1
|
Alva R, Wiebe JE, Stuart JA. Altered hypoxia- and redox-related transcriptional signatures in mitochondrial-DNA-depleted PC-3 cells. Biochem Biophys Res Commun 2025; 742:151108. [PMID: 39632288 DOI: 10.1016/j.bbrc.2024.151108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/16/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
Rho 0 (ρ0) cells are widely used as a tool to investigate how the absence of respiring mitochondria affects a variety of physiological and pathological processes. Prominently, ρ0 cells have been used to study the role of mitochondrial reactive oxygen species (ROS) production and/or mitochondrial respiration in the stabilization of the hypoxia-inducible factor (HIF) in hypoxia. In this study, we cultured ρ0 and WT PC-3 cells in 5% O2 (physioxia) and Plasmax medium for 2 weeks prior to transcriptomic and functional analyses. RNA-seq showed that ρ0 PC-3 cells exhibit impaired induction of HIF-regulated genes when exposed to hypoxia, compared to wild-type (WT) cells. Surprisingly, when comparing the transcriptomes of ρ0 and WT cells in physioxia (5% O2), we found a strong presence of HIF-related gene signatures in ρ0 cells compared to WT. Among the HIF targets found to be upregulated in ρ0 cells are CA9, EGLN3, EPAS1, HK2, ENO2, and SLC2A1. Moreover, several Nrf2 targets were upregulated in ρ0 cells, including NQO1, HMOX1, GPX2, and SLC7A11, which is in line with ρ0 cells showing a significantly higher H2O2 efflux rate than WT cells. Given the alterations in HIF-dependent and Nrf2-dependent gene expression and basal ROS production observed in ρ0 PC-3 cells, we conclude that caution should be taken when interpreting the results from experiments that focus on ROS production and HIF signaling using ρ0 cells as a model.
Collapse
Affiliation(s)
- Ricardo Alva
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada.
| | - Jacob E Wiebe
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Jeffrey A Stuart
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada.
| |
Collapse
|
2
|
Wang Y, Lilienfeldt N, Hekimi S. Understanding coenzyme Q. Physiol Rev 2024; 104:1533-1610. [PMID: 38722242 PMCID: PMC11495197 DOI: 10.1152/physrev.00040.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/08/2024] [Accepted: 05/01/2024] [Indexed: 08/11/2024] Open
Abstract
Coenzyme Q (CoQ), also known as ubiquinone, comprises a benzoquinone head group and a long isoprenoid side chain. It is thus extremely hydrophobic and resides in membranes. It is best known for its complex function as an electron transporter in the mitochondrial electron transport chain (ETC) but is also required for several other crucial cellular processes. In fact, CoQ appears to be central to the entire redox balance of the cell. Remarkably, its structure and therefore its properties have not changed from bacteria to vertebrates. In metazoans, it is synthesized in all cells and is found in most, and maybe all, biological membranes. CoQ is also known as a nutritional supplement, mostly because of its involvement with antioxidant defenses. However, whether there is any health benefit from oral consumption of CoQ is not well established. Here we review the function of CoQ as a redox-active molecule in the ETC and other enzymatic systems, its role as a prooxidant in reactive oxygen species generation, and its separate involvement in antioxidant mechanisms. We also review CoQ biosynthesis, which is particularly complex because of its extreme hydrophobicity, as well as the biological consequences of primary and secondary CoQ deficiency, including in human patients. Primary CoQ deficiency is a rare inborn condition due to mutation in CoQ biosynthetic genes. Secondary CoQ deficiency is much more common, as it accompanies a variety of pathological conditions, including mitochondrial disorders as well as aging. In this context, we discuss the importance, but also the great difficulty, of alleviating CoQ deficiency by CoQ supplementation.
Collapse
Affiliation(s)
- Ying Wang
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Noah Lilienfeldt
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Siegfried Hekimi
- Department of Biology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
3
|
Asadipour K, Hani MB, Potter L, Ruedlinger BL, Lai N, Beebe SJ. Nanosecond Pulsed Electric Fields (nsPEFs) Modulate Electron Transport in the Plasma Membrane and the Mitochondria. Bioelectrochemistry 2024; 155:108568. [PMID: 37738861 DOI: 10.1016/j.bioelechem.2023.108568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 09/24/2023]
Abstract
Nanosecond pulsed electric fields (nsPEFs) are a pulsed power technology known for ablating tumors, but they also modulate diverse biological mechanisms. Here we show that nsPEFs regulate trans-plasma membrane electron transport (tPMET) rates in the plasma membrane redox system (PMRS) shown as a reduction of the cell-impermeable, WST-8 tetrazolium dye. At lower charging conditions, nsPEFs enhance, and at higher charging conditions inhibit tPMET in H9c2 non-cancerous cardiac myoblasts and 4T1-luc breast cancer cells. This biphasic nsPEF-induced modulation of tPMET is typical of a hormetic stimulus that is beneficial and stress-adaptive at lower levels and damaging at higher levels. NsPEFs also attenuated mitochondrial electron transport system (ETS) activity (O2 consumption) at Complex I when coupled and uncoupled to oxidative phosphorylation. NsPEFs generated more reactive oxygen species (ROS) in mitochondria (mROS) than in the cytosol (cROS) in non-cancer H9c2 heart cells but more cROS than mROS in 4T1-luc cancer cells. Under lower charging conditions, nsPEFs support glycolysis while under higher charging conditions, nsPEFs inhibit electron transport in the PMRS and the mitochondrial ETS producing ROS, ultimately causing cell death. The impact of nsPEF on ETS presents a new paradigm for considering nsPEF modulation of redox functions, including redox homeostasis and metabolism.
Collapse
Affiliation(s)
- Kamal Asadipour
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk Virginia, USA; Department of Electrical and Computer Engineering, Old Dominion University, Norfolk Virginia, USA
| | - Maisoun Bani Hani
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk Virginia, USA
| | - Lucas Potter
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk Virginia, USA; Department of Electrical and Computer Engineering, Old Dominion University, Norfolk Virginia, USA
| | | | - Nicola Lai
- Department of Electrical and Computer Engineering, Old Dominion University, Norfolk Virginia, USA
| | - Stephen J Beebe
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk Virginia, USA.
| |
Collapse
|
4
|
Guette-Marquet S, Roques C, Bergel A. Direct electrochemical detection of trans-plasma membrane electron transfer: A possible alternative pathway for cell respiration. Biosens Bioelectron 2022; 220:114896. [DOI: 10.1016/j.bios.2022.114896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/04/2022] [Accepted: 11/06/2022] [Indexed: 11/09/2022]
|
5
|
Oleic acid magnetic iron oxide nanoparticles improve iron uptake by the modification of NADH-HCF (III) oxidoreductase without affecting cellular viability. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Grasso C, Eccles DA, Boukalova S, Fabre MS, Dawson RH, Neuzil J, Herst PM, Berridge MV. Mitochondrial DNA Affects the Expression of Nuclear Genes Involved in Immune and Stress Responses in a Breast Cancer Model. Front Physiol 2020; 11:543962. [PMID: 33329014 PMCID: PMC7732479 DOI: 10.3389/fphys.2020.543962] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 10/09/2020] [Indexed: 12/29/2022] Open
Abstract
Tumor cells without mitochondrial (mt) DNA (ρ0 cells) are auxotrophic for uridine, and their growth is supported by pyruvate. While ATP synthesis in ρ0 cells relies on glycolysis, they fail to form tumors unless they acquire mitochondria from stromal cells. Mitochondrial acquisition restores respiration that is essential for de novo pyrimidine biosynthesis and for mitochondrial ATP production. The physiological processes that underpin intercellular mitochondrial transfer to tumor cells lacking mtDNA and the metabolic remodeling and restored tumorigenic properties of cells that acquire mitochondria are not well understood. Here, we investigated the changes in mitochondrial and nuclear gene expression that accompany mtDNA deletion and acquisition in metastatic murine 4T1 breast cancer cells. Loss of mitochondrial gene expression in 4T1ρ0 cells was restored in cells recovered from subcutaneous tumors that grew from 4T1ρ0 cells following acquisition of mtDNA from host cells. In contrast, the expression of most nuclear genes that encode respiratory complex subunits and mitochondrial ribosomal subunits was not greatly affected by loss of mtDNA, indicating ineffective mitochondria-to-nucleus communication systems for these nuclear genes. Further, analysis of nuclear genes whose expression was compromised in 4T1ρ0 cells showed that immune- and stress-related genes were the most highly differentially expressed, representing over 70% of those with greater than 16-fold higher expression in 4T1 compared with 4T1ρ0 cells. The monocyte recruiting chemokine, Ccl2, and Psmb8, a subunit of the immunoproteasome that generates MHCI-binding peptides, were the most highly differentially expressed. Early monocyte/macrophage recruitment into the tumor mass was compromised in 4T1ρ0 cells but recovered before mtDNA could be detected. Taken together, our results show that mitochondrial acquisition by tumor cells without mtDNA results in bioenergetic remodeling and re-expression of genes involved in immune function and stress adaptation.
