1
|
Feigelson SW, Dadosh T, Levi N, Sapoznikov A, Weinstein-Marom H, Blokon-Kogan D, Avraham Y, Unger T, Gross G, Dahan R, Alon R. CD32B1, a versatile non-signaling antibody-binding scaffold for enhanced T cell adhesion to tumor stromal cognate antigens. Front Immunol 2025; 16:1398757. [PMID: 39995660 PMCID: PMC11847833 DOI: 10.3389/fimmu.2025.1398757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 01/15/2025] [Indexed: 02/26/2025] Open
Abstract
Targeting cytotoxic T lymphocytes (CTLs), as chimeric antigen T cells (CAR-T), T cell receptor-engineered (TCR)-T cells or adoptive cell transfer of tumor infiltrating T cells (TILs) to solid tumors is a major therapeutic challenge. We describe a new strategy to confer these lymphocytes with de novo adhesiveness to surface proteins enriched in the tumor microenvironment. This approach is based on decorating CTLs with monoclonal antibodies (mAbs) specific to any surface protein of interest within the stroma and the extracelullar matrix of solid tumors. For efficient mAb decoration, we have introduced a mAb binding Fc receptor (FcR) scaffold, FcγRIIB1 (CD32B1), which we found to be enriched on B lymphocyte microvilli (MV). This isoform contains an inhibitory ITIM motif within a cytoplasmic tail anchored to the cortical cytoskeleton. We thus generated a non-signaling CD32B1 mutant lacking the ITIM motif (termed ITIM-less CD32B1, or ILCD32B1) and successfully expressed it in human T cells which normally do not express this FcR. The ILCD32B1 expressing lymphocytes bound multiple IgG1 mAbs whose Fc domain was engineered with a 5-residue substitution to reach a nM range of Fc-FcγCR dissociation constants. The mAb decorated ILCD32B1 expressing T cells could readily adhere to a surface-bound cognate antigen. To broaden the utility of this scaffold, we have also generated a new fusion protein in which the entire Fc binding domain was truncated (tILCD32B1) and replaced with a monomeric streptavidin variant, mSA2, via a CD8 hinge. The molecule, termed mSA2-CD8h-tILCD32B1, was also successfully expressed in T cells, readily and stably bound biotinylated IgG mAbs in vitro and once decorated with the biotin labeled mAbs, conferred the T cells with high adhesiveness to multiple surface-coated antigens. mSA2-CD8h-tILCD32B1 expressing human T cells decorated ex vivo with a biotin-labeled mAb retained the antibody for hours after accumulation inside breast tumors implanted in immunodeficient recipient mice. Our results collectively suggest that a non-signaling CD32B1 can be used as a versatile scaffold for mAb decoration of T cells. Our mAb decoration approach can confer new cell adhesive reactivities to improve tumor CTL (CAR-T and TIL) accumulation and retention inside solid tumors.
Collapse
Affiliation(s)
- Sara W. Feigelson
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Tali Dadosh
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Nehora Levi
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Anita Sapoznikov
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Hadas Weinstein-Marom
- Laboratory of Immunology, MIGAL-Galilee Research Institute, Kiryat Shmona, Israel
- Department of Biotechnology, Tel-Hai College, Upper Galilee, Israel
| | - Dayana Blokon-Kogan
- Laboratory of Immunology, MIGAL-Galilee Research Institute, Kiryat Shmona, Israel
- Department of Biotechnology, Tel-Hai College, Upper Galilee, Israel
| | - Yahel Avraham
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Tamar Unger
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Gideon Gross
- Laboratory of Immunology, MIGAL-Galilee Research Institute, Kiryat Shmona, Israel
- Department of Biotechnology, Tel-Hai College, Upper Galilee, Israel
| | - Rony Dahan
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Ronen Alon
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
2
|
Conley HE, He MM, Easterhoff D, Kirshner HF, Cocklin SL, Meyer J, Hoxie T, Berry M, Bradley T, Tolbert WD, Pazgier M, Tomaras GD, Schmitz JE, Moody MA, Wiehe K, Pollara J. Defining genetic diversity of rhesus macaque Fcγ receptors with long-read RNA sequencing. Front Immunol 2024; 14:1306292. [PMID: 38264644 PMCID: PMC10803544 DOI: 10.3389/fimmu.2023.1306292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/20/2023] [Indexed: 01/25/2024] Open
Abstract
Fcγ receptors (FcγRs) are membrane-bound glycoproteins that bind to the fragment crystallizable (Fc) constant regions of IgG antibodies. Interactions between IgG immune complexes and FcγRs can initiate signal transduction that mediates important components of the immune response including activation of immune cells for clearance of opsonized pathogens or infected host cells. In humans, many studies have identified associations between FcγR gene polymorphisms and risk of infection, or progression of disease, suggesting a gene-level impact on FcγR-dependent immune responses. Rhesus macaques are an important translational model for most human health interventions, yet little is known about the breadth of rhesus macaque FcγR genetic diversity. This lack of knowledge prevents evaluation of the impact of FcγR polymorphisms on outcomes of preclinical studies performed in rhesus macaques. In this study we used long-read RNA sequencing to define the genetic diversity of FcγRs in 206 Indian-origin Rhesus macaques, Macaca mulatta. We describe the frequency of single nucleotide polymorphisms, insertions, deletions, frame-shift mutations, and isoforms. We also index the identified diversity using predicted and known rhesus macaque FcγR and Fc-FcγR structures. Future studies that define the functional significance of this genetic diversity will facilitate a better understanding of the correlation between human and macaque FcγR biology that is needed for effective translation of studies with antibody-mediated outcomes performed in rhesus macaques.
Collapse
Affiliation(s)
- Haleigh E. Conley
- Department of Surgery, Duke University School of Medicine, Duke University, Durham, NC, United States
- Duke Human Vaccine Institute, Duke University School of Medicine, Duke University, Durham, NC, United States
| | - Max M. He
- Duke Human Vaccine Institute, Duke University School of Medicine, Duke University, Durham, NC, United States
| | - David Easterhoff
- Duke Human Vaccine Institute, Duke University School of Medicine, Duke University, Durham, NC, United States
| | - Hélène Fradin Kirshner
- Duke Human Vaccine Institute, Duke University School of Medicine, Duke University, Durham, NC, United States
| | - Sarah L. Cocklin
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Jacob Meyer
- Duke Human Vaccine Institute, Duke University School of Medicine, Duke University, Durham, NC, United States
| | - Taylor Hoxie
- Duke Human Vaccine Institute, Duke University School of Medicine, Duke University, Durham, NC, United States
| | - Madison Berry
- Duke Human Vaccine Institute, Duke University School of Medicine, Duke University, Durham, NC, United States
| | - Todd Bradley
- Genomic Medicine Center, Children’s Mercy Kansas City, Kansas City, MO, United States
| | - William D. Tolbert
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Marzena Pazgier
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Georgia D. Tomaras
- Department of Surgery, Duke University School of Medicine, Duke University, Durham, NC, United States
- Duke Human Vaccine Institute, Duke University School of Medicine, Duke University, Durham, NC, United States
| | - Joern E. Schmitz
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Michael Anthony Moody
- Duke Human Vaccine Institute, Duke University School of Medicine, Duke University, Durham, NC, United States
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Duke University School of Medicine, Duke University, Durham, NC, United States
| | - Justin Pollara
- Department of Surgery, Duke University School of Medicine, Duke University, Durham, NC, United States
- Duke Human Vaccine Institute, Duke University School of Medicine, Duke University, Durham, NC, United States
| |
Collapse
|
3
|
Le Berre L, Chesneau M, Danger R, Dubois F, Chaussabel D, Garand M, Brouard S. Connection of BANK1, Tolerance, Regulatory B cells, and Apoptosis: Perspectives of a Reductionist Investigation. Front Immunol 2021; 12:589786. [PMID: 33815360 PMCID: PMC8015775 DOI: 10.3389/fimmu.2021.589786] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 01/06/2021] [Indexed: 12/07/2022] Open
Abstract
BANK1 transcript is upregulated in whole blood after kidney transplantation in tolerant patients. In comparison to patients with rejection, tolerant patients display higher level of regulatory B cells (Bregs) expressing granzyme B (GZMB+) that have the capability to prevent effector T cells proliferation. However, BANK1 was found to be decreased in these GZMB+ Bregs. In this article, we investigated seven different transcriptomic studies and mined the literature in order to make link between BANK1, tolerance and Bregs. As for GZMB+ Bregs, we found that BANK1 was decreased in other subtypes of Bregs, including IL10+ and CD24hiCD38hi transitional regulatory B cells, along with BANK1 was down-regulated in activated/differentiated B cells, as in CD40-activated B cells, in leukemia and plasma cells. Following a reductionist approach, biological concepts were extracted from BANK1 literature and allowed us to infer association between BANK1 and immune signaling pathways, as STAT1, FcγRIIB, TNFAIP3, TRAF6, and TLR7. Based on B cell signaling literature and expression data, we proposed a role of BANK1 in B cells of tolerant patients that involved BCR, IP3R, and PLCG2, and a link with the apoptosis pathways. We confronted these data with our experiments on apoptosis in total B cells and Bregs, and this suggests different involvement for BANK1 in these two cells. Finally, we put in perspective our own data with other published data to hypothesize two different roles for BANK1 in B cells and in Bregs.
