1
|
The Multifaceted Role of Epoxide Hydrolases in Human Health and Disease. Int J Mol Sci 2020; 22:ijms22010013. [PMID: 33374956 PMCID: PMC7792612 DOI: 10.3390/ijms22010013] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 12/12/2022] Open
Abstract
Epoxide hydrolases (EHs) are key enzymes involved in the detoxification of xenobiotics and biotransformation of endogenous epoxides. They catalyze the hydrolysis of highly reactive epoxides to less reactive diols. EHs thereby orchestrate crucial signaling pathways for cell homeostasis. The EH family comprises 5 proteins and 2 candidate members, for which the corresponding genes are not yet identified. Although the first EHs were identified more than 30 years ago, the full spectrum of their substrates and associated biological functions remain partly unknown. The two best-known EHs are EPHX1 and EPHX2. Their wide expression pattern and multiple functions led to the development of specific inhibitors. This review summarizes the most important points regarding the current knowledge on this protein family and highlights the particularities of each EH. These different enzymes can be distinguished by their expression pattern, spectrum of associated substrates, sub-cellular localization, and enzymatic characteristics. We also reevaluated the pathogenicity of previously reported variants in genes that encode EHs and are involved in multiple disorders, in light of large datasets that were made available due to the broad development of next generation sequencing. Although association studies underline the pleiotropic and crucial role of EHs, no data on high-effect variants are confirmed to date.
Collapse
|
2
|
Xu J, Morisseau C, Yang J, Mamatha DM, Hammock BD. Epoxide hydrolase activities and epoxy fatty acids in the mosquito Culex quinquefasciatus. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 59:41-9. [PMID: 25686802 PMCID: PMC4387068 DOI: 10.1016/j.ibmb.2015.02.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 02/05/2015] [Accepted: 02/05/2015] [Indexed: 05/27/2023]
Abstract
Culex mosquitoes have emerged as important model organisms for mosquito biology, and are disease vectors for multiple mosquito-borne pathogens, including West Nile virus. We characterized epoxide hydrolase activities in the mosquito Culex quinquefasciatus, which suggested multiple forms of epoxide hydrolases were present. We found EH activities on epoxy eicosatrienoic acids (EETs). EETs and other eicosanoids are well-established lipid signaling molecules in vertebrates. We showed EETs can be synthesized in vitro from arachidonic acids by mosquito lysate, and EETs were also detected in vivo both in larvae and adult mosquitoes by LC-MS/MS. The EH activities on EETs can be induced by blood feeding, and the highest activity was observed in the midgut of female mosquitoes. The enzyme activities on EETs can be inhibited by urea-based inhibitors designed for mammalian soluble epoxide hydrolases (sEH). The sEH inhibitors have been shown to play diverse biological roles in mammalian systems, and they can be useful tools to study the function of EETs in mosquitoes. Besides juvenile hormone metabolism and detoxification, insect epoxide hydrolases may also play a role in regulating lipid signaling molecules, such as EETs and other epoxy fatty acids, synthesized in vivo or obtained from blood feeding by female mosquitoes.
Collapse
Affiliation(s)
- Jiawen Xu
- Department of Entomology and UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Christophe Morisseau
- Department of Entomology and UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Jun Yang
- Department of Entomology and UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Dadala M Mamatha
- Department of Entomology and UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Bruce D Hammock
- Department of Entomology and UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616, USA.
| |
Collapse
|
3
|
Zhu QQ, He WH, Kong XD, Fan LQ, Zhao J, Li SX, Xu JH. Heterologous overexpression of Vigna radiata epoxide hydrolase in Escherichia coli and its catalytic performance in enantioconvergent hydrolysis of p-nitrostyrene oxide into (R)-p-nitrophenyl glycol. Appl Microbiol Biotechnol 2013; 98:207-18. [DOI: 10.1007/s00253-013-4845-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 03/03/2013] [Accepted: 03/08/2013] [Indexed: 11/25/2022]
|
4
|
Association between polymorphisms of EPHX1 and XRCC1 genes and the risk of childhood acute lymphoblastic leukemia. Arch Toxicol 2011; 86:431-9. [DOI: 10.1007/s00204-011-0760-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 09/20/2011] [Indexed: 12/20/2022]
|
5
|
Biocatalytic resolution of glycidyl phenyl ether using a novel epoxide hydrolase from a marine bacterium, Maritimibacter alkaliphilus KCCM 42376 [corrected]. J Biosci Bioeng 2010; 109:539-44. [PMID: 20471590 DOI: 10.1016/j.jbiosc.2009.11.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 11/19/2009] [Accepted: 11/26/2009] [Indexed: 11/21/2022]
Abstract
As a continuous effort of developing highly enantioselective epoxide hydrolase from marine microorganisms, it was found that Maritimibacter alkaliphilus KCCM 42376 [corrected] was highly enantioselective toward racemic glycidyl phenyl ether (GPE). An open reading frame (ORF) encoding a putative epoxide hydrolase (EHase) was cloned from the genome of Maritimibacter alkaliphilus KCCM 42376 [corrected], followed by expression and purification in Escherichia coli. The purified EHase (REH) hydrolyzed (S)-GPE preferentially over (R)-GPE. Enantiopure (R)-GPE from kinetic resolution of 29.2 mM racemic GPE using the purified REH could be obtained with enantiopurity of more than 99.9% enantiomeric excess (ee) and 38.4% yield (theoretical, 50%) within 20 min (enantiomeric ratio (E-value): 38.4). The enantioselective activity of REH toward GPE was also confirmed by the analysis of the vicinal diol, 3-phenoxy-1,2-propanediol. To our knowledge, this study demonstrates the highest enantioselective resolution of racemic GPE using a purified biocatalyst among the known native EHases.
Collapse
|
6
|
Decker M, Arand M, Cronin A. Mammalian epoxide hydrolases in xenobiotic metabolism and signalling. Arch Toxicol 2009; 83:297-318. [PMID: 19340413 DOI: 10.1007/s00204-009-0416-0] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Accepted: 02/16/2009] [Indexed: 12/14/2022]
Abstract
Epoxide hydrolases catalyse the hydrolysis of electrophilic--and therefore potentially genotoxic--epoxides to the corresponding less reactive vicinal diols, which explains the classification of epoxide hydrolases as typical detoxifying enzymes. The best example is mammalian microsomal epoxide hydrolase (mEH)-an enzyme prone to detoxification-due to a high expression level in the liver, a broad substrate selectivity, as well as inducibility by foreign compounds. The mEH is capable of inactivating a large number of structurally different, highly reactive epoxides and hence is an important part of the enzymatic defence of our organism against adverse effects of foreign compounds. Furthermore, evidence is accumulating that mammalian epoxide hydrolases play physiological roles other than detoxification, particularly through involvement in signalling processes. This certainly holds true for soluble epoxide hydrolase (sEH) whose main function seems to be the turnover of lipid derived epoxides, which are signalling lipids with diverse functions in regulatory processes, such as control of blood pressure, inflammatory processes, cell proliferation and nociception. In recent years, the sEH has attracted attention as a promising target for pharmacological inhibition to treat hypertension and possibly other diseases. Recently, new hitherto uncharacterised epoxide hydrolases could be identified in mammals by genome analysis. The expression pattern and substrate selectivity of these new epoxide hydrolases suggests their participation in signalling processes rather than a role in detoxification. Taken together, epoxide hydrolases (1) play a central role in the detoxification of genotoxic epoxides and (2) have an important function in the regulation of physiological processes by the control of signalling molecules with an epoxide structure.
