1
|
Irie T, Sips PY, Kai S, Kida K, Ikeda K, Hirai S, Moazzami K, Jiramongkolchai P, Bloch DB, Doulias PT, Armoundas AA, Kaneki M, Ischiropoulos H, Kranias E, Bloch KD, Stamler JS, Ichinose F. S-Nitrosylation of Calcium-Handling Proteins in Cardiac Adrenergic Signaling and Hypertrophy. Circ Res 2015; 117:793-803. [PMID: 26259881 DOI: 10.1161/circresaha.115.307157] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 08/10/2015] [Indexed: 01/08/2023]
Abstract
RATIONALE The regulation of calcium (Ca(2+)) homeostasis by β-adrenergic receptor (βAR) activation provides the essential underpinnings of sympathetic regulation of myocardial function, as well as a basis for understanding molecular events that result in hypertrophic signaling and heart failure. Sympathetic stimulation of the βAR not only induces protein phosphorylation but also activates nitric oxide-dependent signaling, which modulates cardiac contractility. Nonetheless, the role of nitric oxide in βAR-dependent regulation of Ca(2+) handling has not yet been explicated fully. OBJECTIVE To elucidate the role of protein S-nitrosylation, a major transducer of nitric oxide bioactivity, on βAR-dependent alterations in cardiomyocyte Ca(2+) handling and hypertrophy. METHODS AND RESULTS Using transgenic mice to titrate the levels of protein S-nitrosylation, we uncovered major roles for protein S-nitrosylation, in general, and for phospholamban and cardiac troponin C S-nitrosylation, in particular, in βAR-dependent regulation of Ca(2+) homeostasis. Notably, S-nitrosylation of phospholamban consequent upon βAR stimulation is necessary for the inhibitory pentamerization of phospholamban, which activates sarcoplasmic reticulum Ca(2+)-ATPase and increases cytosolic Ca(2+) transients. Coincident S-nitrosylation of cardiac troponin C decreases myocardial sensitivity to Ca(2+). During chronic adrenergic stimulation, global reductions in cellular S-nitrosylation mitigate hypertrophic signaling resulting from Ca(2+) overload. CONCLUSIONS S-Nitrosylation operates in concert with phosphorylation to regulate many cardiac Ca(2+)-handling proteins, including phospholamban and cardiac troponin C, thereby playing an essential and previously unrecognized role in cardiac Ca(2+) homeostasis. Manipulation of the S-nitrosylation level may prove therapeutic in heart failure.
Collapse
Affiliation(s)
- Tomoya Irie
- From the Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine (T.I., P.Y.S., S.K., K.K., K.I., S.H., P.J., D.B.B., M.K., K.D.B., F.I.), Cardiovascular Research Center, Division of Cardiology, Department of Medicine (K.M., A.A.A., K.D.B.), and Division of Rheumatology Allergy and Immunology, Department of Medicine (D.B.B.), Massachusetts General Hospital and Harvard Medical School, Boston; Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (P.Y.S.); Children's Hospital of Philadelphia Research Institute, Department of Pediatrics and Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine at the University of Pennsylvania (P.-T.D., H.I.); Department of Research, Shriners Hospitals for Children (M.K.) and Department of Pharmacology (E.K.), University of Cincinnati College of Medicine, OH; and Institute for Transformative Molecular Medicine, Case Western Reserve University, Harrington Discovery Institute University Hospitals, Cleveland, OH (J.S.S.)
| | - Patrick Y Sips
- From the Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine (T.I., P.Y.S., S.K., K.K., K.I., S.H., P.J., D.B.B., M.K., K.D.B., F.I.), Cardiovascular Research Center, Division of Cardiology, Department of Medicine (K.M., A.A.A., K.D.B.), and Division of Rheumatology Allergy and Immunology, Department of Medicine (D.B.B.), Massachusetts General Hospital and Harvard Medical School, Boston; Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (P.Y.S.); Children's Hospital of Philadelphia Research Institute, Department of Pediatrics and Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine at the University of Pennsylvania (P.-T.D., H.I.); Department of Research, Shriners Hospitals for Children (M.K.) and Department of Pharmacology (E.K.), University of Cincinnati College of Medicine, OH; and Institute for Transformative Molecular Medicine, Case Western Reserve University, Harrington Discovery Institute University Hospitals, Cleveland, OH (J.S.S.)
| | - Shinichi Kai
- From the Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine (T.I., P.Y.S., S.K., K.K., K.I., S.H., P.J., D.B.B., M.K., K.D.B., F.I.), Cardiovascular Research Center, Division of Cardiology, Department of Medicine (K.M., A.A.A., K.D.B.), and Division of Rheumatology Allergy and Immunology, Department of Medicine (D.B.B.), Massachusetts General Hospital and Harvard Medical School, Boston; Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (P.Y.S.); Children's Hospital of Philadelphia Research Institute, Department of Pediatrics and Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine at the University of Pennsylvania (P.-T.D., H.I.); Department of Research, Shriners Hospitals for Children (M.K.) and Department of Pharmacology (E.K.), University of Cincinnati College of Medicine, OH; and Institute for Transformative Molecular Medicine, Case Western Reserve University, Harrington Discovery Institute University Hospitals, Cleveland, OH (J.S.S.)
| | - Kotaro Kida
- From the Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine (T.I., P.Y.S., S.K., K.K., K.I., S.H., P.J., D.B.B., M.K., K.D.B., F.I.), Cardiovascular Research Center, Division of Cardiology, Department of Medicine (K.M., A.A.A., K.D.B.), and Division of Rheumatology Allergy and Immunology, Department of Medicine (D.B.B.), Massachusetts General Hospital and Harvard Medical School, Boston; Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (P.Y.S.); Children's Hospital of Philadelphia Research Institute, Department of Pediatrics and Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine at the University of Pennsylvania (P.-T.D., H.I.); Department of Research, Shriners Hospitals for Children (M.K.) and Department of Pharmacology (E.K.), University of Cincinnati College of Medicine, OH; and Institute for Transformative Molecular Medicine, Case Western Reserve University, Harrington Discovery Institute University Hospitals, Cleveland, OH (J.S.S.)
| | - Kohei Ikeda
- From the Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine (T.I., P.Y.S., S.K., K.K., K.I., S.H., P.J., D.B.B., M.K., K.D.B., F.I.), Cardiovascular Research Center, Division of Cardiology, Department of Medicine (K.M., A.A.A., K.D.B.), and Division of Rheumatology Allergy and Immunology, Department of Medicine (D.B.B.), Massachusetts General Hospital and Harvard Medical School, Boston; Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (P.Y.S.); Children's Hospital of Philadelphia Research Institute, Department of Pediatrics and Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine at the University of Pennsylvania (P.-T.D., H.I.); Department of Research, Shriners Hospitals for Children (M.K.) and Department of Pharmacology (E.K.), University of Cincinnati College of Medicine, OH; and Institute for Transformative Molecular Medicine, Case Western Reserve University, Harrington Discovery Institute University Hospitals, Cleveland, OH (J.S.S.)
| | - Shuichi Hirai
- From the Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine (T.I., P.Y.S., S.K., K.K., K.I., S.H., P.J., D.B.B., M.K., K.D.B., F.I.), Cardiovascular Research Center, Division of Cardiology, Department of Medicine (K.M., A.A.A., K.D.B.), and Division of Rheumatology Allergy and Immunology, Department of Medicine (D.B.B.), Massachusetts General Hospital and Harvard Medical School, Boston; Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (P.Y.S.); Children's Hospital of Philadelphia Research Institute, Department of Pediatrics and Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine at the University of Pennsylvania (P.-T.D., H.I.); Department of Research, Shriners Hospitals for Children (M.K.) and Department of Pharmacology (E.K.), University of Cincinnati College of Medicine, OH; and Institute for Transformative Molecular Medicine, Case Western Reserve University, Harrington Discovery Institute University Hospitals, Cleveland, OH (J.S.S.)