Collapse
Affiliation(s)
- Ludmilla Le Berre
- CHU Nantes, Université de Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | - Mélanie Chesneau
- CHU Nantes, Université de Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | - Richard Danger
- CHU Nantes, Université de Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | - Florian Dubois
- CHU Nantes, Université de Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | | | - Mathieu Garand
- Systems Biology and Immunology, Sidra Medicine, Doha, Qatar
| | - Sophie Brouard
- CHU Nantes, Université de Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| |
Collapse
|
4
|
Huang L, Yu X, Li L, Liu J, Wu X, Zeng Y, Liao X, Liu W, Zhang F, Zhang X, Chen H, Zheng W. Aberrant FcγRIIb and FcγRIII expression on monocytes from patients with Behçet's disease. Clin Immunol 2020; 219:108549. [PMID: 32739412 DOI: 10.1016/j.clim.2020.108549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/26/2020] [Accepted: 07/26/2020] [Indexed: 10/23/2022]
Abstract
Behçet's disease (BD) patients have abnormal FcγR polymorphisms, the implication of which remains elusive. We examined FcγRIIb expression on neutrophils, monocytes, B cells, natural killer cells, dendritic cells and T cells, and FcγRI and FcγRIII expression on monocytes in BD patients and healthy controls using flow cytometry. We further stimulated monocytes with IgG and (or) lipopolysaccharide (LPS) and measured IL-6 and TNF-α production by enzyme-linked immunosorbent assay. We found that BD monocytes expressed a lower level of FcγRIIb and a higher level of FcγRIII, which were correlated with erythrocyte sedimentation rate and C-reactive protein and were rescued after treatment. Furthermore, LPS- and IgG-stimulated BD monocytes produced higher levels of IL-6 and TNF-α than HC monocytes. In summary, we found that BD monocytes downregulated FcγRIIb expression and upregulated FcγRIII expression, which were correlated with disease activity and potentially contributed to monocyte hyperactivation in BD.
Collapse
Affiliation(s)
- Linfang Huang
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, The Ministry of Education Key Laboratory, National Clinical Research Center for Dermatologic and Immunologic Diseases, Shuafuyuan, Dongcheng District, Beijing 100730, China; Department of Rheumatology and Clinical Immunology, The First People's Hospital of Yueyang, Yueyang, Hunan 414000, China
| | - Xin Yu
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, The Ministry of Education Key Laboratory, National Clinical Research Center for Dermatologic and Immunologic Diseases, Shuafuyuan, Dongcheng District, Beijing 100730, China
| | - Lu Li
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, The Ministry of Education Key Laboratory, National Clinical Research Center for Dermatologic and Immunologic Diseases, Shuafuyuan, Dongcheng District, Beijing 100730, China
| | - Jinjing Liu
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, The Ministry of Education Key Laboratory, National Clinical Research Center for Dermatologic and Immunologic Diseases, Shuafuyuan, Dongcheng District, Beijing 100730, China
| | - Xiuhua Wu
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, The Ministry of Education Key Laboratory, National Clinical Research Center for Dermatologic and Immunologic Diseases, Shuafuyuan, Dongcheng District, Beijing 100730, China
| | - Yan Zeng
- Department of Rheumatology and Clinical Immunology, The First People's Hospital of Yueyang, Yueyang, Hunan 414000, China
| | - Xiangping Liao
- Department of Rheumatology and Clinical Immunology, The First People's Hospital of ChenZhou, ChenZhou, Hunan 423000, China
| | - Wanli Liu
- MOE Key Laboratory of Protein Sciences, Center for Life Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Fengchun Zhang
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, The Ministry of Education Key Laboratory, National Clinical Research Center for Dermatologic and Immunologic Diseases, Shuafuyuan, Dongcheng District, Beijing 100730, China
| | - Xuan Zhang
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, The Ministry of Education Key Laboratory, National Clinical Research Center for Dermatologic and Immunologic Diseases, Shuafuyuan, Dongcheng District, Beijing 100730, China
| | - Hua Chen
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, The Ministry of Education Key Laboratory, National Clinical Research Center for Dermatologic and Immunologic Diseases, Shuafuyuan, Dongcheng District, Beijing 100730, China.
| | - Wenjie Zheng
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, The Ministry of Education Key Laboratory, National Clinical Research Center for Dermatologic and Immunologic Diseases, Shuafuyuan, Dongcheng District, Beijing 100730, China.
| |
Collapse
|
5
|
Feng M, Jiang W, Kim BYS, Zhang CC, Fu YX, Weissman IL. Phagocytosis checkpoints as new targets for cancer immunotherapy. Nat Rev Cancer 2019; 19:568-586. [PMID: 31462760 PMCID: PMC7002027 DOI: 10.1038/s41568-019-0183-z] [Citation(s) in RCA: 635] [Impact Index Per Article: 105.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/15/2019] [Indexed: 02/06/2023]
Abstract
Cancer immunotherapies targeting adaptive immune checkpoints have substantially improved patient outcomes across multiple metastatic and treatment-refractory cancer types. However, emerging studies have demonstrated that innate immune checkpoints, which interfere with the detection and clearance of malignant cells through phagocytosis and suppress innate immune sensing, also have a key role in tumour-mediated immune escape and might, therefore, be potential targets for cancer immunotherapy. Indeed, preclinical studies and early clinical data have established the promise of targeting phagocytosis checkpoints, such as the CD47-signal-regulatory protein α (SIRPα) axis, either alone or in combination with other cancer therapies. In this Review, we highlight the current understanding of how cancer cells evade the immune system by disrupting phagocytic clearance and the effect of phagocytosis checkpoint blockade on induction of antitumour immune responses. Given the role of innate immune cells in priming adaptive immune responses, an improved understanding of the tumour-intrinsic processes that inhibit essential immune surveillance processes, such as phagocytosis and innate immune sensing, could pave the way for the development of highly effective combination immunotherapy strategies that modulate both innate and adaptive antitumour immune responses.
Collapse
Affiliation(s)
- Mingye Feng
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Centre, Duarte, CA, USA.
| | - Wen Jiang
- Department of Radiation Oncology, The University of Texas Southwestern Medical Centre, Dallas, TX, USA.
| | - Betty Y S Kim
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Centre, Houston, TX, USA
| | - Cheng Cheng Zhang
- Department of Physiology, The University of Texas Southwestern Medical Centre, Dallas, TX, USA
| | - Yang-Xin Fu
- Department of Pathology, The University of Texas Southwestern Medical Centre, Dallas, TX, USA
| | - Irving L Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|
6
|
Anania JC, Chenoweth AM, Wines BD, Hogarth PM. The Human FcγRII (CD32) Family of Leukocyte FcR in Health and Disease. Front Immunol 2019; 10:464. [PMID: 30941127 PMCID: PMC6433993 DOI: 10.3389/fimmu.2019.00464] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/21/2019] [Indexed: 12/15/2022] Open
Abstract
FcγRs have been the focus of extensive research due to their key role linking innate and humoral immunity and their implication in both inflammatory and infectious disease. Within the human FcγR family FcγRII (activatory FcγRIIa and FcγRIIc, and inhibitory FcγRIIb) are unique in their ability to signal independent of the common γ chain. Through improved understanding of the structure of these receptors and how this affects their function we may be able to better understand how to target FcγR specific immune activation or inhibition, which will facilitate in the development of therapeutic monoclonal antibodies in patients where FcγRII activity may be desirable for efficacy. This review is focused on roles of the human FcγRII family members and their link to immunoregulation in healthy individuals and infection, autoimmunity and cancer.
Collapse
Affiliation(s)
- Jessica C Anania
- Centre for Biomedical Research, Burnet Institute, Melbourne, VIC, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Alicia M Chenoweth
- Centre for Biomedical Research, Burnet Institute, Melbourne, VIC, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Bruce D Wines
- Centre for Biomedical Research, Burnet Institute, Melbourne, VIC, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Pathology, The University of Melbourne, Melbourne, VIC, Australia
| | - P Mark Hogarth
- Centre for Biomedical Research, Burnet Institute, Melbourne, VIC, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Pathology, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
7
|
Stopforth RJ, Cleary KLS, Cragg MS. Regulation of Monoclonal Antibody Immunotherapy by FcγRIIB. J Clin Immunol 2016; 36 Suppl 1:88-94. [PMID: 26922075 PMCID: PMC4891381 DOI: 10.1007/s10875-016-0247-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 02/16/2016] [Indexed: 12/12/2022]
Abstract
Monoclonal antibodies (mAb) are revolutionising the treatment of many different diseases. Given their differing mode of action compared to most conventional chemotherapeutics and small molecule inhibitors, they possess the potential to be independent of common modes of treatment resistance and can typically be combined readily with existing treatments without dose-limiting toxicity. However, treatments with mAb rarely result in cure and so a full understanding of how these reagents work and can be optimised is key for their subsequent improvement. Here we review how an understanding of the biology of the inhibitory Fc receptor, FcγRIIB (CD32B), is leading to the development of improved mAb treatments.