Collapse
Affiliation(s)
- Martina Decker
- Institute of Pharmacology and Toxicology, University of Zürich, Winterthurer Str. 190, 8057 Zurich, Switzerland
| | | | | |
Collapse
|
7
|
Woo JH, Kang JH, Kang SG, Hwang YO, Kim SJ. Cloning and characterization of an epoxide hydrolase from Novosphingobium aromaticivorans. Appl Microbiol Biotechnol 2008; 82:873-81. [PMID: 19083233 DOI: 10.1007/s00253-008-1791-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 11/06/2008] [Accepted: 11/10/2008] [Indexed: 10/21/2022]
Abstract
A gene encoding a putative epoxide hydrolase (EHase) was identified by analyzing an open reading frame of the genome sequence of Novosphingobium aromaticivorans, retaining the conserved catalytic residues such as the catalytic triad (Asp177, Glu328, and His355) and the oxyanion hole. The enantioselective EHase gene (neh) was cloned, and the recombinant EHase could be purified to apparent homogeneity by one step of metal affinity chromatography and further characterized. The purified N. aromaticivorans enantioselective epoxide hydrolase (NEH) showed enantioselective hydrolysis toward styrene oxide, glycidyl phenyl ether, epoxybutane, and epichlorohydrin. The optimal EHase activity toward styrene oxide occurred at pH 6.5 and 45 degrees C. The purified NEH could preferentially hydrolyze (R)-styrene oxide with enantiomeric excess of more than 99% and 11.7% yield after 20-min incubation at an optimal condition. The enantioselective hydrolysis of styrene oxide was also confirmed by the analysis of the vicinal diol, 1-phenyl-1,2-ethanediol. The hydrolyzing rates of the purified NEH toward epoxide substrates were not affected by as high as 100 mM racemic styrene oxide.
Collapse
Affiliation(s)
- Jung-Hee Woo
- Marine Biotechnology Research Centre, Korea Ocean Research & Development Institute, P.O. Box 29, Ansan, 425-600, South Korea
| | | | | | | | | |
Collapse
|
8
|
Woo JH, Hwang YO, Kang SG, Lee HS, Cho JC, Kim SJ. Cloning and characterization of three epoxide hydrolases from a marine bacterium, Erythrobacter litoralis HTCC2594. Appl Microbiol Biotechnol 2007; 76:365-75. [PMID: 17541582 DOI: 10.1007/s00253-007-1011-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Revised: 04/19/2007] [Accepted: 04/23/2007] [Indexed: 11/27/2022]
Abstract
Previously, we reported that ten strains belonging to Erythrobacter showed epoxide hydrolase (EHase) activities toward various epoxide substrates. Three genes encoding putative EHases were identified by analyzing open reading frames of Erythrobacter litoralis HTCC2594. Despite low similarities to reported EHases, the phylogenetic analysis of the three genes showed that eeh1 was similar to microsomal EHase, while eeh2 and eeh3 could be grouped with soluble EHases. The three EHase genes were cloned, and the recombinant proteins (rEEH1, rEEH2, and rEEH3) were purified. The functionality of purified proteins was proved by hydrolytic activities toward styrene oxide. EEH1 preferentially hydrolyzed (R)-styrene oxide, whereas EEH3 preferred to hydrolyze (S)-styrene oxide, representing enantioselective hydrolysis of styrene oxide. On the other hand, EEH2 could hydrolyze (R)- and (S)-styrene oxide at an equal rate. The optimal pH and temperature for the EHases occurred largely at neutral pHs and 40-55 degrees C. The substrate selectivity of rEEH1, rEEH2, and rEEH3 toward various epoxide substrates were also investigated. This is the first representation that a strict marine microorganism possessed three EHases with different enantioselectivity toward styrene oxide.
Collapse
Affiliation(s)
- Jung-Hee Woo
- Marine Biotechnology Research Centre, Korea Ocean Research and Development Institute, Ansan, PO Box 29, 425-600, South Korea
| | | | | | | | | | | |
Collapse
|
9
|
Newman JW, Morisseau C, Hammock BD. Epoxide hydrolases: their roles and interactions with lipid metabolism. Prog Lipid Res 2005; 44:1-51. [PMID: 15748653 DOI: 10.1016/j.plipres.2004.10.001] [Citation(s) in RCA: 342] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The epoxide hydrolases (EHs) are enzymes present in all living organisms, which transform epoxide containing lipids by the addition of water. In plants and animals, many of these lipid substrates have potent biologically activities, such as host defenses, control of development, regulation of inflammation and blood pressure. Thus the EHs have important and diverse biological roles with profound effects on the physiological state of the host organisms. Currently, seven distinct epoxide hydrolase sub-types are recognized in higher organisms. These include the plant soluble EHs, the mammalian soluble epoxide hydrolase, the hepoxilin hydrolase, leukotriene A4 hydrolase, the microsomal epoxide hydrolase, and the insect juvenile hormone epoxide hydrolase. While our understanding of these enzymes has progressed at different rates, here we discuss the current state of knowledge for each of these enzymes, along with a distillation of our current understanding of their endogenous roles. By reviewing the entire enzyme class together, both commonalities and discrepancies in our understanding are highlighted and important directions for future research pertaining to these enzymes are indicated.
Collapse
Affiliation(s)
- John W Newman
- Department of Entomology, UCDavis Cancer Center, University of California, One Shields Avenue, Davis, CA 95616, USA
| | | | | |
Collapse
|
10
|
Linderman RJ, Roe RM, Harris SV, Thompson DM. Inhibition of insect juvenile hormone epoxide hydrolase: asymmetric synthesis and assay of glycidol-ester and epoxy-ester inhibitors of trichoplusia ni epoxide hydrolase. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2000; 30:767-774. [PMID: 10876120 DOI: 10.1016/s0965-1748(00)00048-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Juvenile hormone (JH) undergoes metabolic degradation by two major pathways involving JH esterase and JH epoxide hydrolase (EH). While considerable effort has been focussed on the study of JH esterase and the development of inhibitors for this enzyme, much less has been reported on the study of JH-EH. In this work, the asymmetric synthesis of two classes of inhibitors of recombinant JH-EH from Trichoplusia ni, a glycidol-ester series and an epoxy-ester series is reported. The most effective glycidol-ester inhibitor, compound 1, exhibited an I(50) of 1.2x10(-8) M, and the most effective epoxy-ester inhibitor, compound 11, exhibited an I(50) of 9.4x10(-8) M. The potency of the inhibitors was found to be dependent on the absolute configuration of the epoxide. In both series of inhibitors, the C-10 R-configuration was found to be significantly more potent that the corresponding C-10 S-configuration. A mechanism for epoxide hydration catalyzed by insect EH is also presented.