| | - Kasra Moazzami
- From the Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine (T.I., P.Y.S., S.K., K.K., K.I., S.H., P.J., D.B.B., M.K., K.D.B., F.I.), Cardiovascular Research Center, Division of Cardiology, Department of Medicine (K.M., A.A.A., K.D.B.), and Division of Rheumatology Allergy and Immunology, Department of Medicine (D.B.B.), Massachusetts General Hospital and Harvard Medical School, Boston; Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (P.Y.S.); Children's Hospital of Philadelphia Research Institute, Department of Pediatrics and Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine at the University of Pennsylvania (P.-T.D., H.I.); Department of Research, Shriners Hospitals for Children (M.K.) and Department of Pharmacology (E.K.), University of Cincinnati College of Medicine, OH; and Institute for Transformative Molecular Medicine, Case Western Reserve University, Harrington Discovery Institute University Hospitals, Cleveland, OH (J.S.S.)
| | - Pawina Jiramongkolchai
- From the Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine (T.I., P.Y.S., S.K., K.K., K.I., S.H., P.J., D.B.B., M.K., K.D.B., F.I.), Cardiovascular Research Center, Division of Cardiology, Department of Medicine (K.M., A.A.A., K.D.B.), and Division of Rheumatology Allergy and Immunology, Department of Medicine (D.B.B.), Massachusetts General Hospital and Harvard Medical School, Boston; Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (P.Y.S.); Children's Hospital of Philadelphia Research Institute, Department of Pediatrics and Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine at the University of Pennsylvania (P.-T.D., H.I.); Department of Research, Shriners Hospitals for Children (M.K.) and Department of Pharmacology (E.K.), University of Cincinnati College of Medicine, OH; and Institute for Transformative Molecular Medicine, Case Western Reserve University, Harrington Discovery Institute University Hospitals, Cleveland, OH (J.S.S.)
| | - Donald B Bloch
- From the Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine (T.I., P.Y.S., S.K., K.K., K.I., S.H., P.J., D.B.B., M.K., K.D.B., F.I.), Cardiovascular Research Center, Division of Cardiology, Department of Medicine (K.M., A.A.A., K.D.B.), and Division of Rheumatology Allergy and Immunology, Department of Medicine (D.B.B.), Massachusetts General Hospital and Harvard Medical School, Boston; Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (P.Y.S.); Children's Hospital of Philadelphia Research Institute, Department of Pediatrics and Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine at the University of Pennsylvania (P.-T.D., H.I.); Department of Research, Shriners Hospitals for Children (M.K.) and Department of Pharmacology (E.K.), University of Cincinnati College of Medicine, OH; and Institute for Transformative Molecular Medicine, Case Western Reserve University, Harrington Discovery Institute University Hospitals, Cleveland, OH (J.S.S.)
| | - Paschalis-Thomas Doulias
- From the Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine (T.I., P.Y.S., S.K., K.K., K.I., S.H., P.J., D.B.B., M.K., K.D.B., F.I.), Cardiovascular Research Center, Division of Cardiology, Department of Medicine (K.M., A.A.A., K.D.B.), and Division of Rheumatology Allergy and Immunology, Department of Medicine (D.B.B.), Massachusetts General Hospital and Harvard Medical School, Boston; Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (P.Y.S.); Children's Hospital of Philadelphia Research Institute, Department of Pediatrics and Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine at the University of Pennsylvania (P.-T.D., H.I.); Department of Research, Shriners Hospitals for Children (M.K.) and Department of Pharmacology (E.K.), University of Cincinnati College of Medicine, OH; and Institute for Transformative Molecular Medicine, Case Western Reserve University, Harrington Discovery Institute University Hospitals, Cleveland, OH (J.S.S.)
| | - Antonis A Armoundas
- From the Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine (T.I., P.Y.S., S.K., K.K., K.I., S.H., P.J., D.B.B., M.K., K.D.B., F.I.), Cardiovascular Research Center, Division of Cardiology, Department of Medicine (K.M., A.A.A., K.D.B.), and Division of Rheumatology Allergy and Immunology, Department of Medicine (D.B.B.), Massachusetts General Hospital and Harvard Medical School, Boston; Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (P.Y.S.); Children's Hospital of Philadelphia Research Institute, Department of Pediatrics and Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine at the University of Pennsylvania (P.-T.D., H.I.); Department of Research, Shriners Hospitals for Children (M.K.) and Department of Pharmacology (E.K.), University of Cincinnati College of Medicine, OH; and Institute for Transformative Molecular Medicine, Case Western Reserve University, Harrington Discovery Institute University Hospitals, Cleveland, OH (J.S.S.)
| | - Masao Kaneki
- From the Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine (T.I., P.Y.S., S.K., K.K., K.I., S.H., P.J., D.B.B., M.K., K.D.B., F.I.), Cardiovascular Research Center, Division of Cardiology, Department of Medicine (K.M., A.A.A., K.D.B.), and Division of Rheumatology Allergy and Immunology, Department of Medicine (D.B.B.), Massachusetts General Hospital and Harvard Medical School, Boston; Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (P.Y.S.); Children's Hospital of Philadelphia Research Institute, Department of Pediatrics and Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine at the University of Pennsylvania (P.-T.D., H.I.); Department of Research, Shriners Hospitals for Children (M.K.) and Department of Pharmacology (E.K.), University of Cincinnati College of Medicine, OH; and Institute for Transformative Molecular Medicine, Case Western Reserve University, Harrington Discovery Institute University Hospitals, Cleveland, OH (J.S.S.)
| | - Harry Ischiropoulos
- From the Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine (T.I., P.Y.S., S.K., K.K., K.I., S.H., P.J., D.B.B., M.K., K.D.B., F.I.), Cardiovascular Research Center, Division of Cardiology, Department of Medicine (K.M., A.A.A., K.D.B.), and Division of Rheumatology Allergy and Immunology, Department of Medicine (D.B.B.), Massachusetts General Hospital and Harvard Medical School, Boston; Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (P.Y.S.); Children's Hospital of Philadelphia Research Institute, Department of Pediatrics and Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine at the University of Pennsylvania (P.-T.D., H.I.); Department of Research, Shriners Hospitals for Children (M.K.) and Department of Pharmacology (E.K.), University of Cincinnati College of Medicine, OH; and Institute for Transformative Molecular Medicine, Case Western Reserve University, Harrington Discovery Institute University Hospitals, Cleveland, OH (J.S.S.)
| | - Evangelia Kranias
- From the Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine (T.I., P.Y.S., S.K., K.K., K.I., S.H., P.J., D.B.B., M.K., K.D.B., F.I.), Cardiovascular Research Center, Division of Cardiology, Department of Medicine (K.M., A.A.A., K.D.B.), and Division of Rheumatology Allergy and Immunology, Department of Medicine (D.B.B.), Massachusetts General Hospital and Harvard Medical School, Boston; Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (P.Y.S.); Children's Hospital of Philadelphia Research Institute, Department of Pediatrics and Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine at the University of Pennsylvania (P.-T.D., H.I.); Department of Research, Shriners Hospitals for Children (M.K.) and Department of Pharmacology (E.K.), University of Cincinnati College of Medicine, OH; and Institute for Transformative Molecular Medicine, Case Western Reserve University, Harrington Discovery Institute University Hospitals, Cleveland, OH (J.S.S.)