Collapse
Affiliation(s)
- Richard J Stopforth
- Antibody & Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK
| | - Kirstie L S Cleary
- Antibody & Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK
| | - Mark S Cragg
- Antibody & Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK.
| |
Collapse
|
8
|
Vaughan AT, Cragg MS, Beers SA. Antibody modulation: Limiting the efficacy of therapeutic antibodies. Pharmacol Res 2015; 99:269-75. [PMID: 26188150 DOI: 10.1016/j.phrs.2015.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 07/09/2015] [Accepted: 07/09/2015] [Indexed: 01/16/2023]
Abstract
Monoclonal antibodies (mAb) have revolutionised the way in which we treat disease. From cancer to autoimmunity, antibody therapy has been responsible for some of the most impressive clinical responses observed in the last 2 decades. A key component of this success has been their generally low levels of toxicity, and unique mechanisms of action. These two facets have allowed them to (a) be integrated rapidly into clinical practice in combination with conventional radio- and chemo-therapies and (b) to avoid the resistance mechanisms typically observed with classical small molecule drugs, such as upregulation of drug efflux transporters, dysregulation of apoptosis and mutations in key target enzymes/pathways. Although success with mAb therapies has been impressive, they are also subject to their own resistance mechanisms. In this perspective we discuss the various ways in which mAb therapeutics can be inhibited, concentrating mainly on the ways in which they can be removed from the target cell surface-a process called modulation. This can be achieved either in a cis-fashion on a single cell or in trans, precipitated by engagement with a second phagocytic cell. The evidence for each of these processes will be discussed, in addition to possible therapeutic strategies that might be employed to inhibit or reverse them.
Collapse
Affiliation(s)
- Andrew T Vaughan
- Antibody and Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, UK; Department of Molecular Microbiology, Clinical and Experimental Sciences Unit, Faculty of Medicine, University of Southampton, UK
| | - Mark S Cragg
- Antibody and Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, UK.
| | - Stephen A Beers
- Antibody and Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, UK.
| |
Collapse
|
9
|
Vaughan AT, Chan CHT, Klein C, Glennie MJ, Beers SA, Cragg MS. Activatory and inhibitory Fcγ receptors augment rituximab-mediated internalization of CD20 independent of signaling via the cytoplasmic domain. J Biol Chem 2015; 290:5424-37. [PMID: 25568316 DOI: 10.1074/jbc.m114.593806] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Type I anti-CD20 mAb such as rituximab and ofatumumab engage with the inhibitory FcγR, FcγRIIb on the surface of B cells, resulting in immunoreceptor tyrosine-based inhibitory motif (ITIM) phosphorylation. Internalization of the CD20·mAb·FcγRIIb complex follows, the rate of which correlates with FcγRIIb expression. In contrast, although type II anti-CD20 mAb such as tositumomab and obinutuzumab also interact with and activate FcγRIIb, this interaction fails to augment the rate of CD20·mAb internalization, raising the question of whether ITIM phosphorylation plays any role in this process. We have assessed the molecular requirements for the internalization process and demonstrate that in contrast to internalization of IgG immune complexes, FcγRIIb-augmented internalization of rituximab-ligated CD20 occurs independently of the FcγRIIb ITIM, indicating that signaling downstream of FcγRIIb is not required. In transfected cells, activatory FcγRI, FcγRIIa, and FcγRIIIa augmented internalization of rituximab-ligated CD20 in a similar manner. However, FcγRIIa mediated a slower rate of internalization than cells expressing equivalent levels of the highly homologous FcγRIIb. The difference was maintained in cells expressing FcγRIIa and FcγRIIb lacking cytoplasmic domains and in which the transmembrane domains had been exchanged. This difference may be due to increased degradation of FcγRIIa, which traffics to lysosomes independently of rituximab. We conclude that the cytoplasmic domain of FcγR is not required for promoting internalization of rituximab-ligated CD20. Instead, we propose that FcγR provides a structural role in augmenting endocytosis that differs from that employed during the endocytosis of immune complexes.
Collapse
Affiliation(s)
- Andrew T Vaughan
- From the Antibody and Vaccine Group, Cancer Sciences Unit, University of Southampton, Faculty of Medicine, General Hospital, Southampton SO16 6YD, United Kingdom and
| | - Claude H T Chan
- From the Antibody and Vaccine Group, Cancer Sciences Unit, University of Southampton, Faculty of Medicine, General Hospital, Southampton SO16 6YD, United Kingdom and
| | - Christian Klein
- the Roche Pharmaceutical Research and Early Development, Roche Innovation Center Zurich, CH-8952 Schlieren, Switzerland
| | - Martin J Glennie
- From the Antibody and Vaccine Group, Cancer Sciences Unit, University of Southampton, Faculty of Medicine, General Hospital, Southampton SO16 6YD, United Kingdom and
| | - Stephen A Beers
- From the Antibody and Vaccine Group, Cancer Sciences Unit, University of Southampton, Faculty of Medicine, General Hospital, Southampton SO16 6YD, United Kingdom and
| | - Mark S Cragg
- From the Antibody and Vaccine Group, Cancer Sciences Unit, University of Southampton, Faculty of Medicine, General Hospital, Southampton SO16 6YD, United Kingdom and
| |
Collapse
|
10
|
Hussain K, Hargreaves CE, Roghanian A, Oldham RJ, Chan HTC, Mockridge CI, Chowdhury F, Frendéus B, Harper KS, Strefford JC, Cragg MS, Glennie MJ, Williams AP, French RR. Upregulation of FcγRIIb on monocytes is necessary to promote the superagonist activity of TGN1412. Blood 2015; 125:102-10. [PMID: 25395427 DOI: 10.1182/blood-2014-08-593061] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The anti-CD28 superagonist antibody TGN1412 caused life-threatening cytokine release syndrome (CRS) in healthy volunteers, which had not been predicted by preclinical testing. T cells in fresh peripheral blood mononuclear cells (PBMCs) do not respond to soluble TGN1412 but do respond following high-density (HD) preculture. We show for the first time that this response is dependent on crystallizable fragment gamma receptor IIb (FcγRIIb) expression on monocytes. This was unexpected because, unlike B cells, circulating monocytes express little or no FcγRIIb. However, FcγRIIb expression is logarithmically increased on monocytes during HD preculture, and this upregulation is necessary and sufficient to explain TGN1412 potency after HD preculture. B-cell FcγRIIb expression is unchanged by HD preculture, but B cells can support TGN1412-mediated T-cell proliferation when added at a frequency higher than that in PBMCs. Although low-density (LD) precultured PBMCs do not respond to TGN1412, T cells from LD preculture are fully responsive when cocultured with FcγRIIb-expressing monocytes from HD preculture, which shows that they are fully able to respond to TGN1412-mediated activation. Our novel findings demonstrate that cross-linking by FcγRIIb is critical for the superagonist activity of TGN1412 after HD preculture, and this may contribute to CRS in humans because of the close association of FcγRIIb-bearing cells with T cells in lymphoid tissues.
Collapse
Affiliation(s)
- Khiyam Hussain
- Antibody and Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Chantal E Hargreaves
- Antibody and Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Ali Roghanian
- Antibody and Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Robert J Oldham
- Antibody and Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - H T Claude Chan
- Antibody and Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - C Ian Mockridge
- Antibody and Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Ferdousi Chowdhury
- Antibody and Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Bjorn Frendéus
- Preclinical Research, BioInvent International AB, Lund, Sweden
| | - Kirsty S Harper
- Huntingdon Life Sciences Ltd, Woolley Road, Alconbury, Huntingdon, Cambridgeshire, United Kingdom; and
| | | | - Mark S Cragg
- Antibody and Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Martin J Glennie
- Antibody and Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Anthony P Williams
- Southampton Experimental Cancer Medicine Centre, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Ruth R French
- Antibody and Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
11
|
Santegoets KCM, Wenink MH, van den Berg WB, Radstake TRDJ. Fc gamma receptor IIb on GM-CSF macrophages controls immune complex mediated inhibition of inflammatory signals. PLoS One 2014; 9:e110966. [PMID: 25340460 PMCID: PMC4207781 DOI: 10.1371/journal.pone.0110966] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 09/26/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND In rheumatoid arthritis (RA) macrophages play a major role in amplifying synovial inflammation. Important activating signals are those induced by Toll-like receptor (TLR) ligands and by activated T cells. The balance between activating and inhibitory Fc gamma receptors (FcγRs) on macrophages might be crucial in modulating these inflammatory responses. The purpose of this study was to determine FcγR expression on pro- and anti-inflammatory macrophages (gmMφ and mMφ, respectively) and identify functional consequences on immune complex uptake and macrophage activation. METHODS Human monocytes were isolated and differentiated into gmMφ and mMφ. A full FcγR characterization of both macrophage subtypes was performed and uptake of fluorescent immune complexes (ICs) was determined. FcγRIIb isoforms were determined by qPCR. Macrophages were stimulated via different TLRs or cytokine activated T cells in the presence or absence of ICs and cytokine production was determined. Blocking studies were performed to look into the pathways involved. RESULTS mMφ expressed high levels of the activating FcγRIIa and FcγRIII and low levels of the inhibitory FcγRIIb, while the FcγR balance on gmMφ was shifted towards the inhibitory FcγRIIb. This was accompanied by a clear increase in FcγRIIb1 mRNA expression in gmMφ. This resulted in higher IC uptake by mMφ compared to gmMφ. Furthermore, FcγR-mediated stimulation of gmMφ inhibited TLR2, 3, 4 and 7/8 mediated cytokine production via FcγRIIb and PI3K signaling. In addition, gmMφ but not mMφ produced TNFα upon co-culture with cytokine activated T cells, which was reduced by IC binding to FcγRIIb. The latter was dependent on PI3K signaling and COX2. CONCLUSIONS FcγR expression patterns on gmMφ and mMφ are significantly different, which translates in clear functional differences further substantiating FcγRIIb as an interesting target for inflammation control in RA and other autoimmune/inflammatory diseases.
