1
|
Joutsuka T, Nanasawa R, Igarashi K, Horie K, Sugishima M, Hagiwara Y, Wada K, Fukuyama K, Yano N, Mori S, Ostermann A, Kusaka K, Unno M. Neutron crystallography and quantum chemical analysis of bilin reductase PcyA mutants reveal substrate and catalytic residue protonation states. J Biol Chem 2022; 299:102763. [PMID: 36463961 PMCID: PMC9800206 DOI: 10.1016/j.jbc.2022.102763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/16/2022] [Accepted: 11/29/2022] [Indexed: 12/04/2022] Open
Abstract
PcyA, a ferredoxin-dependent bilin pigment reductase, catalyzes the site-specific reduction of the two vinyl groups of biliverdin (BV), producing phycocyanobilin. Previous neutron crystallography detected both the neutral BV and its protonated form (BVH+) in the wildtype (WT) PcyA-BV complex, and a nearby catalytic residue Asp105 was found to have two conformations (protonated and deprotonated). Semiempirical calculations have suggested that the protonation states of BV are reflected in the absorption spectrum of the WT PcyA-BV complex. In the previously determined absorption spectra of the PcyA D105N and I86D mutants, complexed with BV, a peak at 730 nm, observed in the WT, disappeared and increased, respectively. Here, we performed neutron crystallography and quantum chemical analysis of the D105N-BV and I86D-BV complexes to determine the protonation states of BV and the surrounding residues and study the correlation between the absorption spectra and protonation states around BV. Neutron structures elucidated that BV in the D105N mutant is in a neutral state, whereas that in the I86D mutant is dominantly in a protonated state. Glu76 and His88 showed different hydrogen bonding with surrounding residues compared with WT PcyA, further explaining why D105N and I86D have much lower activities for phycocyanobilin synthesis than the WT PcyA. Our quantum mechanics/molecular mechanics calculations of the absorption spectra showed that the spectral change in D105N arises from Glu76 deprotonation, consistent with the neutron structure. Collectively, our findings reveal more mechanistic details of bilin pigment biosynthesis.
Collapse
Affiliation(s)
- Tatsuya Joutsuka
- Graduate School of Science and Engineering, Ibaraki University, Hitachi, Ibaraki, Japan,Frontier Research Center for Applied Atomic Sciences, Ibaraki University, Naka-Tokai, Ibaraki, Japan,For correspondence: Tatsuya Joutsuka; Masaki Unno
| | - Ryota Nanasawa
- Graduate School of Science and Engineering, Ibaraki University, Hitachi, Ibaraki, Japan
| | - Keisuke Igarashi
- Graduate School of Science and Engineering, Ibaraki University, Hitachi, Ibaraki, Japan
| | - Kazuki Horie
- Graduate School of Science and Engineering, Ibaraki University, Hitachi, Ibaraki, Japan
| | - Masakazu Sugishima
- Department of Medical Biochemistry, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Yoshinori Hagiwara
- Department of Biochemistry and Applied Chemistry, National Institute of Technology, Kurume College, Kurume, Fukuoka, Japan
| | - Kei Wada
- Department of Medical Sciences, University of Miyazaki, Miyazaki, Miyazaki, Japan
| | - Keiichi Fukuyama
- Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Naomine Yano
- Frontier Research Center for Applied Atomic Sciences, Ibaraki University, Naka-Tokai, Ibaraki, Japan
| | - Seiji Mori
- Graduate School of Science and Engineering, Ibaraki University, Hitachi, Ibaraki, Japan,Frontier Research Center for Applied Atomic Sciences, Ibaraki University, Naka-Tokai, Ibaraki, Japan
| | - Andreas Ostermann
- Heinz Maier-Leibnitz Zentrum (MLZ), Technical University Munich, Garching, Germany
| | - Katsuhiro Kusaka
- Frontier Research Center for Applied Atomic Sciences, Ibaraki University, Naka-Tokai, Ibaraki, Japan
| | - Masaki Unno
- Graduate School of Science and Engineering, Ibaraki University, Hitachi, Ibaraki, Japan,Frontier Research Center for Applied Atomic Sciences, Ibaraki University, Naka-Tokai, Ibaraki, Japan,For correspondence: Tatsuya Joutsuka; Masaki Unno
| |
Collapse
|
2
|
Sakai K, Kondo Y, Fujioka H, Kamiya M, Aoki K, Goto Y. Near-infrared imaging in fission yeast using a genetically encoded phycocyanobilin biosynthesis system. J Cell Sci 2021; 134:273759. [PMID: 34806750 DOI: 10.1242/jcs.259315] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/09/2021] [Indexed: 11/20/2022] Open
Abstract
Near-infrared fluorescent protein (iRFP) is a bright and stable fluorescent protein with near-infrared excitation and emission maxima. Unlike the other conventional fluorescent proteins, iRFP requires biliverdin (BV) as a chromophore. Here, we report that phycocyanobilin (PCB) functions as a brighter chromophore for iRFP than BV, and that biosynthesis of PCB allows live-cell imaging with iRFP in the fission yeast Schizosaccharomyces pombe. We initially found that fission yeast cells did not produce BV and therefore did not show any iRFP fluorescence. The brightness of iRFP-PCB was higher than that of iRFP-BV both in vitro and in fission yeast. We introduced SynPCB2.1, a PCB biosynthesis system, into fission yeast, resulting in the brightest iRFP fluorescence. To make iRFP readily available in fission yeast, we developed an endogenous gene tagging system with iRFP and all-in-one integration plasmids carrying the iRFP-fused marker proteins together with SynPCB2.1. These tools not only enable the easy use of multiplexed live-cell imaging in fission yeast with a broader color palette, but also open the door to new opportunities for near-infrared fluorescence imaging in a wider range of living organisms. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Keiichiro Sakai
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan.,Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan.,Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Yohei Kondo
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan.,Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan.,Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Hiroyoshi Fujioka
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Mako Kamiya
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kazuhiro Aoki
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan.,Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan.,Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Yuhei Goto
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan.,Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan.,Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| |
Collapse
|
3
|
Tohda R, Tanaka H, Mutoh R, Zhang X, Lee YH, Konuma T, Ikegami T, Migita CT, Kurisu G. Crystal structure of higher plant heme oxygenase-1 and its mechanism of interaction with ferredoxin. J Biol Chem 2021; 296:100217. [PMID: 33839679 PMCID: PMC7948506 DOI: 10.1074/jbc.ra120.016271] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/08/2020] [Accepted: 12/21/2020] [Indexed: 11/06/2022] Open
Abstract