Collapse
Affiliation(s)
- R J Linderman
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA.
| | | | | | | |
Collapse
|
11
|
Viezzer C, Norppa H, Clonfero E, Gabbani G, Mastrangelo G, Hirvonen A, Celotti L. Influence of GSTM1, GSTT1, GSTP1, and EPHX gene polymorphisms on DNA adduct level and HPRT mutant frequency in coke-oven workers. Mutat Res 1999; 431:259-69. [PMID: 10635992 DOI: 10.1016/s0027-5107(99)00169-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To evaluate the influence of individual susceptibility factors on the level of polyaromatic (PAH) hydrocarbon DNA adducts and hypoxanthine guanine phosphoribosyl transferase (HPRT) mutants in peripheral lymphocytes, 70 coke-oven workers exposed to PAH were genotyped for four metabolic enzyme polymorphisms of potential importance in PAH metabolism. The examined genetic polymorphisms concerned glutathione S-transferases M1 (GSTM1; gene deletion; 96 workers), T1 (GSTT1; gene deletion), P1 (GSTP1; Ile-->Val substitution at codon 104 or Ile-->Val at codon 104 and Val-->Ala at codon 113), and microsomal epoxide hydrolase (EPHX; Tyr-->His substitution at codon 113 and His-->Arg at codon 139). The workers were classified in a high- and low-exposure group on the basis of urinary concentration of 1-pyrenol. The GSTM1 null genotype increased the number of DNA adducts in smoking coke-oven workers with high PAH exposure. DNA adducts were affected by PAH-exposure in non-smokers and in GSTM1 null smokers and by smoking in GSTM1 null individuals. In a multiple linear regression analysis, the interaction of the GSTM1 genotype was statistically significant (p = 0.04) with smoking (yes/no) and of borderline significance (p = 0.06) with PAH-exposure (high/low). As smoking also increased urinary 1-pyrenol, the genotype modification seemed to concern DNA adducts due to smoking rather than occupational exposure. GSTT1 positive individuals showed an elevated level of DNA adducts in comparison with GSTT1 null subjects (p = 0.04), and EPHX genotypes associated with slow hydroxylation reaction yielded a higher (p = 0.05) HPRT mutant frequency than fast EPHX genotypes; these findings were, however, based on small numbers of subjects and need to be clarified in further studies. In conclusion, our findings indicate that homozygous deletion of GSTM1 results in an increased sensitivity to genotoxic PAHs in tobacco smoke, which is seen as an increase in aromatic DNA adducts in blood mononuclear cells.
Collapse
Affiliation(s)
- C Viezzer
- Department of Biology, University of Padova, Italy
| | | | | | | | | | | | | |
Collapse
|
12
|
Miyata M, Kudo G, Lee YH, Yang TJ, Gelboin HV, Fernandez-Salguero P, Kimura S, Gonzalez FJ. Targeted disruption of the microsomal epoxide hydrolase gene. Microsomal epoxide hydrolase is required for the carcinogenic activity of 7,12-dimethylbenz[a]anthracene. J Biol Chem 1999; 274:23963-8. [PMID: 10446164 DOI: 10.1074/jbc.274.34.23963] [Citation(s) in RCA: 151] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Microsomal epoxide hydrolase (mEH) is a conserved enzyme that is known to hydrolyze many drugs and carcinogens, and a few endogenous steroids and bile acids. mEH-null mice were produced and found to be fertile and have no phenotypic abnormalities thus indicating that mEH is not critical for reproduction and physiological homeostasis. mEH has also been implicated in participating in the metabolic activation of polycyclic aromatic hydrocarbon carcinogens. Embryonic fibroblast derived from the mEH-null mice were unable to produce the proximate carcinogenic metabolite of 7,12-dimethylbenz[a]anthracene (DMBA), a widely studied experimental prototype for the polycylic aromatic hydrocarbon class of chemical carcinogens. They were also resistant to DMBA-mediated toxicity. Using the two-stage initiation-promotion skin cancer bioassay, the mEH-null mice were found to be highly resistant to DMBA-induced carcinogenesis. In a complete carcinogenesis bioassay, the mEH mice were totally resistant to tumorigenesis. These data establish in an intact animal model that mEH is a key genetic determinant in DMBA carcinogenesis through its role in production of the ultimate carcinogenic metabolite of DMBA, the 3,4-diol-1,2-epoxide.
Collapse
Affiliation(s)
- M Miyata
- Laboratory of Metabolism, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
VanHook Harris S, Marin Thompson D, Linderman RJ, Tomalski MD, Roe RM. Cloning and expression of a novel juvenile hormone-metabolizing epoxide hydrolase during larval-pupal metamorphosis of the cabbage looper, Trichoplusia ni. INSECT MOLECULAR BIOLOGY 1999; 8:85-96. [PMID: 9927177 DOI: 10.1046/j.1365-2583.1999.810085.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A full-length cDNA encoding for a microsomal juvenile hormone (JH)-metabolizing epoxide hydrolase (TmEH-1) was isolated from a cDNA library constructed from fat body of last stadium (wandering) cabbage loopers, Trichoplusia ni, at the exact developmental time of maximum JH epoxide hydrolase activity. TmEH-1 was 1887 base pairs in length with a 1389 base pair open reading frame encoding 463 amino acids. Amino acid sequence analysis showed that TmEH-1 was most similar to and contained the exact catalytic triad (Asp-226, Glu-403 and His-430) found in microsomal epoxide hydrolases. TmEH-1-specific message was present along with JH III epoxide hydrolase activity in fat body in feeding (days 1 and 2) and wandering (day 3) larvae with the peak in message level preceding the peak in JH epoxide hydrolase activity by 1 day. When TmEH-1 was expressed in baculovirus-infected Spodoptera frugiperda cells, a 46,000 molecular weight protein appeared on SDS-PAGE which corresponded to the predicted size coded by the TmEH-1 message and which was positively correlated with increases in JH III epoxide hydrolase activity above that of wild-type controls. In subcellular distribution studies, 58% of the juvenile hormone III epoxide hydrolase activity was in the insoluble fractions. Baculovirus expressed TmEH-1 demonstrated a higher specific activity for JH III as compared to the general EH substrates, cis- and trans-stilbene oxide. Southern blot analyses suggested that multiple epoxide hydrolase genes are present in T. ni.