Collapse
Affiliation(s)
- Carole Grasso
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - David A. Eccles
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Stepana Boukalova
- Institute of Biotechnology, Czech Academy of Sciences, Vestec, Czechia
| | | | | | - Jiri Neuzil
- Institute of Biotechnology, Czech Academy of Sciences, Vestec, Czechia
- School of Medical Science, Griffith University, Southport, QLD, Australia
| | - Patries M. Herst
- Malaghan Institute of Medical Research, Wellington, New Zealand
- Department of Radiation Therapy, University of Otago, Wellington, New Zealand
| | | |
Collapse
|
7
|
Liparulo I, Bergamini C, Bortolus M, Calonghi N, Gasparre G, Kurelac I, Masin L, Rizzardi N, Rugolo M, Wang W, Aleo SJ, Kiwan A, Torri C, Zanna C, Fato R. Coenzyme Q biosynthesis inhibition induces HIF-1α stabilization and metabolic switch toward glycolysis. FEBS J 2020; 288:1956-1974. [PMID: 32898935 DOI: 10.1111/febs.15561] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 07/16/2020] [Accepted: 09/03/2020] [Indexed: 12/28/2022]
Abstract
Coenzyme Q10 (CoQ, ubiquinone) is a redox-active lipid endogenously synthesized by the cells. The final stage of CoQ biosynthesis is performed at the mitochondrial level by the 'complex Q', where coq2 is responsible for the prenylation of the benzoquinone ring of the molecule. We report that the competitive coq2 inhibitor 4-nitrobenzoate (4-NB) decreased the cellular CoQ content and caused severe impairment of mitochondrial function in the T67 human glioma cell line. In parallel with the reduction in CoQ biosynthesis, the cholesterol level increased, leading to significant perturbation of the plasma membrane physicochemical properties. We show that 4-NB treatment did not significantly affect the cell viability, because of an adaptive metabolic rewiring toward glycolysis. Hypoxia-inducible factor 1α (HIF-1α) stabilization was detected in 4-NB-treated cells, possibly due to the contribution of both reduction in intracellular oxygen tension and ROS overproduction. Exogenous CoQ supplementation partially recovered cholesterol content, HIF-1α degradation, and ROS production, whereas only weakly improved the bioenergetic impairment induced by the CoQ depletion. Our data provide new insights on the effect of CoQ depletion and contribute to shed light on the pathogenic mechanisms of ubiquinone deficiency syndrome.
Collapse
Affiliation(s)
- Irene Liparulo
- Department of Pharmacy and Biotechnology-FABIT, University of Bologna, Italy
| | - Christian Bergamini
- Department of Pharmacy and Biotechnology-FABIT, University of Bologna, Italy
| | | | - Natalia Calonghi
- Department of Pharmacy and Biotechnology-FABIT, University of Bologna, Italy
| | - Giuseppe Gasparre
- Department of Medical and Surgical Sciences - DIMEC, University of Bologna, Italy
| | - Ivana Kurelac
- Department of Medical and Surgical Sciences - DIMEC, University of Bologna, Italy
| | - Luca Masin
- Department of Pharmacy and Biotechnology-FABIT, University of Bologna, Italy
| | - Nicola Rizzardi
- Department of Pharmacy and Biotechnology-FABIT, University of Bologna, Italy
| | - Michela Rugolo
- Department of Pharmacy and Biotechnology-FABIT, University of Bologna, Italy
| | - Wenping Wang
- Department of Pharmacy and Biotechnology-FABIT, University of Bologna, Italy
| | - Serena J Aleo
- Department of Pharmacy and Biotechnology-FABIT, University of Bologna, Italy
| | - Alisar Kiwan
- Department of Chemistry 'Giacomo Ciamician', University of Bologna, Italy
| | - Cristian Torri
- Department of Chemistry 'Giacomo Ciamician', University of Bologna, Italy
| | - Claudia Zanna
- Department of Pharmacy and Biotechnology-FABIT, University of Bologna, Italy
| | - Romana Fato
- Department of Pharmacy and Biotechnology-FABIT, University of Bologna, Italy
| |
Collapse
|
8
|
Hyun DH. Insights into the New Cancer Therapy through Redox Homeostasis and Metabolic Shifts. Cancers (Basel) 2020; 12:cancers12071822. [PMID: 32645959 PMCID: PMC7408991 DOI: 10.3390/cancers12071822] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 12/18/2022] Open
Abstract
Modest levels of reactive oxygen species (ROS) are necessary for intracellular signaling, cell division, and enzyme activation. These ROS are later eliminated by the body’s antioxidant defense system. High amounts of ROS cause carcinogenesis by altering the signaling pathways associated with metabolism, proliferation, metastasis, and cell survival. Cancer cells exhibit enhanced ATP production and high ROS levels, which allow them to maintain elevated proliferation through metabolic reprograming. In order to prevent further ROS generation, cancer cells rely on more glycolysis to produce ATP and on the pentose phosphate pathway to provide NADPH. Pro-oxidant therapy can induce more ROS generation beyond the physiologic thresholds in cancer cells. Alternatively, antioxidant therapy can protect normal cells by activating cell survival signaling cascades, such as the nuclear factor erythroid 2-related factor 2 (Nrf2)-Kelch-like ECH-associated protein 1 (Keap1) pathway, in response to radio- and chemotherapeutic drugs. Nrf2 is a key regulator that protects cells from oxidative stress. Under normal conditions, Nrf2 is tightly bound to Keap1 and is ubiquitinated and degraded by the proteasome. However, under oxidative stress, or when treated with Nrf2 activators, Nrf2 is liberated from the Nrf2-Keap1 complex, translocated into the nucleus, and bound to the antioxidant response element in association with other factors. This cascade results in the expression of detoxifying enzymes, including NADH-quinone oxidoreductase 1 (NQO1) and heme oxygenase 1. NQO1 and cytochrome b5 reductase can neutralize ROS in the plasma membrane and induce a high NAD+/NADH ratio, which then activates SIRT1 and mitochondrial bioenergetics. NQO1 can also stabilize the tumor suppressor p53. Given their roles in cancer pathogenesis, redox homeostasis and the metabolic shift from glycolysis to oxidative phosphorylation (through activation of Nrf2 and NQO1) seem to be good targets for cancer therapy. Therefore, Nrf2 modulation and NQO1 stimulation could be important therapeutic targets for cancer prevention and treatment.
Collapse
Affiliation(s)
- Dong-Hoon Hyun
- Department of Life Science, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
9
|
Sherman HG, Jovanovic C, Abuawad A, Kim DH, Collins H, Dixon JE, Cavanagh R, Markus R, Stolnik S, Rawson FJ. Mechanistic insight into heterogeneity of trans-plasma membrane electron transport in cancer cell types. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:628-639. [DOI: 10.1016/j.bbabio.2019.06.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 12/28/2022]
|
10
|
Herst PM, Grasso C, Berridge MV. Metabolic reprogramming of mitochondrial respiration in metastatic cancer. Cancer Metastasis Rev 2019; 37:643-653. [PMID: 30448881 DOI: 10.1007/s10555-018-9769-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tumor initiation, progression, and metastasis are tissue context-dependent processes. Cellular and non-cellular factors provide the selective microenvironment that determines the fate of the evolving tumor through mechanisms that include metabolic reprogramming. Genetic and epigenetic changes contribute to this reprogramming process, which is orchestrated through ongoing communication between the mitochondrial and nuclear genomes. Metabolic flexibility, in particular the ability to rapidly adjust the balance between glycolytic and mitochondrial energy production, is a hallmark of aggressive, invasive, and metastatic cancers. Tumor cells sustain damage to both nuclear and mitochondrial DNA during tumorigenesis and as a consequence of anticancer treatments. Nuclear and mitochondrial DNA mutations and polymorphisms are increasingly recognized as factors that influence metabolic reprogramming, tumorigenesis, and tumor progression. Severe mitochondrial DNA damage compromises mitochondrial respiration. When mitochondrial respiration drops below a cell-specific threshold, metabolic reprogramming and plasticity fail to compensate and tumor formation is compromised. In these scenarios, tumorigenesis can be restored by acquisition of respiring mitochondria from surrounding stromal cells. Thus, intercellular mitochondrial transfer has the potential to confer treatment resistance and to promote tumor progression and metastasis. Understanding the constraints of metabolic, and in particular bioenergetic reprogramming, and the role of intercellular mitochondrial transfer in tumorigenesis provides new insights into addressing tumor progression and treatment resistance in highly aggressive cancers.
Collapse
Affiliation(s)
- P M Herst
- Malaghan Institute of Medical Research, PO Box 7060, Wellington, 6242, New Zealand.,Department of Radiation Therapy, University of Otago, Wellington, New Zealand
| | - C Grasso
- Malaghan Institute of Medical Research, PO Box 7060, Wellington, 6242, New Zealand
| | - Michael V Berridge
- Malaghan Institute of Medical Research, PO Box 7060, Wellington, 6242, New Zealand.
| |
Collapse
|
11
|
Garg G, Singh S, Singh AK, Rizvi SI. Metformin Alleviates Altered Erythrocyte Redox Status During Aging in Rats. Rejuvenation Res 2016; 20:15-24. [PMID: 27185159 DOI: 10.1089/rej.2016.1826] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Metformin, a biguanide drug commonly used to treat type 2 diabetes, has been noted to function as a caloric restriction mimetic. Its antidiabetic effect notwithstanding, metformin is currently being considered an antiaging drug candidate, although the molecular mechanisms have not yet been unequivocally established. This study aims to examine whether short-term metformin treatment can provide protective effects against oxidative stress in young and old-age rats. Young (age 4 months) and old (age 24 months) male Wistar rats were treated with metformin (300 mg/kg b.w.) for 4 weeks. At the end of the treatment period, an array of biomarkers of oxidative stress were evaluated, including plasma antioxidant capacity measured in terms of ferric reducing ability of plasma (FRAP), reactive oxygen species (ROS), lipid peroxidation (MDA), reduced glutathione (GSH), total plasma thiol (SH), plasma membrane redox system (PMRS), protein carbonyl (PCO), advanced oxidation protein products (AOPPs), and advanced glycation end products (AGEs) in control and experimental groups. Metformin treatment resulted in an increase in FRAP, GSH, SH, and PMRS activities in both age groups compared to respective controls. On the other hand, treated groups exhibited significant reductions in ROS, MDA, PCO, AOPP, and AGE level. Save for FRAP and protein carbonyl, the effect of metformin on all other parameters was more pronounced in old-aged rats. Metformin caused a significant increase in the PMRS activity in young rats, however, the effect was less pronounced in old rats. These findings provide evidence with respect to restoration of antioxidant status in aged rats after short-term metformin treatment. The findings substantiate the putative antiaging role of metformin.