Heme oxygenase (HO) converts heme to carbon monoxide, biliverdin, and free iron, products that are essential in cellular redox signaling and iron recycling. In higher plants, HO is also involved in the biosynthesis of photoreceptor pigment precursors. Despite many common enzymatic reactions, the amino acid sequence identity between plant-type and other HOs is exceptionally low (∼19.5%), and amino acids that are catalytically important in mammalian HO are not conserved in plant-type HOs. Structural characterization of plant-type HO is limited to spectroscopic characterization by electron spin resonance, and it remains unclear how the structure of plant-type HO differs from that of other HOs. Here, we have solved the crystal structure of Glycine max (soybean) HO-1 (GmHO-1) at a resolution of 1.06 Å and carried out the isothermal titration calorimetry measurements and NMR spectroscopic studies of its interaction with ferredoxin, the plant-specific electron donor. The high-resolution X-ray structure of GmHO-1 reveals several novel structural components: an additional irregularly structured region, a new water tunnel from the active site to the surface, and a hydrogen-bonding network unique to plant-type HOs. Structurally important features in other HOs, such as His ligation to the bound heme, are conserved in GmHO-1. Based on combined data from X-ray crystallography, isothermal titration calorimetry, and NMR measurements, we propose the evolutionary fine-tuning of plant-type HOs for ferredoxin dependency in order to allow adaptation to dynamic pH changes on the stroma side of the thylakoid membrane in chloroplast without losing enzymatic activity under conditions of fluctuating light.
Collapse
Affiliation(s)
- Rei Tohda
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan; Department of Macromolecular Science, Osaka University, Toyonaka, Osaka, Japan
| | - Hideaki Tanaka
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan; Department of Macromolecular Science, Osaka University, Toyonaka, Osaka, Japan
| | - Risa Mutoh
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Xuhong Zhang
- Graduate School of Medical Science, Yamagata University, Yamagata, Yamagata, Japan
| | - Young-Ho Lee
- Research Center of Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, Chungbuk, South Korea; Graduate School of Analytical Science and Technology, Chungnam National University, Yuseong-gu, Daejeon, South Korea; Research Headquarters, Korea Brain Research Institute, Dong-gu, Daegu, South Korea; Bio-Analytical Science, University of Science and Technology, Yuseong-gu, Daejeon, South Korea
| | - Tsuyoshi Konuma
- Graduate School of Medical Life Science, Yokohama City University, Tsurumi-ku, Yokohama, Japan
| | - Takahisa Ikegami
- Graduate School of Medical Life Science, Yokohama City University, Tsurumi-ku, Yokohama, Japan
| | - Catharina T Migita
- Department of Biological Chemistry, Yamaguchi University, Yoshida, Yamaguchi, Japan
| | - Genji Kurisu
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan; Department of Macromolecular Science, Osaka University, Toyonaka, Osaka, Japan.
| |
Collapse
|
4
|
Aras M, Hartmann V, Hartmann J, Nowaczyk MM, Frankenberg-Dinkel N. Proximity channeling during cyanobacterial phycoerythrobilin synthesis. FEBS J 2019; 287:284-294. [PMID: 31319014 DOI: 10.1111/febs.15003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/17/2019] [Accepted: 07/16/2019] [Indexed: 11/30/2022]
Abstract
Substrate channeling is a widespread mechanism in metabolic pathways to avoid decomposition of unstable intermediates, competing reactions, and to accelerate catalytic turnover. During the biosynthesis of light-harvesting phycobilins in cyanobacteria, two members of the ferredoxin-dependent bilin reductases are involved in the reduction of the open-chain tetrapyrrole biliverdin IXα to the pink pigment phycoerythrobilin. The first reaction is catalyzed by 15,16-dihydrobiliverdin:ferredoxin oxidoreductase and produces the unstable intermediate 15,16-dihydrobiliverdin (DHBV). This intermediate is subsequently converted by phycoerythrobilin:ferredoxin oxidoreductase to the final product phycoerythrobilin. Although substrate channeling has been postulated already a decade ago, detailed experimental evidence was missing. Using a new on-column assay employing immobilized enzyme in combination with UV-Vis and fluorescence spectroscopy revealed that both enzymes transiently interact and that transfer of the intermediate is facilitated by a significantly higher binding affinity of DHBV toward phycoerythrobilin:ferredoxin oxidoreductase. Concluding from the presented data, the intermediate DHBV is transferred via proximity channeling.
Collapse
Affiliation(s)
- Marco Aras
- Fachbereich Biologie, Abteilung für Mikrobiologie, Technische Universität Kaiserslautern, Germany
| | - Volker Hartmann
- Cyanobakterielle Membranprotein Komplexe, Fakultät für Biologie und Biotechnologie, Ruhr-Universität Bochum, Germany
| | - Jana Hartmann
- Fachbereich Biologie, Abteilung für Mikrobiologie, Technische Universität Kaiserslautern, Germany
| | - Marc M Nowaczyk
- Cyanobakterielle Membranprotein Komplexe, Fakultät für Biologie und Biotechnologie, Ruhr-Universität Bochum, Germany
| | | |
Collapse
|
5
|
Cho CH, Choi JW, Lam DW, Kim KM, Yoon HS. Plastid genome analysis of three Nemaliophycidae red algal species suggests environmental adaptation for iron limited habitats. PLoS One 2018; 13:e0196995. [PMID: 29738547 PMCID: PMC5940233 DOI: 10.1371/journal.pone.0196995] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 04/24/2018] [Indexed: 01/03/2023] Open
Abstract
The red algal subclass Nemaliophycidae includes both marine and freshwater taxa that contribute to more than half of the freshwater species in Rhodophyta. Given that these taxa inhabit diverse habitats, the Nemaliophycidae is a suitable model for studying environmental adaptation. For this purpose, we characterized plastid genomes of two freshwater species, Kumanoa americana (Batrachospermales) and Thorea hispida (Thoreales), and one marine species Palmaria palmata (Palmariales). Comparative genome analysis identified seven genes (ycf34, ycf35, ycf37, ycf46, ycf91, grx, and pbsA) that were different among marine and freshwater species. Among currently available red algal plastid genomes (127), four genes (pbsA, ycf34, ycf35, ycf37) were retained in most of the marine species. Among these, the pbsA gene, known for encoding heme oxygenase, had two additional copies (HMOX1 and HMOX2) that were newly discovered and were reported from previously red algal nuclear genomes. Each type of heme oxygenase had a different evolutionary history and special modifications (e.g., plastid targeting signal peptide). Based on this observation, we suggest that the plastid-encoded pbsA contributes to the iron controlling system in iron-deprived conditions. Thus, we highlight that this functional requirement may have prevented gene loss during the long evolutionary history of red algal plastid genomes.