Collapse
Affiliation(s)
- S VanHook Harris
- Department of Chemistry, North Carolina State University, Raleigh 27695-7647, USA
| | | | | | | | | |
Collapse
|
14
|
Puente XS, Pendás AM, López-otín C. Structural characterization and chromosomal localization of the gene encoding human biphenyl hydrolase-related protein (BPHL). Genomics 1998; 51:459-62. [PMID: 9721218 DOI: 10.1006/geno.1998.5351] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The gene encoding human biphenyl hydrolase-related protein (Bph-rp), a serine hydrolase with sequence similarity to prokaryotic enzymes involved in the degradation of polychlorinated biphenyls, has been cloned and its overall organization established. The gene, whose HGM-approved nomenclature is BPHL, spans more than 30 kb and is composed of eight exons and seven introns. The number and distribution of exons and introns differ from those reported for the genes encoding other serine hydrolases with sequence similarity to Bph-rp, indicating that these genes are distantly related. Nucleotide sequence analysis of the 5'-flanking region of BPHL revealed a high GC content, a ratio CpG/GpC close to unity, and the absence of consensus transcriptional sequences such as a TATA box or a CCAAT box. Chromosomal localization of BPHL revealed that it maps to chromosome 6p25, a unique location for all serine hydrolases mapped to date.
Collapse
Affiliation(s)
- X S Puente
- Facultad de Medicina, Universidad de Oviedo, Oviedo, 33006, Spain
| | | | | |
Collapse
|
15
|
Guenthner TM, Cai D, Wallin R. Co-purification of microsomal epoxide hydrolase with the warfarin-sensitive vitamin K1 oxide reductase of the vitamin K cycle. Biochem Pharmacol 1998; 55:169-75. [PMID: 9448739 DOI: 10.1016/s0006-2952(97)00431-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Vitamin K1 oxide reductase activity has been partially purified from rat liver microsomes. A three-step procedure produced a preparation in which warfarin-sensitive vitamin K1 oxide reductase activity was 118-fold enriched over the activity in intact rat liver microsomes. A major component of the multi-protein mixture was identified as a 50 kDa protein that strongly cross-reacts with antiserum prepared against homogeneous rat liver microsomal epoxide hydrolase. The reductase preparation also had a high level or epoxide hydrolase activity against two xenobiotic epoxide substrates. The K(m) values for hydrolysis by the reductase preparation were similar to those for homogeneous microsomal epoxide hydrolase itself, and the specific hydrolase activities of the reductase preparation were 25-35% of the specific activities measured for the homogeneous hydrolase preparation. Antibodies prepared against homogeneous microsomal epoxide hydrolase inhibited up to 80% of reductase activity of the reductase preparation. Homogeneous microsomal epoxide hydrolase had no vitamin K1 oxide reductase activity. This evidence suggests that microsomal epoxide hydrolase, or a protein that is very similar to it, is a major functional component of a multi-protein complex that is responsible for vitamin K1 oxide reduction in rat liver microsomes.
Collapse
Affiliation(s)
- T M Guenthner
- Department of Pharmacology, University of Illinois at Chicago 60612, USA
| | | | | |
Collapse
|
16
|
Rink R, Fennema M, Smids M, Dehmel U, Janssen DB. Primary structure and catalytic mechanism of the epoxide hydrolase from Agrobacterium radiobacter AD1. J Biol Chem 1997; 272:14650-7. [PMID: 9169427 DOI: 10.1074/jbc.272.23.14650] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The epoxide hydrolase gene from Agrobacterium radiobacter AD1, a bacterium that is able to grow on epichlorohydrin as the sole carbon source, was cloned by means of the polymerase chain reaction with two degenerate primers based on the N-terminal and C-terminal sequences of the enzyme. The epoxide hydrolase gene coded for a protein of 294 amino acids with a molecular mass of 34 kDa. An identical epoxide hydrolase gene was cloned from chromosomal DNA of the closely related strain A. radiobacter CFZ11. The recombinant epoxide hydrolase was expressed up to 40% of the total cellular protein content in Escherichia coli BL21(DE3) and the purified enzyme had a kcat of 21 s-1 with epichlorohydrin. Amino acid sequence similarity of the epoxide hydrolase with eukaryotic epoxide hydrolases, haloalkane dehalogenase from Xanthobacter autotrophicus GJ10, and bromoperoxidase A2 from Streptomyces aureofaciens indicated that it belonged to the alpha/beta-hydrolase fold family. This conclusion was supported by secondary structure predictions and analysis of the secondary structure with circular dichroism spectroscopy. The catalytic triad residues of epoxide hydrolase are proposed to be Asp107, His275, and Asp246. Replacement of these residues to Ala/Glu, Arg/Gln, and Ala, respectively, resulted in a dramatic loss of activity for epichlorohydrin. The reaction mechanism of epoxide hydrolase proceeds via a covalently bound ester intermediate, as was shown by single turnover experiments with the His275 --> Arg mutant of epoxide hydrolase in which the ester intermediate could be trapped.
Collapse
Affiliation(s)
- R Rink
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
17
|
Primiano T, Sutter TR, Kensler TW. Antioxidant-inducible genes. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1996; 38:293-328. [PMID: 8895814 DOI: 10.1016/s1054-3589(08)60989-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- T Primiano
- Department of Environmental Health Sciences, Johns Hopkins School of Hygiene and Public Health, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
18
|
Yanagawa Y, Chen JC, Hsu LC, Yoshida A. The transcriptional regulation of human aldehyde dehydrogenase I gene. The structural and functional analysis of the promoter. J Biol Chem 1995; 270:17521-7. [PMID: 7615557 DOI: 10.1074/jbc.270.29.17521] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Human cytosolic aldehyde dehydrogenase 1 (ALDH1) plays a role in the biosynthesis of retinoic acid that is a modulator for gene expression and cell differentiation. Northern blot analysis showed that liver tissue, pancreas tissue, hepatoma cells, and genital skin fibroblast cells expressed high levels of ALDH1. Sequence analysis showed that the 5'-flanking region contains a number of putative regulatory elements, such as NF-IL6, HNF-5, GATA binding sites, and putative response elements for interleukin-6, phenobarbital and androgen, in addition to a noncanonical TATA box (ATAAA) and a CCAAT box. Functional characterization of the 5'-regulatory region of the human ALDH1 gene was carried out by a fusion to the chloramphenicol acetyltransferase gene. A construct containing 2.6 kilobase pairs of the 5'-flanking region was efficiently expressed in hepatoma Hep3B cells, but not in erythroleukemic K562 cells or in fibroblast LTK- cells, which do not express ALDH1. Within this region, we define a minimal promoter (-91 to +53) that contains positive regulatory elements. The study using site-directed mutagenesis demonstrated that the CCAAT box region is the major cis-acting element involved in basal ALDH1 promoter activity in Hep3B cells. Gel mobility shift assays showed that NF-Y and other octamer factors bound CCAAT box and an octamer motif sequence, but not GATA site existing in the minimal promoter region. Two additional DNA binding activities associated with the minimal promoter were found in the nuclear extract from Hep3B cells, but not from K562 cells. These results offer the possible molecular mechanism of the cell type-specific expression of ALDH1 gene.