Collapse
Affiliation(s)
- Geetika Garg
- Department of Biochemistry, Faculty of Science, University of Allahabad , Allahabad, India
| | - Sandeep Singh
- Department of Biochemistry, Faculty of Science, University of Allahabad , Allahabad, India
| | - Abhishek Kumar Singh
- Department of Biochemistry, Faculty of Science, University of Allahabad , Allahabad, India
| | - Syed Ibrahim Rizvi
- Department of Biochemistry, Faculty of Science, University of Allahabad , Allahabad, India
| |
Collapse
|
12
|
Varela-López A, Giampieri F, Battino M, Quiles JL. Coenzyme Q and Its Role in the Dietary Therapy against Aging. Molecules 2016; 21:373. [PMID: 26999099 PMCID: PMC6273282 DOI: 10.3390/molecules21030373] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 03/10/2016] [Accepted: 03/11/2016] [Indexed: 12/12/2022] Open
Abstract
Coenzyme Q (CoQ) is a naturally occurring molecule located in the hydrophobic domain of the phospholipid bilayer of all biological membranes. Shortly after being discovered, it was recognized as an essential electron transport chain component in mitochondria where it is particularly abundant. Since then, more additional roles in cell physiology have been reported, including antioxidant, signaling, death prevention, and others. It is known that all cells are able to synthesize functionally sufficient amounts of CoQ under normal physiological conditions. However, CoQ is a molecule found in different dietary sources, which can be taken up and incorporated into biological membranes. It is known that mitochondria have a close relationship with the aging process. Additionally, delaying the aging process through diet has aroused the interest of scientists for many years. These observations have stimulated investigation of the anti-aging potential of CoQ and its possible use in dietary therapies to alleviate the effects of aging. In this context, the present review focus on the current knowledge and evidence the roles of CoQ cells, its relationship with aging, and possible implications of dietary CoQ in relation to aging, lifespan or age-related diseases.
Collapse
Affiliation(s)
- Alfonso Varela-López
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center (CIBM), University of Granada, Avda. del Conocimiento s.n., Armilla, Granada 18100, Spain.
| | - Francesca Giampieri
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO), Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy.
| | - Maurizio Battino
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO), Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy.
- Centre for Nutrition & Health, Universidad Europea del Atlantico (UEA), Santander 39011, Spain.
| | - José L Quiles
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center (CIBM), University of Granada, Avda. del Conocimiento s.n., Armilla, Granada 18100, Spain.
| |
Collapse
|
13
|
Kim SJ, Chung TH. Cold atmospheric plasma jet-generated RONS and their selective effects on normal and carcinoma cells. Sci Rep 2016; 6:20332. [PMID: 26838306 PMCID: PMC4738260 DOI: 10.1038/srep20332] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 12/30/2015] [Indexed: 01/01/2023] Open
Abstract
Cold atmospheric helium plasma jets were fabricated and utilized for plasma-cell interactions. The effect of operating parameters and jet design on the generation of specific reactive oxygen and nitrogen species (RONS) within cells and cellular response were investigated. It was found that plasma treatment induced the overproduction of RONS in various cancer cell lines selectively. The plasma under a relatively low applied voltage induced the detachment of cells, a reduction in cell viability, and apoptosis, while the plasma under higher applied voltage led to cellular necrosis in our case. To determine whether plasma-induced reactive oxygen species (ROS) generation occurs through interfering with mitochondria-related cellular response, we examined the plasma effects on ROS generation in both parental A549 cells and A549 ρ(0) cells. It was observed that cancer cells were more susceptible to plasma-induced RONS (especially nitric oxide (NO) and nitrogen dioxide (NO2(-)) radicals) than normal cells, and consequently, plasma induced apoptotic cell responses mainly in cancer cells.
Collapse
Affiliation(s)
- Sun Ja Kim
- Department of Physics, Dong-A University, Busan 604-714, Republic of Korea
| | - T H Chung
- Department of Physics, Dong-A University, Busan 604-714, Republic of Korea
| |
Collapse
|
14
|
Modulation of Erythrocyte Plasma Membrane Redox System Activity by Curcumin. Biochem Res Int 2016; 2016:6025245. [PMID: 26904287 PMCID: PMC4745374 DOI: 10.1155/2016/6025245] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 12/30/2015] [Accepted: 12/31/2015] [Indexed: 01/31/2023] Open
Abstract
Plasma membrane redox system (PMRS) is an electron transport chain system ubiquitously present throughout all cell types. It transfers electron from intracellular substrates to extracellular acceptors for regulation of redox status. Curcumin, isolated from Curcuma longa, has modulatory effects on cellular physiology due to its membrane interaction ability and antioxidant potential. The present study investigates the effect of curcumin on PMRS activity of erythrocytes isolated from Wistar rats in vitro and in vivo and validated through an in silico docking simulation study using Molegro Virtual Docker (MVD). Effects of curcumin were also evaluated on level of glutathione (GSH) and the oxidant potential of plasma measured in terms of plasma ferric equivalent oxidative potentials (PFEOP). Results show that curcumin significantly (p < 0.01) downregulated the PMRS activity in a dose-dependent manner. Molecular docking results suggest that curcumin interacts with amino acids at the active site cavity of cytochrome b 5 reductase, a key constituent of PMRS. Curcumin also increased the GSH level in erythrocytes and plasma while simultaneously decreasing the oxidant potential (PFEOP) of plasma. Altered PMRS activity and redox status are associated with the pathophysiology of several health complications including aging and diabetes; hence, the above finding may explain part of the role of curcumin in health beneficial effects.
Collapse
|
15
|
Novak M, Lah L, Šala M, Stojan J, Bohlmann J, Komel R. Oleic acid metabolism via a conserved cytochrome P450 system-mediated ω-hydroxylation in the bark beetle-associated fungus Grosmannia clavigera. PLoS One 2015; 10:e0120119. [PMID: 25794012 PMCID: PMC4368105 DOI: 10.1371/journal.pone.0120119] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 01/22/2015] [Indexed: 12/27/2022] Open
Abstract
The bark beetle-associated fungus Grosmannia clavigera participates in the large-scale destruction of pine forests. In the tree, it must tolerate saturating levels of toxic conifer defense chemicals (e.g. monoterpenes). The fungus can metabolize some of these compounds through the ß-oxidation pathway and use them as a source of carbon. It also uses carbon from pine triglycerides, where oleic acid is the most common fatty acid. High levels of free fatty acids, however, are toxic and can cause additional stress during host colonization. Fatty acids induce expression of neighboring genes encoding a cytochrome P450 (CYP630B18) and its redox partner, cytochrome P450 reductase (CPR2). The aim of this work was to study the function of this novel P450 system. Using LC/MS, we biochemically characterized CYP630 as a highly specific oleic acid ω-hydroxylase. We explain oleic acid specificity using protein interaction modeling. Our results underscore the importance of ω-oxidation when the main ß-oxidation pathway may be overwhelmed by other substrates such as host terpenoid compounds. Because this CYP-CPR gene cluster is evolutionarily conserved, our work has implications for metabolism studies in other fungi.
Collapse
Affiliation(s)
- Metka Novak
- National Institute of Chemistry, Hajdrihova 19, SI-1000, Ljubljana, Slovenia
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Ljerka Lah
- National Institute of Chemistry, Hajdrihova 19, SI-1000, Ljubljana, Slovenia
- * E-mail: (LL); (RK)
| | - Martin Šala
- National Institute of Chemistry, Hajdrihova 19, SI-1000, Ljubljana, Slovenia
| | - Jure Stojan
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000, Ljubljana, Slovenia
| | - Joerg Bohlmann
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Radovan Komel
- National Institute of Chemistry, Hajdrihova 19, SI-1000, Ljubljana, Slovenia
- * E-mail: (LL); (RK)
| |
Collapse
|
16
|
Coenzyme Q10 depletion in medical and neuropsychiatric disorders: potential repercussions and therapeutic implications. Mol Neurobiol 2013; 48:883-903. [PMID: 23761046 DOI: 10.1007/s12035-013-8477-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Accepted: 05/29/2013] [Indexed: 12/18/2022]
Abstract
Coenzyme Q10 (CoQ10) is an antioxidant, a membrane stabilizer, and a vital cofactor in the mitochondrial electron transport chain, enabling the generation of adenosine triphosphate. It additionally regulates gene expression and apoptosis; is an essential cofactor of uncoupling proteins; and has anti-inflammatory, redox modulatory, and neuroprotective effects. This paper reviews the known physiological role of CoQ10 in cellular metabolism, cell death, differentiation and gene regulation, and examines the potential repercussions of CoQ10 depletion including its role in illnesses such as Parkinson's disease, depression, myalgic encephalomyelitis/chronic fatigue syndrome, and fibromyalgia. CoQ10 depletion may play a role in the pathophysiology of these disorders by modulating cellular processes including hydrogen peroxide formation, gene regulation, cytoprotection, bioenegetic performance, and regulation of cellular metabolism. CoQ10 treatment improves quality of life in patients with Parkinson's disease and may play a role in delaying the progression of that disorder. Administration of CoQ10 has antidepressive effects. CoQ10 treatment significantly reduces fatigue and improves ergonomic performance during exercise and thus may have potential in alleviating the exercise intolerance and exhaustion displayed by people with myalgic encepholamyletis/chronic fatigue syndrome. Administration of CoQ10 improves hyperalgesia and quality of life in patients with fibromyalgia. The evidence base for the effectiveness of treatment with CoQ10 may be explained via its ability to ameliorate oxidative stress and protect mitochondria.
Collapse
|
17
|
Grasso C, Larsen L, McConnell M, Smith RAJ, Berridge MV. Anti-Leukemic Activity of Ubiquinone-Based Compounds Targeting Trans-plasma Membrane Electron Transport. J Med Chem 2013; 56:3168-76. [DOI: 10.1021/jm301585z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Carole Grasso
- Malaghan Institute of Medical Research, P.O. Box 7060,
Wellington, New Zealand
| | - Lesley Larsen
- Department
of Chemistry, University of Otago, P.O.
Box 56, Dunedin, New Zealand
| | - Melanie McConnell
- Malaghan Institute of Medical Research, P.O. Box 7060,
Wellington, New Zealand
| | - Robin A. J. Smith
- Department
of Chemistry, University of Otago, P.O.