Collapse
Affiliation(s)
- Chung Hyun Cho
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Ji Won Choi
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Daryl W. Lam
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama, United States of America
| | - Kyeong Mi Kim
- Marine Biodiversity Institute of Korea, Seocheon, Korea
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
- * E-mail:
| |
Collapse
|
6
|
Stiefelmaier J, Ledermann B, Sorg M, Banek A, Geib D, Ulber R, Frankenberg-Dinkel N. Pink bacteria-Production of the pink chromophore phycoerythrobilin with Escherichia coli. J Biotechnol 2018; 274:47-53. [PMID: 29549003 DOI: 10.1016/j.jbiotec.2018.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/01/2018] [Accepted: 03/11/2018] [Indexed: 11/29/2022]
Abstract
Phycoerythrobilin (PEB) is an open-chain tetrapyrrole derived from heme and plays an important role as light-harvesting pigment in the phycobiliproteins of cyanobacteria and red algae. Furthermore, PEB can also function as an antioxidant with potential use as a natural acid stable food colorant. PEB is not commercially available and large, pure quantities can only be obtained by laborious methanolysis of red algae followed by liquid chromatography. Here we describe an improved method for high yield production and purification of PEB in Escherichia coli via heterologous expression where the two required enzymes heme oxygenase and PEB synthase subsequently convert the substrate heme provided by the host cell. Experiments in shaking flasks resulted in the highest product yield of 680.23 ± 42.75 μg PEB per g cell dry weight, by induction with 0.1 mM IPTG. Scale-up to batch-operated fermentation in a 2 L bioreactor reached product concentrations up to 5.02 mg PEB L-1 by adjustment of aeration, induction time, media composition and supplementation of precursors. A further approach included separation of PEB from developed foam above the culture. This enabled continuous product collection during cultivation and simplified product purification. Produced PEB was validated via UV-vis spectroscopy, high pressure liquid chromatography and mass spectrometry.
Collapse
Affiliation(s)
- Judith Stiefelmaier
- Lehrgebiet Bioverfahrenstechnik, Technische Universität Kaiserslautern, Gottlieb-Daimler-Straße 49, 67663 Kaiserslautern, Germany.
| | - Benjamin Ledermann
- Abteilung für Mikrobiologie, Technische Universität Kaiserslautern, Erwin-Schroedinger-Straße 56, 67663 Kaiserslautern, Germany.
| | - Michael Sorg
- Lehrgebiet Bioverfahrenstechnik, Technische Universität Kaiserslautern, Gottlieb-Daimler-Straße 49, 67663 Kaiserslautern, Germany.
| | - Angela Banek
- Lehrgebiet Bioverfahrenstechnik, Technische Universität Kaiserslautern, Gottlieb-Daimler-Straße 49, 67663 Kaiserslautern, Germany; Abteilung für Mikrobiologie, Technische Universität Kaiserslautern, Erwin-Schroedinger-Straße 56, 67663 Kaiserslautern, Germany.
| | - Doris Geib
- Lehrgebiet Bioverfahrenstechnik, Technische Universität Kaiserslautern, Gottlieb-Daimler-Straße 49, 67663 Kaiserslautern, Germany.
| | - Roland Ulber
- Lehrgebiet Bioverfahrenstechnik, Technische Universität Kaiserslautern, Gottlieb-Daimler-Straße 49, 67663 Kaiserslautern, Germany.
| | - Nicole Frankenberg-Dinkel
- Abteilung für Mikrobiologie, Technische Universität Kaiserslautern, Erwin-Schroedinger-Straße 56, 67663 Kaiserslautern, Germany.
| |
Collapse
|
7
|
Yu P, Wu Y, Wang G, Jia T, Zhang Y. Purification and bioactivities of phycocyanin. Crit Rev Food Sci Nutr 2016; 57:3840-3849. [PMID: 27171656 DOI: 10.1080/10408398.2016.1167668] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Ping Yu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang Province, P.R. China
| | - Yunting Wu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang Province, P.R. China
| | - Guangwei Wang
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang Province, P.R. China
| | - Tianmei Jia
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang Province, P.R. China
| | - Yishu Zhang
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang Province, P.R. China
| |
Collapse
|
8
|
Hogle SL, Barbeau KA, Gledhill M. Heme in the marine environment: from cells to the iron cycle. Metallomics 2015; 6:1107-20. [PMID: 24811388 DOI: 10.1039/c4mt00031e] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Hemes are iron containing heterocyclic molecules important in many cellular processes. In the marine environment, hemes participate as enzymatic cofactors in biogeochemically significant processes like photosynthesis, respiration, and nitrate assimilation. Further, hemoproteins, hemes, and their analogs appear to be iron sources for some marine bacterioplankton under certain conditions. Current oceanographic analytical methodologies allow for the extraction and measurement of heme b from marine material, and a handful of studies have begun to examine the distribution of heme b in ocean basins. The study of heme in the marine environment is still in its infancy, but some trends can be gleaned from the work that has been published so far. In this review, we summarize what is known or might be inferred about the roles of heme in marine microbes as well as the few studies on heme in the marine environment that have been conducted to date. We conclude by presenting some future questions and challenges for the field.