| | - Kenneth D Bloch
- From the Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine (T.I., P.Y.S., S.K., K.K., K.I., S.H., P.J., D.B.B., M.K., K.D.B., F.I.), Cardiovascular Research Center, Division of Cardiology, Department of Medicine (K.M., A.A.A., K.D.B.), and Division of Rheumatology Allergy and Immunology, Department of Medicine (D.B.B.), Massachusetts General Hospital and Harvard Medical School, Boston; Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (P.Y.S.); Children's Hospital of Philadelphia Research Institute, Department of Pediatrics and Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine at the University of Pennsylvania (P.-T.D., H.I.); Department of Research, Shriners Hospitals for Children (M.K.) and Department of Pharmacology (E.K.), University of Cincinnati College of Medicine, OH; and Institute for Transformative Molecular Medicine, Case Western Reserve University, Harrington Discovery Institute University Hospitals, Cleveland, OH (J.S.S.)
| | - Jonathan S Stamler
- From the Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine (T.I., P.Y.S., S.K., K.K., K.I., S.H., P.J., D.B.B., M.K., K.D.B., F.I.), Cardiovascular Research Center, Division of Cardiology, Department of Medicine (K.M., A.A.A., K.D.B.), and Division of Rheumatology Allergy and Immunology, Department of Medicine (D.B.B.), Massachusetts General Hospital and Harvard Medical School, Boston; Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (P.Y.S.); Children's Hospital of Philadelphia Research Institute, Department of Pediatrics and Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine at the University of Pennsylvania (P.-T.D., H.I.); Department of Research, Shriners Hospitals for Children (M.K.) and Department of Pharmacology (E.K.), University of Cincinnati College of Medicine, OH; and Institute for Transformative Molecular Medicine, Case Western Reserve University, Harrington Discovery Institute University Hospitals, Cleveland, OH (J.S.S.)
| | - Fumito Ichinose
- From the Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine (T.I., P.Y.S., S.K., K.K., K.I., S.H., P.J., D.B.B., M.K., K.D.B., F.I.), Cardiovascular Research Center, Division of Cardiology, Department of Medicine (K.M., A.A.A., K.D.B.), and Division of Rheumatology Allergy and Immunology, Department of Medicine (D.B.B.), Massachusetts General Hospital and Harvard Medical School, Boston; Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (P.Y.S.); Children's Hospital of Philadelphia Research Institute, Department of Pediatrics and Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine at the University of Pennsylvania (P.-T.D., H.I.); Department of Research, Shriners Hospitals for Children (M.K.) and Department of Pharmacology (E.K.), University of Cincinnati College of Medicine, OH; and Institute for Transformative Molecular Medicine, Case Western Reserve University, Harrington Discovery Institute University Hospitals, Cleveland, OH (J.S.S.).
| |
Collapse
|
2
|
Morris G, Berk M, Galecki P, Walder K, Maes M. The Neuro-Immune Pathophysiology of Central and Peripheral Fatigue in Systemic Immune-Inflammatory and Neuro-Immune Diseases. Mol Neurobiol 2015; 53:1195-1219. [PMID: 25598355 DOI: 10.1007/s12035-015-9090-9] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 01/05/2015] [Indexed: 01/18/2023]
Abstract
Many patients with systemic immune-inflammatory and neuro-inflammatory disorders, including depression, rheumatoid arthritis, systemic lupus erythematosus, Sjögren's disease, cancer, cardiovascular disorder, Parkinson's disease, multiple sclerosis, stroke, and chronic fatigue syndrome/myalgic encephalomyelitis, endure pathological levels of fatigue. The aim of this narrative review is to delineate the wide array of pathways that may underpin the incapacitating fatigue occurring in systemic and neuro-inflammatory disorders. A wide array of immune, inflammatory, oxidative and nitrosative stress (O&NS), bioenergetic, and neurophysiological abnormalities are involved in the etiopathology of these disease states and may underpin the incapacitating fatigue that accompanies these disorders. This range of abnormalities comprises: increased levels of pro-inflammatory cytokines, e.g., interleukin-1 (IL-1), IL-6, tumor necrosis factor (TNF) α and interferon (IFN) α; O&NS-induced muscle fatigue; activation of the Toll-Like Receptor Cycle through pathogen-associated (PAMPs) and damage-associated (DAMPs) molecular patterns, including heat shock proteins; altered glutaminergic and dopaminergic neurotransmission; mitochondrial dysfunctions; and O&NS-induced defects in the sodium-potassium pump. Fatigue is also associated with altered activities in specific brain regions and muscle pathology, such as reductions in maximum voluntary muscle force, downregulation of the mitochondrial biogenesis master gene peroxisome proliferator-activated receptor gamma coactivator 1-alpha, a shift to glycolysis and buildup of toxic metabolites within myocytes. As such, both mental and physical fatigue, which frequently accompany immune-inflammatory and neuro-inflammatory disorders, are the consequence of interactions between multiple systemic and central pathways.
Collapse
Affiliation(s)
- Gerwyn Morris
- Tir Na Nog, Bryn Road seaside 87, Llanelli, SA152LW, Wales, UK
| | - Michael Berk
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, P.O. Box 291, Geelong, 3220, Australia.,Orygen Youth Health Research Centre and the Centre of Youth Mental Health, Poplar Road 35, Parkville, 3052, Australia.,The Florey Institute for Neuroscience and Mental Health, University of Melbourne, Kenneth Myer Building, Royal Parade 30, Parkville, 3052, Australia.,Department of Psychiatry, University of Melbourne, Level 1 North, Main Block, Royal Melbourne Hospital, Parkville, 3052, Australia
| | - Piotr Galecki
- Department of Adult Psychiatry, Medical University of Lodz, Lodz, Poland
| | - Ken Walder
- Metabolic Research Unit, Deakin University, Geelong, Australia
| | - Michael Maes
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, P.O. Box 291, Geelong, 3220, Australia. .,Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand. .,Health Sciences Graduate Program, Health Sciences Center, State University of Londrina, Londrina, Brazil. .,Impact Strategic Research Center, Deakin University, Geelong, Australia.
| |
Collapse
|
3
|
Oxidative stress in muscular dystrophy: from generic evidence to specific sources and targets. J Muscle Res Cell Motil 2014; 35:23-36. [PMID: 24619215 DOI: 10.1007/s10974-014-9380-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 02/19/2014] [Indexed: 01/06/2023]
Abstract
Muscular dystrophies (MDs) are a heterogeneous group of diseases that share a common end-point represented by muscular wasting. MDs are caused by mutations in a variety of genes encoding for different molecules, including extracellular matrix, transmembrane and membrane-associated proteins, cytoplasmic enzymes and nuclear proteins. However, it is still to be elucidated how genetic mutations can affect the molecular mechanisms underlying the contractile impairment occurring in these complex pathologies. The intracellular accumulation of reactive oxygen species (ROS) is widely accepted to play a key role in contractile derangements occurring in the different forms of MDs. However, scarce information is available concerning both the most relevant sources of ROS and their major molecular targets. This review focuses on (i) the sources of ROS, with a special emphasis on monoamine oxidase, a mitochondrial enzyme, and (ii) the targets of ROS, highlighting the relevance of the oxidative modification of myofilament proteins.
