
Affiliation(s)
| | - Saravanan Kaliyaperumal
- Division of Comparative Medicine and Pathology, New England Primate Research Center, One Pine Hill Drive, Southborough, MA 01772, USA.
| | - Kandace J Williams
- University of Toledo College of Medicine and Life Sciences, Department of Biochemistry & Cancer Biology, 3000 Transverse Dr., Toledo, OH 43614, USA.
| |
Collapse
|
8
|
Campo VA, Patenaude AM, Kaden S, Horb L, Firka D, Jiricny J, Di Noia JM. MSH6- or PMS2-deficiency causes re-replication in DT40 B cells, but it has little effect on immunoglobulin gene conversion or on repair of AID-generated uracils. Nucleic Acids Res 2013; 41:3032-46. [PMID: 23314153 PMCID: PMC3597665 DOI: 10.1093/nar/gks1470] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The mammalian antibody repertoire is shaped by somatic hypermutation (SHM) and class switch recombination (CSR) of the immunoglobulin (Ig) loci of B lymphocytes. SHM and CSR are triggered by non-canonical, error-prone processing of G/U mismatches generated by activation-induced deaminase (AID). In birds, AID does not trigger SHM, but it triggers Ig gene conversion (GC), a ‘homeologous’ recombination process involving the Ig variable region and proximal pseudogenes. Because recombination fidelity is controlled by the mismatch repair (MMR) system, we investigated whether MMR affects GC in the chicken B cell line DT40. We show here that Msh6−/− and Pms2−/− DT40 cells display cell cycle defects, including genomic re-replication. However, although IgVλ GC tracts in MMR-deficient cells were slightly longer than in normal cells, Ig GC frequency, donor choice or the number of mutations per sequence remained unaltered. The finding that the avian MMR system, unlike that of mammals, does not seem to contribute towards the processing of G/U mismatches in vitro could explain why MMR is unable to initiate Ig GC in this species, despite initiating SHM and CSR in mammalian cells. Moreover, as MMR does not counteract or govern Ig GC, we report a rare example of ‘homeologous’ recombination insensitive to MMR.
Collapse
Affiliation(s)
- Vanina A Campo
- Institut de Recherches Cliniques de Montréal, Division of Immunity and Viral Infections, Montréal, H2W 1R7 Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
9
|
Peña-Diaz J, Bregenhorn S, Ghodgaonkar M, Follonier C, Artola-Borán M, Castor D, Lopes M, Sartori AA, Jiricny J. Noncanonical mismatch repair as a source of genomic instability in human cells. Mol Cell 2012; 47:669-80. [PMID: 22864113 DOI: 10.1016/j.molcel.2012.07.006] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 05/19/2012] [Accepted: 06/29/2012] [Indexed: 11/24/2022]
Abstract
Mismatch repair (MMR) is a key antimutagenic process that increases the fidelity of DNA replication and recombination. Yet genetic experiments showed that MMR is required for antibody maturation, a process during which the immunoglobulin loci of antigen-stimulated B cells undergo extensive mutagenesis and rearrangements. In an attempt to elucidate the mechanism underlying the latter events, we set out to search for conditions that compromise MMR fidelity. Here, we describe noncanonical MMR (ncMMR), a process in which the MMR pathway is activated by various DNA lesions rather than by mispairs. ncMMR is largely independent of DNA replication, lacks strand directionality, triggers PCNA monoubiquitylation, and promotes recruitment of the error-prone polymerase-η to chromatin. Importantly, ncMMR is not limited to B cells but occurs also in other cell types. Moreover, it contributes to mutagenesis induced by alkylating agents. Activation of ncMMR may therefore play a role in genomic instability and cancer.
Collapse
Affiliation(s)
- Javier Peña-Diaz
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Xu K, Wu X, Tompkins JD, Her C. Assessment of anti-recombination and double-strand break-induced gene conversion in human cells by a chromosomal reporter. J Biol Chem 2012; 287:29543-53. [PMID: 22773873 DOI: 10.1074/jbc.m112.352302] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gene conversion is one of the frequent end results of homologous recombination, and it often underlies the inactivation of tumor suppressor genes in cancer cells. Here, we have developed an integrated assay system that allows simultaneous examination of double-strand break (DSB)-induced gene conversion events at the site of a DSB (proximal region) and at a surrounding region ~1 kb away from the break (distal region). Utilizing this assay system, we find that gene conversion events at the proximal and distal regions are relatively independent of one another. The results also indicate that synthesis-dependent strand annealing (SDSA) plays a major role in DSB-induced gene conversion. In addition, our current study has demonstrated that hMLH1 plays an essential role in anti-recombination and gene conversion. Specifically, the anti-recombination activity of hMLH1 is partially dependent on its interaction with hMRE11. Our data suggests that the role of hMLH1 and hMRE11 in the process of gene conversion is complex, and these proteins play different roles in DSB-induced proximal and distal gene conversions. In particular, the involvement of hMLH1 and hMRE11 in the distal gene conversion requires both hMSH2 and heteroduplex formation.
Collapse
Affiliation(s)
- Keqian Xu
- From the School of Molecular Biosciences, Washington State University, Pullman, Washington 99164-7520
| | | | | | | |
Collapse
|
11
|
Peña-Diaz J, Jiricny J. Mammalian mismatch repair: error-free or error-prone? Trends Biochem Sci 2012; 37:206-14. [PMID: 22475811 DOI: 10.1016/j.tibs.2012.03.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 02/15/2012] [Accepted: 03/01/2012] [Indexed: 01/13/2023]
Abstract
A considerable surge of interest in the mismatch repair (MMR) system has been brought about by the discovery of a link between Lynch syndrome, an inherited predisposition to cancer of the colon and other organs, and malfunction of this key DNA metabolic pathway. This review focuses on recent advances in our understanding of the molecular mechanisms of canonical MMR, which improves replication fidelity by removing misincorporated nucleotides from the nascent DNA strand. We also discuss the involvement of MMR proteins in two other processes: trinucleotide repeat expansion and antibody maturation, in which MMR proteins are required for mutagenesis rather than for its prevention.
Collapse
Affiliation(s)
- Javier Peña-Diaz
- Institute of Molecular Cancer Research of the University of Zurich, Switzerland
| | | |
Collapse
|
12
|
Campos PC, Silva VG, Furtado C, Machado-Silva A, Darocha WD, Peloso EF, Gadelha FR, Medeiros MHG, Lana GDC, Chen Y, Barnes RL, Passos-Silva DG, McCulloch R, Machado CR, Teixeira SMR. Trypanosoma cruzi MSH2: Functional analyses on different parasite strains provide evidences for a role on the oxidative stress response. Mol Biochem Parasitol 2010; 176:8-16. [PMID: 21073906 PMCID: PMC3142612 DOI: 10.1016/j.molbiopara.2010.11.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 10/24/2010] [Accepted: 11/01/2010] [Indexed: 11/29/2022]
Abstract
Components of the DNA mismatch repair (MMR) pathway are major players in processes known to generate genetic diversity, such as mutagenesis and DNA recombination. Trypanosoma cruzi, the protozoan parasite that causes Chagas disease has a highly heterogeneous population, composed of a pool of strains with distinct characteristics. Studies with a number of molecular markers identified up to six groups in the T. cruzi population, which showed distinct levels of genetic variability. To investigate the molecular basis for such differences, we analyzed the T. cruzi MSH2 gene, which encodes a key component of MMR, and showed the existence of distinct isoforms of this protein. Here we compared cell survival rates after exposure to genotoxic agents and levels of oxidative stress-induced DNA in different parasite strains. Analyses of msh2 mutants in both T. cruzi and T. brucei were also used to investigate the role of Tcmsh2 in the response to various DNA damaging agents. The results suggest that the distinct MSH2 isoforms have differences in their activity. More importantly, they also indicate that, in addition to its role in MMR, TcMSH2 acts in the parasite response to oxidative stress through a novel mitochondrial function that may be conserved in T. brucei.