Collapse
Affiliation(s)
- Shane L Hogle
- Geoscience Research Division, Scripps Institution of Oceanography, La Jolla, California, USA.
| | | | | |
Collapse
|
9
|
Heme-iron utilization by Leptospira interrogans requires a heme oxygenase and a plastidic-type ferredoxin-NADP+ reductase. Biochim Biophys Acta Gen Subj 2014; 1840:3208-17. [PMID: 25092651 DOI: 10.1016/j.bbagen.2014.07.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 07/04/2014] [Accepted: 07/28/2014] [Indexed: 11/24/2022]
|
10
|
Kronfel CM, Kuzin AP, Forouhar F, Biswas A, Su M, Lew S, Seetharaman J, Xiao R, Everett JK, Ma LC, Acton TB, Montelione GT, Hunt JF, Paul CEC, Dragomani TM, Boutaghou MN, Cole RB, Riml C, Alvey RM, Bryant DA, Schluchter WM. Structural and biochemical characterization of the bilin lyase CpcS from Thermosynechococcus elongatus. Biochemistry 2013; 52:8663-76. [PMID: 24215428 DOI: 10.1021/bi401192z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cyanobacterial phycobiliproteins have evolved to capture light energy over most of the visible spectrum due to their bilin chromophores, which are linear tetrapyrroles that have been covalently attached by enzymes called bilin lyases. We report here the crystal structure of a bilin lyase of the CpcS family from Thermosynechococcus elongatus (TeCpcS-III). TeCpcS-III is a 10-stranded β barrel with two alpha helices and belongs to the lipocalin structural family. TeCpcS-III catalyzes both cognate as well as noncognate bilin attachment to a variety of phycobiliprotein subunits. TeCpcS-III ligates phycocyanobilin, phycoerythrobilin, and phytochromobilin to the alpha and beta subunits of allophycocyanin and to the beta subunit of phycocyanin at the Cys82-equivalent position in all cases. The active form of TeCpcS-III is a dimer, which is consistent with the structure observed in the crystal. With the use of the UnaG protein and its association with bilirubin as a guide, a model for the association between the native substrate, phycocyanobilin, and TeCpcS was produced.
Collapse
Affiliation(s)
- Christina M Kronfel
- Department of Biological Sciences, University of New Orleans , New Orleans, LA 70148, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Gisk B, Brégier F, Krüger RA, Bröring M, Frankenberg-Dinkel N. Enzymatic Ring Opening of an Iron Corrole by Plant-Type Heme Oxygenases: Unexpected Substrate and Protein Selectivities. Biochemistry 2010; 49:10042-4. [DOI: 10.1021/bi1014369] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Björn Gisk
- Physiology of Microorganisms, Ruhr-University Bochum, 44780 Bochum, Germany
| | | | - Robin A. Krüger
- Fachbereich Chemie, Philipps-University Marburg, 35032 Marburg, Germany
| | - Martin Bröring
- Fachbereich Chemie, Philipps-University Marburg, 35032 Marburg, Germany
| | | |
Collapse
|
12
|
Shekhawat GS, Verma K. Haem oxygenase (HO): an overlooked enzyme of plant metabolism and defence. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:2255-70. [PMID: 20378668 DOI: 10.1093/jxb/erq074] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Haem oxygenase (HO) degrades free haem released from haem proteins with the generation of ferrous iron (Fe2+), biliverdin-IXalpha (BV-IXalpha), and carbon monoxide (CO). The mechanism of haem cleavage has been conserved between plants and other organisms even though the function, subcellular localization, and cofactor requirements of HO differ substantially. The crystal structure of HO1, a monomeric protein, has been extensively reported in mammals, pathogenic bacteria, and cyanobacteria, but no such reports are available for higher plant HOs except a predicted model for pea HO1. Along with haem degradation, HO performs various cellular processes including iron acquisition/mobilization, phytochrome chromophore synthesis, cell protection, and stomatal regulation. To date, four HO genes (HO1, HO2, HO3, and HO4) have been reported in plants. HO1 has been well explored in cell metabolism; however, the divergent roles of the other three HOs is less known. The transcriptional up-regulation of HO1 in plants responds to many agents, such as light, UV, iron deprivation, reactive oxygen species (ROS), abscisic acid (ABA), and haematin. Recently the HO1/CO system has gained more attention due to its physiological cytoprotective role in plants. This review focuses on the recent advances made in plant HO research involving its role in environmental stresses. Moreover, the review emphasizes physiological, biochemical, and molecular aspects of this enzyme in plants.
Collapse
Affiliation(s)
- G S Shekhawat
- Department of Bioscience and Biotechnology, Banasthali University, Banasthali-304022, Rajasthan, India.
| | | |
Collapse
|
13
|
Characterization of the haem oxygenase protein family in Arabidopsis thaliana reveals a diversity of functions. Biochem J 2010; 425:425-34. [PMID: 19860740 DOI: 10.1042/bj20090775] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Revised: 10/26/2009] [Accepted: 10/27/2009] [Indexed: 01/12/2023]
Abstract
HOs (haem oxygenases) catalyse the oxidative cleavage of haem to BV (biliverdin), iron and carbon monoxide. In plants, the product of the reaction is BV IXalpha, the precursor of the PHY (phytochrome) chromophore and is thus essential for proper photomorphogenesis. Arabidopsis thaliana contains one major biochemically characterized HO (HY1) and three additional putative HOs (HO2, HO3 and HO4). All four proteins are encoded in the nucleus but contain chloroplast translocation sequences at their N-termini. The transit peptides of all four proteins are sufficient for chloroplast translocalization as shown by GFP (green fluorescent protein) reporter gene fusions. Overall, all four proteins can be divided into two subfamilies: HO1 and HO2. Here we show that all members of the HO1 subfamily (HY1, HO3 and HO4) are active monomeric HOs and can convert haem to BV IXalpha using spinach Fd (ferredoxin) as an electron donor. Addition of a second electron donor, such as ascorbate, led to a 10-fold increase in the haem conversion rate. Furthermore, haem turnover is also promoted by light when spinach thylakoids are present. All HO1 family members displayed similar kinetic parameters indicating they all have a possible involvement in PHY chromophore biosynthesis. HO2 did not yield sufficient amounts of soluble protein and therefore required the construction of a synthetic gene adapted to the codon usage of Escherichia coli. HO2 is unable to bind or degrade haem and therefore it is not a haem oxygenase. However, HO2 shows strong binding of proto IX (protoporphyrin IX), a precursor for both haem and chlorophyll biosynthesis. A possible function of HO2 in the regulation of tetrapyrrole metabolism is discussed.