Collapse
|
4
|
Terrill JR, Boyatzis A, Grounds MD, Arthur PG. Treatment with the cysteine precursor l-2-oxothiazolidine-4-carboxylate (OTC) implicates taurine deficiency in severity of dystropathology in mdx mice. Int J Biochem Cell Biol 2013; 45:2097-108. [PMID: 23892094 DOI: 10.1016/j.biocel.2013.07.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 06/28/2013] [Accepted: 07/09/2013] [Indexed: 01/29/2023]
Abstract
Oxidative stress has been implicated in the pathology of the lethal skeletal muscle disease Duchenne muscular dystrophy (DMD), and various antioxidants have been investigated as a potential therapy. Recently, treatment of the mdx mouse model for DMD with the antioxidant and cysteine and glutathione (GSH) precursor n-acetylcysteine (NAC) was shown to decrease protein thiol oxidation and improve muscle pathology and ex vivo muscle strength. This study further investigates the mechanism for the benefits of NAC on dystrophic muscle by administering l-2-oxothiazolidine-4-carboxylate (OTC) which also upregulates intracellular cysteine and GSH, but does not directly function as an antioxidant. We observed that OTC, like NAC, decreases protein thiol oxidation, decreases pathology and increases strength, suggesting that the both NAC and OTC function via increasing cysteine and GSH content of dystrophic muscle. We demonstrate that mdx muscle is not deficient in either cysteine or GSH and that these are not increased by OTC treatment. However, we show that dystrophic muscle of 12 week old mdx mice is deficient in taurine, a by-product of disposal of excess cysteine, a deficiency that is ameliorated by OTC treatment. These data suggest that in dystrophic muscles, apart from the strong association of increased oxidative stress and protein thiol oxidation with dystropathology, another major issue is an insufficiency in taurine that can be corrected by increasing the availability of cysteine. This study provides new insight into the molecular mechanism underlying the benefits of NAC in muscular dystrophy and supports the use of OTC as an alternative drug for potential clinical applications to DMD.
Collapse
Affiliation(s)
- Jessica R Terrill
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, Perth, Western Australia, Australia.
| | | | | | | |
Collapse
|
5
|
Cordina NM, Liew CK, Gell DA, Fajer PG, Mackay JP, Brown LJ. Effects of calcium binding and the hypertrophic cardiomyopathy A8V mutation on the dynamic equilibrium between closed and open conformations of the regulatory N-domain of isolated cardiac troponin C. Biochemistry 2013; 52:1950-62. [PMID: 23425245 DOI: 10.1021/bi4000172] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Troponin C (TnC) is the calcium-binding subunit of the troponin complex responsible for initiating striated muscle contraction in response to calcium influx. In the skeletal TnC isoform, calcium binding induces a structural change in the regulatory N-domain of TnC that involves a transition from a closed to open structural state and accompanying exposure of a large hydrophobic patch for troponin I (TnI) to subsequently bind. However, little is understood about how calcium primes the N-domain of the cardiac isoform (cTnC) for interaction with the TnI subunit as the open conformation of the regulatory domain of cTnC has been observed only in the presence of bound TnI. Here we use paramagnetic relaxation enhancement (PRE) to characterize the closed to open transition of isolated cTnC in solution, a process that cannot be observed by traditional nuclear magnetic resonance methods. Our PRE data from four spin-labeled monocysteine constructs of isolated cTnC reveal that calcium binding triggers movement of the N-domain helices toward an open state. Fitting of the PRE data to a closed to open transition model reveals the presence of a small population of cTnC molecules in the absence of calcium that possess an open conformation, the level of which increases substantially upon Ca(2+) binding. These data support a model in which calcium binding creates a dynamic equilibrium between the closed and open structural states to prime cTnC for interaction with its target peptide. We also used PRE data to assess the structural effects of a familial hypertrophic cardiomyopathy point mutation located within the N-domain of cTnC (A8V). The PRE data show that the Ca(2+) switch mechanism is perturbed by the A8V mutation, resulting in a more open N-domain conformation in both the apo and holo states.
Collapse
Affiliation(s)
- Nicole M Cordina
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | | | | | | | | | | |
Collapse
|
6
|
Terrill JR, Radley-Crabb HG, Iwasaki T, Lemckert FA, Arthur PG, Grounds MD. Oxidative stress and pathology in muscular dystrophies: focus on protein thiol oxidation and dysferlinopathies. FEBS J 2013; 280:4149-64. [PMID: 23332128 DOI: 10.1111/febs.12142] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 01/14/2013] [Accepted: 01/15/2013] [Indexed: 12/23/2022]
Abstract
The muscular dystrophies comprise more than 30 clinical disorders that are characterized by progressive skeletal muscle wasting and degeneration. Although the genetic basis for many of these disorders has been identified, the exact mechanism for pathogenesis generally remains unknown. It is considered that disturbed levels of reactive oxygen species (ROS) contribute to the pathology of many muscular dystrophies. Reactive oxygen species and oxidative stress may cause cellular damage by directly and irreversibly damaging macromolecules such as proteins, membrane lipids and DNA; another major cellular consequence of reactive oxygen species is the reversible modification of protein thiol side chains that may affect many aspects of molecular function. Irreversible oxidative damage of protein and lipids has been widely studied in Duchenne muscular dystrophy, and we have recently identified increased protein thiol oxidation in dystrophic muscles of the mdx mouse model for Duchenne muscular dystrophy. This review evaluates the role of elevated oxidative stress in Duchenne muscular dystrophy and other forms of muscular dystrophies, and presents new data that show significantly increased protein thiol oxidation and high levels of lipofuscin (a measure of cumulative oxidative damage) in dysferlin-deficient muscles of A/J mice at various ages. The significance of this elevated oxidative stress and high levels of reversible thiol oxidation, but minimal myofibre necrosis, is discussed in the context of the disease mechanism for dysferlinopathies, and compared with the situation for dystrophin-deficient mdx mice.
Collapse
Affiliation(s)
- Jessica R Terrill
- School of Anatomy, Physiology and Human Biology, University of Western Australia, Perth, Western Australia, Australia
| | | | | | | | | | | |
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW ICU-acquired weakness (ICUAW) is now recognized as a major complication of critical illness. There is no doubt that ICUAW is prevalent - some might argue ubiquitous - after critical illness, but its true role, the interaction with preexisting nerve and muscle lesions as well as its contribution to long-term functional disability, remains to be elucidated. RECENT FINDINGS In this article, we review the current state-of-the-art of the basic pathophysiology of nerve and muscle weakness after critical illness and explore the current literature on ICUAW with a special emphasis on the most important mechanisms of weakness. SUMMARY Variable contributions of structural and functional changes likely contribute to both early and late myopathy and neuropathy, although the specifics of the temporality of both processes, and the influence patient comorbidities, age, and nature of the ICU insult have on them, remain to be determined.
Collapse
|
8
|
Cordina NM, Liew CK, Gell DA, Fajer PG, Mackay JP, Brown LJ. Interdomain orientation of cardiac troponin C characterized by paramagnetic relaxation enhancement NMR reveals a compact state. Protein Sci 2013; 21:1376-87. [PMID: 22811351 DOI: 10.1002/pro.2124] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cardiac troponin C (cTnC) is the calcium binding subunit of the troponin complex that triggers the thin filament response to calcium influx into the sarcomere. cTnC consists of two globular EF-hand domains (termed the N- and C-domains) connected by a flexible linker. While the conformation of each domain of cTnC has been thoroughly characterized through NMR studies involving either the isolated N-domain (N-cTnC) or C-domain (C-cTnC), little attention has been paid to the range of interdomain orientations possible in full-length cTnC that arises as a consequence of the flexibility of the domain linker. Flexibility in the domain linker of cTnC is essential for effective regulatory function of troponin. We have therefore utilized paramagnetic relaxation enhancement (PRE) NMR to assess the interdomain orientation of cTnC. Ensemble fitting of our interdomain PRE measurements reveals that isolated cTnC has considerable interdomain flexibility and preferentially adopts a bent conformation in solution, with a defined range of relative domain orientations.