Collapse
Affiliation(s)
- Kim C. M. Santegoets
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
- Laboratory of Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
- Department of Rheumatology, Radboud university medical center, Nijmegen, the Netherlands
| | - Mark H. Wenink
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
- Laboratory of Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
- Department of Rheumatology, Radboud university medical center, Nijmegen, the Netherlands
| | - Wim B. van den Berg
- Department of Rheumatology, Radboud university medical center, Nijmegen, the Netherlands
| | - Timothy R. D. J. Radstake
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
- Laboratory of Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
- Department of Rheumatology, Radboud university medical center, Nijmegen, the Netherlands
- * E-mail:
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW Although a large number of novel broadly neutralizing antibodies has been recently described, the induction of such antibodies via vaccination has proven difficult. By contrast, nonneutralizing antibodies arise early during infection and have been repeatedly associated with both protection from infection and disease progression. RECENT FINDINGS We are beginning to gain new insights into the broader landscape of antiviral mechanisms that nonneutralizing antibodies may harness to fight HIV, providing an unprecedented breadth of approaches by which HIV can be blocked and contained. SUMMARY In this review, we summarize the characteristics of nonneutralizing antibodies, their role in HIV infection, and new paradigm-shifting functions that may be exploited by next-generation vaccine approaches aimed at blocking HIV infection.
Collapse
|
13
|
Inhibitory FcγRIIb (CD32b) becomes activated by therapeutic mAb in both cis and trans and drives internalization according to antibody specificity. Blood 2013; 123:669-77. [PMID: 24227819 DOI: 10.1182/blood-2013-04-490821] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A major feature that distinguishes type I from type II anti-CD20 monoclonal antibodies (mAbs) and reduces their therapeutic efficacy is the tendency to internalize from the cell surface. We have shown previously that the extent of internalization correlates with the capacity of type I mAb to simultaneously engage both CD20 and the inhibitory Fcγ receptor, FcγRIIb, in a bipolar configuration. Here, we investigated whether mAbs directed at other B-cell surface receptors also engaged FcγRIIb and whether this interaction promoted internalization. Most mAbs engaged and activated FcγRIIb, with the strength of activation related to the level of mAb bound to the cell surface. However, engagement did not affect internalization of most mAb-ligated receptors, either in cell lines or primary chronic lymphocytic leukemia cells with the exception of CD19 and CD38. Furthermore, at high cell concentrations/density both cis and trans interactions between cell-surface bound mAb and FcγRIIb were evident, but trans interactions did not inhibit type I anti-CD20 mAb-mediated internalization. These data identify that FcγRIIb is engaged by many mAbs in both cis and trans configurations, triggering its activation, but that internalization via FcγRIIb occurs for only a select subset. These findings have implications when designing new antibody-based therapeutics.
Collapse
|
14
|
Williams EL, Tutt AL, Beers SA, French RR, Chan CHT, Cox KL, Roghanian A, Penfold CA, Butts CL, Boross P, Verbeek JS, Cragg MS, Glennie MJ. Immunotherapy Targeting Inhibitory Fcγ Receptor IIB (CD32b) in the Mouse Is Limited by Monoclonal Antibody Consumption and Receptor Internalization. THE JOURNAL OF IMMUNOLOGY 2013; 191:4130-40. [DOI: 10.4049/jimmunol.1301430] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Overcoming Resistance to Therapeutic Antibodies by Targeting Fc Receptors. RESISTANCE TO TARGETED ANTI-CANCER THERAPEUTICS 2013. [DOI: 10.1007/978-1-4614-7654-2_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
16
|
Wang Y, Sugita N, Kikuchi A, Iwanaga R, Hirano E, Shimada Y, Sasahara J, Tanaka K, Yoshie H. FcγRIIB-nt645+25A/G gene polymorphism and periodontitis in Japanese women with preeclampsia. Int J Immunogenet 2012; 39:492-500. [DOI: 10.1111/j.1744-313x.2012.01124.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
17
|
Porcine Fc gamma RIIb sub-isoforms are generated by alternative splicing. Vet Immunol Immunopathol 2012; 145:386-94. [DOI: 10.1016/j.vetimm.2011.12.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 12/13/2011] [Accepted: 12/15/2011] [Indexed: 11/20/2022]
|
18
|
Sugita N, Iwanaga R, Kobayashi T, Yoshie H. Association of the FcγRIIB-nt645+25A/G polymorphism with the expression level of the FcγRIIb receptor, the antibody response to Porphyromonas gingivalis and the severity of periodontitis. J Periodontal Res 2011; 47:105-13. [PMID: 21906057 DOI: 10.1111/j.1600-0765.2011.01411.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND AND OBJECTIVE Human FcγRIIb is an immunoglobulin G (IgG) receptor that inhibits the activation of B lymphocytes through cross-linking with the B-cell receptor via immune complexes. This function acts as a negative regulator of antibody production. Our previous studies have demonstrated the gene polymorphisms in FcγRIIb to be associated with periodontitis. In this study, we presented a polymorphism--FcγRIIB-nt645+25A/G (rs2125685)--in intron 4 and analyzed its functional relevance to periodontitis. We examined whether the FcγRIIB-nt645+25A/G polymorphism is associated with periodontal parameters, the IgG response to the periodontopathic bacterium Porphyromonas gingivalis and/or the expression level of FcγRIIb on peripheral B lymphocytes. MATERIAL AND METHODS Thirty-two patients with chronic periodontitis were genotyped with nested PCR and by direct sequencing of genome DNA. The levels of serum IgG and of specific IgG subclasses for P. gingivalis sonicate and for the recombinant 40-kDa outer membrane protein (OMP) were determined. The expression levels of FcγRIIb on peripheral B lymphocytes from 19 healthy donors were measured by flow cytometry. RESULTS Patients with the FcγRIIB-nt645+25AA genotype showed significantly higher mean clinical attachment levels compared to patients with the FcγRIIB-nt645+25GG genotype (p = 0.003) and a significantly lower IgG response to P. gingivalis sonicate and to the 40-kDa OMP. The expression levels of FcγRIIb protein on the cell surface in peripheral B lymphocytes were higher in healthy donors with the FcγRIIB-nt645+25AA genotype than in those with the FcγRIIB-nt645+25GG genotype (p = 0.03). CONCLUSION The higher expression levels of FcγRIIb in subjects with the FcγRIIB-nt645+25AA genotype may induce a lower level of production of IgG against P. gingivalis and therefore more severe periodontitis.
Collapse
Affiliation(s)
- N Sugita
- Division of Periodontology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
| | | | | | | |
Collapse
|
19
|
Lim SH, Vaughan AT, Ashton-Key M, Williams EL, Dixon SV, Chan HTC, Beers SA, French RR, Cox KL, Davies AJ, Potter KN, Mockridge CI, Oscier DG, Johnson PWM, Cragg MS, Glennie MJ. Fc gamma receptor IIb on target B cells promotes rituximab internalization and reduces clinical efficacy. Blood 2011; 118:2530-40. [PMID: 21768293 DOI: 10.1182/blood-2011-01-330357] [Citation(s) in RCA: 198] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The anti-CD20 mAb rituximab is central to the treatment of B-cell malignancies, but resistance remains a significant problem. We recently reported that resistance could be explained, in part, by internalization of rituximab (type I anti-CD20) from the surface of certain B-cell malignancies, thus limiting engagement of natural effectors and increasing mAb consumption. Internalization of rituximab was most evident in chronic lymphocytic leukemia (CLL) and mantle cell lymphoma (MCL), but the extent of internalization was heterogeneous within each disease. Here, we show that the inhibitory FcγRIIb on target B cells promotes this process and is largely responsible for the observed heterogeneity across a range of B-cell malignancies. Internalization correlated strongly with FcγRIIb expression on normal and malignant B cells, and resulted in reduced macrophage phagocytosis of mAb-coated targets. Furthermore, transfection of FcγRIIb into FcγRIIb negative Ramos cells increased internalization of rituximab in a dose-dependent manner. Target-cell FcγRIIb promoted rituximab internalization in a cis fashion and was independent of FcγRIIb on neighboring cells. It became phosphorylated and internalized along with CD20:anti-CD20 complexes before lysosomal degradation. In MCL patients, high FcγRIIb expression predicted less durable responses after rituximab-containing regimens. Therefore, target-cell FcγRIIb provides a potential biomarker of response to type I anti-CD20 mAb.