Collapse
|
14
|
Okada K. HO1 and PcyA proteins involved in phycobilin biosynthesis form a 1:2 complex with ferredoxin-1 required for photosynthesis. FEBS Lett 2009; 583:1251-6. [DOI: 10.1016/j.febslet.2009.03.052] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2009] [Revised: 03/18/2009] [Accepted: 03/23/2009] [Indexed: 10/21/2022]
|
15
|
Okada K. The novel heme oxygenase-like protein fromPlasmodiumfalciparumconverts heme to bilirubin IXα in the apicoplast. FEBS Lett 2008; 583:313-9. [DOI: 10.1016/j.febslet.2008.12.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Revised: 12/02/2008] [Accepted: 12/05/2008] [Indexed: 11/24/2022]
|
16
|
Beale SI. Biosynthesis of open-chain tetrapyrroles in plants, algae, and cyanobacteria. CIBA FOUNDATION SYMPOSIUM 2007; 180:156-68; discussion 168-71. [PMID: 7842851 DOI: 10.1002/9780470514535.ch9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Phycobilins are open-chain tetrapyrroles of plants and algae which act as the chromophores of phycobiliproteins where they function as light energy-harvesting pigments. Phytochromobilin, another open-chain tetrapyrrole, is the chromophore of phytochrome, which functions as a light-sensing pigment in plant development. These open-chain tetrapyrroles are biosynthetically derived from protohaem. Enzyme reactions that convert protohaem to biliverdin IX alpha, and biliverdin IX alpha to phycocyanobilin, have been detected and characterized in extracts of the unicellular rhodophyte Cyanidium caldarium. Algal haem oxygenase and algal biliverdin-IX alpha reductase are both soluble enzymes that use electrons derived from reduced ferredoxin. Biochemical intermediates in the conversion of biliverdin IX alpha to (3E)-phycocyanobilin were identified as 15, 16-dihydrobiliverdin IX alpha, (3Z)-phycoerythrobilin and (3Z)-phycocyanobilin. Separate enzymes catalyse the two two-electron reduction steps in the conversion of biliverdin IX alpha to (3Z)-phycoerythrobilin. Z-to-E isomerization of the phycobilin ethylidine group is catalysed by an enzyme that requires glutathione for activity. Protein-bound phycoerythrobilin can be chemically converted to phytochromobilin which can then be released from the protein by methanolysis. This procedure was used to produce phytochromobilin in quantities sufficient to allow its chemical characterization and use in phytochrome reconstitution experiments. The results indicate that (2R,3E)-phytochromobilin spontaneously condenses with recombinant oat apophytochrome to form photoreversible holoprotein that is spectrally identical to native phytochrome.
Collapse
Affiliation(s)
- S I Beale
- Division of Biology and Medicine, Brown University, Providence, RI 02912
| |
Collapse
|
17
|
Zhang X, Migita CT, Sato M, Sasahara M, Yoshida T. Protein expressed by the ho2 gene of the cyanobacterium Synechocystis sp. PCC 6803 is a true heme oxygenase. Properties of the heme and enzyme complex. FEBS J 2005; 272:1012-22. [PMID: 15691334 DOI: 10.1111/j.1742-4658.2004.04535.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Two isoforms of a heme oxygenase gene, ho1 and ho2, with 51% identity in amino acid sequence have been identified in the cyanobacterium Synechocystis sp. PCC 6803. Isoform-1, Syn HO-1, has been characterized, while isoform-2, Syn HO-2, has not. In this study, a full-length ho2 gene was cloned using synthetic DNA and Syn HO-2 was demonstrated to be highly expressed in Escherichia coli as a soluble, catalytically active protein. Like Syn HO-1, the purified Syn HO-2 bound hemin stoichiometrically to form a heme-enzyme complex and degraded heme to biliverdin IXalpha, CO and iron in the presence of reducing systems such as NADPH/ferredoxin reductase/ferredoxin and sodium ascorbate. The activity of Syn HO-2 was found to be comparable to that of Syn HO-1 by measuring the amount of bilirubin formed. In the reaction with hydrogen peroxide, Syn HO-2 converted heme to verdoheme. This shows that during the conversion of hemin to alpha-meso-hydroxyhemin, hydroperoxo species is the activated oxygen species as in other heme oxygenase reactions. The absorption spectrum of the hemin-Syn HO-2 complex at neutral pH showed a Soret band at 412 nm and two peaks at 540 nm and 575 nm, features observed in the hemin-Syn HO-1 complex at alkaline pH, suggesting that the major species of iron(III) heme iron at neutral pH is a hexa-coordinate low spin species. Electron paramagnetic resonance (EPR) revealed that the iron(III) complex was in dynamic equilibrium between low spin and high spin states, which might be caused by the hydrogen bonding interaction between the distal water ligand and distal helix components. These observations suggest that the structure of the heme pocket of the Syn HO-2 is different from that of Syn HO-1.