Box 56, Dunedin, New Zealand
| | - Michael V. Berridge
- Malaghan Institute of Medical Research, P.O. Box 7060,
Wellington, New Zealand
| |
Collapse
|
18
|
Kostova I. Studying plant-derived coumarins for their pharmacological and therapeutic properties as potential anticancer drugs. Expert Opin Drug Discov 2013; 2:1605-18. [PMID: 23488904 DOI: 10.1517/17460441.2.12.1605] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Coumarins have attracted intense interest in recent years because of their diverse pharmacological properties. Among these properties, their anticancer effect was most extensively examined. In this review, their broad range of effects on the tumours as shown by various in vitro and in vivo experiments as well as clinical investigations is discussed. Studies have indicated that coumarins elicit inhibitory effects on cell growth of various carcinoma cell lines and may be potential candidates for cancer therapy. These natural compounds have served as valuable leads for further design and synthesis of more active analogues. In view of the relative simplicity of the coumarin compounds and their mechanism of action, the coumarin pharmacophore may serve as an important model on which to develop new patterns in cancer chemotherapy. The aim of this review is to examine in detail the properties of the title compounds as anticancer agents. In view of their comparatively low toxicity, relative cheapness, presence in the diet and occurrence in various herbal remedies, it appears important to evaluate their anticancer potentialities. Moreover their synergistic activity in combination therapy with other well-known anticancer drugs could be the basis for the development of rational approaches to new forms of cancer chemotherapy.
Collapse
Affiliation(s)
- Irena Kostova
- Medical University, Department of Chemistry, Faculty of Pharmacy, 2 Dunav Street, Sofi a 1000, Bulgaria +35 92 92 36 569 ; +35 92 98 79 874 ;
| |
Collapse
|
19
|
Crane FL, Navas P, Low H, Sun IL, de Cabo R. Sirtuin activation: a role for plasma membrane in the cell growth puzzle. J Gerontol A Biol Sci Med Sci 2012; 68:368-70. [PMID: 23033342 DOI: 10.1093/gerona/gls184] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
For more than 20 years, the observation that impermeable oxidants can stimulate cell growth has not been satisfactorily explained. The discovery of sirtuins provides a logical answer to the puzzle. The NADH-dependent transplasma membrane electron transport system, which is stimulated by growth factors and interventions such as calorie restriction, can transfer electrons to external acceptors and protect against stress-induced apoptosis. We hypothesize that the activation of plasma membrane electron transport contributes to the cytosolic NAD(+) pool required for sirtuin to activate transcription factors necessary for cell growth and survival.
Collapse
|
20
|
Arduíno DM, Esteves AR, Cortes L, Silva DF, Patel B, Grazina M, Swerdlow RH, Oliveira CR, Cardoso SM. Mitochondrial metabolism in Parkinson's disease impairs quality control autophagy by hampering microtubule-dependent traffic. Hum Mol Genet 2012; 21:4680-702. [PMID: 22843496 PMCID: PMC3471400 DOI: 10.1093/hmg/dds309] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Abnormal presence of autophagic vacuoles is evident in brains of patients with Parkinson's disease (PD), in contrast to the rare detection of autophagosomes in a normal brain. However, the actual cause and pathological significance of these observations remain unknown. Here, we demonstrate a role for mitochondrial metabolism in the regulation of the autophagy-lysosomal pathway in ex vivo and in vitro models of PD. We show that transferring mitochondria from PD patients into cells previously depleted of mitochondrial DNA is sufficient to reproduce the alterations in the autophagic system observed in PD patient brains. Although the initial steps of this pathway are not compromised, there is an increased accumulation of autophagosomes associated with a defective autophagic activity. We prove that this functional decline was originated from a deficient mobilization of autophagosomes from their site of formation toward lysosomes due to disruption in microtubule-dependent trafficking. This contributed directly to a decreased proteolytic flux of α-synuclein and other autophagic substrates. Our results lend strong support for a direct impact of mitochondria in autophagy as defective autophagic clearance ability secondary to impaired microtubule trafficking is driven by dysfunctional mitochondria. We uncover mitochondria and mitochondria-dependent intracellular traffic as main players in the regulation of autophagy in PD.
Collapse
Affiliation(s)
- Daniela M Arduíno
- CNC – Center for Neuroscience and Cell Biology, Institute of Biology, University of Coimbra, Coimbra, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
The key role of coenzyme Q (ubiquinone or Q) is in mitochondrial and prokaryotic energetics. Less well investigated is the basis for its presence in eukaryotic membrane locations other than mitochondria and in plasma where both antioxidant and potentially more targeted roles are indicated. Included in the latter is that of a lipid-soluble electron transfer intermediate that serves as the transmembrane component of plasma membrane and Golgi apparatus electron transport, which regulates cytosolic NAD(+) /NADH ratios and is involved in vectorial membrane displacements and in the regulation of cell growth. Important protective effects on circulating lipoproteins and in the prevention of coronary artery disease ensue not only from the antioxidant role of CoQ(10) but also from its ability to directly block protein oxidation and superoxide generation of the TM-9 family of membrane proteins known as age-related NADH oxidase or arNOX (ENOX3) and their shed forms that appear after age 30 and some of which associate specifically with low-density lipoprotein particles to catalyze protein oxidation and crosslinking.
Collapse
Affiliation(s)
- D James Morré
- NOX Technologies, Purdue Research Park, West Lafayette, IN, USA.
| | | |
Collapse
|
22
|
Gray JP, Eisen T, Cline GW, Smith PJS, Heart E. Plasma membrane electron transport in pancreatic β-cells is mediated in part by NQO1. Am J Physiol Endocrinol Metab 2011; 301:E113-21. [PMID: 21505151 PMCID: PMC3129843 DOI: 10.1152/ajpendo.00673.2010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Plasma membrane electron transport (PMET), a cytosolic/plasma membrane analog of mitochondrial electron transport, is a ubiquitous system of cytosolic and plasma membrane oxidoreductases that oxidizes cytosolic NADH and NADPH and passes electrons to extracellular targets. While PMET has been shown to play an important role in a variety of cell types, no studies exist to evaluate its function in insulin-secreting cells. Here we demonstrate the presence of robust PMET activity in primary islets and clonal β-cells, as assessed by the reduction of the plasma membrane-impermeable dyes WST-1 and ferricyanide. Because the degree of metabolic function of β-cells (reflected by the level of insulin output) increases in a glucose-dependent manner between 4 and 10 mM glucose, PMET was evaluated under these conditions. PMET activity was present at 4 mM glucose and was further stimulated at 10 mM glucose. PMET activity at 10 mM glucose was inhibited by the application of the flavoprotein inhibitor diphenylene iodonium and various antioxidants. Overexpression of cytosolic NAD(P)H-quinone oxidoreductase (NQO1) increased PMET activity in the presence of 10 mM glucose while inhibition of NQO1 by its inhibitor dicoumarol abolished this activity. Mitochondrial inhibitors rotenone, antimycin A, and potassium cyanide elevated PMET activity. Regardless of glucose levels, PMET activity was greatly enhanced by the application of aminooxyacetate, an inhibitor of the malate-aspartate shuttle. We propose a model for the role of PMET as a regulator of glycolytic flux and an important component of the metabolic machinery in β-cells.
Collapse
Affiliation(s)
- Joshua P Gray
- United States Coast Guard Academy, New London, Connecticut, USA
| | | | | | | | | |
Collapse
|
23
|
Del Principe D, Avigliano L, Savini I, Catani MV. Trans-plasma membrane electron transport in mammals: functional significance in health and disease. Antioxid Redox Signal 2011; 14:2289-318. [PMID: 20812784 DOI: 10.1089/ars.2010.3247] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Trans-plasma membrane electron transport (t-PMET) has been established since the 1960s, but it has only been subject to more intensive research in the last decade. The discovery and characterization at the molecular level of its novel components has increased our understanding of how t-PMET regulates distinct cellular functions. This review will give an update on t-PMET, with particular emphasis on how its malfunction relates to some diseases, such as cancer, abnormal cell death, cardiovascular diseases, aging, obesity, neurodegenerative diseases, pulmonary fibrosis, asthma, and genetically linked pathologies. Understanding these relationships may provide novel therapeutic approaches for pathologies associated with unbalanced redox state.
Collapse
Affiliation(s)
- Domenico Del Principe
- Department of Experimental Medicine and Biochemical Sciences, University of Rome Tor Vergata, Rome, Italy.
| | | | | | | |
Collapse
|
24
|
Involvement of thermoplasmaquinone-7 in transplasma membrane electron transport of Entamoeba histolytica trophozoites: a key molecule for future rational chemotherapeutic drug designing. J Bioenerg Biomembr 2011; 43:203-15. [PMID: 21523408 DOI: 10.1007/s10863-011-9347-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 01/25/2011] [Indexed: 11/27/2022]
Abstract
The quinone composition of the transplasma membrane electron transport chain of parasitic protozoa Entamoeba histolytica was investigated. Purification of quinone from the plasma membrane of E. histolytica and its subsequent structural elucidation revealed the structure of the quinone as a methylmenaquinone-7 (thermoplasmaquinone-7), a napthoquinone. Membrane bound thermoplasmaquinone-7 can be destroyed by UV irradiation with a concomitant loss of plasma membrane electron transport activity. The abilities of different quinones to restore transplasma membrane electron transport activity in UV irradiated trophozoites were compared. The lost activity was recovered completely by the addition of thermoplasmaquinone-7, but ubiquinones are unable to restore the same. These findings clearly indicate that thermoplasmaquinone-7 acts as a lipid shuttle in the plasma membrane of the parasite to mediate electron transfer between cytosolic reductant and non permeable electron acceptors. This thermoplasmaquinone-7 differs from that of the mammalian host and can provide a novel target for future rational chemotherapeutic drug designing.