Collapse
MESH Headings
- Antibodies, Monoclonal, Murine-Derived/administration & dosage
- Antibodies, Monoclonal, Murine-Derived/immunology
- Antibodies, Monoclonal, Murine-Derived/metabolism
- Antibodies, Neoplasm/administration & dosage
- Antibodies, Neoplasm/immunology
- Antibodies, Neoplasm/metabolism
- Antigen-Antibody Complex/metabolism
- Antigens, CD20/immunology
- Antigens, CD20/metabolism
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/metabolism
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Biomarkers
- Cell Line, Tumor/immunology
- Cell Line, Tumor/metabolism
- Drug Resistance, Neoplasm/physiology
- Endocytosis/physiology
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Lymphoma, B-Cell/immunology
- Lymphoma, B-Cell/pathology
- Lymphoma, Mantle-Cell/drug therapy
- Lymphoma, Mantle-Cell/pathology
- Lysosomes/metabolism
- Macrophages/physiology
- Phagocytosis
- Phosphorylation
- Protein Processing, Post-Translational
- Receptors, IgG/genetics
- Receptors, IgG/metabolism
- Recombinant Fusion Proteins/metabolism
- Rituximab
- Transfection
- Treatment Outcome
Collapse
Affiliation(s)
- Sean H Lim
- Tenovus Research Laboratory, Cancer Sciences Division, Southampton University School of Medicine, General Hospital, Southampton, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Iwanaga R, Sugita N, Hirano E, Sasahara J, Kikuchi A, Tanaka K, Yoshie H. FcγRIIB polymorphisms, periodontitis and preterm birth in Japanese pregnant women. J Periodontal Res 2011; 46:292-302. [DOI: 10.1111/j.1600-0765.2010.01338.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Abstract
PURPOSE OF REVIEW We summarize current information on Fc receptor-mediated antiviral activities of antibodies. These activities include Fcgamma receptor-mediated inhibition and neutralization of HIV on antigen-presenting cells, antibody-dependent cellular cytotoxicity, and antibody-dependent cell-mediated virus inhibition (ADCVI). RECENT FINDINGS An Fcgamma receptor-mediated mechanism that results in augmented neutralization and may render nonneutralizing antibodies inhibitory has been demonstrated in antigen-presenting cell. Antibody-dependent cellular cytotoxicity antibody activity correlates inversely with HIV disease progression in humans, and higher vaccine-induced antibody-dependent cellular cytotoxicity antibody responses are associated with lower acute simian immunodeficiency virus viremia levels in macaques. Following vaccination with rgp120, ADCVI antibody levels are higher among those with a lower rate of sexually acquired HIV infection. Nonneutralizing simian immunodeficiency virus immune serum that prevents infection of newborn macaques after oral challenge has potent ADCVI antibody activity. Abrogating the ability of the Fc segment of the broadly neutralizing mAb b12 to bind to Fcgamma receptors and to mediate ADCVI substantially reduces b12's protective effect in a simian/human immunodeficiency virus vaginal challenge model. SUMMARY Fc-FcgammaR interactions play a critical role in the biological function of antibody and are likely to be instrumental in preventing or modulating lentiviral infection. Exploiting antibody responses that depend on Fc-FcgammaR interactions may help widen the breadth and increase the potency of vaccine-induced antibody. Although the importance of generating optimal Fab-antigen interactions cannot be overestimated, improving Fc-FcgammaR interactions through adjuvants or other strategies provides another option for improving HIV vaccines and immunotherapies.
Collapse
|
22
|
Honma Y, Sugita N, Kobayashi T, Abiko Y, Yoshie H. Lower antibody response toPorphyromonas gingivalisassociated with immunoglobulin G Fcγ receptor IIBpolymorphism. J Periodontal Res 2008; 43:706-11. [DOI: 10.1111/j.1600-0765.2007.01078.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
23
|
Mousavi SA, Sporstøl M, Fladeby C, Kjeken R, Barois N, Berg T. Receptor-mediated endocytosis of immune complexes in rat liver sinusoidal endothelial cells is mediated by FcgammaRIIb2. Hepatology 2007; 46:871-884. [PMID: 17680646 DOI: 10.1002/hep.21748] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
UNLABELLED Liver sinusoidal endothelial cells (LSECs) display a number of receptors for efficient uptake of potentially injurious molecules. The receptors for the Fc portion of immunoglobulin G (IgG) antibodies (FcgammaRs) regulate a number of physiological and pathophysiological events. We used reverse transcription polymerase chain reaction (RT-PCR) and Western blotting to determine the expression of different types of FcgammaRs in LSECs. Biochemical approaches and immunofluorescence microscopy were used to characterize the FcgammaR-mediated endocytosis of immune complexes (ICs). FcgammaRIIb2 was identified as the main receptor for the efficient uptake of ICs in LSECs. The receptor was shown to use the clathrin pathway for IC uptake; however, the association with lipid rafts may slow the rate of its internalization. Moreover, despite trafficking through lysosomal integral membrane protein-II (LIMP-II)-containing compartments, the receptor was not degraded. Finally, it was shown that the receptor recycles to the cell surface both with and without IC. CONCLUSION FcgammaRIIb2 is the main receptor for endocytosis of ICs in rat LSECs. Internalized ICs are degraded with slow kinetics, and IC internalization is not linked to receptor downregulation. After internalization, the receptor recycles to the cell surface both with and without ICs. Thus, FcgammaRIIb2 in rat LSECs is used as both a recycling receptor and a receptor for efficient IC clearance.
Collapse
|
24
|
Su K, Yang H, Li X, Li X, Gibson AW, Cafardi JM, Zhou T, Edberg JC, Kimberly RP. Expression profile of FcgammaRIIb on leukocytes and its dysregulation in systemic lupus erythematosus. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2007; 178:3272-80. [PMID: 17312177 PMCID: PMC2824439 DOI: 10.4049/jimmunol.178.5.3272] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
FcgammaRIIb (CD32B, Online Mendelian Inheritance in Man 604590), an IgG FcR with a tyrosine-based inhibitory motif, plays a critical role in the balance of tolerance and autoimmunity in murine models. However, the high degree of homology between FcgammaRIIb and FcgammaRIIa in humans and the lack of specific Abs to differentiate them have hampered study of the normal expression profile of FcgammaRIIb and its potential dysregulation in autoimmune diseases such as systemic lupus erythematosus (SLE). Using our newly developed anti-FcgammaRIIb mAb 4F5 which does not react with FcgammaRIIa, we found that FcgammaRIIb is expressed on the cell surface of circulating B lymphocytes, monocytes, neutrophils, myeloid dendritic cells (DCs), and at very low levels on plasmacytoid DCs from some donors. Normal donors with the less frequent 2B.4 promoter haplotype have higher FcgammaRIIb expression on monocytes, neutrophils, and myeloid DCs similar to that reported for B lymphocytes, indicating that FcgammaRIIb expression on both myeloid and lymphoid cells is regulated by the naturally occurring regulatory single nucleotide polymorphisms in the FCGR2B promoter. FcgammaRIIb expression in normal controls is up-regulated on memory B lymphocytes compared with naive B lymphocytes. In contrast, in active SLE, FcgammaRIIb is significantly down-regulated on both memory and plasma B lymphocytes compared with naive and memory/plasma B lymphocytes from normals. Similar down-regulation of FcgammaRIIb on myeloid-lineage cells in SLE was not seen. Our studies demonstrate the constitutive regulation of FcgammaRIIb by natural gene polymorphisms and the acquired dysregulation in SLE autoimmunity, which may identify opportunities for using this receptor as a therapeutic target.