Collapse
Affiliation(s)
- Xuhong Zhang
- Department of Biochemistry, Yamagata University School of Medicine, Japan
| | | | | | | | | |
Collapse
|
18
|
Sugishima M, Migita CT, Zhang X, Yoshida T, Fukuyama K. Crystal structure of heme oxygenase-1 from cyanobacterium Synechocystis sp. PCC 6803 in complex with heme. ACTA ACUST UNITED AC 2005; 271:4517-25. [PMID: 15560792 DOI: 10.1111/j.1432-1033.2004.04411.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Heme oxygenase (HO) catalyzes the oxidative degradation of heme utilizing molecular oxygen and reducing equivalents. In photosynthetic organisms, HO functions in the biosynthesis of such open-chain tetrapyrroles as phyto-chromobilin and phycobilins, which are involved in the signal transduction for light responses and light harvesting for photosynthesis, respectively. We have determined the first crystal structure of a HO-1 from a photosynthetic organism, Synechocystis sp. PCC 6803 (Syn HO-1), in complex with heme at 2.5 A resolution. Heme-Syn HO-1 shares a common folding with other heme-HOs. Although the heme pocket of heme-Syn HO-1 is, for the most part, similar to that of mammalian HO-1, they differ in such features as the flexibility of the distal helix and hydrophobicity. In addition, 2-propanol derived from the crystallization solution occupied the hydrophobic cavity, which is proposed to be a CO trapping site in rat HO-1 that suppresses product inhibition. Although Syn HO-1 and mammalian HO-1 are similar in overall structure and amino acid sequence (57% similarity vs. human HO-1), their molecular surfaces differ in charge distribution. The surfaces of the heme binding sides are both positively charged, but this patch of Syn HO-1 is narrow compared to that of mammalian HO-1. This feature is suited to the selective binding of ferredoxin, the physiological redox partner of Syn HO-1; the molecular size of ferredoxin is approximately 10 kDa whereas the size of NADPH-cytochrome P450 reductase, a reducing partner of mammalian HO-1, is approximately 77 kDa. A docking model of heme-Syn HO-1 and ferredoxin suggests indirect electron transfer from an iron-sulfur cluster in ferredoxin to the heme iron of heme-Syn HO-1.
Collapse
Affiliation(s)
- Masakazu Sugishima
- Department of Biology, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | | | | | | | | |
Collapse
|
19
|
Migita CT, Zhang X, Yoshida T. Expression and characterization of cyanobacterium heme oxygenase, a key enzyme in the phycobilin synthesis. Properties of the heme complex of recombinant active enzyme. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:687-98. [PMID: 12581208 DOI: 10.1046/j.1432-1033.2003.03421.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
An efficient bacterial expression system of cyanobacterium Synechocystis sp. PCC 6803 heme oxygenase gene, ho-1, has been constructed, using a synthetic gene. A soluble protein was expressed at high levels and was highly purified, for the first time. The protein binds equimolar free hemin to catabolize the bound hemin to ferric-biliverdin IX alpha in the presence of oxygen and reducing equivalents, showing the heme oxygenase activity. During the reaction, verdoheme intermediate is formed with the evolution of carbon monoxide. Though both ascorbate and NADPH-cytochrome P450 reductase serve as an electron donor, the heme catabolism assisted by ascorbate is considerably slow and the reaction with NADPH-cytochrome P450 reductase is greatly retarded after the oxy-heme complex formation. The optical absorption spectra of the heme-enzyme complexes are similar to those of the known heme oxygenase complexes but have some distinct features, exhibiting the Soret band slightly blue-shifted and relatively strong CT bands of the high-spin component in the ferric form spectrum. The heme-enzyme complex shows the acid-base transition, where two alkaline species are generated. EPR of the nitrosyl heme complex has established the nitrogenous proximal ligand, presumably histidine 17 and the obtained EPR parameters are discriminated from those of the rat heme oxygenase-1 complex. The spectroscopic characters as well as the catabolic activities strongly suggest that, in spite of very high conservation of the primary structure, the heme pocket structure of Synechocystis heme oxygenase isoform-1 is different from that of rat heme oxygenase isoform-1, rather resembling that of bacterial heme oxygenase, H mu O.
Collapse
Affiliation(s)
- Catharina T Migita
- Department of Biological Chemistry, Faculty of Agriculture, Yoshida, Yamaguchi University, Japan.
| | | | | |
Collapse
|
20
|
Muramoto T, Tsurui N, Terry MJ, Yokota A, Kohchi T. Expression and biochemical properties of a ferredoxin-dependent heme oxygenase required for phytochrome chromophore synthesis. PLANT PHYSIOLOGY 2002; 130:1958-66. [PMID: 12481078 PMCID: PMC166706 DOI: 10.1104/pp.008128] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2002] [Revised: 06/18/2002] [Accepted: 08/29/2002] [Indexed: 05/19/2023]
Abstract
The HY1 gene of Arabidopsis encodes a plastid heme oxygenase (AtHO1) required for the synthesis of the chromophore of the phytochrome family of plant photoreceptors. To determine the enzymatic properties of plant heme oxygenases, we have expressed the HY1 gene (without the plastid transit peptide) in Escherichia coli to produce an amino terminal fusion protein between AtHO1 and glutathione S-transferase. The fusion protein was soluble and expressed at high levels. Purified recombinant AtHO1, after glutathione S-transferase cleavage, is a hemoprotein that forms a 1:1 complex with heme. In the presence of reduced ferredoxin, AtHO1 catalyzed the formation of biliverdin IXalpha from heme with the concomitant production of carbon monoxide. Heme oxygenase activity could also be reconstituted using photoreduced ferredoxin generated through light irradiation of isolated thylakoid membranes, suggesting that ferredoxin may be the electron donor in vivo. In addition, AtHO1 required an iron chelator and second reductant, such as ascorbate, for full activity. These results show that the basic mechanism of heme cleavage has been conserved between plants and other organisms even though the function, subcellular localization, and cofactor requirements of heme oxygenases differ substantially.