Collapse
|
25
|
De Luca T, Morré DM, Morré DJ. Reciprocal relationship between cytosolic NADH and ENOX2 inhibition triggers sphingolipid-induced apoptosis in HeLa cells. J Cell Biochem 2010; 110:1504-11. [PMID: 20518072 DOI: 10.1002/jcb.22724] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
ENOX2 (tNOX), a tumor-associated cell surface ubiquinol (NADH) oxidase, functions as an alternative terminal oxidase for plasma membrane electron transport. Ubiquitous in all cancer cell lines studied thus far, ENOX2 expression correlates with the abnormal growth and division associated with the malignant phenotype. ENOX2 has been proposed as the cellular target for various quinone site inhibitors that demonstrate anticancer activity such as the green tea constituent epigallocatechin-3-gallate (EGCg) and the isoflavone phenoxodiol (PXD). Here we present a possible mechanism that explains how these substances result in apoptosis in cancer cells by ENOX2-mediated alterations of cytosolic amounts of NAD(+) and NADH. When ENOX2 is inhibited, plasma membrane electron transport is diminished, and cytosolic NADH accumulates. We show in HeLa cells that NADH levels modulate the activities of two pivotal enzymes of sphingolipid metabolism: sphingosine kinase 1 (SK1) and neutral sphingomyelinase (nSMase). Their respective products sphingosine 1-phosphate (S1P) and ceramide (Cer) are key determinants of cell fate. S1P promotes cell survival and Cer promotes apoptosis. Using plasma membranes isolated from cervical adenocarcinoma (HeLa) cells as well as purified proteins of both bacterial and human origin, we demonstrate that NADH inhibits SK1 and stimulates nSMase, while NAD(+) inhibits nSMase and has no effect on SK1. Additionally, intact HeLa cells treated with ENOX2 inhibitors exhibit an increase in Cer and a decrease in S1P. Treatments that stimulate cytosolic NADH production potentiate the antiproliferative effects of ENOX2 inhibitors while those that attenuate NADH production or stimulate plasma membrane electron transport confer a survival advantage.
Collapse
Affiliation(s)
- Thomas De Luca
- Department of Foods and Nutrition, Purdue University, Stone Hall, 700 W. State Street, West Lafayette, Indiana 47907-2059, USA
| | | | | |
Collapse
|
26
|
Morré DM, Meadows C, Morré DJ. arNOX: generator of reactive oxygen species in the skin and sera of aging individuals subject to external modulation. Rejuvenation Res 2010; 13:162-4. [PMID: 20345278 DOI: 10.1089/rej.2009.0919] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
An aging-related cell-surface oxidase (aging-related NADH oxidase, arNOX) generating superoxide and other reactive oxygen species is shed from the cell surface and is found in saliva, urine, perspiration, and interstitial fluids that surround the collagen and elastin matrix underlying dermis. arNOX activity correlates with age and reaches a maximum at about age 65 in males and 55 in females. arNOX activities are highly correlated with values of human skin where a causal relationship is indicated. Ongoing efforts focus on cloning arNOX proteins and development of antiaging formulas based on arNOX inhibition (intervention).
Collapse
|
27
|
Prata C, Grasso C, Loizzo S, Sega FVD, Caliceti C, Zambonin L, Fiorentini D, Hakim G, Berridge MV, Landi L. Inhibition of trans-plasma membrane electron transport: a potential anti-leukemic strategy. Leuk Res 2010; 34:1630-5. [PMID: 20334912 DOI: 10.1016/j.leukres.2010.02.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 02/17/2010] [Accepted: 02/28/2010] [Indexed: 12/26/2022]
Abstract
The recently demonstrated reliance of glycolytic cancer cells on trans-plasma membrane electron transport (tPMET) for survival raises the question of its suitability as a target for anticancer drug development. In this study, the effects of several new and known compounds on proliferation, tPMET activity and NAD(P)H intrinsic fluorescence in human myelogenous leukemic cell lines were investigated. The whole data confirm the importance of tPMET in leukemic cell survival and suggest this activity as a new potential anti-leukemic target.
Collapse
Affiliation(s)
- Cecilia Prata
- Department of Biochemistry G. Moruzzi, University of Bologna, Bologna, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
López-Lluch G, Rodríguez-Aguilera JC, Santos-Ocaña C, Navas P. Is coenzyme Q a key factor in aging? Mech Ageing Dev 2010; 131:225-35. [PMID: 20193705 DOI: 10.1016/j.mad.2010.02.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 01/19/2010] [Accepted: 02/20/2010] [Indexed: 01/28/2023]
Abstract
Coenzyme Q (Q) is a key component for bioenergetics and antioxidant protection in the cell. During the last years, research on diseases linked to Q-deficiency has highlighted the essential role of this lipid in cell physiology. Q levels are also affected during aging and neurodegenerative diseases. Therefore, therapies based on dietary supplementation with Q must be considered in cases of Q deficiency such as in aging. However, the low bioavailability of dietary Q for muscle and brain obligates to design new mechanisms to increase the uptake of this compound in these tissues. In the present review we show a complete picture of the different functions of Q in cell physiology and their relationship to age and age-related diseases. Furthermore, we describe the problems associated with dietary Q uptake and the mechanisms currently used to increase its uptake or even its biosynthesis in cells. Strategies to increase Q levels in tissues are indicated.
Collapse
Affiliation(s)
- Guillermo López-Lluch
- Centro Andaluz de Biología del Desarrollo (CABD), Universidad Pablo de Olavide, CIBERER-Instituto de Salud Carlos III, Carretera de Utrera, Km 1, 41013 Sevilla, Spain
| | | | | | | |
Collapse
|
29
|
Jiménez-Hidalgo M, Santos-Ocaña C, Padilla S, Villalba JM, López-Lluch G, Martín-Montalvo A, Minor RK, Sinclair DA, de Cabo R, Navas P. NQR1 controls lifespan by regulating the promotion of respiratory metabolism in yeast. Aging Cell 2009; 8:140-51. [PMID: 19239415 DOI: 10.1111/j.1474-9726.2009.00461.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The activity and expression of plasma membrane NADH coenzyme Q reductase is increased by calorie restriction (CR) in rodents. Although this effect is well-established and is necessary for CR's ability to delay aging, the mechanism is unknown. Here we show that the Saccharomyces cerevisiae homolog, NADH-Coenzyme Q reductase 1 (NQR1), resides at the plasma membrane and when overexpressed extends both replicative and chronological lifespan. We show that NQR1 extends replicative lifespan in a SIR2-dependent manner by shifting cells towards respiratory metabolism. Chronological lifespan extension, in contrast, occurs via an SIR2-independent decrease in ethanol production. We conclude that NQR1 is a key mediator of lifespan extension by CR through its effects on yeast metabolism and discuss how these findings could suggest a function for this protein in lifespan extension in mammals.
Collapse
Affiliation(s)
- María Jiménez-Hidalgo
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC and Centre for Biomedical Research on Rare Diseases (CIBERER), ISCIII, E-41013 Sevilla, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Berridge MV, Herst PM, Lawen A. Targeting mitochondrial permeability in cancer drug development. Mol Nutr Food Res 2008; 53:76-86. [DOI: 10.1002/mnfr.200700493] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
31
|
Olgun A. Converting NADH to NAD+ by nicotinamide nucleotide transhydrogenase as a novel strategy against mitochondrial pathologies during aging. Biogerontology 2008; 10:531-4. [PMID: 18932012 DOI: 10.1007/s10522-008-9190-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Accepted: 10/07/2008] [Indexed: 02/02/2023]
Abstract
Mitochondrial DNA defects are involved supposedly via free radicals in many pathologies including aging and cancer. But, interestingly, free radical production was not found increased in prematurely aging mice having higher mutation rate in mtDNA. Therefore, some other mechanisms like the increase of mitochondrial NADH/NAD(+) and ubiquinol/ubiquinone ratios, can be in action in respiratory chain defects. NADH/NAD(+) ratio can be normalized by the activation or overexpression of nicotinamide nucleotide transhydrogenase (NNT), a mitochondrial enzyme catalyzing the following very important reaction: NADH + NADP(+ )<--> NADPH + NAD(+). The products NAD(+) and NADPH are required in many critical biological processes, e.g., NAD(+) is used by histone deacetylase Sir2 which regulates longevity in different species. NADPH is used in a number of biosynthesis reactions (e.g., reduced glutathione synthesis), and processes like apoptosis. Increased ubiquinol/ubiquinone ratio interferes the function of dihydroorotate dehydrogenase, the only mitochondrial enzyme involved in ubiquinone mediated de novo pyrimidine synthesis. Uridine and its prodrug triacetyluridine are used to compensate pyrimidine deficiency but their bioavailability is limited. Therefore, the normalization of the ubiquinol/ubiquinone ratio can be accomplished by allotopic expression of alternative oxidase, a mitochondrial ubiquinol oxidase which converts ubiquinol to ubiquinone.
Collapse
Affiliation(s)
- Abdullah Olgun
- Biochemistry Laboratory, Erzincan Mil. Hospital, Erzincan, Turkey.
| |
Collapse
|
32
|
Ungvari Z, Parrado-Fernandez C, Csiszar A, de Cabo R. Mechanisms underlying caloric restriction and lifespan regulation: implications for vascular aging. Circ Res 2008; 102:519-28. [PMID: 18340017 DOI: 10.1161/circresaha.107.168369] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This review focuses on the emerging evidence that attenuation of the production of reactive oxygen species and inhibition of inflammatory pathways play a central role in the antiaging cardiovascular effects of caloric restriction. Particular emphasis is placed on the potential role of the plasma membrane redox system in caloric restriction-induced pathways responsible for sensing oxidative stress and increasing cellular oxidative stress resistance. We propose that caloric restriction increases bioavailability of NO, decreases vascular reactive oxygen species generation, activates the Nrf2/antioxidant response element pathway, inducing reactive oxygen species detoxification systems, exerts antiinflammatory effects, and, thereby, suppresses initiation/progression of vascular disease that accompany aging.