Collapse
Affiliation(s)
- Priscila C Campos
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Marra G, Jiricny J. DNA mismatch repair and colon cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2005; 570:85-123. [PMID: 18727499 DOI: 10.1007/1-4020-3764-3_4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Affiliation(s)
- Giancarlo Marra
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
14
|
Abstract
The 3D structures of all 12 mispairs formed in the active site of a DNA polymerase help explain their differential effects on polymerase stalling and on translocation of the primer terminus to the enzyme's proofreading site.
Collapse
Affiliation(s)
- Josef Jiricny
- Institute of Molecular Cancer Research, University of Zürich, August Forel-Strasse 7, CH-8008 Zurich, Switzerland
| |
Collapse
|
15
|
Abstract
Somatic hypermutation and switch recombination of immunoglobulin genes require the activity of the activation-induced deaminase, AID. Recent studies of mice deficient for the uracil-DNA glycosylase UNG, which removes U from DNA, suggest that AID catalyses the deamination of dC to dU during antibody diversification.
Collapse
Affiliation(s)
- Ursula Storb
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | | |
Collapse
|
16
|
Drotschmann K, Hall MC, Shcherbakova PV, Wang H, Erie DA, Brownewell FR, Kool ET, Kunkel TA. DNA binding properties of the yeast Msh2-Msh6 and Mlh1-Pms1 heterodimers. Biol Chem 2002; 383:969-75. [PMID: 12222686 DOI: 10.1515/bc.2002.103] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We describe here our recent studies of the DNA binding properties of Msh2-Msh6 and Mlh1-Pms1, two protein complexes required to repair mismatches generated during DNA replication. Mismatched DNA binding by Msh2-Msh6 was probed by mutagenesis based on the crystal structure of the homologous bacterial MutS homodimer bound to DNA. The results suggest that several amino acid side chains inferred to interact with the DNA backbone near the mismatch are critical for repair activity. These contacts, which are different in Msh2 and Msh6, likely facilitate stacking and hydrogen bonding interactions between side chains in Msh6 and the mismatched base, thus stabilizing a kinked DNA conformation that permits subsequent repair steps coordinated by the Mlh1-Pms1 heterodimer. Mlh1-Pms1 also binds to DNA, but independently of a mismatch. Mlh1-Pms1 binds short DNA substrates with low affinity and with a slight preference for single-stranded DNA. It also binds longer duplex DNA molecules, but with a higher affinity indicative of cooperative binding. Indeed, imaging by atomic force microscopy reveals cooperative DNA binding and simultaneous interaction with two DNA duplexes. The novel DNA binding properties of Mlh1-Pms1 may be relevant to signal transduction during DNA mismatch repair and to recombination, meiosis and cellular responses to DNA damage.
Collapse
Affiliation(s)
- Karin Drotschmann
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Drotschmann K, Yang W, Brownewell FE, Kool ET, Kunkel TA. Asymmetric recognition of DNA local distortion. Structure-based functional studies of eukaryotic Msh2-Msh6. J Biol Chem 2001; 276:46225-9. [PMID: 11641390 DOI: 10.1074/jbc.c100450200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Crystal structures of bacterial MutS homodimers bound to mismatched DNA reveal asymmetric interactions of the two subunits with DNA. A phenylalanine and glutamate of one subunit make mismatched base-specific interactions, and residues of both subunits contact the DNA backbone surrounding the mismatched base, but asymmetrically. A number of amino acids in MutS that contact the DNA are conserved in the eukaryotic Msh2-Msh6 heterodimer. We report here that yeast strains with amino acids substituted for residues inferred to interact with the DNA backbone or mismatched base have elevated spontaneous mutation rates consistent with defective mismatch repair. Purified Msh2-Msh6 with substitutions in the conserved Phe(337) and Glu(339) in Msh6 thought to stack or hydrogen bond, respectively, with the mismatched base do have reduced DNA binding affinity but normal ATPase activity. Moreover, wild-type Msh2-Msh6 binds with lower affinity to mismatches with thymine replaced by difluorotoluene, which lacks the ability to hydrogen bond. The results suggest that yeast Msh2-Msh6 interacts asymmetrically with the DNA through base-specific stacking and hydrogen bonding interactions and backbone contacts. The importance of these contacts decreases with increasing distance from the mismatch, implying that interactions at and near the mismatch are important for binding in a kinked DNA conformation.
Collapse
Affiliation(s)
- K Drotschmann
- Laboratory of Molecular Genetics, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | |
Collapse
|
18
|
Dufner P, Marra G, Räschle M, Jiricny J. Mismatch recognition and DNA-dependent stimulation of the ATPase activity of hMutSalpha is abolished by a single mutation in the hMSH6 subunit. J Biol Chem 2000; 275:36550-5. [PMID: 10938287 DOI: 10.1074/jbc.m005987200] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The most abundant mismatch binding factor in human cells, hMutSalpha, is a heterodimer of hMSH2 and hMSH6, two homologues of the bacterial MutS protein. The C-terminal portions of all MutS homologues contain an ATP binding motif and are highly conserved throughout evolution. Although the N termini are generally divergent, they too contain short conserved sequence elements. A phenylalanine --> alanine substitution within one such motif, GXFY(X)(5)DA, has been shown to abolish the mismatch binding activity of the MutS protein of Thermus aquaticus (Malkov, V. A., Biswas, I., Camerini-Otero, R. D., and Hsieh, P. (1997) J. Biol. Chem. 272, 23811-23817). We introduced an identical mutation into one or both subunits of hMutSalpha. The Phe --> Ala substitution in hMSH2 had no effect on the biological activity of the heterodimer. In contrast, the in vitro mismatch binding and mismatch repair functions of hMutSalpha were severely attenuated when the hMSH6 subunit was mutated. Moreover, this variant heterodimer also displayed a general DNA binding defect. Correspondingly, its ATPase activity could not be stimulated by either heteroduplex or homoduplex DNA. Thus the N-terminal portion of hMSH6 appears to impart on hMutSalpha not only the specificity for recognition and binding of mismatched substrates but also the ability to bind to homoduplex DNA.