Collapse
Affiliation(s)
- Takuya Muramoto
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan
| | | | | | | | | |
Collapse
|
21
|
McDowell MT, Lagarias JC. Purification and biochemical properties of phytochromobilin synthase from etiolated oat seedlings. PLANT PHYSIOLOGY 2001; 126:1546-1554. [PMID: 11500553 PMCID: PMC117154 DOI: 10.1104/pp.126.4.1546] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2000] [Revised: 03/08/2001] [Accepted: 04/25/2001] [Indexed: 05/23/2023]
Abstract
Plant phytochromes are dependent on the covalent attachment of the linear tetrapyrrole chromophore phytochromobilin (P Phi B) for photoactivity. In planta, biliverdin IX alpha (BV) is reduced by the plastid-localized, ferredoxin (Fd)-dependent enzyme P Phi B synthase to yield 3Z-P Phi B. Here, we describe the >50,000-fold purification of P Phi B synthase from etioplasts from dark-grown oat (Avena sativa L. cv Garry) seedlings using traditional column chromatography and preparative electrophoresis. Thus, P Phi B synthase is a very low abundance enzyme with a robust turnover rate. We estimate the turnover rate to be >100 s(-1), which is similar to that of mammalian NAD(P)H-dependent BV reductase. Oat P Phi B synthase is a monomer with a subunit mass of 29 kD. However, two distinct charged forms of the enzymes were identified by native isoelectric focusing. The ability of P Phi B synthase to reduce BV is dependent on reduced 2Fe-2S Fds. A K(m) for spinach (Spinacea oleracea) Fd was determined to be 3 to 4 microM. P Phi B synthase has a high affinity for its bilin substrate, with a sub-micromolar K(m) for BV.
Collapse
Affiliation(s)
- M T McDowell
- Section of Molecular and Cellular Biology, University of California, One Shields Avenue, Davis, California 95616, USA
| | | |
Collapse
|
22
|
Tucker DL, Hirsh K, Li H, Boardman B, Sherman LA. The manganese stabilizing protein (MSP) and the control of O2 evolution in the unicellular, diazotrophic cyanobacterium, Cyanothece sp. ATCC 51142. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1504:409-22. [PMID: 11245804 DOI: 10.1016/s0005-2728(00)00271-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The unicellular diazotrophic cyanobacterium, Cyanothece sp. ATCC 51142 temporally separates N2 fixation from photosynthesis. To better understand the processes by which photosynthesis is regulated, we have analyzed Photosystem (PS) II O2 evolution and the PSII lumenal proteins, especially the Mn stabilizing protein (MSP). We describe a procedure using glycine betaine to isolate photosynthetic membranes from Cyanothece sp. that have high rates of PSI and PSII activity. Analysis with these membranes demonstrated similar patterns of O2 evolution in vivo and in vitro, with a trough at the time of maximal N2 fixation and with a peak in the late light period. The pattern of PSI activity was also similar in vivo and in vitro. We cloned the genes for MSP (psbO) and the 12 kDa protein (psbU) and analyzed their transcriptional properties throughout the diurnal cycle. We suggest that the changes in PSII activity in Cyanothece sp. were due to conformational changes in a highly flexible MSP, a suggestion which can now be studied in a chimera. The Cyanothece sp. psbO gene has been transformed into Synechocystis sp. PCC 6803; MSP and O2 evolution in the resulting transformant had properties that were similar to those in Cyanothece sp., providing additional confirmation for the properties of Cyanothece sp. MSP.
Collapse
Affiliation(s)
- D L Tucker
- Department of Biological Sciences, 1392 Lilly Hall of Life Sciences, Purdue University, 47907, West Lafayette, IN, USA
| | | | | | | | | |
Collapse
|
23
|
Metzler DE, Metzler CM, Sauke DJ. Light and Life. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50026-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
24
|
Zhao KH, Deng MG, Zheng M, Zhou M, Parbel A, Storf M, Meyer M, Strohmann B, Scheer H. Novel activity of a phycobiliprotein lyase: both the attachment of phycocyanobilin and the isomerization to phycoviolobilin are catalyzed by the proteins PecE and PecF encoded by the phycoerythrocyanin operon. FEBS Lett 2000; 469:9-13. [PMID: 10708746 DOI: 10.1016/s0014-5793(00)01245-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The structure of phycoviolobilin, the photoactive chromophore of alpha-phycoerythrocyanin, is incompatible with a chromophore ligation to the apoprotein via SH-addition (cysteine) to a Delta3, 3(1)-double bond of the phycobilin. The two putative phycoerythrocyanin lyase genes of Mastigocladus laminosus, pecE and pecF, were overexpressed in Escherichia coli. Their action has been studied on the addition reaction of phycocyanobilin to apo-alpha-phycoerythrocyanin (PecA). In the absence of the components of alpha-PEC-phycoviolobilin lyase PecE and PecF, or in the presence of only one of them, phycocyanobilin binds covalently to PecA forming a fluorescent chromoprotein with a red-shifted absorption (lambda(max)=641 nm) and low photoactivity (<10%). In the presence of both PecE and PecF, a chromoprotein forms which by its absorption (lambda(max)=565 nm) and high photoreversible photochromism (100% type I) has been identified as integral alpha-phycoerythrocyanin. We conclude that PecE and PecF jointly catalyze not only the addition of phycocyanobilin to PecA, but also its isomerization to the native phycoviolobilin chromophore.
Collapse
Affiliation(s)
- K H Zhao
- College of Life Sciences, Wuhan University, Wuhan, PR China.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Cornejo J, Willows RD, Beale SI. Phytobilin biosynthesis: cloning and expression of a gene encoding soluble ferredoxin-dependent heme oxygenase from Synechocystis sp. PCC 6803. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1998; 15:99-107. [PMID: 9744099 DOI: 10.1046/j.1365-313x.1998.00186.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The phytobilin chromophores of phycobiliproteins and phytochromes are biosynthesized from heme in a pathway that begins with the opening of the tetrapyrrole macrocycle of protoheme to form biliverdin IX alpha, in a reaction catalyzed by heme oxygenase. A gene containing an open reading frame with a predicted polypeptide that has a sequence similar to that of a conserved region of animal microsomal heme oxygenases was identified in the published genomic sequence of Synechocystis sp. PCC 6803. This gene, named ho1, was cloned and expressed in Escherichia coli under the control of the lacZ promoter. Cells expressing the gene became green colored due to the accumulation of biliverdin IX alpha. The size of the expressed protein was equal to the predicted size of the Synechocystis gene product, named HO1. Heme oxygenase activity was assayed in incubations containing extract of transformed E. coli cells. Incubations containing extract of induced cells, but not those containing extract of uninduced cells, had ferredoxin-dependent heme oxygenase activity. With mesoheme as the substrate, the reaction product was identified as mesobiliverdin IX alpha by spectrophotometry and reverse-phase HPLC. Heme oxygenase activity was not sedimented by centrifugation at 100, 000 g. Expression of HO1 increased several-fold during incubation of the cells for 72 h in iron-deficient medium.