Collapse
Affiliation(s)
- Y Yanagawa
- Department of Biochemical Genetics, Bechman Research Institute, City of Hope, Duarte, California 91010, USA
| | | | | | | |
Collapse
|
19
|
Pinot F, Grant DF, Beetham JK, Parker AG, Borhan B, Landt S, Jones AD, Hammock BD. Molecular and biochemical evidence for the involvement of the Asp-333-His-523 pair in the catalytic mechanism of soluble epoxide hydrolase. J Biol Chem 1995; 270:7968-74. [PMID: 7713895 DOI: 10.1074/jbc.270.14.7968] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In order to investigate the involvement of amino acids in the catalytic mechanism of the soluble epoxide hydrolase, different mutants of the murine enzyme were produced using the baculovirus expression system. Our results are consistent with the involvement of Asp-333 and His-523 in a catalytic mechanism similar to that of other alpha/beta hydrolase fold enzymes. Mutation of His-263 to asparagine led to the loss of approximately half the specific activity compared to wild-type enzyme. When His-332 was replaced by asparagine, 96.7% of the specific activity was lost and mutation of the conserved His-523 to glutamine led to a more dramatic loss of 99.9% of the specific activity. No activity was detectable after the replacement of Asp-333 by serine. However, more than 20% of the wild-type activity was retained in an Asp-333-->Asn mutant produced in Spodoptera frugiperda cells. We purified, by affinity chromatography, the wild-type and the Asp-333-->Asn mutant enzymes produced in Trichoplusia ni cells. We labeled these enzymes by incubating them with the epoxide containing radiolabeled substrate juvenile hormone III (JH III). The purified Asp-333-->Asn mutant bound 6% of the substrate compared to the wild-type soluble epoxide hydrolase. The mutant also showed 8% of the specific activity of the wild-type. Preincubation of the purified Asp-333-->Asn mutant at 37 degrees C (pH 8), however, led to a complete recovery of activity and to a change of isoelectric point (pI), both of which are consistent with hydrolysis of Asn-333 to aspartic acid. This intramolecular hydrolysis of asparagine to aspartic acid may explain the activity observed in this mutant. Wild-type enzyme that had been radiolabeled with the substrate was digested with trypsin. Using reverse phase-high pressure liquid chromatography, we isolated four radiolabeled peptides of similar polarity. These peptides were not radiolabeled if the enzyme was preincubated with a selective competitive inhibitor of soluble epoxide hydrolase 4-fluorochalcone oxide. This strongly suggested that these peptides contained a catalytic amino acid. Each peptide was characterized with N-terminal amino acid sequencing and electrospray mass spectrometry. All four radiolabeled peptides contained overlapping sequences. The only aspartic acid present in all four peptides and conserved in all epoxide hydrolases was Asp-333. These peptides resulted from cleavage at different trypsin sites and the mass of each was consistent with the covalent linkage of Asp-333 to the substrate.
Collapse
Affiliation(s)
- F Pinot
- Department of Entomology, University of California, Davis 95616-8584, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Kennes C, Pries F, Krooshof GH, Bokma E, Kingma J, Janssen DB. Replacement of Tryptophan Residues in Haloalkane Dehalogenase Reduces Halide Binding and Catalytic Activity. ACTA ACUST UNITED AC 1995. [DOI: 10.1111/j.1432-1033.1995.0403n.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Beetham JK, Grant D, Arand M, Garbarino J, Kiyosue T, Pinot F, Oesch F, Belknap WR, Shinozaki K, Hammock BD. Gene evolution of epoxide hydrolases and recommended nomenclature. DNA Cell Biol 1995; 14:61-71. [PMID: 7832993 DOI: 10.1089/dna.1995.14.61] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We have analyzed amino acid sequence relationships among soluble and microsomal epoxide hydrolases, haloacid dehalogenases, and a haloalkane dehalogenase. The amino-terminal residues (1-229) of mammalian soluble epoxide hydrolase are homologous to a haloacid dehalogenase. The carboxy-terminal residues (230-554) of mammalian soluble epoxide hydrolase are homologous to haloalkane dehalogenase, to plant soluble epoxide hydrolase, and to microsomal epoxide hydrolase. The shared identity between the haloacid and haloalkane dehalogenases does not indicate relatedness between these two types of dehalogenases. The amino-terminal and carboxy-terminal homologies of mammalian soluble epoxide hydrolase to the respective dehalogenases suggests that this epoxide hydrolase, but not the soluble epoxide hydrolase of plant or the microsomal epoxide hydrolase, derives from a gene fusion. The homology of microsomal to soluble epoxide hydrolase suggests they derive from a gene duplication, probably of an ancestral bacterial (epoxide) hydrolase gene. Based on homology to haloalkane dehalogenase, the catalytic residues for the soluble and microsomal epoxide hydrolases are predicted. A nomenclature system based on divergent molecular evolution is proposed for these epoxide hydrolases.
Collapse
Affiliation(s)
- J K Beetham
- Department of Entomology and Environmental Toxicology, University of California, Davis 95616
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Arand M, Grant DF, Beetham JK, Friedberg T, Oesch F, Hammock BD. Sequence similarity of mammalian epoxide hydrolases to the bacterial haloalkane dehalogenase and other related proteins. Implication for the potential catalytic mechanism of enzymatic epoxide hydrolysis. FEBS Lett 1994; 338:251-6. [PMID: 8307189 DOI: 10.1016/0014-5793(94)80278-5] [Citation(s) in RCA: 129] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Direct comparison of the amino acid sequences of microsomal and soluble epoxide hydrolase superficially indicates that these enzymes are unrelated. Both proteins, however, share significant sequence similarity to a bacterial haloalkane dehalogenase that has earlier been shown to belong to the alpha/beta hydrolase fold family of enzymes. The catalytic mechanism for the dehalogenase has been elucidated in detail [Verschueren et al. (1993) Nature 363, 693-698] and proceeds via an ester intermediate where the substrate is covalently bound to the enzyme. From these observations we conclude (i) that microsomal and soluble epoxide hydrolase are distantly related enzymes that have evolved from a common ancestral protein together with the haloalkane dehalogenase and a variety of other proteins specified in the present paper, (ii) that these enzymes most likely belong to the alpha/beta hydrolase fold family of enzymes and (iii) that the enzymatic epoxide hydrolysis proceeds via a hydroxy ester intermediate, in contrast to the presently favoured base-catalyzed direct attack of the epoxide by an activated water.
Collapse
Affiliation(s)
- M Arand
- Institute of Toxicology, University of Mainz, Germany
| | | | | | | | | | | |
Collapse
|
23
|
Kondo S, Gertson PN, Yokoyama K, Itakura K. Hepatic transcriptional up-regulator of the rat microsomal epoxide hydrolase gene. DNA Cell Biol 1994; 13:43-50. [PMID: 8286038 DOI: 10.1089/dna.1994.13.43] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Rat microsomal epoxide hydrolase (mEH) is one of the detoxification enzymes and selectively expressed in liver. A 350-bp DNA fragment of the proximal promoter was found to contain information sufficient to express the mEH gene in hepatoma cells, however not in nonhepatoma cells. We identified two cis-acting elements, epoxide hydrolase proximal element 1 (EHP1) and 2 (EHP2), in this promoter region by using transient transfection assays. Each element is a new cell-type-specific transcriptional up-regulator. The cell-type-specific activity of EHP1 correlates to the limited cell distribution of its cognate transacting factor(s). In the case of EHP2, a similar or possibly the same cognate factor(s) binding to EHP2 was detected by DNase I footprinting and gel retardation assays in both hepatoma and nonhepatoma cells. However, EHP2 functions as an up-regulator only in hepatoma cells. Our finding adds repertoire to a battery of cis-regulatory elements that are required for liver-specific transcription.