Collapse
Affiliation(s)
- P Dufner
- Institute of Medical Radiobiology of the University of Zürich and the Paul Scherrer Institute, August Forel-Strasse 7, Zürich 8008, Switzerland
| | | | | | | |
Collapse
|
19
|
Matton N, Simonetti J, Williams K. Identification of mismatch repair protein complexes in HeLa nuclear extracts and their interaction with heteroduplex DNA. J Biol Chem 2000; 275:17808-13. [PMID: 10748159 DOI: 10.1074/jbc.m909794199] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Deficiencies in DNA mismatch repair (MMR) have been found in hereditary colon cancers (hereditary non-polyposis colon cancer, HNPCC) as well as in sporadic cancers, illustrating the importance of MMR in maintaining genomic integrity. We have examined the interactions of specific mismatch repair proteins in human nuclear extracts. Western blot and co-immunoprecipitation studies indicate two complexes as follows: one consisting of hMSH2, hMSH6, hMLH1, and hPMS2 and the other consisting of hMSH2, hMSH6, hMLH1, and hPMS1. These interactions occur without the addition of ATP. Furthermore, the protein complexes specifically bind to mismatched DNA and not to a similar homoduplex oligonucleotide. The protein complex-DNA interactions occur primarily through hMSH6, although hMSH2 can also become cross-linked to the mismatched substrate when not participating in the MMR protein complex. In the presence of ATP the binding of hMSH6 to mismatched DNA is decreased. In addition, hMLH1, hPMS2, and hPMS1 no longer interact with each other or with the hMutSalpha complex (hMSH2 and hMSH6). However, the ability of hMLH1 to co-immunoprecipitate mismatched DNA increases in the presence of ATP. This interaction is dependent on the presence of the mismatch and does not appear to involve a direct binding of hMLH1 to the DNA.
Collapse
Affiliation(s)
- N Matton
- Department of Biological Sciences/Biomedical Program, University of Alaska, Anchorage, Alaska 99508, USA
| | | | | |
Collapse
|
20
|
Abstract
DNA mismatch repair (MMR) is one of multiple replication, repair, and recombination processes that are required to maintain genomic stability in prokaryotes and eukaryotes. In the wake of the discoveries that hereditary nonpolyposis colorectal cancer (HNPCC) and other human cancers are associated with mutations in MMR genes, intensive efforts are under way to elucidate the biochemical functions of mammalian MutS and MutL homologs, and the consequences of defects in these genes. Genetic studies in cultured mammalian cells and mice are proving to be instrumental in defining the relationship between the functions of MMR in mutation and tumor avoidance. Furthermore, these approaches have raised awareness that MMR homologs contribute to DNA damage surveillance, transcription-coupled repair, and recombinogenic and meiotic processes.
Collapse
Affiliation(s)
- A B Buermeyer
- Department of Molecular and Medical Genetics, Oregon Health Sciences University, Portland 97201-3098, USA
| | | | | | | |
Collapse
|
21
|
Belloni M, Uberti D, Rizzini C, Ferrari-Toninelli G, Rizzonelli P, Jiricny J, Spano P, Memo M. Distribution and kainate-mediated induction of the DNA mismatch repair protein MSH2 in rat brain. Neuroscience 2000; 94:1323-31. [PMID: 10625070 DOI: 10.1016/s0306-4522(99)00380-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
DNA repair is one of the most essential systems for maintaining the inherited nucleotide sequence of genomic DNA over time. Repair of DNA damage would be particularly important in neurons, because these cells are among the longest-living cells in the body. MSH2 is one of the proteins which are involved in the recognition and repair of a specific type of DNA damage that is characterized by pair mismatches. We studied the distribution of MSH2 in rat brain by immunohistochemical analysis. We found the level of MSH2 expression in rat brain to be clearly heterogeneous. The highest intensity of staining was found in the pyramidal neurons of the hippocampus and in the entorhinal and frontoparietal cortices. Positive cells were observed in the substantia nigra pars compacta, in cerebellar granular and Purkinje cells, and in the motor neurons of the spinal cord. We investigated the possible modulation of MSH2 expression after injection of kainate. Systemic administration of kainate induces various behavioural alterations and a typical pattern of neuropathology, with cell death in the hippocampal pyramidal neurons of the CA3/CA4 fields. Kainate injection also resulted in a marked, dose-dependent increase of MSH2 immunoreactivity in the hippocampal neurons of the CA3/CA4 fields. The effect was specific, since no changes in immunoreactivity were detected in the dentate gyrus nor in other brain areas. In summary, our data suggest that a mismatch DNA repair system, of which MSH2 protein is a representative component, is heterogeneously expressed in the rat brain and specifically induced by an experimental paradigm of excitotoxicity.
Collapse
Affiliation(s)
- M Belloni
- Department of Biomedical Sciences and Biotechnologies, School of Medicine, University of Brescia, Italy
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Iaccarino I, Marra G, Dufner P, Jiricny J. Mutation in the magnesium binding site of hMSH6 disables the hMutSalpha sliding clamp from translocating along DNA. J Biol Chem 2000; 275:2080-6. [PMID: 10636912 DOI: 10.1074/jbc.275.3.2080] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In human cells, binding of base/base mismatches and small insertion/deletion loops is mediated by hMutSalpha, a heterodimer of hMSH2 and hMSH6. In the presence of ATP and magnesium, hMutSalpha dissociates from the mismatch by following the DNA contour in the form of a sliding clamp. This process is enabled by a conformational change of the heterodimer, which is driven by the binding of ATP and magnesium in the Walker type A and B motifs of the polypeptides, respectively. We show that a purified recombinant hMutSalpha variant, hMutSalpha 6DV, which contains an aspartate to valine substitution in the Walker type B motif of the hMSH6 subunit, fails to undergo the conformational change compatible with translocation. Instead, its direct dissociation from the mismatch-containing DNA substrate in the presence of ATP and magnesium precludes the assembly of a functional mismatch repair complex. The "translocation-prone" conformation of wild type hMutSalpha could be observed solely under conditions that favor hydrolysis of the nucleotide and mismatch repair in vitro. Thus, whereas magnesium could be substituted with manganese, ATP could not be replaced with its slowly or nonhydrolyzable homologues ATP-gammaS or AMPPNP, respectively. The finding that ATP induces different conformational changes in hMutSalpha in the presence and in the absence of magnesium helps explain the functional differences between hMutSalpha variants incapable of binding ATP as compared with those unable to bind the metal ion.
Collapse
Affiliation(s)
- I Iaccarino
- Institute of Medical Radiobiology of the University of Zürich and the Paul Scherrer Institute, August Forel Strasse 7, CH-8008 Zürich, Switzerland
| | | | | | | |
Collapse
|
23
|
Lim SE, Longley MJ, Copeland WC. The mitochondrial p55 accessory subunit of human DNA polymerase gamma enhances DNA binding, promotes processive DNA synthesis, and confers N-ethylmaleimide resistance. J Biol Chem 1999; 274:38197-203. [PMID: 10608893 DOI: 10.1074/jbc.274.53.38197] [Citation(s) in RCA: 164] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human DNA polymerase gamma is composed of a 140-kDa catalytic subunit and a smaller accessory protein variously reported to be 43-54 kDa. Immunoblot analysis of the purified, heterodimeric native human polymerase gamma complex identified the accessory subunit as 55 kDa. We isolated the full-length cDNA encoding a 55-kDa polypeptide, expressed the cDNA in Escherichia coli and purified the 55-kDa protein to homogeneity. Recombinant Hp55 forms a high affinity, salt-stable complex with Hp140 during protein affinity chromatography. Immunoprecipitation, gel filtration, and sedimentation analyses revealed a 190-kDa complex indicative of a native heterodimer. Reconstitution of Hp140.Hp55 raises the salt optimum of Hp140, stimulates the polymerase and exonuclease activities, and increases the processivity of the enzyme by several 100-fold. Similar to Hp140, isolated Hp55 binds DNA with moderate strength and was a specificity for double-stranded primer-template DNA. However, Hp140.Hp55 has a surprisingly high affinity for DNA, and kinetic analyses indicate Hp55 enhances the affinity of Hp140 for primer termini by 2 orders of magnitude. Thus the enhanced DNA binding caused by Hp55 is the basis for the salt tolerance and high processivity characteristic of DNA polymerase gamma. Observation of native DNA polymerase gamma both as an Hp140 monomer and as a heterodimer with Hp55 supports the notion that the two forms act in mitochondrial DNA repair and replication. Additionally, association of Hp55 with Hp140 protects the polymerase from inhibition by N-ethylmaleimide.