Collapse
Affiliation(s)
- Nicole M Cordina
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | | | | | | | | | | |
Collapse
|
9
|
Skelly JR, Rowan SC, Jones JFX, O'Halloran KD. Upper airway dilator muscle weakness following intermittent and sustained hypoxia in the rat: effects of a superoxide scavenger. Physiol Res 2012; 62:187-96. [PMID: 23234416 DOI: 10.33549/physiolres.932405] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Obstructive sleep apnoea syndrome (OSAS) is a common disorder associated with upper airway muscle dysfunction. Agents that improve respiratory muscle performance may have considerable therapeutic value. We examined the effects of acute exposure to sustained and intermittent hypoxia on rat pharyngeal dilator muscle function. Additionally, we sought to test the efficacy of antioxidant treatment in ameliorating or preventing hypoxia-related muscle dysfunction. Isometric contractile and endurance properties of isolated rat sternohyoid muscle bundles were examined at 35 °C in vitro. Muscle bundles were exposed to one of four gas treatments: hyperoxia (control), sustained hypoxia (SH), intermittent hypoxia (IH) or hypoxia/re-oxygenation (HR), in the absence or presence of the superoxide scavenger--Tempol (10 mM). Stress-frequency relationship was determined in response to electrical stimulation (10-100 Hz in increments of 10-20 Hz, train duration: 300 ms). Muscle performance was also assessed during repetitive muscle stimulation (40 Hz, 300 ms every 2 s for 2.5 min). Compared to control, IH and HR treatments significantly decreased sternohyoid muscle force. The negative inotropic effect of the two gas protocols was similar, but both were of lesser magnitude than the effects of SH. SH, but not IH and HR, increased muscle fatigue. Tempol significantly increased sensitivity to stimulation in all muscle preparations and caused a leftward shift in the stress-frequency relationship of IH and SH treated muscles. Tempol did not ameliorate sternohyoid muscle fatigue during SH. We conclude that Tempol increases upper airway muscle sensitivity to stimulation but only modestly ameliorates respiratory muscle weakness during intermittent and sustained hypoxic conditions in vitro. Respiratory muscle fatigue during sustained hypoxia appears unrelated to oxidative stress.
Collapse
Affiliation(s)
- J R Skelly
- Health Sciences Centre, University College Dublin, Belfield, Dublin, Ireland.
| | | | | | | |
Collapse
|
10
|
Li AY, Lee J, Borek D, Otwinowski Z, Tibbits GF, Paetzel M. Crystal structure of cardiac troponin C regulatory domain in complex with cadmium and deoxycholic acid reveals novel conformation. J Mol Biol 2011; 413:699-711. [PMID: 21920370 PMCID: PMC4068330 DOI: 10.1016/j.jmb.2011.08.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 08/23/2011] [Accepted: 08/24/2011] [Indexed: 01/07/2023]
Abstract
The amino-terminal regulatory domain of cardiac troponin C (cNTnC) plays an important role as the calcium sensor for the troponin complex. Calcium binding to cNTnC results in conformational changes that trigger a cascade of events that lead to cardiac muscle contraction. The cardiac N-terminal domain of TnC consists of two EF-hand calcium binding motifs, one of which is dysfunctional in binding calcium. Nevertheless, the defunct EF-hand still maintains a role in cNTnC function. For its structural analysis by X-ray crystallography, human cNTnC with the wild-type primary sequence was crystallized under a novel crystallization condition. The crystal structure was solved by the single-wavelength anomalous dispersion method and refined to 2.2 Å resolution. The structure displays several novel features. Firstly, both EF-hand motifs coordinate cadmium ions derived from the crystallization milieu. Secondly, the ion coordination in the defunct EF-hand motif accompanies unusual changes in the protein conformation. Thirdly, deoxycholic acid, also derived from the crystallization milieu, is bound in the central hydrophobic cavity. This is reminiscent of the interactions observed for cardiac calcium sensitizer drugs that bind to the same core region and maintain the "open" conformational state of calcium-bound cNTnC. The cadmium ion coordination in the defunct EF-hand indicates that this vestigial calcium binding site retains the structural and functional elements that allow it to coordinate a cadmium ion. However, it is a result of, or concomitant with, large and unusual structural changes in cNTnC.
Collapse
Affiliation(s)
- Alison Yueh Li
- Department of Molecular Biology and Biochemistry, Simon Fraser University, South Science Building, 8888 University Drive, Burnaby, British Columbia, Canada, V5A 1S6
- Department of Biomedical Physiology and Kinesiology, Molecular Cardiac Physiology Group, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada, V5A 1S6
| | - Jaeyong Lee
- Department of Molecular Biology and Biochemistry, Simon Fraser University, South Science Building, 8888 University Drive, Burnaby, British Columbia, Canada, V5A 1S6
| | - Dominika Borek
- Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Zbyszek Otwinowski
- Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Glen F. Tibbits
- Department of Molecular Biology and Biochemistry, Simon Fraser University, South Science Building, 8888 University Drive, Burnaby, British Columbia, Canada, V5A 1S6
- Department of Biomedical Physiology and Kinesiology, Molecular Cardiac Physiology Group, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada, V5A 1S6
- Cardiovascular Sciences, Child and Family Research Institute, 950 West 28 Ave, Vancouver, BC, Canada V5Z 4H4
| | - Mark Paetzel
- Department of Molecular Biology and Biochemistry, Simon Fraser University, South Science Building, 8888 University Drive, Burnaby, British Columbia, Canada, V5A 1S6
- Department of Biomedical Physiology and Kinesiology, Molecular Cardiac Physiology Group, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada, V5A 1S6
- Address correspondence to: Dr. Mark Paetzel, Simon Fraser University, Department of Molecular Biology and Biochemistry, South Science Building, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6, Tel.: 778-782-4230, Fax.: 778-782-5583,
| |
Collapse
|
11
|
Reid MB, Moylan JS. Beyond atrophy: redox mechanisms of muscle dysfunction in chronic inflammatory disease. J Physiol 2011; 589:2171-9. [PMID: 21320886 DOI: 10.1113/jphysiol.2010.203356] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Chronic inflammatory diseases such as heart failure, cancer and arthritis have secondary effects on skeletal muscle that cause weakness and exercise intolerance. These symptoms exacerbate illness and make death more likely. Weakness is not simply a matter of muscle atrophy. Functional studies show that contractile dysfunction, i.e. a reduction in specific force, makes an equally important contribution to overall weakness. The most clearly defined mediator of contractile dysfunction is tumour necrosis factor (TNF). TNF serum levels are elevated in chronic disease, correlate with muscle weakness, and are a predictor of morbidity and mortality. Research is beginning to unravel the mechanism by which TNF depresses specific force. TNF acts via the TNFR1 receptor subtype to depress force by increasing cytosolic oxidant activity. Oxidants depress myofibrillar function, decreasing specific force without altering calcium regulation or other aspects of myofibrillar mechanics. Beyond these concepts, the intracellular mechanisms that depress specific force remain undefined. We do not know the pathway by which receptor-ligand interaction stimulates oxidant production. Nor do we know the type(s) of oxidants stimulated by TNF, their intracellular source(s), or their molecular targets. Investigators in the field are pursuing these issues with the long-term goal of preserving muscle function in individuals afflicted by chronic disease.