Collapse
Affiliation(s)
- S Kondo
- Department of Molecular Genetics, Beckman Research Institute of the City of Hope, Duarte, CA 91010
| | | | | | | |
Collapse
|
24
|
Jones CR, Lubet RA. Induction of a pleiotropic response by phenobarbital and related compounds. Response in various inbred strains of rats, response in various species and the induction of aldehyde dehydrogenase in Copenhagen rats. Biochem Pharmacol 1992; 44:1651-60. [PMID: 1417986 DOI: 10.1016/0006-2952(92)90483-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The ability of phenobarbital (PB) to induce a "pleiotropic response" which includes both cytochromes P450 (CYP) as well as other drug-metabolizing enzymes was investigated in mice, rabbits, hamsters, and various inbred strains of rats. PB induced similar drug-metabolizing enzymes (CYP2B, CYP3A, and epoxide hydrolase) in rats, mice, rabbits and hamsters. PB and two structural analogues (ethylphenylhydantoin and barbital) induced a variety of drug-metabolizing enzymes (CYP2B, CYP3A, CYP2A, epoxide hydrolase) in a series of inbred strains of rats. In contrast, levels of aldehyde dehydrogenase (ALDH) (propionaldehyde, NAD+) which were expressed constitutively in all strains of rats were induced by PB in only two of the eight strains (ACI, Copenhagen). Further investigations of ALDH induction by structurally diverse compounds in Copenhagen rats demonstrated a strong correlation between the induction of ALDH and other elements of the pleiotropic response (CYP2B, CYP3A, epoxide hydrolase). These results imply that induction of ALDH (propionaldehyde, NAD+) is associated with the PB pleiotropic response in Copenhagen rats.
Collapse
Affiliation(s)
- C R Jones
- Biological Carcinogenesis and Development Program, Program Resources Inc./DynCorp, Frederick, MD. p6
| | | |
Collapse
|
25
|
Lubet RA, Dragnev KH, Chauhan DP, Nims RW, Diwan BA, Ward JM, Jones CR, Rice JM, Miller MS. A pleiotropic response to phenobarbital-type enzyme inducers in the F344/NCr rat. Biochem Pharmacol 1992; 43:1067-78. [PMID: 1372805 DOI: 10.1016/0006-2952(92)90614-o] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The effects of a number of phenobarbital-type inducers on selected drug-metabolizing enzymes in male F344/NCr rats were determined by measuring specific catalytic activities and/or by measuring the levels of RNA which hybridize with specific probes for the corresponding genes. The effects on hepatic CYP2B1 were assessed by measuring the levels of CYP2B1-specific RNA and benzyloxyresorufin O-dealkylase and testosterone 16 beta-hydroxylase activities. Levels of CYP3A were monitored by measuring the rate of hydroxylation of testosterone at the 6 beta-position. Microsomal epoxide hydrolase activity was determined by measurement of cellular RNA specific for this form and by assaying the hydrolysis of benzo[a]pyrene-4,5-oxide. UDP-glucuronyltransferase activity was assayed by measuring the glucuronidation of 3-hydroxybenz[a]anthracene. Levels of glutathione S-transferase Ya/Yc were measured by quantifying total cellular RNA coding for the proteins. When male F344/NCr rats were administered various doses of phenobarbital or dichlorodiphenyltrichloroethane (DDT), strong correlations between the induction of CYP2B1 and the induction of epoxide hydrolase or UDP-glucuronyltransferase activities were observed. Treatment of rats with barbiturates, hydantoins, halogenated pesticides such as DDT or alpha-hexachlorocyclohexane, 2,4,5,2',4',5'-hexachlorobiphenyl, CYP2B1 inhibitors such as clotrimazole or clonazepam, or such structurally-diverse compounds as 2-hexanone or diallyl sulfide resulted in induction of CYP2B1-mediated enzyme activity and induction of certain other forms of cytochrome P450, microsomal epoxide hydrolase, at least one form of UDP-glucuronyltransferase, and multiple forms of glutathione S-transferase. This suggests that, as a class, compounds which induce CYP2B1 also induce a coordinate hepatic pleiotropic response which includes induction of these other phase I and phase II drug-metabolizing enzymes.
Collapse
Affiliation(s)
- R A Lubet
- Laboratory of Comparative Carcinogenesis, NCI-Frederick Cancer Research and Development Center, MD 21702
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Van Dyke DC, Berg MJ, Olson CH. Differences in phenytoin biotransformation and susceptibility to congenital malformations: a review. DICP : THE ANNALS OF PHARMACOTHERAPY 1991; 25:987-92. [PMID: 1683079 DOI: 10.1177/106002809102500914] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The clinical variability of teratogenic response to fetal drug exposure has been well documented. Metabolic differences in biotransformation have been shown to extend to multiple drugs and may involve many steps in drug metabolism with alterations of key intermediates. Although metabolic differences have been reported to be associated with complications of medication use, it has only recently been appreciated that such differences also may be associated in the unborn with the potential for the disruption of normal embryologic development and the production of congenital malformations. It has long been suspected that the teratogenicity of phenytoin may be mediated not only by the parent compound, but also by toxic intermediary metabolites that are produced during the biotransformation of the parent compound. Recent work elucidating differences in isoenzyme forms of cytochrome P-450 enzyme systems, glutathione, and microsomal epoxide hydrolase has provided increased interest in the multiple individual pharmacogenetic differences that may be significant factors affecting increased susceptibility to birth defects in individuals and families with fetal exposure to phenytoin.
Collapse
Affiliation(s)
- D C Van Dyke
- Department of Pediatrics, University of Iowa Hospitals and Clinics, Iowa City 52242
| | | | | |
Collapse
|
27
|
Honscha W, Oesch F, Friedberg T. Tissue-specific expression and differential inducibility of several microsomal epoxide hydrolase mRNAs which are formed by alternative splicing. Arch Biochem Biophys 1991; 287:380-5. [PMID: 1840481 DOI: 10.1016/0003-9861(91)90493-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
mRNA was isolated from several rat tissues and subjected to either the nuclease S1 or the RNAseA protection assay with probes covering the 5' end, the middle part, and the 3' end of the microsomal epoxide hydrolase (mEHb) cDNA. Whereas probes directed against the latter two regions yielded a single protected fragment, a probe which covered base pairs -148 to +453 (+1 defines the start of protein biosynthesis) yielded two protected fragments. The degree of protection of the two fragments was strongly dependent on the tissue from which the mRNA had been isolated. Thus at least two mEHb mRNAs which differ at their 5' ends are differentially expressed in various tissues. In addition the mRNAs corresponding to the two protected fragments were clearly differentially inducible by Aroclor 1254 treatment of the animals. Primer extension analysis with hepatic RNA from untreated animals yielded three primer-extended products corresponding to three mRNAs which differ at their 5' ends. As already seen in the nuclease S1 protection assay, one of the mRNAs was induced by Aroclor 1254 treatment. The expression of the two other mRNAs was either repressed or stable. Thus besides the mRNA already characterized for mEHb, there are at least two other mEHb mRNAs. This result was confirmed by the isolation of a mEHb cDNA which is completely distinct in its sequence in a region just preceding the initiation codon for protein biosynthesis. From that point on, the sequence of our cDNA becomes identical to the published mEHb cDNA. This point corresponds exactly to the start of exon 2 as determined from the genomic sequence. Thus the region where both mEHb cDNAs differ is encoded by two different exons 1, which are joined to exon 2 by alternative splicing. The tissue-specific expression and the different inducibility of the various mEHb mRNAs might indicate that their expression is governed by different promoters.