Collapse
Affiliation(s)
- S E Lim
- Laboratory of Molecular Genetics, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | |
Collapse
|
24
|
Albrechtsen N, Dornreiter I, Grosse F, Kim E, Wiesmüller L, Deppert W. Maintenance of genomic integrity by p53: complementary roles for activated and non-activated p53. Oncogene 1999; 18:7706-17. [PMID: 10618711 DOI: 10.1038/sj.onc.1202952] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In this review we describe the multiple functions of p53 in response to DNA damage, with an emphasis on p53's role in DNA repair. We summarize data demonstrating that p53, through its various biochemical activities and via its ability to interact with components of the repair and recombination machinery, actively participates in various processes of DNA repair and DNA recombination. An important aspect in evaluating p53 functions arises from the finding that the p53 core domain harbors two mutually exclusive biochemical activities, sequence-specific DNA binding, required for its transactivation function, and 3'->5' exonuclease activity, possibly involved in various aspects of DNA repair. As modifications of p53 that lead to activation of its sequence-specific DNA-binding activity result in inactivation of its 3'-> 5' exonuclease activity, we propose that p53 exerts its functions as a 'guardian of the genome' at various levels: in its non-induced state, p53 should not be regarded as a non-functional protein, but might be actively involved in prevention and repair of endogenous DNA damage, for example via its exonuclease activity. Upon induction through exogenous DNA damage, p53 will exert its well-documented functions as a superior response element in various types of cellular stress. The dual role model for p53 in maintaining genomic integrity significantly enhances p53's possibilities as a guardian of the genome.
Collapse
Affiliation(s)
- N Albrechtsen
- Heinrich-Pette-Institut für Experimentelle Virologie und Immunologie an der Universität Hamburg, Martinistrasse 52, D-20251 Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
25
|
Wang H, Lawrence CW, Li GM, Hays JB. Specific binding of human MSH2.MSH6 mismatch-repair protein heterodimers to DNA incorporating thymine- or uracil-containing UV light photoproducts opposite mismatched bases. J Biol Chem 1999; 274:16894-900. [PMID: 10358035 DOI: 10.1074/jbc.274.24.16894] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous studies have demonstrated recognition of DNA-containing UV light photoproducts by bacterial (Feng, W.-Y., Lee, E., and Hays, J. B. (1991) Genetics 129, 1007-1020) and human (Mu, D., Tursun, M., Duckett, D. R., Drummond, J. T., Modrich, P., and Sancar, A. (1997) Mol. Cell. Biol. 17, 760-769) long-patch mismatch-repair systems. Mismatch repair directed specifically against incorrect bases inserted during semi-conservative DNA replication might efficiently antagonize UV mutagenesis. To test this hypothesis, DNA 51-mers containing site-specific T-T cis-syn-cyclobutane pyrimidine-dimers or T-T pyrimidine-(6-4')pyrimidinone photoproducts, with all four possible bases opposite the respective 3'-thymines in the photoproducts, were analyzed for the ability to compete with radiolabeled (T/G)-mismatched DNA for binding by highly purified human MSH2.MSH6 heterodimer protein (hMutSalpha). Both (cyclobutane-dimer)/AG and ((6-4)photoproduct)/AG mismatches competed about as well as non-photoproduct T/T mismatches. The two respective pairs of photoproduct/(A(T or C)) mismatches also showed higher hMutSalpha affinity than photoproduct/AA "matches"; the apparent affinity of hMutSalpha for the ((6-4)photoproduct)/AA-"matched" substrate was actually less than that for TT/AA homoduplexes. Surprisingly, although hMutSalpha affinities for both non-photoproduct UU/GG double mismatches and for (uracil-cyclobutane-dimer)/AG single mismatches were high, affinity for the (uracil-cyclobutane-dimer)/GG mismatch was quite low. Equilibrium binding of hMutSalpha to DNA containing (photoproduct/base) mismatches and to (T/G)-mismatched DNA was reduced similarly by ATP (in the absence of magnesium).
Collapse
Affiliation(s)
- H Wang
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331-7301, USA.
| | | | | | | |
Collapse
|
26
|
Bocker T, Rüschoff J, Fishel R. Molecular diagnostics of cancer predisposition: hereditary non-polyposis colorectal carcinoma and mismatch repair defects. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1423:O1-O10. [PMID: 10382540 DOI: 10.1016/s0304-419x(99)00008-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Hereditary non-polyposis colorectal carcinoma accounts for 5-13% of all colorectal carcinomas and is inherited in a dominant fashion. Two different forms can be distinguished. Type I is restricted to colorectal cancers, whereas type II patients acquire acolorectal, endometrial, gastric, small intestinal and transitional carcinomas of the upper urinary tract. Germline mutations in the human mismatch repair genes (hMSH2, hMSH6, hMLH1, hPMS2) account for the majority of hereditary non-polyposis colorectal carcinoma. As a result of the mismatch repair deficiency, replication errors are not repaired, resulting in a mutator phenotype. Simple repetitive sequences (microsatellites) are especially prone to replication errors and analysis of their stability combined with immunohistochemical analysis of mismatch repair protein expression provides a rapid diagnostic strategy. For patients either (1) fulfilling the Amsterdam criteria for HNPCC, (2) with synchronous or metachronous hereditary non-polyposis colorectal carcinoma-related tumors, (3) with hereditary non-polyposis colorectal carcinoma-related tumors before the age of 45 and/or (4) with right sided CRC and mucinous, solid, or cribriform growth patterns, screening for mismatch repair deficiencies should be performed. The identification of colorectal cancers displaying a mutator phenotype has implications for both treatment and prognosis.
Collapse
Affiliation(s)
- T Bocker
- Kimmel Cancer Institute, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | |
Collapse
|
27
|
Abstract
The discovery that mutations in mismatch repair genes segregate with hereditary nonpolyposis colon cancer has awakened a great deal of interest in the study of the process of postreplicative mismatch repair. The characterisation of the principal players involved in this important metabolic pathway has been greatly facilitated by the amino acid sequence conservation among functional homologues of bacteria, yeast and mammals. The phenotypes of mismatch repair deficient mutants are also similar in many ways. In humans, mismatch repair malfunction demonstrates itself in the form of a mutator phenotype of the affected cells, an instability of microsatellite sequences and increased levels of somatic recombination. Moreover, mismatch repair deficient cells display also varying levels of tolerance to DNA damaging agents and are thought to be involved in the cell killing mediated by these agents. This article discusses some recent developments in this fast-moving field.