Collapse
MESH Headings
- Animals
- Antigens, CD/biosynthesis
- Antigens, CD/genetics
- Antigens, CD/immunology
- Autoimmunity/genetics
- Female
- Gene Expression Regulation/immunology
- Humans
- Leukocytes/immunology
- Leukocytes/metabolism
- Leukocytes/pathology
- Lupus Erythematosus, Systemic/genetics
- Lupus Erythematosus, Systemic/immunology
- Lupus Erythematosus, Systemic/metabolism
- Lupus Erythematosus, Systemic/pathology
- Lupus Erythematosus, Systemic/therapy
- Male
- Mice
- Polymorphism, Single Nucleotide/immunology
- Promoter Regions, Genetic
- Receptors, IgG/biosynthesis
- Receptors, IgG/genetics
- Receptors, IgG/immunology
Collapse
Affiliation(s)
- Kaihong Su
- Division of Clinical Immunology and Rheumatology, Departments of Medicine, Cell Biology, and Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Hengxuan Yang
- Division of Clinical Immunology and Rheumatology, Departments of Medicine, Cell Biology, and Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Xinrui Li
- Division of Clinical Immunology and Rheumatology, Departments of Medicine, Cell Biology, and Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Xiaoli Li
- Division of Clinical Immunology and Rheumatology, Departments of Medicine, Cell Biology, and Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Andrew W. Gibson
- Division of Clinical Immunology and Rheumatology, Departments of Medicine, Cell Biology, and Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - John M. Cafardi
- Division of Clinical Immunology and Rheumatology, Departments of Medicine, Cell Biology, and Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Tong Zhou
- Division of Clinical Immunology and Rheumatology, Departments of Medicine, Cell Biology, and Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Jeffrey C. Edberg
- Division of Clinical Immunology and Rheumatology, Departments of Medicine, Cell Biology, and Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Robert P. Kimberly
- Division of Clinical Immunology and Rheumatology, Departments of Medicine, Cell Biology, and Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
25
|
Isnardi I, Bruhns P, Bismuth G, Fridman WH, Daëron M. The SH2 domain-containing inositol 5-phosphatase SHIP1 is recruited to the intracytoplasmic domain of human FcγRIIB and is mandatory for negative regulation of B cell activation. Immunol Lett 2006; 104:156-65. [PMID: 16406061 DOI: 10.1016/j.imlet.2005.11.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Revised: 11/22/2005] [Accepted: 11/22/2005] [Indexed: 10/25/2022]
Abstract
Murine FcgammaRIIB were demonstrated to recruit SH2 domain-containing inositol 5-phosphatases (SHIP1/2), when their ITIM is tyrosyl-phosphorylated upon co-aggregation with BCR, and SHIP1 to account for FcgammaRIIB-dependent negative regulation of murine B cell activation. Although human FcgammaRIIB share the same ITIM as murine FcgammaRIIB and similarly inhibit human B cell activation, which among the four known SH2 domain-containing (tyrosine or inositol) phosphatases is/are recruited by human FcgammaRIIB is unclear. Our recent finding that, besides the ITIM, a second tyrosine-based motif is mandatory for murine FcgammaRIIB to recruit SHIP1 challenged the possibility that human FcgammaRIIB recruit this phosphatase. Human FcgammaRIIB indeed lack this motif. Using an experimental model which enabled us to compare human FcgammaRIIB and murine FcgammaRIIB under strictly controlled conditions, we show that SHIP1 is recruited to the intracytoplasmic domain of human FcgammaRIIB and inhibits the same biological responses and intracellular signals as when recruited by murine FcgammaRIIB. Identical results were observed in murine and in human B cells. We demonstrate that SHIP is necessary for human FcgammaRIIB to inhibit BCR signaling, and cannot be replaced by SHP-1 or SHP-2. Although it contains no tyrosine, the C-terminal segment of human FcgammaRIIB was as mandatory as the tyrosine-containing C-terminal segment of murine FcgammaRIIB for SHIP1 to be recruited to the ITIM. This segment, however, did not recruit the adapters Grb2/Grap which were demonstrated to stabilize the recruitment of SHIP1 to the ITIM in murine FcgammaRIIB.
Collapse
Affiliation(s)
- Isabelle Isnardi
- Unité d' Allergologie Moléculaire et Cellulaire, Département d'Immunologie, Institut Pasteur, 75015 Paris, France
| | | | | | | | | |
Collapse
|
26
|
Joshi T, Ganesan LP, Cao X, Tridandapani S. Molecular analysis of expression and function of hFcgammaRIIbl and b2 isoforms in myeloid cells. Mol Immunol 2005; 43:839-50. [PMID: 16051361 DOI: 10.1016/j.molimm.2005.06.037] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2005] [Indexed: 10/25/2022]
Abstract
The inhibitory receptor FcgammaRIIb becomes tyrosine phosphorylated and associates with the inositol phosphatase SHIP to downregulate phagocytosis. The two splice variants of FcgammaRIIb, b1 and b2, are differentially expressed in hematopoetic cells. Both isoforms of FcgammaRIIb are expressed in human myeloid cells although FcgammaRIIb2 predominates. In murine B cells FcgammaRIIb2 associates with clathrin-coated pits and undergoes endocytosis, whereas FcgammaRIIbl is excluded from the coated pits, indicating that the two isoforms serve partially differing functions. In humans, there are conflicting reports with regard to the ability of FcgammaRIIb2 to become tyrosine phosphorylated, and the functional capacities of the two isoforms are poorly understood. We, and others, have previously reported that the expression of FcgammaRIIb is upregulated in human monocytes by the anti-inflammatory cytokine IL-4. Here, we extend these findings to demonstrate that the IL-4-induced upregulation of FcgammaRIIb is synergistically enhanced by the addition of IL-10, both at the protein and the mRNA level. The upregulated receptors are functional as assessed by their ability to become tyrosine phosphorylated and to downregulate phagocytosis. Interestingly, both b1 and b2 isoforms are upregulated by anti-inflammatory cytokines. Transfection experiments expressing human FcgammaRIIbl or b2 in Raw 264.7 murine macrophage cells revealed that both isoforms are tyrosine phosphorylated and promote SHIP phosphorylation. Finally, both b1 and b2 isoforms of FcgammaRIIb downregulate phagocytosis to a similar extent. Thus we conclude that FcgammaRIIbl and b2 are both functional inhibitory receptors in the phagocytic process.
Collapse
Affiliation(s)
- Trupti Joshi
- The Ohio State University Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
27
|
Yasuda K, Sugita N, Kobayashi T, Yamamoto K, Yoshie H. FcgammaRIIB gene polymorphisms in Japanese periodontitis patients. Genes Immun 2004; 4:541-6. [PMID: 14647193 DOI: 10.1038/sj.gene.6364021] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Human type II low-affinity receptor for immunoglobulin G (FcgammaRII) constitutes a clustered gene family consisting of FcgammaRIIA, IIB and IIC genes. FcgammaRIIB is unique in its ability to transmit inhibitory signals in B cells via immunoreceptor tyrosine-based inhibitory motif (ITIM). B-cell activation and subsequent elevated production of IgG are the immunopathological features of inflammatory disease such as periodontitis. To determine whether an association with periodontitis susceptibility exists, genetic polymorphisms of FcgammaRIIB were examined in Japanese patients with aggressive periodontitis (AGP) and chronic periodontitis (CP), and in the race-matched healthy controls (HCs). A significant difference was observed in the distribution of FcgammaRIIB-232I/T allele (exon 5) between the AGP and HC groups, with enrichment of the 232T in the AGP group (P=0.006). In addition, the FcgammaRIIB-nt 646-184A/G allele (intron 4) distribution was significantly different between the CP and HC groups, with enrichment of the nt 646-184A in the CP group (P=0.011). These results document the association of FcgammaRIIB gene polymorphisms with susceptibility to periodontitis in the Japanese.
Collapse
Affiliation(s)
- K Yasuda
- Division of Periodontology, Department of Oral Biological Science, Niigata University, Graduate School of Medical and Dental Sciences, Gakkocho-Dori, Niigata, Japan
| | | | | | | | | |
Collapse
|
28
|
Kepley CL, Taghavi S, Mackay G, Zhu D, Morel PA, Zhang K, Ryan JJ, Satin LS, Zhang M, Pandolfi PP, Saxon A. Co-aggregation of FcgammaRII with FcepsilonRI on human mast cells inhibits antigen-induced secretion and involves SHIP-Grb2-Dok complexes. J Biol Chem 2004; 279:35139-49. [PMID: 15151996 DOI: 10.1074/jbc.m404318200] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Signaling through the high affinity IgE receptor FcepsilonRI on human basophils and rodent mast cells is decreased by co-aggregating these receptors to the low affinity IgG receptor FcgammaRII. We used a recently described fusion protein, GE2, which is composed of key portions of the human gamma1 and the human epsilon heavy chains, to dissect the mechanisms that lead to human mast cell and basophil inhibition through co-aggregation of FcgammaRII and FcepsilonRI. Unstimulated human mast cells derived from umbilical cord blood express the immunoreceptor tyrosine-based inhibitory motif-containing receptor FcgammaRII but not FcgammaRI or FcgammaRIII. Interaction of the mast cells with GE2 alone did not cause degranulation. Co-aggregating FcepsilonRI and FcgammaRII with GE2 1) significantly inhibited IgE-mediated histamine release, cytokine production, and Ca(2+) mobilization, 2) reduced the antigen-induced morphological changes associated with mast cell degranulation, 3) reduced the tyrosine phosphorylation of several cellular substrates, and 4) increased the tyrosine phosphorylation of the adapter protein downstream of kinase 1 (p62(dok); Dok), growth factor receptor-bound protein 2 (Grb2), and SH2 domain containing inositol 5-phosphatase (SHIP). Tyrosine phosphorylation of Dok was associated with increased binding to Grb2. Surprisingly, in non-stimulated cells, there were complexes of phosphorylated SHIP-Grb2-Dok that were lost upon IgE receptor activation but retained under conditions of Fcepsilon-Fcgamma co-aggregation. Finally, studies using mast cells from Dok-1 knock-out mice showed that IgE alone triggers degranulation supporting an inhibitory role for Dok degranulation. Our results demonstrate how human FcepsilonRI-mediated responses can be inhibited by co-aggregation with FcgammaRIIB and implicate Dok, SHIP, and Grb2 as key intermediates in regulating antigen-induced mediator release.