Collapse
Affiliation(s)
- Zoltan Ungvari
- Department of Physiology, New York Medical College, Valhalla, USA
| | | | | | | |
Collapse
|
33
|
A highly sensitive colorimetric microplate ferrocyanide assay applied to ascorbate-stimulated transplasma membrane ferricyanide reduction and mitochondrial succinate oxidation. Anal Biochem 2008; 373:287-95. [DOI: 10.1016/j.ab.2007.09.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2007] [Revised: 09/04/2007] [Accepted: 09/04/2007] [Indexed: 11/21/2022]
|
34
|
Abstract
arNOX is a coenzyme Q10-inhibited, aging-related ECTO-NOX protein of the cell surface also present in sera. It is capable of superoxide generation measured as superoxide dismutase-inhibited reduction of ferricytochrome c and is a potential contributor to atherogenic risk. Here, we report an arNOX activity of saliva of older individuals also inhibited by coenzyme Q10. The activity first appears after age 30 to a near maximum at about age 55. Those surviving beyond age 55 usually have reduced arNOX activities. Our studies demonstrate significant (25 to 30%) reduction of arNOX levels with coenzyme Q10 supplementation of 60 mg (2 x 30 mg) per day for 28 days. Activity correlated with age. Response to coenzyme Q10 increased with age being greatest between ages 60 and 65. Saliva arNOX levels varied in a regular pattern throughout the day so it was important that samples be collected at approximately the same time each day for comparative purposes. The coenzyme Q10 response was reversible and within 12 h after the last intake of coenzyme Q10, the salivary arNOX levels returned to base line. The findings suggest that salivary arNOX provides a convenient and non-invasive method to monitor arNOX levels in clinical coenzyme Q10 intervention trials with the response levels paralleling those seen with serum and cellular arNOX.
Collapse
Affiliation(s)
- D James Morré
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA.
| | | |
Collapse
|
35
|
Abstract
In the 50 years since the identification of coenzyme Q as an electron carrier in mitochondria, it has been identified with diverse and unexpected functions in cells. Its discovery came as a result of a search for electron carriers in mitochondria following the identification of flavin and cytochromes by Warburg, Keilin, Chance and others. As a result of investigation of membrane lipids at D.E. Green's laboratory at University of Wisconsin coenzyme Q was identified as the electron carrier between primary flavoprotein dehydrogenases and the cytochromes. Then Peter Mitchell identified the role of transmembrane proton transfer as a basis for ATP synthesis. The general distribution of coenzyme Q in all cell membranes then led to the recognition of a role as a primary antioxidant. The protonophoric function was extended to acidification of Golgi and lysosomal vericles. A further role in proton release through the plasma membrane and its relation to cell proliferation has not been fully developed. A role in generation of H202 as a messenger for hormone and cytokine action is indicated as well as prevention of apoptosis by inhibition of ceramide release. Identification of the genes and proteins required for coenzyme Q synthesis has led to a basis for defining deficiency. For 50 years Karl Folkers has led the search for deficiency and therapeutic application. The development of large scale production, better formulation for uptake, and better methods for analysis have furthered this search. The story isn't over yet. Questions remain about effects on membrane structure, breakdown and control of cellular synthesis and uptake and the basis for therapeutic action.
Collapse
Affiliation(s)
- Frederick L Crane
- Department of Biological Science, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
36
|
Morré DM, Morré DJ, Rehmus W, Kern D. Supplementation with CoQ10 lowers age-related (ar) NOX levels in healthy subjects. Biofactors 2008; 32:221-30. [PMID: 19096119 DOI: 10.1002/biof.5520320126] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Our work has identified an aging-related ECTO-NOX activity (arNOX), a hydroquinone oxidase which is cell surface located and generates superoxide. This activity increases with increasing age beginning >30 y. Because of its cell surface location and ability to generate superoxide, the arNOX proteins may serve to propagate an aging cascade both to adjacent cells and to oxidize circulating lipoproteins as significant factors determining atherogenic risk. The generation of superoxide by arNOX proteins is inhibited by Coenzyme Q10 as one basis for an anti-aging benefit of CoQ10 supplementation in human subjects. In a preliminary pilot study, 25 female subjects between 45 and 55 y of age were recruited at Stanford University from the Palo Alto, CA area. Informed consent was obtained. Ten of the subjects received Coenzyme Q10 supplementation of 180 (3 x 60 mg) per day for 28 days. Serum, saliva and perspiration levels of arNOX were determined at 7, 14 and 28 days of CoQ10 supplementation and compared to the initial baseline value. Activity correlated with subject age up to a maximum between age 50 and 55 years of age for saliva and perspiration as well and then declined. With all three sources, the arNOX activity extrapolated to zero at about age 30. Response to Coenzyme Q10 also increased with age being least between ages 45 and 50 and greatest between ages 60 and 65. With all three biofluids, arNOX activity was reduced between 25 and 30% by a 3 x 60 mg daily dose Coenzyme Q10 supplementation. Inhibition was the result of Coenzyme Q10 presence.
Collapse
Affiliation(s)
- Dorothy M Morré
- Department of Foods and Nutrition, Purdue University, West Lafayette, IN, USA.
| | | | | | | |
Collapse
|
37
|
Herst PM, Hesketh EL, Ritchie DS, Berridge MV. Glycolytic metabolism confers resistance to combined all-trans retinoic acid and arsenic trioxide-induced apoptosis in HL60rho0 cells. Leuk Res 2007; 32:327-33. [PMID: 17580091 DOI: 10.1016/j.leukres.2007.04.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2007] [Revised: 04/19/2007] [Accepted: 04/25/2007] [Indexed: 10/23/2022]
Abstract
Glycolytic cancers are resistant to many forms of chemotherapy and some respond poorly to differentiation therapies. Here, we investigate the effects of exposure to all-trans retinoic acid (ATRA) and arsenic trioxide (ATO) on differentiation and cell survival in the human leukemia cell line, HL60 and its mitochondrial gene knockout mutant, HL60rho0. Glycolytic HL60rho0 cells exposed to single and combined treatments expressed less CD15, in most cases, but produced a stronger respiratory burst than parental HL60 cells. HL60rho0 cells were also significantly more resistant to apoptosis after combined ATO+ATRA treatment compared with HL60 cells, and this was associated with failure to upregulate Fas expression.
Collapse
Affiliation(s)
- Patries M Herst
- Malaghan Institute of Medical Research, P.O. Box 7060, Wellington, New Zealand.
| | | | | | | |
Collapse
|
38
|
Navas P, Villalba JM, de Cabo R. The importance of plasma membrane coenzyme Q in aging and stress responses. Mitochondrion 2007; 7 Suppl:S34-40. [PMID: 17482527 DOI: 10.1016/j.mito.2007.02.010] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2006] [Revised: 01/26/2007] [Accepted: 02/03/2007] [Indexed: 02/02/2023]
Abstract
The plasma membrane of eukaryotic cells is the limit to interact with the environment. This position implies receiving stress signals that affects its components such as phospholipids. Inserted inside these components is coenzyme Q that is a redox compound acting as antioxidant. Coenzyme Q is reduced by diverse dehydrogenase enzymes mainly NADH-cytochrome b(5) reductase and NAD(P)H:quinone reductase 1. Reduced coenzyme Q can prevent lipid peroxidation chain reaction by itself or by reducing other antioxidants such as alpha-tocopherol and ascorbate. The group formed by antioxidants and the enzymes able to reduce coenzyme Q constitutes a plasma membrane redox system that is regulated by conditions that induce oxidative stress. Growth factor removal, ethidium bromide-induced rho degrees cells, and vitamin E deficiency are some of the conditions where both coenzyme Q and its reductases are increased in the plasma membrane. This antioxidant system in the plasma membrane has been observed to participate in the healthy aging induced by calorie restriction. Furthermore, coenzyme Q regulates the release of ceramide from sphingomyelin, which is concentrated in the plasma membrane. This results from the non-competitive inhibition of the neutral sphingomyelinase by coenzyme Q particularly by its reduced form. Coenzyme Q in the plasma membrane is then the center of a complex antioxidant system preventing the accumulation of oxidative damage and regulating the externally initiated ceramide signaling pathway.
Collapse
Affiliation(s)
- Plácido Navas
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC, 41013 Sevilla, Spain.
| | | | | |
Collapse
|
39
|
Abstract
Eukaryotic cells display a plasma membrane redox system (PMRS) that transfers electrons from intracellular substrates to extracellular electron acceptors. The physiologic importance of PMRS is still not fully understood. The authors have carried out studies to determine the activity of PMRS in human erythrocytes as a function of age and correlate the activity with total plasma antioxidant capacity in an effort to understand the role of PMRS in human aging. The study was carried out on 80 normal healthy subjects of both genders between the ages of 18 and 85 years. The activity of erythrocyte PMRS was estimated by following the reduction of ferricyanide. The total antioxidant capacity of the plasma was estimated in terms of Ferric Reducing Ability of Plasma (FRAP) values. A significant (p < 0.0001) positive correlation (r = 0.7797) is observed between PMRS activity of erythrocytes and human age. There is an age-dependent decrease in total plasma antioxidant capacity measured in terms of FRAP values. A highly significant correlation is observed between PMRS activity and plasma FRAP values. The authors hypothesize that the increased PMRS in erythrocytes during aging may be a protective mechanism of the system for efficient extracellular DHA reduction and ascorbate recycling under condition of increased oxidative stress.
Collapse
|
40
|
Hyun DH, Hunt ND, Emerson SS, Hernandez JO, Mattson MP, de Cabo R. Up-regulation of plasma membrane-associated redox activities in neuronal cells lacking functional mitochondria. J Neurochem 2007; 100:1364-74. [PMID: 17250676 DOI: 10.1111/j.1471-4159.2006.04411.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mitochondria-deficient cells (rho(o) cells) survive through enhanced glycolytic metabolism in the presence of pyruvate and uridine. The plasma membrane redox system (PMRS) contains several NAD(P)H-related enzymes and plays a key role in maintaining the levels of NAD(+)/NADH and reduced coenzyme Q. In this study, rho(o) cells were used to investigate how the PMRS is regulated under conditions of mitochondrial dysfunction. rho(o) cells exhibited a lower oxygen consumption rate and higher levels of lactate than parental cells, and were more sensitive to glycolysis inhibitors (2-deoxyglucose and iodoacetamide) than control cells. However, they were more resistant to H(2)O(2), consistent with increased catalase activity and decreased oxidative damage (protein carbonyls and nitrotyrosine). PM-associated redox enzyme activities were enhanced in rho(o) cells compared to those in control cells. Our data suggest that all PMRS enzymes and biomarkers tested are closely related to the ability of the PMs to maintain redox homeostasis. These results illustrate that an up-regulated PM redox activity can protect cells from oxidative stress as a result of an improved antioxidant capacity, and suggest a mechanism by which neurons adapt to conditions of impaired mitochondrial function.