Collapse
Affiliation(s)
- Michael B Reid
- Department of Physiology, University of Kentucky, Lexington, KY 40536-0298, USA.
| | | |
Collapse
|
12
|
Arbogast S, Ferreiro A. Selenoproteins and protection against oxidative stress: selenoprotein N as a novel player at the crossroads of redox signaling and calcium homeostasis. Antioxid Redox Signal 2010; 12:893-904. [PMID: 19769461 DOI: 10.1089/ars.2009.2890] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Healthy cells continually produce low levels of reactive oxygen species (ROS), which are buffered by multiple antioxidant systems. Imbalance between ROS production and elimination results in oxidative stress, which has been implicated in aging and in numerous human diseases, including cancer and diabetes. Selenoproteins are a family of proteins that contain the amino acid selenocysteine, encoded by an in-frame UGA. Those selenoproteins whose function is identified are catalytically active in redox processes, representing one of the main enzymatic antioxidant systems and important mediators of the beneficial role of selenium in human health. Nevertheless, the function of most selenoproteins remains unknown; this included Selenoprotein N (SelN), the only selenoprotein directly associated with a human genetic disease. Mutations of the SelN gene cause SEPN1-related myopathy, a particular early-onset muscle disorder. Recent studies have identified SelN as a key protein in cell protection against oxidative stress and redox-related calcium homeostasis. Furthermore, an effective ex vivo treatment of SelN deficiency has been identified, paving the way to a clinical therapy. In this review we discuss the physiological and pathophysiological role of SelN and the interest of SEPN1-related myopathy as a model paradigm to understand and target therapeutically other selenoproteins involved in human health and disease.
Collapse
|
13
|
Fedorova M, Kuleva N, Hoffmann R. Reversible and irreversible modifications of skeletal muscle proteins in a rat model of acute oxidative stress. Biochim Biophys Acta Mol Basis Dis 2009; 1792:1185-93. [PMID: 19786098 DOI: 10.1016/j.bbadis.2009.09.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2009] [Revised: 08/15/2009] [Accepted: 09/21/2009] [Indexed: 11/30/2022]
Abstract
Oxidative stress caused by an imbalance of the production of "reactive oxygen species" (ROS) and cellular scavenging systems is known to a play a key role in the development of various diseases and aging processes. Such elevated ROS levels can damage all components of cells, including proteins, lipids and DNA. Here, we study the influence of highly reactive ROS species on skeletal muscle proteins in a rat model of acute oxidative stress caused by X-ray irradiation at different time points. Protein preparations depleted for functional actin by polymerization were separated by gel electrophoresis in two dimensions by applying first non-reductive and then reductive conditions in SDS-PAGE. This diagonal redox SDS-PAGE revealed significant alterations to intra- and inter-molecular disulfide bridges for several proteins, but especially actin, creatine kinase and different isoforms of the myosin light chain. Though the levels of these reversible modifications were increased by oxidative stress, all proteins followed different kinetics. Moreover, a significant degree of protein was irreversibly oxidized (carbonylated), as revealed by western blot analyses performed at different time points.
Collapse
Affiliation(s)
- Maria Fedorova
- Institute of Bioanalytical Chemistry, Center for Biotechnology and Biomedicine, Faculty of Chemistry and Mineralogy, Leipzig University, Deutscher Platz 5, 04103 Leipzig, Germany
| | | | | |
Collapse
|
14
|
Arbogast S, Beuvin M, Fraysse B, Zhou H, Muntoni F, Ferreiro A. Oxidative stress in SEPN1-related myopathy: from pathophysiology to treatment. Ann Neurol 2009; 65:677-86. [PMID: 19557870 DOI: 10.1002/ana.21644] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Mutations of the selenoprotein N gene (SEPN1) cause SEPN1-related myopathy (SEPN1-RM), a novel early-onset muscle disorder formerly divided into four different nosological categories. Selenoprotein N (SelN) is the only selenoprotein involved in a genetic disease; its function being unknown, no treatment is available for this potentially lethal disorder. Our objective was to clarify the role of SelN and the pathophysiology of SEPN1-RM to identify therapeutic targets. METHODS We established and analyzed an ex vivo model of SelN deficiency using fibroblast and myoblast primary cultures from patients with null SEPN1 mutations. DCFH assay, OxyBlot, Western blot, Fura-2, and cell survival studies were performed to measure intracellular oxidant activity, oxidative stress markers, calcium handling, and response to exogenous treatments. RESULTS SelN-depleted cells showed oxidative/nitrosative stress manifested by increased intracellular oxidant activity (reactive oxygen species and nitric oxide) and/or excessive oxidation of proteins, including the contractile proteins actin and myosin heavy chain II in myotubes. SelN-devoid myotubes showed also Ca(2+) homeostasis abnormalities suggesting dysfunction of the redox-sensor Ca(2+) channel ryanodine receptor type 1. Furthermore, absence of SelN was associated with abnormal susceptibility to H(2)O(2)-induced oxidative stress, demonstrated by increased cell death. This cell phenotype was restored by pretreatment with the antioxidant N-acetylcysteine. INTERPRETATION SelN plays a key role in redox homeostasis and human cell protection against oxidative stress. Oxidative/nitrosative stress is a primary pathogenic mechanism in SEPN1-RM, which can be effectively targeted ex vivo by antioxidants. These findings pave the way to SEPN1-RM treatment, which would represent a first specific pharmacological treatment for a congenital myopathy.
Collapse
Affiliation(s)
- Sandrine Arbogast
- INSERM-Institut National de la Sante et de la Recherche Médicale, U582, Institut de Myologie, Paris, France
| | | | | | | | | | | |
Collapse
|
15
|
Ferreira LF, Reid MB. Muscle-derived ROS and thiol regulation in muscle fatigue. J Appl Physiol (1985) 2008; 104:853-60. [DOI: 10.1152/japplphysiol.00953.2007] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Muscles produce oxidants, including reactive oxygen species (ROS) and reactive nitrogen species (RNS), from a variety of intracellular sources. Oxidants are detectable in muscle at low levels during rest and at higher levels during contractions. RNS depress force production but do not appear to cause fatigue of healthy muscle. In contrast, muscle-derived ROS contribute to fatigue because loss of function can be delayed by ROS-specific antioxidants. Thiol regulation appears to be important in this biology. Fatigue causes oxidation of glutathione, a thiol antioxidant in muscle fibers, and is reversed by thiol-specific reducing agents. N-acetylcysteine (NAC), a drug that supports glutathione synthesis, has been shown to lessen oxidation of cellular constituents and delay muscle fatigue. In humans, NAC pretreatment improves performance of limb and respiratory muscles during fatigue protocols and extends time to task failure during volitional exercise. These findings highlight the importance of ROS and thiol chemistry in fatigue, show the feasibility of thiol-based countermeasures, and identify new directions for mechanistic and translational research.
Collapse
|
16
|
Reid MB. Free radicals and muscle fatigue: Of ROS, canaries, and the IOC. Free Radic Biol Med 2008; 44:169-79. [PMID: 18191753 DOI: 10.1016/j.freeradbiomed.2007.03.002] [Citation(s) in RCA: 226] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Revised: 02/26/2007] [Accepted: 03/01/2007] [Indexed: 11/16/2022]
Abstract
Skeletal muscle fibers continually generate reactive oxygen species (ROS) at a slow rate that increases during muscle contraction. This activity-dependent increase in ROS production contributes to fatigue of skeletal muscle during strenuous exercise. Existing data suggest that muscle-derived ROS primarily act on myofibrillar proteins to inhibit calcium sensitivity and depress force. Decrements in calcium sensitivity and force are acutely reversible by dithiothreitol, a thiol-selective reducing agent. These observations suggest that thiol modifications on one or more regulatory proteins are responsible for oxidant-induced losses during fatigue. More intense ROS exposure leads to losses in calcium regulation that mimic pathologic changes and are not reversible. Studies in humans, quadrupeds, and isolated muscle preparations indicate that antioxidant pretreatment can delay muscle fatigue. In humans, this phenomenon is best defined for N-acetylcysteine (NAC), a reduced thiol donor that supports glutathione resynthesis. NAC has been shown to inhibit fatigue in healthy adults during electrical muscle activation, inspiratory resistive loading, handgrip exercise, and intense cycling. These findings identify ROS as endogenous mediators of muscle fatigue and highlight the importance of future research to (a) define the cellular mechanism of ROS action and (b) develop antioxidants as novel therapeutic interventions for treating fatigue.