Collapse
Affiliation(s)
- J Cornejo
- Division of Biology and Medicine, Brown University, Providence, Rhode Island 02912, USA
| | | | | |
Collapse
|
26
|
Wu SH, McDowell MT, Lagarias JC. Phycocyanobilin is the natural precursor of the phytochrome chromophore in the green alga Mesotaenium caldariorum. J Biol Chem 1997; 272:25700-5. [PMID: 9325294 DOI: 10.1074/jbc.272.41.25700] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Compared with phytochromes isolated from etiolated higher plant tissues and a number of lower plant species, the absorption spectrum of phytochrome isolated from the unicellular green alga Mesotaenium caldariorum is blue-shifted (Kidd, D. G., and Lagarias, J. C. (1990) J. Biol. Chem. 265, 7029-7035). The present studies were undertaken to determine whether this blue shift is due to a chromophore other than phytochromobilin or reflects a different protein environment for the phytochromobilin prosthetic group. Using reversed phase high performance liquid chromatography, we show that soluble protein extracts prepared from algal chloroplasts contain the enzyme activities for ferredoxin-dependent conversions of biliverdin IXalpha to (3Z)-phytochromobilin and (3Z)-phytochromobilin to (3Z)-phycocyanobilin. In vitro assembly of recombinant algal apophytochrome was undertaken with (3E)-phytochromobilin and (3E)-phycocyanobilin. The difference spectrum of the (3E)-phycocyanobilin adduct was indistinguishable from that of phytochrome isolated from dark-adapted algal cells, while the (3E)-phytochromobilin adduct displayed red-shifted absorption maxima relative to purified algal phytochrome. These studies indicate that phycocyanobilin is the immediate precursor of the green algal phytochrome chromophore and that phytochromobilin is an intermediate in its biosynthesis in Mesotaenium.
Collapse
Affiliation(s)
- S H Wu
- Section of Molecular and Cellular Biology, University of California, Davis, California 95616, USA
| | | | | |
Collapse
|
27
|
Schluchter WM, Glazer AN. Characterization of cyanobacterial biliverdin reductase. Conversion of biliverdin to bilirubin is important for normal phycobiliprotein biosynthesis. J Biol Chem 1997; 272:13562-9. [PMID: 9153203 DOI: 10.1074/jbc.272.21.13562] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The Synechocystis sp. PCC 6803 gene (bvdR) encoding biliverdin reductase was amplified by the polymerase chain reaction, cloned, and overexpressed in Escherichia coli as the native form and as a 6-histidine-tagged amino-terminal fusion. The latter form of the enzyme was purified by affinity chromatography and shown to have the appropriate molecular weight by electrospray mass spectrometry. Both forms of the enzyme reduced biliverdin IXalpha using NADPH or NADH, with NADPH as the preferred reductant. The His-tagged enzyme has a Km for biliverdin of 1.3 microM. The pH optimum for the NADPH-dependent activity is 5.8, whereas that for rat biliverdin reductase is at pH 8.7. Absorbance spectra and high performance liquid chromatography retention times of the reaction product reaction match those of authentic bilirubin, the product of the reduction of biliverdin by the mammalian enzymes. These results provide the first evidence for the formation of bilirubin in bacteria. Fully segregated Synechocystis sp. PCC 6803 bvdR interposon mutants produce approximately 85% of the normal amount of phycobilisome cores containing allophycocyanin and other phycocyanobilin-bearing core polypeptides, but no detectable phycocyanin. Thus, surprisingly, the blockage of the conversion of biliverdin to bilirubin interferes with normal phycobiliprotein biosynthesis in cyanobacteria. Possible interpretations of this finding are presented.
Collapse
Affiliation(s)
- W M Schluchter
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3206, USA
| | | |
Collapse
|
28
|
Gindt YM, Zhou J, Bryant DA, Sauer K. Spectroscopic studies of phycobilisome subcore preparations lacking key core chromophores: assignment of excited state energies to the Lcm, beta 18 and alpha AP-B chromophores. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1186:153-62. [PMID: 8043589 DOI: 10.1016/0005-2728(94)90174-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Chromophore absorption and emission characteristics of the alpha AP-B, beta 18 and Lcm (large core-membrane linker) chromopeptides within the phycobilisome core are investigated using genetically engineered strains of Synechococcus sp. PCC 7002. Steady-state and time-resolved emission were used to examine energy transfer in subcore preparations from the wild-type organism and two mutants. Low-temperature (77 K) emission spectra were also measured for intact phycobilisomes from the wild-type and five mutant strains. Mutants retaining either the alpha AP-B subunit or the unaltered Lcm chromophore resulted in only small changes in the low-temperature emission spectra, while retention of only the beta 18 subunit resulted in blue-shifted emission spectra. The Lcm chromophore has a room-temperature absorption maximum at 675 nm. In phycobilisomes at 77 K the alpha AP-B and Lcm chromophores emit at 682-683 nm, and they are the best candidates for long-wavelength emitters also at room temperature. Overlap of these emission spectra with the absorption of chlorophyll a in the associated thylakoid membrane plays a significant role in excitation transfer from the antenna complexes in cyanobacteria.
Collapse
Affiliation(s)
- Y M Gindt
- Lawrence Berkeley Laboratory, University of California, Berkeley 94720
| | | | | | | |
Collapse
|
29
|
Rhie G, Beale S. Regulation of heme oxygenase activity in Cyanidium caldarium by light, glucose, and phycobilin precursors. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)36926-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|