Collapse
Affiliation(s)
- J Jiricny
- Institute of Medical Radiobiology of the University of Zürich, Switzerland.
| |
Collapse
|
28
|
Studamire B, Quach T, Alani E. Saccharomyces cerevisiae Msh2p and Msh6p ATPase activities are both required during mismatch repair. Mol Cell Biol 1998; 18:7590-601. [PMID: 9819445 PMCID: PMC109340 DOI: 10.1128/mcb.18.12.7590] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the Saccharomyces cerevisiae Msh2p-Msh6p complex, mutations that were predicted to disrupt ATP binding, ATP hydrolysis, or both activities in each subunit were created. Mutations in either subunit resulted in a mismatch repair defect, and overexpression of either mutant subunit in a wild-type strain resulted in a dominant negative phenotype. Msh2p-Msh6p complexes bearing one or both mutant subunits were analyzed for binding to DNA containing base pair mismatches. None of the mutant complexes displayed a significant defect in mismatch binding; however, unlike wild-type protein, all mutant combinations continued to display mismatch binding specificity in the presence of ATP and did not display ATP-dependent conformational changes as measured by limited trypsin protease digestion. Both wild-type complex and complexes defective in the Msh2p ATPase displayed ATPase activities that were modulated by mismatch and homoduplex DNA substrates. Complexes defective in the Msh6p ATPase, however, displayed weak ATPase activities that were unaffected by the presence of DNA substrate. The results from these studies suggest that the Msh2p and Msh6p subunits of the Msh2p-Msh6p complex play important and coordinated roles in postmismatch recognition steps that involve ATP hydrolysis. Furthermore, our data support a model whereby Msh6p uses its ATP binding or hydrolysis activity to coordinate mismatch binding with additional mismatch repair components.
Collapse
Affiliation(s)
- B Studamire
- Section of Genetics and Development, Cornell University, Ithaca, New York 14853-2703, USA
| | | | | |
Collapse
|
29
|
Abstract
ATP hydrolysis by MutS homologs is required for function of these proteins in mismatch repair. However, the function of ATP hydrolysis in the repair reaction is controversial. In this paper we describe a steady-state kinetic analysis of the DNA-activated ATPase of human MutSalpha. Comparison of salt concentration effects on mismatch repair and mismatch-provoked excision in HeLa nuclear extracts with salt effects on the DNA-activated ATPase suggests that ATP hydrolysis by MutSalpha is involved in the rate determining step in the repair pathway. While the ATPase is activated by homoduplex and heteroduplex DNA, the half-maximal concentration for activation by heteroduplex DNA is significantly lower under physiological salt concentrations. Furthermore, at optimal salt concentration, heteroduplex DNA increases the kcat for ATP hydrolysis to a greater extent than does homoduplex DNA. We also demonstrate that the degree of ATPase activation is dependent on DNA chain length, with the kcat for hydrolysis increasing significantly with chain length of the DNA cofactor. These results are discussed in terms of the translocation (Allen, D. J., Makhov, A., Grilley, M., Taylor, J., Thresher, R., Modrich, P., and Griffith, J. D. (1997) EMBO J. 16, 4467-4476) and the molecular switch (Gradia, S., Acharya, S., and Fishel, R. (1997) Cell 91, 995-1005) models that invoke distinct roles for ATP hydrolysis in MutS homolog function.
Collapse
Affiliation(s)
- L J Blackwell
- Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
30
|
Worth L, Bader T, Yang J, Clark S. Role of MutS ATPase activity in MutS,L-dependent block of in vitro strand transfer. J Biol Chem 1998; 273:23176-82. [PMID: 9722547 DOI: 10.1074/jbc.273.36.23176] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In addition to mismatch recognition, Escherichia coli MutS has an associated ATPase activity that is fundamental to repair. Hence, we have characterized two MutS mutant gene products to define the role of ATP hydrolysis in homeologous recombination. These mutants, denoted MutS501 and MutS506, have single point mutations within the Walker A motif, and rate constants for ATP hydrolysis are down 60-100-fold as compared with wild type. Both MutS501 and MutS506 retain mismatch binding and, unlike wild type, fail to relinquish this specificity in the presence of ATP, adenosine 5'-O-(thiotriphosphate), and adenosine 5'-(beta, gamma-imino)triphosphate. Both MutS501 and MutS506 blocked the level of strand transfer between M13 and fd DNAs. The level of inhibition varied between the mutants and corresponded with the relative affinities to a G/T mispair. Neither MutS501 nor MutS506, however, would afford complete block of full-length heteroduplex in the presence of MutL. DNase I footprinting data are consistent with these results, as the region of protection by MutS501 and MutS506 was unchanged in the presence of ATP and MutL. Taken together, these studies suggest that 1) MutS impedes RecA-mediated homeologous exchange as a distinct mismatch-provoked event and 2) the role of MutL is coupled to MutS-dependent ATP hydrolysis. These observations are in good agreement with the present model for E. coli methyl-directed mismatch repair.
Collapse
Affiliation(s)
- L Worth
- Laboratory of Molecular Genetics, NIEHS, National Institutes of Health, P.O. Box 12233, Research Triangle, North Carolina 27709, USA.
| | | | | | | |
Collapse
|
31
|
Marra G, Iaccarino I, Lettieri T, Roscilli G, Delmastro P, Jiricny J. Mismatch repair deficiency associated with overexpression of the MSH3 gene. Proc Natl Acad Sci U S A 1998; 95:8568-73. [PMID: 9671718 PMCID: PMC21116 DOI: 10.1073/pnas.95.15.8568] [Citation(s) in RCA: 159] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
We tested the ability of recombinant hMutSalpha (hMSH2/hMSH6) and hMutSbeta (hMSH2/hMSH3) heterodimers to complement the mismatch repair defect of HEC59, a human cancer cell line whose extracts lack all three MutS homologues. Although repair of both base/base mispairs and insertion-deletion loops was restored by hMutSalpha, only the latter substrates were addressed in extracts supplemented with hMutSbeta. hMutSalpha was also able to complement a defect in the repair of base/base mispairs in CHO R and HL60R cell extracts. In these cells, methotrexate-induced amplification of the dihydrofolate reductase (DHFR) locus, which also contains the MSH3 gene, led to an overexpression of MSH3 and thus to a dramatic change in the relative levels of MutSalpha and MutSbeta. As a rule, MSH2 is primarily complexed with MSH6. MutSalpha is thus relatively abundant in mammalian cell extracts, whereas MutSbeta levels are generally low. In contrast, in cells that overexpress MSH3, the available MSH2 protein is sequestered predominantly into MutSbeta. This leads to degradation of the partnerless MSH6 and depletion of MutSalpha. CHO R and HL60R cells therefore lack correction of base/base mispairs, whereas loop repair is maintained by MutSbeta. Consequently, frameshift mutations in CHO R are rare, whereas transitions and transversions are acquired at a rate two orders of magnitude above background. Our data thus support and extend the findings of Drummond et al. [Drummond, J. T., Genschel, J., Wolf, E. & Modrich, P. (1997) Proc. Natl. Acad. Sci. USA 94, 10144-10149] and demonstrate that mismatch repair deficiency can arise not only through mutation or transcriptional silencing of a mismatch repair gene, but also as a result of imbalance in the relative amounts of the MSH3 and MSH6 proteins.