Collapse
Affiliation(s)
- Dong-Hoon Hyun
- Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | | | | | | | | | | |
Collapse
|
41
|
Hyun DH, Emerson SS, Jo DG, Mattson MP, de Cabo R. Calorie restriction up-regulates the plasma membrane redox system in brain cells and suppresses oxidative stress during aging. Proc Natl Acad Sci U S A 2006; 103:19908-12. [PMID: 17167053 PMCID: PMC1750890 DOI: 10.1073/pnas.0608008103] [Citation(s) in RCA: 185] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The plasma membrane (PM) contains redox enzymes that provide electrons for energy metabolism and recycling of antioxidants such as coenzyme Q and alpha-tocopherol. Brain aging and neurodegenerative disorders involve impaired energy metabolism and oxidative damage, but the involvement of the PM redox system (PMRS) in these processes is unknown. Caloric restriction (CR), a manipulation that protects the brain against aging and disease, increased activities of PMRS enzymes (NADH-ascorbate free radical reductase, NADH-quinone oxidoreductase 1, NADH-ferrocyanide reductase, NADH-coenzyme Q10 reductase, and NADH-cytochrome c reductase) and antioxidant levels (alpha-tocopherol and coenzyme Q10) in brain PM during aging. Age-related increases in PM lipid peroxidation, protein carbonyls, and nitrotyrosine were attenuated by CR, levels of PMRS enzyme activities were higher, and markers of oxidative stress were lower in cultured neuronal cells treated with CR serum compared with those treated with ad libitum serum. These findings suggest important roles for the PMRS in protecting brain cells against age-related increases in oxidative and metabolic stress.
Collapse
Affiliation(s)
| | | | - Dong-Gyu Jo
- *Laboratory of Neurosciences and
- College of Pharmacy, Sungkyunkwan University, Suwon, Korea
| | - Mark P. Mattson
- *Laboratory of Neurosciences and
- To whom correspondence should be addressed at:
Laboratory of Neurosciences, National Institute on Aging, 5600 Nathan Shock Drive, Baltimore, MD 21224. E-mail:
| | - Rafael de Cabo
- Laboratory of Experimental Gerontology, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224; and
| |
Collapse
|
42
|
Herst PM, Berridge MV. Cell surface oxygen consumption: a major contributor to cellular oxygen consumption in glycolytic cancer cell lines. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1767:170-7. [PMID: 17266920 DOI: 10.1016/j.bbabio.2006.11.018] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2006] [Revised: 11/23/2006] [Accepted: 11/29/2006] [Indexed: 01/09/2023]
Abstract
Oxygen consumption for bioenergetic purposes has long been thought to be the prerogative of mitochondria. Nevertheless, mitochondrial gene knockout (rho(0)) cells that are defective in mitochondrial respiration require oxygen for growth and consume oxygen at the cell surface via trans-plasma membrane electron transport (tPMET). This raises the possibility that cell surface oxygen consumption may support glycolytic energy metabolism by reoxidising cytosolic NADH to facilitate continued glycolysis. In this paper we determined the extent of cell surface oxygen consumption in a panel of 19 cancer cell lines. Non-mitochondrial (myxothiazol-resistant) oxygen consumption was demonstrated to consist of at least two components, cell surface oxygen consumption (inhibited by extracellular NADH) and basal oxygen consumption (insensitive to both myxothiazol and NADH). The extent of cell surface oxygen consumption varied considerably between parental cell lines from 1% to 80% of total oxygen consumption rates. In addition, cell surface oxygen consumption was found to be associated with low levels of superoxide production and to contribute significantly (up to 25%) to extracellular acidification in HL60rho(0) cells. In summary, cell surface oxygen consumption contributes significantly to total cellular oxygen consumption, not only in rho(0) cells but also in mitochondrially competent tumour cell lines with glycolytic metabolism.
Collapse
Affiliation(s)
- Patries M Herst
- Malaghan Institute of Medical Research, P.O. Box 7060, Wellington, New Zealand.
| | | |
Collapse
|
43
|
Bera T, Nandi N, Sudhahar D, Akbar MA, Sen A, Das P. Preliminary evidence on existence of transplasma membrane electron transport in Entamoeba histolytica trophozoites: a key mechanism for maintaining optimal redox balance. J Bioenerg Biomembr 2006; 38:299-308. [PMID: 17039394 DOI: 10.1007/s10863-006-9047-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Entamoeba histolytica, an amitochondriate parasitic protist, was demonstrated to be capable of reducing the oxidized form of alpha-lipoic acid, a non permeable electron acceptor outside the plasma membrane. This transmembrane reduction of non permeable electron acceptors with redox potentials ranging from -290 mV to +360 mV takes place at neutral pH. The transmembrane reduction of non permeable electron acceptors was not inhibited by mitochondrial electron transport inhibitors such as antimycin A, rotenone, cyanide and azide. However, a clear inhibition with complex III inhibitor, 2-(n-heptyl)-4-hydroxyquinoline-N-oxide; modifiers of sulphydryl groups and inhibitors of glycolysis was revealed. The iron-sulphur centre inhibitor thenoyltrifluoroacetone failed to inhibit the reduction of non permeable electron acceptors whereas capsaicin, an inhibitor of energy coupling NADH oxidase, showed substantial inhibition. p-trifluromethoxychlorophenylhydrazone, a protonophore uncoupler, resulted in the stimulation of alpha-lipoic acid reduction but inhibition in oxygen uptake. Mitochondrial electron transport inhibitors substantially inhibited the oxygen uptake in E. histolytica. Transmembrane reduction of alpha-lipoic acid was strongly stimulated by anaerobiosis and anaerobic stimulation was inhibited by 2-(n-heptyl)-4-hydroxyquinoline-N-oxide. Transmembrane redox system of E. histolytica was also found to be sensitive to UV irradiation. All these findings clearly demonstrate the existence of transplasma membrane electron transport system in E. histolytica and possible involvment of a naphthoquinone coenzyme in transmembrane redox of E. histolytica which is different from that of mammalian host and therefore can provide a novel target for future rational chemotherapeutic drug designing.
Collapse
Affiliation(s)
- Tanmoy Bera
- Department of Pharmaceutical Technology, Division of Medicinal Biochemistry, Jadavpur University, Kolkata, 700 032, West Bengal, India
| | | | | | | | | | | |
Collapse
|
44
|
Morré DJ, Morré DM. Aging-Related Cell Surface ECTO-NOX Protein, arNOX, a Preventive Target to Reduce Atherogenic Risk in the Elderly. Rejuvenation Res 2006; 9:231-6. [PMID: 16706650 DOI: 10.1089/rej.2006.9.231] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A family of constitutive cell surface ECTO-NOX proteins capable of oxidizing reduced quinones, initially described as NADH oxidases, has offered an opportunity to formulate, for the first time, a complete electron transport chain from the cytosol to oxygen at the cell surface with the ECTO-NOX proteins acting as the terminal oxidases. The ECTO-NOX proteins of the cell surface have been postulated as well to link the accumulation of lesions in mitochondrial DNA to cell surface accumulations of reactive oxygen species as one consequence of their role as a terminal oxidase in a plasma membrane electron transport chain. Of the several ECTO-NOX proteins now known, one is a novel cell surface form (arNOX) associated with lymphocytes, sera, saliva and perspiration of patients of age 50 or older and is capable of directly reducing ferric cytochrome c through the generation of superoxide. Because of their cell surface location, ECTO-NOX proteins capable of superoxide generation in response to aging would serve to propagate the aging cascade both to adjacent cells and to oxidize circulating lipoproteins. The generation of superoxide associated with aging is inhibited by coenzyme Q10. As such, the findings provide a rational basis for the antiaging activity of circulating coenzyme Q10 in the prevention of atherosclerosis and other aging-related oxidative changes in cell membranes and circulating lipoproteins.
Collapse
Affiliation(s)
- D James Morré
- Department of Medicinal Chemistry & Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, USA.
| | | |
Collapse
|
45
|
Abstract
Oxidative stress over time leads to the accumulation of damaged macromolecules and to profound physiological changes that are associated with several age-related diseases. The plasma membrane redox system (PMRS) appears to attenuate oxidative stress acting as a compensatory mechanism during the aging process. The PMRS appears to play a protective role during mitochondrial dysfunction to provide cells with a survival mechanism by lowering oxidative stress. The PMRS accomplishes this by producing more NAD(+) for glycolytic ATP production via transfer of electrons from intracellular reducing equivalents to extracelluar acceptors. Ubiquinone and alpha-tocopherol are key antioxidant molecules in the plasma membrane that are affected by aging and can be up-regulated by dietary interventions such as calorie restriction (CR). Up-regulation of PMRS activity leads to cell survival and membrane homeostasis under stress conditions and during calorie restriction. Further studies of the PMRS may provide not only additional information on the mechanisms involved in aging and CR, but may provide therapeutic targets for the prevention and treatment of age-related diseases.