Collapse
Affiliation(s)
- W Honscha
- Institute of Toxicology, University of Mainz, Germany
| | | | | |
Collapse
|
28
|
Chang C, Gill SS. Purification and characterization of an epoxide hydrolase from the peroxisomal fraction of mouse liver. Arch Biochem Biophys 1991; 285:276-84. [PMID: 1910279 DOI: 10.1016/0003-9861(91)90360-u] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Epoxide hydrolase (EH) activity has been reported to occur in most subcellular fractions of mouse liver. The EHs in the microsomal and cytosolic fractions have been purified and characterized; however, the nature of the EH(s) in the peroxisomal fraction is not known. Therefore an EH, pEH, was purified from the solubilized 12,000g fraction, which contain peroxisomes. Previous studies have demonstrated that the EH activity in this crude solubilized 12,000g fraction resides mostly in the peroxisomes. Thus the crude 12,000g pellet from mouse liver, free from cytosolic contamination, was sonicated to obtain a 105,000g soluble fraction containing 80% of the original EH activity in this fraction. The pEH was purified, using trans-stilbene oxide (TSO) as substrate, by a combination of affinity and hydroxyapatite chromatography. The purified pEH had a native molecular weight of 57 kDa, a molecular weight of 59 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and a pI of 5.7. The purified pEH was observed to be immunologically similar to the cytosolic EH (cEH). The kinetics of hydrolysis of TSO, however, were slightly different. Lineweaver-Burk plots for the inhibition of pEH suggest a probable noncompetitive, mixed-type inhibition. The purified pEH thus appears to be very similar to the cEH. There are minor differences between the purified cEH and pEH, particularly in the kinetic parameters. However, these minor differences are insignificant. These results demonstrate that the cEH and pEH are substantially similar, if not identical.
Collapse
Affiliation(s)
- C Chang
- Department of Entomology, University of California, Riverside 92521
| | | |
Collapse
|
29
|
Sheehan JE, Pitot HC, Kasper CB. Transcriptional regulation and localization of the tissue-specific induction of epoxide hydrolase by lead acetate in rat kidney. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(19)67763-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
30
|
Bell PA, Falany CN, McQuiddy P, Kasper CB. Glucocorticoid repression and basal regulation of the epoxide hydrolase promoter. Arch Biochem Biophys 1990; 279:363-9. [PMID: 2350182 DOI: 10.1016/0003-9861(90)90503-q] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Through a series of promoter deletions and gene transfer experiments we have examined the basal regulation and glucocorticoid-mediated repression of the rat epoxide hydrolase gene. Three regions of the 5' flanking sequence were found to influence the basal level of promoter function in H4IIE hepatoma cells. Region A (-891 to -355 bp) contains an apparent repressor of epoxide hydrolase expression, while regions B (-271 to -171 bp) and C (-141 to -85) were found to contain important sequences required for optimal promoter activity. Previous work has demonstrated that dexamethasone represses epoxide hydrolase transcription by approximately 50% in isolated rat liver nuclei, and, in this study, we have demonstrated that the ability of the epoxide hydrolase promoter to drive CAT expression is similarly repressed in H4IIE cells treated with 1 microM dexamethasone. Furthermore, the level of endogenous epoxide hydrolase mRNA is decreased by 70-88% in nontransfected H4IIE cells treated with dexamethasone. Interestingly, promoter activity was not decreased by dexamethasone in COS cells, which lack glucocorticoid receptors. The current data show that sequences from -42 to +110 bp are sufficient to support the dexamethasone response, and, furthermore, they suggest that repression may not require direct interaction of the ligand-receptor complex with the promoter region.
Collapse
Affiliation(s)
- P A Bell
- McArdle Laboratory for Cancer Research, Madison, Wisconsin 53706
| | | | | | | |
Collapse
|
31
|
Oesch F, Doehmer J, Friedberg T, Glatt HR, Oesch-Bartlomowicz B, Platt KL, Steinberg P, Utesch D, Thomas H. Toxicological implications of enzymatic control of reactive metabolites. Hum Exp Toxicol 1990; 9:171-7. [PMID: 2375884 DOI: 10.1177/096032719000900309] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Many foreign compounds are transformed into reactive metabolites, which may produce genotoxic effects by chemically altering critical biomolecules. Reactive metabolites are under the control of activating, inactivating and precursor sequestering enzymes. Such enzymes are under the long-term control of induction and repression, as well as the short-term control of post-translational modification and low molecular weight activators or inhibitors. In addition, the efficiency of these enzyme systems in preventing reactive metabolite-mediated toxicity is directed by their subcellular compartmentalization and isoenzymic multiplicity. Extrapolation from toxicological test systems to the human requires information of these variables in the system in question and in man. Differences in susceptibility to toxic challenges between species and individuals are often causally linked to differences in these control factors.
Collapse
Affiliation(s)
- F Oesch
- Institute of Toxicology, University of Mainz, FRG
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Wilson NM, Omiecinski CJ. Xenobiotic microsomal epoxide hydrolase: 5' sequence of the human gene. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 1008:357-8. [PMID: 2758034 DOI: 10.1016/0167-4781(89)90029-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A cDNA for human microsomal epoxide hydrolase (mEH) was used to isolate genomic clones representing the 5' portion of the corresponding human gene. A total of 1034 bases of mEH gene sequence were obtained that included exon 1 and 5' flanking information. In contrast to the structure reported for the rat mEH gene (Falany et al. (1987) J. Biol. Chem. 262, 5924-5930), the human mEH gene lacked a CAAT box, but did contain a high-affinity CTF binding site at position -278 and an SV40 core enhancer element at position -525. TATA boxes were identified at positions -32 and -29 for the human and rat genes, respectively. Sequence comparisons between 5' flanking regions of the human and rat mEH genes demonstrated 47% homology, considerably less than the 83% conservation observed in the cDNA coding areas. Primer extension experiments localized the transcription initiation site of the human gene to a position 116 bases 5' from the analogous site in the rat mEH gene.