Collapse
Affiliation(s)
- Christopher L Kepley
- Department of Internal Medicine, Virginia Commonwealth University Health Systems, Richmond, Virginia 23298, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Kwiatkowska K, Frey J, Sobota A. Phosphorylation of FcgammaRIIA is required for the receptor-induced actin rearrangement and capping: the role of membrane rafts. J Cell Sci 2003; 116:537-50. [PMID: 12508114 DOI: 10.1242/jcs.00254] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Activation of Fcgamma receptor II (FcgammaRII) induces rearrangement of the actin-based cytoskeleton that serves as a driving force for FcgammaRII-mediated phagocytosis and FcgammaRII capping. To get insight into the signaling events that lead to the actin reorganization we investigated the role of raft-associated Src family tyrosine kinases in capping of FcgammaRII in U937 cells. After crosslinking, FcgammaRII was found to be recruited to detergent-resistant membrane domains (DRMs), rafts, where it coexisted with Lyn kinase and underwent tyrosine phosphorylation. Lyn was displaced from DRMs under the influence of DL-alpha-hydroxymyristic acid and 2-bromopalmitic acid, agents blocking N-terminal myristoylation and palmitoylation of proteins, respectively, and after disruption of DRM integrity by depletion of plasma membrane cholesterol with beta-cyclodextrin. Under these conditions, phosphorylation of the crosslinked FcgammaRII was diminished and assembly of FcgammaRII caps was blocked. The similar reduction of FcgammaRII cap formation correlated with inhibition of receptor phosphorylation was achieved with the use of PP1 and herbimycin A, specific inhibitors of Src family tyrosine kinases. Phosphorylation of FcgammaRIIA expressed in BHK cells, lacking endogenous FcgammaRs, was abolished by substitution of tyrosine 298 by phenylalanine in the ITAM of the receptor. The mutant receptor did not undergo translocation towards cap-like structures and failed to promote the receptor-mediated spreading of the cells, as compared to BHK cells transfected with the wild-type FcgammaRIIA. On the basis of these data, we suggest that tyrosine phosphorylation of activated FcgammaRIIA by raft-residing tyrosine kinases of the Src family triggers signaling pathways that control the rearrangement of the actin cytoskeleton required for FcgammaRII-mediated motility.
Collapse
Affiliation(s)
- Katarzyna Kwiatkowska
- Department of Cell Biology, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093 Warsaw, Poland. Universität Bielefeld, Fakultät für Chemie, Biochemie II, 33615 Bielefeld, Germany
| | | | | |
Collapse
|
30
|
Abstract
Research on 'molecular immunology-gene regulation and signal transduction' in veterinary species is relatively new. The reason for its novelty is that until recently there have been very few tools with which we can work. Over the last 10 years the veterinary immunology community has succeeded in generating panels of defined monoclonal antibodies (mAb) and cloned genes that has enabled such work to be started. More recently, quantitative, high-resolution analytical tools for veterinary species have begun to be developed; some of these are specific for veterinary species and others have been adapted from human or rodent systems. Of the species-specific tools that have recently been developed perhaps the most widely used are the immunoassays for cytokines, RNAase protection assays (RPAs) and in the near future oligonucleotide and EST-based microarrays. This presentation will describe some of these assays and discuss their relative advantages and disadvantages.
Collapse
Affiliation(s)
- John Hopkins
- Department of Veterinary Pathology, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Summerhall, Edinburgh EH9 1QH, UK.
| |
Collapse
|
31
|
Chen W, Palanisamy N, Schmidt H, Teruya-Feldstein J, Jhanwar SC, Zelenetz AD, Houldsworth J, Chaganti RS. Deregulation of FCGR2B expression by 1q21 rearrangements in follicular lymphomas. Oncogene 2001; 20:7686-93. [PMID: 11753646 DOI: 10.1038/sj.onc.1204989] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2001] [Revised: 08/22/2001] [Accepted: 09/18/2001] [Indexed: 11/09/2022]
Abstract
We report here the molecular cloning and characterization of a t(1;14)(q21;q32) in a follicular lymphoma (FL) with an unusual BCL2 aberration. Fluorescence in situ hybridization (FISH) and Southern blot analysis of tumor cells identified the translocation breakpoint within the 5' switch region of IGHG (Sgamma). We cloned the chimeric breakpoint region approximately 1.5 kbp downstream from the HindIII site of 5'Sgamma2 on chromosome 14q32 and identified a 360-bp novel segment with homology to the CpG island clone 11h8. Two BAC clones containing this sequence were isolated and mapped to 1q21 by FISH. BAC 342/P13 contained sequences homologous to Fcgamma receptors 2A, 3A, 2B, 3B, and a heat shock protein gene HSP70B. The translocation brought the Sgamma2 region of a productive IGH allele 20 approximately 30 kbp upstream of FCGR2B. As a result of the translocation, the b2 isoform of FCGR2B was overexpressed in the tumor. Screening of a panel of 76 B-cell lymphomas with 1q21-23 cytogenetic aberrations by Southern blot analysis using breakpoint probes identified an additional FL with a t(14;18)(q32;q21) and a breakpoint in the FCGR2B region. These results suggest that FCGR2B may be deregulated by 1q21 aberration in BCL2 rearranged FLs and possibly play a role in their progression.
Collapse
MESH Headings
- Adult
- Antigens, CD/genetics
- Blotting, Southern/methods
- Chromosome Aberrations
- Chromosomes, Human, Pair 1
- Chromosomes, Human, Pair 14
- Cloning, Molecular
- Female
- Gene Expression Regulation
- Gene Rearrangement
- Humans
- In Situ Hybridization, Fluorescence/methods
- Lymphoma, Follicular/genetics
- Lymphoma, Non-Hodgkin/genetics
- Mutagenesis, Insertional
- Proto-Oncogene Proteins c-bcl-2/genetics
- Receptors, IgG/genetics
- Translocation, Genetic
Collapse
Affiliation(s)
- W Chen
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Yasuda K, Sugita N, Yamamoto K, Kobayashi T, Yoshie H. Seven single nucleotide substitutions in human Fc(gamma) receptor IIB gene. TISSUE ANTIGENS 2001; 58:339-42. [PMID: 11844146 DOI: 10.1034/j.1399-0039.2001.580509.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Variation screening for the immunoglobulin G Fc receptor IIB (Fc(gamma)RIIB) gene was performed with the genomic DNA from 100 healthy Japanese subjects. We identified 3 non-synonymous and 2 synonymous substitutions and 2 single-nucleotide polymorphisms in an intron region. These substitutions were found to be located in the ligand-binding domain and the intron, which might alter the function of Fc(gamma)RIIb.
Collapse
Affiliation(s)
- K Yasuda
- Division of Periodontology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | | | | | | | |
Collapse
|
33
|
Pricop L, Redecha P, Teillaud JL, Frey J, Fridman WH, Sautès-Fridman C, Salmon JE. Differential modulation of stimulatory and inhibitory Fc gamma receptors on human monocytes by Th1 and Th2 cytokines. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:531-7. [PMID: 11123333 DOI: 10.4049/jimmunol.166.1.531] [Citation(s) in RCA: 178] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Immune complex-mediated inflammatory responses are initiated by Fc gamma R on phagocytes. We report in this study that an inhibitory receptor, Fc gamma RIIb2, is expressed on circulating human monocytes, and when co-cross-linked with stimulatory Fc gamma R it down-regulates effector function. Fc gamma RIIb2 expression is increased by IL-4 and decreased by IFN-gamma, in contrast to the activating receptor, Fc gamma RIIa, which is increased by IFN-gamma and decreased by IL-4. Thus, Th1 and Th2 cytokines differentially regulate the opposing Fc gamma R systems, altering the balance of activating and inhibiting Fc gamma R. The detection and cytokine modulation of Fc gamma RIIb2 in human myeloid cells provide evidence of a negative regulator of immune complex-mediated responses in human phagocytes and offer a new approach to limit Ab-triggered inflammation in autoimmune disease.