Collapse
Affiliation(s)
- Dong-Hoon Hyun
- Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | | | | | | |
Collapse
|
46
|
Sandhu J, Sodja C, Mcrae K, Li Y, Rippstein P, Wei YH, Lach B, Lee F, Bucurescu S, Harper ME, Sikorska M. Effects of nitric oxide donors on cybrids harbouring the mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS) A3243G mitochondrial DNA mutation. Biochem J 2006; 391:191-202. [PMID: 15969653 PMCID: PMC1276916 DOI: 10.1042/bj20050272] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Reactive nitrogen and oxygen species (O2*-, H2O2, NO* and ONOO-) have been strongly implicated in the pathophysiology of neurodegenerative and mitochondrial diseases. In the present study, we examined the effects of nitrosative and/or nitrative stress generated by DETA-NO {(Z)-1-[2-aminoethyl-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate}, SIN-1 (3-morpholinosydnonimine hydrochloride) and SNP (sodium nitroprusside) on U87MG glioblastoma cybrids carrying wt (wild-type) and mutant [A3243G (Ala3243-->Gly)] mtDNA (mitochondrial genome) from a patient suffering from MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes). The mutant cybrids had reduced activity of cytochrome c oxidase, significantly lower ATP level and decreased mitochondrial membrane potential. However, endogenous levels of reactive oxygen species were very similar in all cybrids regardless of whether they carried the mtDNA defects or not. Furthermore, the cybrids were insensitive to the nitrosative and/or nitrative stress produced by either DETA-NO or SIN-1 alone. Cytotoxicity, however, was observed in response to SNP treatment and a combination of SIN-1 and glucose-deprivation. The mutant cybrids were significantly more sensitive to these insults compared with the wt controls. Ultrastructural examination of dying cells revealed several characteristic features of autophagic cell death. We concluded that nitrosative and/or nitrative stress alone were insufficient to trigger cytotoxicity in these cells, but cell death was observed with a combination of metabolic and nitrative stress. The vulnerability of the cybrids to these types of injury correlated with the cellular energy status, which were compromised by the MELAS mutation.
Collapse
Affiliation(s)
- Jagdeep K. Sandhu
- *Neurogenesis and Brain Repair Group, M54, Institute for Biological Sciences, National Research Council Canada, 1200 Montreal Road, Ottawa, ON, Canada K1A 0R6
- Correspondence may be addressed to either of the authors (email and )
| | - Caroline Sodja
- *Neurogenesis and Brain Repair Group, M54, Institute for Biological Sciences, National Research Council Canada, 1200 Montreal Road, Ottawa, ON, Canada K1A 0R6
| | - Kevan Mcrae
- *Neurogenesis and Brain Repair Group, M54, Institute for Biological Sciences, National Research Council Canada, 1200 Montreal Road, Ottawa, ON, Canada K1A 0R6
| | - Yan Li
- *Neurogenesis and Brain Repair Group, M54, Institute for Biological Sciences, National Research Council Canada, 1200 Montreal Road, Ottawa, ON, Canada K1A 0R6
| | - Peter Rippstein
- †Department of Pathology and Laboratory Medicine, The Ottawa Hospital-Civic Campus, Ottawa, ON, Canada K1Y 4E9
| | - Yau-Huei Wei
- ‡Department of Biochemistry and Center for Cellular and Molecular Biology, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Boleslaw Lach
- §Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Fay Lee
- ∥Health Canada, Banting Research Center, Ottawa, ON, Canada K1A 0L2
| | - Septimiu Bucurescu
- ¶Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada K1H 8M5
| | - Mary-Ellen Harper
- ¶Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada K1H 8M5
| | - Marianna Sikorska
- *Neurogenesis and Brain Repair Group, M54, Institute for Biological Sciences, National Research Council Canada, 1200 Montreal Road, Ottawa, ON, Canada K1A 0R6
- Correspondence may be addressed to either of the authors (email and )
| |
Collapse
|
47
|
Baker MA, Aitken RJ. Reactive oxygen species in spermatozoa: methods for monitoring and significance for the origins of genetic disease and infertility. Reprod Biol Endocrinol 2005; 3:67. [PMID: 16313680 PMCID: PMC1315356 DOI: 10.1186/1477-7827-3-67] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Accepted: 11/29/2005] [Indexed: 11/10/2022] Open
Abstract
Human spermatozoa generate low levels of reactive oxygen species in order to stimulate key events, such as tyrosine phosphorylation, associated with sperm capacitation. However, if the generation of these potentially pernicious oxygen metabolites becomes elevated for any reason, spermatozoa possess a limited capacity to protect themselves from oxidative stress. As a consequence, exposure of human spermatozoa to intrinsically- or extrinsically- generated reactive oxygen intermediates can result in a state of oxidative stress characterized by peroxidative damage to the sperm plasma membrane and DNA damage to the mitochondrial and nuclear genomes. Oxidative stress in the male germ line is associated with poor fertilization rates, impaired embryonic development, high levels of abortion and increased morbidity in the offspring, including childhood cancer. In this review, we consider the possible origins of oxidative damage to human spermatozoa and reflect on the important contribution such stress might make to the origins of genetic disease in our species.
Collapse
Affiliation(s)
- Mark A Baker
- The ARC Centre of Excellence in Biotechnology and Development, Reproductive Science Group, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - R John Aitken
- The ARC Centre of Excellence in Biotechnology and Development, Reproductive Science Group, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
48
|
Smigrodzki RM, Khan SM. Mitochondrial microheteroplasmy and a theory of aging and age-related disease. Rejuvenation Res 2005; 8:172-98. [PMID: 16144471 DOI: 10.1089/rej.2005.8.172] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We implicate a recently described form of mitochondrial mutation, mitochondrial microheteroplasmy, as a candidate for the principal component of aging. Microheteroplasmy is the presence of hundreds of independent mutations in one organism, with each mutation usually found in 1-2% of all mitochondrial genomes. Despite the low abundance of single mutations, the vast majority of mitochondrial genomes in all adults are mutated. This mutational burden includes inherited mutations, de novo germline mutations, as well as somatic mutations acquired either during early embryonic development or later in adult life. We postulate that microheteroplasmy is sufficient to explain the pathomechanism of several age-associated diseases, especially in conditions with known mitochondrial involvement, such as diabetes (DM), cardiovascular disease, Parkinson's disease (PD), and Alzheimer's disease (AD) and cancer. The genetic properties of microheteroplasmy reconcile the results of disease models (cybrids, hypermutable PolG variants and mitochondrial toxins), with the relatively low levels of maternal inheritance in the aforementioned diseases, and provide an explanation of their delayed, progressive course.
Collapse
|
49
|
Bera T, Lakshman K, Ghanteswari D, Pal S, Sudhahar D, Islam MN, Bhuyan NR, Das P. Characterization of the redox components of transplasma membrane electron transport system from Leishmania donovani promastigotes. Biochim Biophys Acta Gen Subj 2005; 1725:314-26. [PMID: 16023297 DOI: 10.1016/j.bbagen.2005.05.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2005] [Revised: 05/21/2005] [Accepted: 05/23/2005] [Indexed: 10/25/2022]
Abstract
An investigation has been made of the points of coupling of four nonpermeable electron acceptors e.g., alpha-lipoic acid (ALA), 5,5'-dithiobis (2-nitroaniline-N-sulphonic acid) (DTNS), 1,2-naphthoquinone-4-sulphonic acid (NQSA) and ferricyanide which are mainly reduced via an interaction with the redox sites present in the plasma membrane of Leishmania donovani promastigotes. ALA, DTNS, NQSA and ferricyanide reduction and part of O2 reduction is shown to take place on the exoplasmic face of the cell, for it is affected by external pH and agents that react with the external surface. Redox enzymes of the transplasma membrane electron transport system orderly transfer electron from one redox carrier to the next with the molecular oxygen as the final electron acceptor. The redox carriers mediate the transfer of electrons from metabolically generated reductant to nonpermeable electron acceptors and oxygen. At a pH of 6.4, respiration of Leishmania cells on glucose substrate shut down almost completely upon addition of an uncoupler FCCP and K+-ionophore valinomycin. The most pronounced effects on O2 uptake were obtained by treatment with antimycin A, 2-heptadecyl-4-hydroxyquinone-N-oxide, paracholoromercuribenzene sulphonic acid and trifluoperazine. Relatively smaller effects were obtained by treatment with potassium cyanide. Inhibition observed with respect to the reduction of the electron acceptors ALA, DTNS, NQSA and ferricyanide was not similar in most cases. The redox chain appears to be branched at several points and it is suggested that this redox chain incorporate iron-sulphur center, b-cytochromes, cyanide insensitive oxygen redox site, Na+ and K+ channel, capsaicin inhibited energy coupling site and trifluoperazine inhibited energy linked P-type ATPase. We analyzed the influence of ionic composition of the medium on reduction of electron acceptors in Leishmania donovani promastigotes. Our data suggest that K+ have some role for ALA reduction and Na+ for ferricyanide reduction. No significant effects were found with DTNS and NQSA reduction when Na+ or K+ was omitted from the medium. Stimulation of ALA, DTNS, NQSA and ferricyanide reduction was obtained by omitting Cl- from the medium. We propose that this redox system may be an energy source for control of membrane function in Leishmania cells.
Collapse
Affiliation(s)
- Tanmoy Bera
- Division of Medicinal Biochemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata-700032, India.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Orczyk J, Morré DM, Morré DJ. Periodic fluctuations in oxygen consumption comparing HeLa (cancer) and CHO (non-cancer) cells and response to external NAD(P)+/NAD(P)H. Mol Cell Biochem 2005; 273:161-7. [PMID: 16013451 DOI: 10.1007/s11010-005-0326-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Oxygen consumption in the presence of cyanide was utilized as a measure of plasma membrane electron transport in Chinese hamster ovary (CHO) and human cervical carcinoma (HeLa) cell lines. Both intact cells and isolated plasma membranes carry cyanide-insensitive NADH(P)H oxidases at their external membrane surfaces (designated ECTO-NOX proteins). Regular oscillatory patterns of oxygen consumption with period lengths characteristic of those observed for rates of NADH oxidation by ECTO-NOX proteins were observed to provide evidence for transfer of protons and electrons to reduce oxygen to water. The oscillations plus the resistance to inhibition by cyanide identify the bulk of the oxygen consumption as due to ECTO-NOX proteins. With intact CHO cells, oxygen consumption was enhanced by but not dependent upon external NAD(P)H addition. With intact HeLa cells, oxygen consumption was inhibited by both NADH and NAD+ as was growth. The results suggest that plasma membrane electron transport from internal donors to oxygen as an external acceptor is mediated through ECTO-NOX proteins and that electron transport to molecular oxygen may be differentially affected by external pyridine nucleotides depending on cell type.
Collapse
Affiliation(s)
- John Orczyk
- Department of Medicinal Chemistry, Purdue University, West Lafayette, Indiana 47907-2064, USA
| | | | | |
Collapse
|