Collapse
Affiliation(s)
- G Marra
- Institute for Medical Radiobiology, August Forel-Strasse 7, CH-8029 Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
32
|
|
33
|
Umar A, Risinger JI, Glaab WE, Tindall KR, Barrett JC, Kunkel TA. Functional overlap in mismatch repair by human MSH3 and MSH6. Genetics 1998; 148:1637-46. [PMID: 9560383 PMCID: PMC1460084 DOI: 10.1093/genetics/148.4.1637] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Three human genes, hMSH2, hMSH3, and hMSH6, are homologues of the bacterial MutS gene whose products bind DNA mismatches to initiate strand-specific repair of DNA replication errors. Several studies suggest that a complex of hMSH2 x hMSH6 (hMutSalpha) functions primarily in repair of base x base mismatches or single extra bases, whereas a hMSH2 x hMSH3 complex (hMutSbeta) functions chiefly in repair of heteroduplexes containing two to four extra bases. In the present study, we compare results with a tumor cell line (HHUA) that is mutant in both hMSH3 and hMSH6 to results with derivative clones containing either wild-type hMSH3 or wild-type hMSH6, introduced by microcell-mediated transfer of chromosome 5 or 2, respectively. HHUA cells exhibit marked instability at 12 different microsatellite loci composed of repeat units of 1 to 4 base pairs. Compared to normal cells, HHUA cells have mutation rates at the HPRT locus that are elevated 500-fold for base substitutions and 2400-fold for single-base frameshifts. Extracts of HHUA cells are defective in strand-specific repair of substrates containing base x base mismatches or 1-4 extra bases. Transfer of either chromosome 5 (hMSH3) or 2 (hMSH6) into HHUA cells partially corrects instability at the microsatellite loci and also the substitution and frameshift mutator phenotypes at the HPRT locus. Extracts of these lines can repair some, but not all, heteroduplexes. The combined mutation rate and mismatch repair specificity data suggest that both hMSH3 and hMSH6 can independently participate in repair of replication errors containing base x base mismatches or 1-4 extra bases. Thus, these two gene products share redundant roles in controlling mutation rates in human cells.
Collapse
Affiliation(s)
- A Umar
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | | | |
Collapse
|
34
|
Marietta C, Palombo F, Gallinari P, Jiricny J, Brooks PJ. Expression of long-patch and short-patch DNA mismatch repair proteins in the embryonic and adult mammalian brain. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1998; 53:317-20. [PMID: 9473709 DOI: 10.1016/s0169-328x(97)00311-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Expression of the DNA mismatch repair (MMR) pathway was examined in the adult and developing rat brain. Rat homologues of human GTBP and MSH2, which are essential components of the post-replicative DNA MMR system, were identified in nuclear extracts from the adult and developing rat brain. Developmental studies showed that both GTBP and MSH2 levels were higher in nuclei isolated from the embryonic brain (day 16) than adult brain. However, this difference was not as dramatic as the difference in the number of proliferating cells. Levels of thymine DNA glycosylase (TDG), the enzyme which catalyzes the first step in short patch G:T mismatch repair, were also decreased in adult compared to embryonic brain. In the adult brain, MMR proteins were elevated in nuclear extracts enriched for neuronal nuclei. These results suggest that adult brain cells have the capacity to carry out DNA mismatch repair, in spite of a lack of ongoing DNA replication.
Collapse
Affiliation(s)
- C Marietta
- Section on Molecular Neurobiology, Laboratory of Neurogenetics, NIH/DICBR/NIAAA/LNG, 12420 Parklawn Drive, Room 451 MSC #8110, Bethesda, MD 20892-8110, USA
| | | | | | | | | |
Collapse
|
35
|
Gradia S, Acharya S, Fishel R. The human mismatch recognition complex hMSH2-hMSH6 functions as a novel molecular switch. Cell 1997; 91:995-1005. [PMID: 9428522 DOI: 10.1016/s0092-8674(00)80490-0] [Citation(s) in RCA: 268] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The mechanism of DNA mismatch repair has been modeled upon biochemical studies of the E. coli DNA adenine methylation-instructed pathway where the initial recognition of mismatched nucleotides is performed by the MutS protein. MutS homologs (MSH) have been identified based on a highly conserved region containing a Walker-A adenine nucleotide binding motif. Here we show that adenine nucleotide binding and hydrolysis by the human mismatch recognition complex hMSH2-hMSH6 functions as a novel molecular switch. The hMSH2-hMSH6 complex is ON (binds mismatched nucleotides) in the ADP-bound form and OFF in the ATP-bound form. These results suggest a new model for the function of MutS proteins during mismatch repair in which the switch determines the timing of downstream events.
Collapse
Affiliation(s)
- S Gradia
- Department of Microbiology and Immunology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | |
Collapse
|
36
|
Miyaki M, Konishi M, Tanaka K, Kikuchi-Yanoshita R, Muraoka M, Yasuno M, Igari T, Koike M, Chiba M, Mori T. Germline mutation of MSH6 as the cause of hereditary nonpolyposis colorectal cancer. Nat Genet 1997; 17:271-2. [PMID: 9354786 DOI: 10.1038/ng1197-271] [Citation(s) in RCA: 431] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
37
|
Abstract
Alterations of the human mismatch repair genes have been linked to hereditary non-polyposis colon cancer (HNPCC) as well as to sporadic cancers that exhibit microsatellite instability. The human mismatch repair genes are highly conserved homologs of the Escherichia coli MutHLS system. Six MutS homologs have been identified in Saccharomyces cerevisiae and four MutS homologs have been identified in human cells. At least three of these eukaryotic MutS homologs are involved in the recognition/binding of mispaired nucleotides and nucleotide lesions. MSH2 plays a fundamental role in mispair recognition whereas MSH3 and MSH6 appear to modify the specificity of this recognition. The redundant functions of MSH3 and MSH6 explain the greater prevalence of hmsh2 mutations in HNPCC families.
Collapse
Affiliation(s)
- R Fishel
- DNA Repair and Molecular Carcinogenesis Program, Kimmel Cancer Institute and Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.
| | | |
Collapse
|
38
|
Palombo F, Iaccarino I, Nakajima E, Ikejima M, Shimada T, Jiricny J. hMutSbeta, a heterodimer of hMSH2 and hMSH3, binds to insertion/deletion loops in DNA. Curr Biol 1996; 6:1181-4. [PMID: 8805365 DOI: 10.1016/s0960-9822(02)70685-4] [Citation(s) in RCA: 274] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In human cells, mismatch recognition is mediated by a heterodimeric complex, hMutSalpha, comprised of two members of the MutS homolog (MSH) family of proteins, hMSH2 and GTBP [1,2]. Correspondingly, tumour-derived cell lines defective in hMSH2 and GTBP have a mutator phenotype [3,4], and extracts prepared from these cells lack mismatch-binding activity [1]. However, although hMSH2 mutant cell lines showed considerable microsatellite instability in tracts of mononucleotide and dinucleotide repeats [4,5], only mononucleotide repeats were somewhat unstable in GTBP mutants [4,6]. These findings, together with data showing that extracts of cells lacking GTBP are partially proficient in the repair of two-nucleotide loops [2], suggested that loop repair can be GTBP-independent. We show here that hMSH2 can also heterodimerize with a third human MSH family member, hMSH3, and that this complex, hMutSbeta, binds loops of one to four extrahelical bases. Our data further suggest that hMSH3 and GTBP are redundant in loop repair, and help explain why only mutations in hMSH2, and not in GTBP or hMSH3, segregate with hereditary non-polyposis colorectal cancer (HNPCC) [7].