Collapse
MESH Headings
- Adjuvants, Immunologic/antagonists & inhibitors
- Adjuvants, Immunologic/biosynthesis
- Adjuvants, Immunologic/genetics
- Adjuvants, Immunologic/physiology
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Blotting, Western
- Cells, Cultured
- Cytokines/physiology
- Humans
- Interferon-gamma/pharmacology
- Interleukin-4/pharmacology
- Monocytes/immunology
- Monocytes/metabolism
- Neutrophils/immunology
- Neutrophils/metabolism
- Phagocytosis/immunology
- Protein Isoforms/biosynthesis
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Receptor Aggregation/immunology
- Receptors, IgG/antagonists & inhibitors
- Receptors, IgG/biosynthesis
- Receptors, IgG/genetics
- Receptors, IgG/metabolism
- Receptors, IgG/physiology
- Reverse Transcriptase Polymerase Chain Reaction
- Th1 Cells/immunology
- Th1 Cells/metabolism
- Th2 Cells/immunology
- Th2 Cells/metabolism
- Transcription, Genetic/immunology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- L Pricop
- Department of Medicine, Hospital for Special Surgery and Weill Medical College of Cornell University, New York, NY 10021, USA.
| | | | | | | | | | | | | |
Collapse
|
34
|
Minskoff SA, Matter K, Mellman I. Cutting Edge: FcγRII-B1 Regulates the Presentation of B Cell Receptor-Bound Antigens. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.5.2079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Fcγ receptors (FcγRII) on B lymphocytes negatively regulate B cell receptor (BCR)-dependent activation upon cross-linking of the two receptors. The mechanism reflects the ability of the FcγRII cytoplasmic tail to recruit specific phosphatases that inactivate elements of the BCR-signaling cascade. We now show that cross-linking also blocks the processing and presentation of BCR-bound Ag. This occurs because the FcγRII isoform typically expressed by B cells (FcγRII-B1) is incompetent for endocytosis. When cross-linked, FcγRII-B1 acts as a dominant negative inhibitor of BCR endocytosis. In contrast, cross-linking of endocytosis-competent FcγRII isoforms did not inhibit endocytosis or processing of BCR-bound Ag. Thus, FcγRII-B1 acts not only to prevent B cell activation under conditions of Ab excess, but also to prevent clonotypic T cell activation by inhibiting the ability of B cells to generate specific MHC class II-bound TCR ligands.
Collapse
Affiliation(s)
- Stacey A. Minskoff
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520
| | - Karl Matter
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520
| | - Ira Mellman
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520
| |
Collapse
|
35
|
Abstract
Fc gamma receptors type IIb1 (Fc gammaRIIb1) inhibit B-cell activation when co-ligated with B-cell antigen receptors (BCR) by immune complexes. In murine B-cells the inhibition is mediated by the interaction of the phosphorylated immunoreceptor tyrosine-based inhibitory motif (P-ITIM) of Fc gammaRIIb1 with the SH2 domain containing protein tyrosine phosphatase. SHP1. To clarify the mechanism of Fc gammaRIIb mediated inhibition of human B-cells we have studied the association of signaling molecules with human Fc gammaRIIb1 after co-ligating with BCR. Fc gammaRIIb1 were affinity purified from the Burkitt lymphoma cell line, BL41. Several tyrosine phosphorylated proteins were co-isolated with Fc gammaRIIb1 at 145, 110, and 50 60 kDa, which were not present in Fc gammaRIIb1 free immune complexes. Among these molecules we have identified the p52 Shc adaptor protein. Furthermore, we have shown that the insolubilised synthetic peptide corresponding P-ITIM bound Shc, Lyn and the p75 and p 10 unidentified tyrosine phosphorylated proteins. Here we describe that the cell membrane associated Shc is partially dephosphorylated in BCR-Fc gammaRIIb1 co-ligated samples, suggesting that its function in regulating p21ras monomeric G protein is impaired. Indeed, we have detected a lower p21ras activity in BCR-Fc gammaRIIb1 co-crosslinked samples. These data indicate that co-ligation of BCR and Fc gammaRIIb1 interrupts signal transduction between protein tyrosine kinase activation and p21ras mediated activation pathway. Since in contrast to the mouse B-cells both Fc gammaRIIb1 and Fc gammaRIIb2 are expressed in human B-cells, we have investigated the inhibitory function of the two receptors in Fc gammaRIIb negative Burkitt lymphoma cell line ST486 transfected with Fc gammaRIIb1 and Fc gammaRIIb2, respectively. Both Fc gammaRIIb1 and Fc gammaRIIb2 inhibited the rise of intracellular Ca2+ induced by the crosslinking of BCR. The rate of the inhibition depended on the ratio of the co-crosslinked receptors (BCR-Fc gammaRIIb1) to the crosslinked BCR (BCR-BCR). Co-crosslinking of the two receptors inhibited not only the capacitive Ca2+ entry but rather the total Ca2+ response in both Fc gammaRIIb1 and Fc gammaRIIb2 transfected human B-cells. CD19 represents the signal transduction unit of complement receptor, CR2 (CD21), and is responsible for the complement activating IgM-immune complex induced enhancement of B-cell activation. Co-crosslinking of CD19 and BCR was shown to enhance B-cell activation due to the recruitment of further signaling molecules to the activator complex by the phosphorylated tyrosine residues of CD19. Here we show a novel finding that co-ligation of CD19 with Fc gammaRIIb1 inhibits the CD19-induced upregulation of Ca2+ response. The results indicate that IgG plus complement containing immune complexes may inhibit B-cell activation in vivo, due to the Fc gammaRIIb1-mediated interruption of signal transduction via both BCR and CD19.
Collapse
Affiliation(s)
- G Sármay
- Lorand Eotvos University, Department of Immunology, God, Hungary
| | | | | |
Collapse
|
36
|
Sármay G, Koncz G, Gergely J. Human type II Fcgamma receptors inhibit B cell activation by interacting with the p21(ras)-dependent pathway. J Biol Chem 1996; 271:30499-504. [PMID: 8940017 DOI: 10.1074/jbc.271.48.30499] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Co-ligation of antigen receptors and type II Fcgamma receptors (FcgammaRIIb) on B cells interrupts signal transduction and ultimately inhibits antibody production. We have identified p52 Shc in the FcgammaRIIb1-specific immunoprecipitates isolated from the membrane fraction of BL41 Burkitt lymphoma cells following B cell receptor-FcgammaRIIb1 co-ligation. The insolubilized synthetic peptide representing the phosphorylated form of the tyrosine-based inhibitory motif of FcgammaRIIb also binds Shc from the lysates of activated but not from resting BL41 cells. This suggests that the binding does not depend on the interaction of FcgammaRIIb1-phosphotyrosine with the SH2 domain of Shc. Tyr phosphorylation of FcgammaRIIb1-associated Shc is low, indicating an impaired function. Shc is implicated in regulating p21(ras) activation; thus, we have compared p21(ras) activities in BL41 cells treated in different ways. p21(ras) activity is reduced when B cell receptor and FcgammaRIIb1 are co-ligated. p21(ras) couples protein-tyrosine kinase-dependent events to the Ser/Thr kinase-mediated signaling pathway leading to the activation of mitogen-activated protein kinases (MAPK). Our results show that B cell receptor-FcgammaRIIb1 co-cross-linking partially inhibits mitogen-activated protein kinase activity. We conclude that FcgammaRIIb1-dependent inhibition of human B cell activation may be based on interrupting signal transduction between protein-tyrosine kinases and the p21(ras)/mitogen-activated protein kinase-dependent activation pathway.
Collapse
Affiliation(s)
- G Sármay
- Laboratory of Immunoregulation, Vienna International Research Cooperation Center at SFI, Vienna, Austria
| | | | | |
Collapse
|
37
|
Doody GM, Dempsey PW, Fearon DT. Activation of B lymphocytes: integrating signals from CD19, CD22 and Fc gamma RIIb1. Curr Opin Immunol 1996; 8:378-82. [PMID: 8793993 DOI: 10.1016/s0952-7915(96)80128-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Three accessory membrane proteins, CD19, CD22 and Fc gamma RIIb1, alter signaling through membrane immunoglobulin of B cells by binding cytosolic proteins containing SH2 domains. Recent biochemical and genetic studies have shown that these receptors enable B cells to amplify responses to certain T-cell-dependent antigens (CD19), to restrict their response to T-cell zones of secondary lymphoid organs (CD22), and to dampen their response to antigens for which IgG is already available (Fc gamma RIIb1).
Collapse
Affiliation(s)
- G M Doody
- Wellcome Trust Immunology Unit, University of Cambridge, School of Clinical Medicine, UK
| | | | | |
Collapse
|
38
|
Weinrich V, Sondermann P, Bewarder N, Wissel K, Frey J. Epitope mapping of new monoclonal antibodies recognizing distinct human FcRII (CD32) isoforms. Hybridoma (Larchmt) 1996; 15:109-16. [PMID: 8743290 DOI: 10.1089/hyb.1996.15.109] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The class II Fc gamma receptors are widely distributed on cells of the immune system. Nevertheless, the exact cell type distribution of the FcRII isoforms is still unclear because of the lack of appropriate antibodies that discriminate between the various isoforms. In this study we describe the generation and characterization of three monoclonal antibodies (MAbs) raised against recombinant human FcRIIb2 as well as a synthetic peptide (amino acids 30-39) of this receptor. Analyses of the isoform specificity of these antibodies using ELISA and Western blots revealed that the MAbs II1A5 (mIgG1) and ID2.7 (mIgM) are pan FcRII antibodies recognizing all known FcRII isoforms. In contrast, the MAb II8D2 (mIgG1) specifically reacts with FcRIIb but not with FcRIIa. The observed antibody reactivities could be confirmed by examination of the exact epitopes using overlapping 15-mer peptides spanning the entire FcRIIb2. So far these antibodies are the only ones described that detect FcRII in Western blots. Moreover, they can be used to analyze the cellular FcRII isoform distribution at the protein level, which was otherwise not possible.
Collapse
Affiliation(s)
- V Weinrich
- Universität Bielefeld, Fakultät für Chemie-Biochemie II, Germany
| | | | | | | | | |
Collapse
|