Collapse
Affiliation(s)
- N M Wilson
- Department of Environmental Health, School of Public Health and Community Medicine, University of Washington, Seattle 98195
| | | |
Collapse
|
33
|
Dunn TJ, Koleske AJ, Lindahl R, Pitot HC. Phenobarbital-inducible Aldehyde Dehydrogenase in the Rat. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)51595-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
34
|
Hassett C, Turnblom SM, DeAngeles A, Omiecinski CJ. Rabbit microsomal epoxide hydrolase: isolation and characterization of the xenobiotic metabolizing enzyme cDNA. Arch Biochem Biophys 1989; 271:380-9. [PMID: 2729997 DOI: 10.1016/0003-9861(89)90287-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Many endogenous and xenobiotic chemicals are metabolized to epoxides which may be enzymatically hydrated, via microsomal epoxide hydrolase (mEH), to less reactive dihydrodiol derivatives. On the basis of the reported rabbit mEH amino acid sequence [F. S. Heinemann and J. Ozols (1984) J. Biol. Chem. 259, 797-804], we constructed a 35 base oligonucleotide which was used to screen rabbit liver cDNA libraries. Overlapping rabbit mEH clones were isolated and the full-length cDNA sequence of 1653 bp was determined. The rabbit nucleotide sequence has a high degree of similarity (greater than 75%) with cDNA sequences reported for rat and human mEH. Northern blot analyses with fragments of the rabbit cDNA demonstrate that mEH messenger RNA (mRNA) is expressed constitutively in the liver and induced following exposure to phenobarbital or polychlorinated biphenyls. Constitutive expression of mEH mRNA is also observed in rabbit kidney, testes, and lung. Using benzo[alpha]pyrene-4,5-oxide as substrate, mEH enzymatic activity is shown to correlate closely with tissue levels of mEH mRNA. Southern blot analyses of rabbit DNA suggest that the mEH gene exists as a single copy per haploid genome. The mEH amino acid sequences of the human and rat were compared to that of the deduced rabbit protein in order to analyze the degree of conservation and hydropathy profiles in these species. This comparison permitted the formulation of a computer-assisted model of mammalian mEH as it may relate to the microsomal membrane.
Collapse
Affiliation(s)
- C Hassett
- Department of Environmental Health, School of Public Health and Community Medicine, University of Washington, Seattle 98195
| | | | | | | |
Collapse
|
35
|
Eaton DL, Stapleton PL. Simultaneous determination of cytosolic glutathione S-transferase and microsomal epoxide hydrolase activity toward benzo[a]pyrene-4,5-oxide by high-performance liquid chromatography. Anal Biochem 1989; 178:153-8. [PMID: 2729567 DOI: 10.1016/0003-2697(89)90372-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cytosolic glutathione S-transferase (GST) and microsomal epoxide hydrolase (EH) are important detoxification enzymes for many epoxide xenobiotics. We have developed a rapid, simple, and convenient HPLC assay which measures both of these enzyme activities toward benzo[a]pyrene-4,5-oxide (BaPO) in tissue homogenates. Tissue fractions were incubated at 37 degrees C in the presence of 5 mM glutathione. Reactions were initiated by addition of BaPO and terminated by the addition of ice-cold acetonitrile containing 2-methoxynaphthalene as an internal standard. Samples were analyzed directly on a 15-cm C18 reverse-phase column at room temperature, with a ternary solvent program which utilized 0.01% ammonium phosphate buffer (pH 3.5), acetonitrile, and water. The uv absorbance (260 nm) was monitored. Baseline resolution of BaPO, BaPO-GSH, and BaPO-diol and the internal standard was accomplished in 10 min. In rat hepatic S9, production of both BaPO-GSH and BaPO-diol was linear with time and protein up to 15 min and 500 micrograms/ml, respectively. Coefficients of variation for replicate analyses were 2.7 and 3.7% for GST and EH activities in S9, respectively. With fluorescence detection (ex, 241; em, 389 nm), this assay was sensitive enough to measure GST and EH activities in mononuclear leukocytes (MNL). GST and EH activities in 109 human MNL samples were 142 +/- 74 (mean +/- SD; range 21-435) pmol/mg/min and 19 +/- 9 (mean +/- SD; range 3-59) pmol/mg/min, respectively. These results demonstrate the simplicity, high sensitivity, and applicability of this assay for a broad range of tissues.
Collapse
Affiliation(s)
- D L Eaton
- Department of Environmental Health, University of Washington, Seattle 98195
| | | |
Collapse
|
36
|
Enzymic Conversion of 11,12-Leukotriene A4 to 11,12-Dihydroxy-5,14-cis-7,9-trans-eicosatetraenoic Acid. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)83620-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
37
|
Friedberg T, Timms C, Kissel W, Oesch F. Evidence for several hepatic proteins related to microsomal epoxide hydrolase. ARCHIVES OF TOXICOLOGY. SUPPLEMENT. = ARCHIV FUR TOXIKOLOGIE. SUPPLEMENT 1989; 13:145-52. [PMID: 2476104 DOI: 10.1007/978-3-642-74117-3_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- T Friedberg
- Institute of Toxicology, University of Mainz, W. Germany
| | | | | | | |
Collapse
|
38
|
Labbé D, Jean A, Anderson A. A constitutive member of the rat cytochrome P450IIB subfamily: full-length coding sequence of the P450IIB3 cDNA. DNA (MARY ANN LIEBERT, INC.) 1988; 7:253-60. [PMID: 3396451 DOI: 10.1089/dna.1988.7.253] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The prototypic members of the rat liver cytochrome P450IIB subfamily, P450b and P450e, have long been the subjects of intense interest, in part because they are highly inducible by phenobarbital (PB). We have previously cloned and sequenced an 858-bp cDNA fragment (the PB24 insert) that encodes the carboxy-terminal portion of a P450b/P450e-like protein, henceforth referred to as P450IIB3. A Bam HI-Eco RI fragment of the PB24 insert hybridizes with a 1.9-kb mRNA present constitutively in rat liver and not inducible by PB (Affolter et al., 1986). We have now obtained, from a lambda gt11 rat liver cDNA library, cDNA inserts corresponding to the complete coding sequence of the IIB3 mRNA. The 491-amino acid IIB3 protein sequence, deduced from the cDNA sequence, is 77% identical to that of P450b. Northern blot analysis, with a IIB3-specific oligonucleotide probe, confirmed the constitutive presence of the polyadenylated 1.9-kb IIB3 mRNA in male rat liver. The IIB3 mRNA was undetectable in the lung, kidney, and prostate. It was constitutively present, and not inducible by PB, in female rat liver. Our results demonstrate unequivocally the existence of a constitutive member of the rat P450IIB subfamily. The remarkable inducibility of the P450b/P450e genes is in striking contrast to the absence of a PB effect on IIB3 gene expression. The molecular basis for this difference remains to be revealed.
Collapse
Affiliation(s)
- D Labbé
- Centre de recherche en cancérologie, Université Laval, L'Hôtel-Dieu de Québec, Canada
| | | | | |
Collapse
|
39
|
Minami M, Ohno S, Kawasaki H, Rådmark O, Samuelsson B, Jörnvall H, Shimizu T, Seyama Y, Suzuki K. Molecular cloning of a cDNA coding for human leukotriene A4 hydrolase. Complete primary structure of an enzyme involved in eicosanoid synthesis. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)47872-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|