Collapse
Affiliation(s)
- F Palombo
- Istituto di Richerche di Biologia Molecolare "P. Angeletti" Via Pontina Km 30,600 I-00040 Pomezia Italy
| | | | | | | | | | | |
Collapse
|
39
|
Umar A, Kunkel TA. DNA-replication fidelity, mismatch repair and genome instability in cancer cells. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 238:297-307. [PMID: 8681938 DOI: 10.1111/j.1432-1033.1996.0297z.x] [Citation(s) in RCA: 168] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
It has been suggested that an early event in the multistep progression of a normal cell to a tumor cell could be a defect that leads to an elevated mutation rate, thus providing a pool of mutants upon which selection could act to yield a tumor. Such a mutator phenotype could result from a defect in any of several DNA transactions, including those that determine the DNA replication error rate or the ability to correct replication errors. Recent evidence for the latter is the mutator phenotype observed in tumor cells of patients having a hereditary form of colon cancer. These patients have a germline mutation in genes required for post-replication DNA mismatch repair. A second mutation arises somatically, yielding a greatly elevated mutation rate due to an inability to correct DNA replication errors. This connection between cancer, DNA replication errors and defective mismatch repair is the subject of this review, wherein we consider the key steps and principles for high fidelity replication and how their perturbation results in genome instability.
Collapse
Affiliation(s)
- A Umar
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, North Carolina 27709, USA
| | | |
Collapse
|
40
|
Iaccarino I, Palombo F, Drummond J, Totty NF, Hsuan JJ, Modrich P, Jiricny J. MSH6, a Saccharomyces cerevisiae protein that binds to mismatches as a heterodimer with MSH2. Curr Biol 1996; 6:484-6. [PMID: 8723353 DOI: 10.1016/s0960-9822(02)00516-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The process of post-replicative DNA-mismatch repair seems to be highly evolutionarily conserved. In Escherichia coli, DNA mismatches are recognized by the MutS protein. Homologues of the E. coli mutS and mutL mismatch-repair genes have been identified in other prokaryotes, as well as in yeast and mammals. Recombinant Saccharomyces cerevisiae MSH2 (MSH for MutS homologue) and human hMSH2 proteins have been shown to bind to mismatch-containing DNA in vitro. However, the physiological role of hMSH2 is unclear, as shown by the recent finding that the mismatch-binding factor hMutS alpha isolated from extracts of human cells is a heterodimer of hMSH2 and another member of the MSH family, GTBP. It has been reported that S. cerevisiae possesses a mismatch-binding activity, which most probably contains MSH2. We show here that, as in human cells, the S. cerevisiae binding factor is composed of MSH2 and a new functional MutS homologue, MSH6, identified by its homology to GTBP.
Collapse
Affiliation(s)
- I Iaccarino
- Istituto de Richerche di Biologia Molecolare P. Angeletti, Pomezia, Italy
| | | | | | | | | | | | | |
Collapse
|
41
|
Biswas I, Hsieh P. Identification and characterization of a thermostable MutS homolog from Thermus aquaticus. J Biol Chem 1996; 271:5040-8. [PMID: 8617781 DOI: 10.1074/jbc.271.9.5040] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Recognition of mispaired or unpaired bases during DNA mismatch repair is carried out by the MutS protein family. Here, we describe the isolation and characterization of a thermostable MutS homolog from Thermus aquaticus YT-1. Sequencing of the mutS gene predicts an 89.3-kDa polypeptide sharing extensive amino acid sequence homology with MutS homologs from both prokaryotes and eukaryotes. Expression of the T. aquaticus mutS gene in Escherichia coli results in a dominant mutator phenotype. Initial biochemical characterization of the thermostable MutS protein, which was purified to apparent homogeneity, reveals two thermostable activities, an ATP hydrolysis activity in which ATP is hydrolyzed to ADP and Pi and a specific DNA mismatch binding activity with affinities for heteroduplex DNAs containing either an insertion/deletion of one base or a GT mismatch. The ATPase activity exhibits a temperature optimum of approximately 80 degrees C. Heteroduplex DNA binding by the T. aquaticus MutS protein requires Mg2+ and occurs over a broad temperature range from 0 degrees C to at least 70 degrees C. The thermostable MutS protein may be useful for further biochemical and structural studies of mismatch binding and for applications involving mutation detection.
Collapse
Affiliation(s)
- I Biswas
- Genetics & Biochemistry Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-1810, USA
| | | |
Collapse
|
42
|
Abstract
Recent studies have shed light on the role of defective DNA mismatch repair in human cancer. An elevated mutation rate associated with mismatch repair deficiency has been demonstrated in the germline and normal tissue from patients with hereditary non-polyposis colorectal cancer and transgenic animals respectively. Thus mismatch repair deficiency may permit the accumulation of mutations in cancer genes that do not confer growth advantage. This represents one potential mechanism for the induction of mutational mosaicism in humans.
Collapse
Affiliation(s)
- M G Dunlop
- Department of Surgery, University of Edinburgh, UK
| |
Collapse
|
43
|
O'Regan NE, Branch P, Macpherson P, Karran P. hMSH2-independent DNA mismatch recognition by human proteins. J Biol Chem 1996; 271:1789-96. [PMID: 8576184 DOI: 10.1074/jbc.271.3.1789] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Two distinct mismatch binding activities are detected using bandshift assays with human cell extracts and DNA with mispairs at defined positions. One requires hMSH2 protein and is absent from extracts of LoVo cells, which contain a partial deletion of the hMSH2 gene. The second activity is independent of hMSH2 and is present at normal levels in LoVo and three other cell lines, which are defective in in vitro hMSH2-dependent binding. The two mismatch recognition activities are distinguished by their sensitivity to polycations and can be resolved by chromatography on MonoQ. hMSH2-independent activity has been purified extensively from wild-type cells and from a cell line deficient in hMSH2-dependent binding. The purified material preferentially recognizes A-C, some pyrimidine-pyrimidine mismatches, and certain slipped mispaired structures. Binding exhibits some sequence preferences. The similar properties of the two mismatch binding activities suggest that they both contribute to mismatch repair.
Collapse
Affiliation(s)
- N E O'Regan
- Imperial Cancer Research Fund, Clare Hall Laboratories, South Mimms, United Kingdom
| | | | | | | |
Collapse
|
44
|
Abstract
The genetic basis of cancer involves certain classes of genes, particularly oncogenes, tumor-suppressor genes, and DNA mismatch repair genes. Originally identified in bacteria and yeast, the human homologues of DNA mismatch repair genes have been implicated in the pathogenesis of the hereditary nonpolyposis colorectal cancer syndromes, as well as a variety of different sporadic cancers. An appreciation of their role in cancer is predicated on an understanding of their function in the processes of DNA repair. This article reviews the recent developments and advances in the biology of the human DNA mismatch repair genes and their involvement in the pathogenesis of cancer.