Collapse
Affiliation(s)
- Michael B Reid
- Department of Physiology, University of Kentucky, Lexington, KY 40536-0298, USA.
| |
Collapse
|
17
|
Smith MA, Reid MB. Redox modulation of contractile function in respiratory and limb skeletal muscle. Respir Physiol Neurobiol 2006; 151:229-41. [PMID: 16481226 DOI: 10.1016/j.resp.2005.12.011] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Revised: 12/20/2005] [Accepted: 12/21/2005] [Indexed: 10/25/2022]
Abstract
For the last half century, scientists have studied the biological importance of free radicals in respiratory and limb muscles. We now know that muscle fibers continually produce both reactive oxygen species (ROS) and nitric oxide (NO) and that both cascades play critical roles in contractile regulation. Under basal conditions, muscle-derived ROS and NO exert opposing effects. Low-level ROS activity is an essential part of the homeostatic milieu and is required for normal force production whereas NO derivatives function as a brake on the system, limiting force. The modulatory effects of ROS and NO are disrupted by conditions that exaggerate production including mechanical unloading, inflammatory disease, and strenuous exercise. Marked increases in ROS or NO levels cause contractile dysfunction, resulting in muscle weakness and fatigue. These principles provide a foundation for ongoing research to identify the mechanisms of ROS and NO action and develop interventions that protect muscle function.
Collapse
Affiliation(s)
- Melissa A Smith
- Department of Physiology, University of Kentucky, Lexington, KY 40536-0298, USA
| | | |
Collapse
|
18
|
Moopanar TR, Allen DG. The activity-induced reduction of myofibrillar Ca2+ sensitivity in mouse skeletal muscle is reversed by dithiothreitol. J Physiol 2005; 571:191-200. [PMID: 16339177 PMCID: PMC1805646 DOI: 10.1113/jphysiol.2005.101105] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The aim of this study was to further characterize the reduction of myofibrillar Ca2+ sensitivity in mouse muscle which has been observed after fatigue at 37 degrees C. Muscle bundles and single fibres were isolated from mouse flexor digitorum brevis muscle and studied at 37 degrees C. The single fibres were injected with the Ca2+ indicator indo-1. Muscle fatigue was produced by 0.4 s tetani repeated at 4 s intervals until force had fallen to less than 50% of initial. Excitation-contraction coupling was assessed by measuring the cytosolic calcium concentration ([Ca2+]i) during tetani, and the maximum Ca2+-activated force and the myofibrillar Ca2+ sensitivity were estimated from a series of tetani at different stimulation frequencies. Two main results were found. (i) The reduction of Ca2+ sensitivity only occurred when the muscle was intensely stimulated leading to fatigue. When the muscle was rested for 10 min at 37 degrees C there was no significant change in Ca2+ sensitivity. (ii) If the membrane-permeant thiol-specific reducing agent dithiothreitol (0.5 mm) was applied to the muscle for 2 min following the fatigue protocol, the reduction in Ca2+ sensitivity was reversed. Dithiothreitol had no effect on Ca2+ sensitivity in unfatigued preparations. There was no effect of fatigue or dithiothreitol on tetanic [Ca2+]i or on the maximum Ca2+-activated force. These results suggest that intense activity of skeletal muscle at 37 degrees C causes the production of reactive oxygen species which oxidize a target protein. We propose that critical sulphydryl groups on the target protein(s) are converted to disulphide bonds and this reaction reduces Ca2+ sensitivity.
Collapse
Affiliation(s)
- Terence R Moopanar
- Institute for Biomedical Sciences, School of Medical Sciences, University of Sydney F13, NSW 2006, Australia
| | | |
Collapse
|
19
|
Martyn DA, Chase PB, Regnier M, Gordon AM. A simple model with myofilament compliance predicts activation-dependent crossbridge kinetics in skinned skeletal fibers. Biophys J 2002; 83:3425-34. [PMID: 12496109 PMCID: PMC1302417 DOI: 10.1016/s0006-3495(02)75342-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The contribution of thick and thin filaments to skeletal muscle fiber compliance has been shown to be significant. If similar to the compliance of cycling cross-bridges, myofilament compliance could explain the difference in time course of stiffness and force during the rise of tension in a tetanus as well as the difference in Ca(2+) sensitivity of force and stiffness and more rapid phase 2 tension recovery (r) at low Ca(2+) activation. To characterize the contribution of myofilament compliance to sarcomere compliance and isometric force kinetics, the Ca(2+)-activation dependence of sarcomere compliance in single glycerinated rabbit psoas fibers, in the presence of ATP (5.0 mM), was measured using rapid length steps. At steady sarcomere length, the dependence of sarcomere compliance on the level of Ca(2+)-activated force was similar in form to that observed for fibers in rigor where force was varied by changing length. Additionally, the ratio of stiffness/force was elevated at lower force (low [Ca(2+)]) and r was faster, compared with maximum activation. A simple series mechanical model of myofilament and cross-bridge compliance in which only strong cross-bridge binding was activation dependent was used to describe the data. The model fit the data and predicted that the observed activation dependence of r can be explained if myofilament compliance contributes 60-70% of the total fiber compliance, with no requirement that actomyosin kinetics be [Ca(2+)] dependent or that cooperative interactions contribute to strong cross-bridge binding.
Collapse
Affiliation(s)
- D A Martyn
- Department of Bioengineering, Box 357962, University of Washington, Seattle, WA 98195, USA.
| | | | | | | |
Collapse
|
20
|
Dargis R, Pearlstone JR, Barrette-Ng I, Edwards H, Smillie LB. Single mutation (A162H) in human cardiac troponin I corrects acid pH sensitivity of Ca2+-regulated actomyosin S1 ATPase. J Biol Chem 2002; 277:34662-5. [PMID: 12151382 DOI: 10.1074/jbc.c200419200] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In contrast to skeletal muscle, the efficiency of the contractile apparatus of cardiac tissue has long been known to be severely compromised by acid pH as in the ischemia of myocardial infarction and other cardiac myopathies. Recent reports (Westfall, M. V., and Metzger, J. M. (2001) News Physiol. Sci. 16, 278-281; Li, G., Martin, A. F., and Solaro, R. J. (2001) J. Mol. Cell. Cardiol. 33, 1309-1320) have indicated that the reduced Ca(2+) sensitivity of cardiac contractility at low pH (<or=pH 6.5) is attributable to structural difference(s) in the cardiac and skeletal inhibitory components (TnIs) of their troponins. Here, using a reconstituted Ca(2+)-regulated human cardiac troponin-tropomyosin actomyosin S1 ATPase assay, we report that a single TnI mutation, A162H, restores Ca(2+) sensitivity at pH 6.5 to that at pH 7.0. Levels of inhibition (pCa 7.0), activation (pCa 4.0), and cooperativity of ATPase activity were minimally affected. Two other mutations (Q155R and E164V) also previously suggested by us (Pearlstone, J. R., Sykes, B. D., and Smillie, L. B. (1997) Biochemistry 36, 7601-7606) and involving charged residues showed no such effects. With fast skeletal muscle troponin, a single TnI H130A mutation reduced Ca(2+) sensitivity at pH 6.5 to levels approaching the cardiac system at pH 6.5. These observations provide structural insight into long-standing physiological and clinical phenomena and are of potential relevance to therapeutic treatments of heart disease by gene transfer, stem cell, and cell transplantation approaches.