Collapse
Affiliation(s)
- D C Chung
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | | |
Collapse
|
45
|
Hentosh P, Tibudan M, Grippo P. A human factor that recognizes DNA substituted with 2-chloroadenine, an antileukemic purine analog. Mol Carcinog 1995; 13:245-53. [PMID: 7646763 DOI: 10.1002/mc.2940130407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
2-Chloro-2'-deoxyadenosine (cladribine), an analog of deoxyadenosine, is an important new drug for the treatment of hairy cell leukemia and other forms of adult and pediatric leukemia. By a gel-shift binding assay, we identified an activity in HeLa nuclear extracts that recognizes and binds to oligonucleotides substituted with 2-chloroadenine (ClAde). The activity was specific for ClAde residues because control oligomers did not readily compete out the complex. The binding factor was a monomeric protein that was resistant to inactivation by heating at 45 degrees C but sensitive to heating at 65 degrees C, proteinase K treatment, and 5 mM ZnCl2. This protein, designated ClAde recognition protein (CARP), appeared to be related to a protein that recognized other forms of DNA damage. Gel-shift binding reactions with ultraviolet (UV)-irradiated oligomers revealed a UV-specific protein/DNA complex that had an electrophoretic mobility similar to that of the CARP/DNA complex, and CARP binding to ClAde-containing oligomers was readily competed out by UV-irradiated DNA. Moreover, CARP activity was present in extracts prepared from UV-sensitive xeroderma pigmentosum group A cells but not in a subset of cells from group E, suggesting that CARP was similar to a previously described repair associated factor, xeroderma pigmentosum-E binding factor. Our findings support a possible repair process for ClAde residues incorporated into cellular DNA.
Collapse
Affiliation(s)
- P Hentosh
- Department of Pharmacology and Molecular Biology, Chicago Medical School, Illinois 60064, USA
| | | | | |
Collapse
|
46
|
de Wind N, Dekker M, Berns A, Radman M, te Riele H. Inactivation of the mouse Msh2 gene results in mismatch repair deficiency, methylation tolerance, hyperrecombination, and predisposition to cancer. Cell 1995; 82:321-30. [PMID: 7628020 DOI: 10.1016/0092-8674(95)90319-4] [Citation(s) in RCA: 596] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
To investigate the role of the presumed DNA mismatch repair (MMR) gene Msh2 in genome stability and tumorigenesis, we have generated cells and mice that are deficient for the gene. Msh2-deficient cells have lost mismatch binding and have acquired microsatellite instability, a mutator phenotype, and tolerance to methylating agents. Moreover, in these cells, homologous recombination has lost dependence on complete identity between interacting DNA sequences, suggesting that Msh2 is involved in safeguarding the genome from promiscuous recombination. Msh2-deficient mice display no major abnormalities, but a significant fraction develops lymphomas at an early age. Thus, Msh2 is involved in MMR, controlling several aspects of genome stability; loss of MMR-controlled genome stability predisposes to cancer.
Collapse
Affiliation(s)
- N de Wind
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam
| | | | | | | | | |
Collapse
|
47
|
Palombo F, Gallinari P, Iaccarino I, Lettieri T, Hughes M, D'Arrigo A, Truong O, Hsuan JJ, Jiricny J. GTBP, a 160-kilodalton protein essential for mismatch-binding activity in human cells. Science 1995; 268:1912-4. [PMID: 7604265 DOI: 10.1126/science.7604265] [Citation(s) in RCA: 378] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
DNA mismatch recognition and binding in human cells has been thought to be mediated by the hMSH2 protein. Here it is shown that the mismatch-binding factor consists of two distinct proteins, the 100-kilodalton hMSH2 and a 160-kilodalton polypeptide, GTBP (for G/T binding protein). Sequence analysis identified GTBP as a new member of the MutS homolog family. Both proteins are required for mismatch-specific binding, a result consistent with the finding that tumor-derived cell lines devoid of either protein are also devoid of mismatch-binding activity.
Collapse
Affiliation(s)
- F Palombo
- Istituto di Ricerche di Biologia Molecolare P. Angeletti, Pomezia, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Affiliation(s)
- P Karran
- Imperial Cancer Research Fund, Clare Hall Laboratories, Hertfordshire, UK
| |
Collapse
|
49
|
Drummond JT, Li GM, Longley MJ, Modrich P. Isolation of an hMSH2-p160 heterodimer that restores DNA mismatch repair to tumor cells. Science 1995; 268:1909-12. [PMID: 7604264 DOI: 10.1126/science.7604264] [Citation(s) in RCA: 434] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A mismatch-binding heterodimer of hMSH2 and a 160-kilodalton polypeptide has been isolated from HeLa cells by virtue of its ability to restore mismatch repair to nuclear extracts of hMSH2-deficient LoVo colorectal tumor cells. This heterodimer, designated hMutS alpha, also restores mismatch repair to extracts of alkylation-tolerant MT1 lymphoblastoid cells and HCT-15 colorectal tumor cells, which are selectively defective in the repair of base-base and single-nucleotide insertion-deletion mismatches. Because HOT-15 cells appear to be free of hMSH2 mutations, this selective repair defect is likely a result of a deficiency of the hMutS alpha 160-kilodalton subunit, and mutations in the corresponding gene may confer hypermutability and cancer predisposition.
Collapse
Affiliation(s)
- J T Drummond
- Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
50
|
Day RS. Site specificity of incisions at G:T and O6-methylguanine:T base mismatches in DNA by human cell-free extracts. Biochemistry 1995; 34:6869-75. [PMID: 7756318 DOI: 10.1021/bi00020a034] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Cell-free extract from human tumor cell line A1235 (lacking O6-methylguanine-DNA methyltransferase) was employed to compare incision at G:T base mispairs with that at O6-methylguanine (m6G):T pairs at two different sites (sites 20 and 25) in 45-bp heteroduplexes. To study the effect of neighboring bases on the activity(ies), the base pair immediately 5' to the mismatched G at each site was varied to provide four contexts: CpG:T, TpG:T, ApG:T, and GpG:T (and two analogous series for m6G:T pairs). At site 20, cell-free extract produced observable incision only in the 45-bp DNA with the G:T mispair in the CpG:T context, giving a product with incisions immediately 5' and 3' to the mismatched T. We observed incision of neither the strand containing the mismatched G nor the DNAs with the site 20 ApG:T, GpG:T, and TpG:T mismatches. By contrast, at site 25, incision specificity was different. All four G:T mismatched DNAs were incised, and the ApG:T-25, GpG:T-25, and TpG:T-25 DNAs were incised 1-3 bonds 3' to the mismatched T, while similar in other respects to the CpG:T-25 DNA, which showed a pattern like the CpG:T-20 DNA. CpG:T-20 specific incision activity in the extract was strongly inhibited by both CpG:T (sites 20 and 25) DNAs, but at least 10-fold more poorly by DNAs with Apg:T-25 and GpG:T-25 pairs.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|