Collapse
Affiliation(s)
- Roland Dargis
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | | | |
Collapse
|
21
|
Reid MB, Lännergren J, Westerblad H. Respiratory and limb muscle weakness induced by tumor necrosis factor-alpha: involvement of muscle myofilaments. Am J Respir Crit Care Med 2002; 166:479-84. [PMID: 12186824 DOI: 10.1164/rccm.2202005] [Citation(s) in RCA: 237] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The respiratory and limb skeletal muscles become weakened in sepsis, congestive heart failure, and other inflammatory diseases. A potential mediator of muscle weakness is tumor necrosis factor (TNF)-alpha, a cytokine that can stimulate muscle wasting and also can induce contractile dysfunction without overt catabolism. This study addressed the latter process. Murine diaphragm and limb muscle (flexor digitorum brevis [FDB]) preparations were used to determine the relative sensitivities of these muscles to TNF-alpha. Intact muscle fibers were isolated from FDB and microinjected with indo-1 to measure changes in sarcoplasmic calcium regulation. We found that TNF-alpha depressed tetanic force of the diaphragm and FDB to comparable degrees across a range of stimulus frequencies. In isolated muscle fibers, TNF-alpha decreased tetanic force without altering tetanic calcium transients or resting calcium levels. We conclude that (1) TNF-alpha compromises contractile function of diaphragm and limb muscle similarly, and (2) TNF-alpha decreases force by blunting the response of muscle myofilaments to calcium activation.
Collapse
Affiliation(s)
- Michael B Reid
- Pulmonary Medicine, Suite 520B, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | |
Collapse
|
22
|
da Silva EF, Oliveira VH, Sorenson MM, Barrabin H, Scofano HM. Converting troponin C into calmodulin: effects of mutations in the central helix and of changes in temperature. Int J Biochem Cell Biol 2002; 34:657-67. [PMID: 11943596 DOI: 10.1016/s1357-2725(01)00170-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Calmodulin (CaM) and troponin C (TnC) are the most similar members of EF-hand family and show few differences in the primary structure. Here, we use mutants of troponin that mimic calmodulin and changes in temperature to investigate the factors that determine their specificity as regulatory proteins. Using a double mutant of troponin that resembles calmodulin in lacking both the N-terminal helix and KGK(91-93) we observe a small difference from troponin in binding to the erythrocyte Ca(2+)-ATPase, and an improvement in enzyme activation. A triple mutant, where in addition, the residues 88-90 are replaced with the corresponding sequence from calmodulin is equivalent to calmodulin in maximal activation, and it restores protein ability to increase Ca(2+) affinity for the enzyme. However, this mutant also binds less tightly (1/100) than calmodulin. Remarkably, a decrease in temperature has a more marked effect in protein binding than either mutation, reducing the difference in affinities to 18-fold, but without any improvement in their ability to increase Ca(2+) affinity for the enzyme. Spectroscopic analysis of hydrophobic domain exposure in EF-hand proteins was carried out using 8-anilino-1-naphthalenesulfonic acid (ANS). The probe shows a much higher fluorescence when bound to the complex Ca(4)-calmodulin than to Ca(4)-troponin. Decreasing the temperature exposes additional hydrophobic regions of troponin. Changing the Mg(2+) concentration does not affect their bindings to the enzyme. It is suggested that the requirements for troponin to mimic calmodulin in binding to the target enzyme, and those for activating it, are met by different regions of the protein.
Collapse
Affiliation(s)
- Elizabeth F da Silva
- Departamento de Bioquímica Médica, Instituto de Ciências Biomédicas, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Cidade Universitária, 21941-590, RJ, Rio de Janeiro, Brazil
| | | | | | | | | |
Collapse
|
23
|
Sorsa T, Heikkinen S, Abbott MB, Abusamhadneh E, Laakso T, Tilgmann C, Serimaa R, Annila A, Rosevear PR, Drakenberg T, Pollesello P, Kilpelainen I. Binding of levosimendan, a calcium sensitizer, to cardiac troponin C. J Biol Chem 2001; 276:9337-43. [PMID: 11113122 DOI: 10.1074/jbc.m007484200] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Levosimendan is an inodilatory drug that mediates its cardiac effect by the calcium sensitization of contractile proteins. The target protein of levosimendan is cardiac troponin C (cTnC). In the current work, we have studied the interaction of levosimendan with Ca(2+)-saturated cTnC by heteronuclear NMR and small angle x-ray scattering. A specific interaction between levosimendan and the Ca(2+)-loaded regulatory domain of recombinant cTnC(C35S) was observed. The changes in the NMR spectra of the N-domain of full-length cTnC(C35S), due to the binding of levosimendan to the primary site, were indicative of a slow conformational exchange. In contrast, no binding of levosimendan to the regulatory domain of cTnC(A-Cys), where all the cysteine residues are mutated to serine, was detected. Moreover, it was shown that levosimendan was in fast exchange on the NMR time scale with a secondary binding site in the C-domain of both cTnC(C35S) and cTnC(A-Cys). The small angle x-ray scattering experiments confirm the binding of levosimendan to Ca(2+)-saturated cTnC but show no domain-domain closure. The experiments were run in the absence of the reducing agent dithiothreitol and the preservative sodium azide (NaN(3)), since we found that levosimendan reacts with these chemicals, commonly used for preparation of NMR protein samples.
Collapse
Affiliation(s)
- T Sorsa
- NMR Laboratory, Institute of Biotechnology, University of Helsinki, P. O. Box 56, FIN-00014 Helsinki, Finland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Martyn DA, Regnier M, Xu D, Gordon AM. Ca2+ - and cross-bridge-dependent changes in N- and C-terminal structure of troponin C in rat cardiac muscle. Biophys J 2001; 80:360-70. [PMID: 11159408 PMCID: PMC1301239 DOI: 10.1016/s0006-3495(01)76020-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Linear dichroism of 5'-tetramethylrhodamine (5'ATR)-labeled cardiac troponin C (cTnC) was measured to monitor cTnC structure during Ca2+-activation of force in rat skinned myocardium. Mono-cysteine mutants allowed labeling at Cys-84 (cTnC(C84), near the D/E helix linker); Cys-35 (cTnC(C35), at nonfunctional site I); or near the C-terminus with a cysteine inserted at site 98 (cTnC-C35S,C84S,S98C, cTnC(C98)). With 5'ATR-labeled cTnC(C84) and cTnC(C98) dichroism increased with increasing [Ca2+], while rigor cross-bridges caused dichroism to increase more with 5'ATR-labeled cTnC(C84) than cTnC(C98). The pCa50 values and n(H) from Hill analysis of the Ca2+-dependence of force and dichroism were 6.4 (+/-0.02) and 1.08 (+/-0.04) for force and 6.3 (+/-0.04) and 1.02 (+/-0.09) (n = 5) for dichroism in cTnC(C84) reconstituted trabeculae. Corresponding data from cTnC(C98) reconstituted trabeculae were 5.53 (+/-0.03) and 3.1 (+/-0.17) for force, and 5.39 (+/-0.03) and 1.87 (+/-0.17) (n = 5) for dichroism. The contribution of active cycling cross-bridges to changes in cTnC structure was determined by inhibition of force to 6% of pCa 4.0 controls with 1.0 mM sodium vanadate (Vi). With 5'ATR-labeled cTnC(C84) Vi caused both the pCa50)of dichroism and the maximum value at pCa 4.0 to decrease, while with 5'ATR-labeled cTnC(C98) the pCa50 of dichroism decreased with no change of dichroism at pCa 4.0. The dichroism of 5'ATR-labeled cTnC(C35) was insensitive to either Ca2+ or strong cross-bridges. These data suggest that both Ca2+ and cycling cross-bridges perturb the N-terminal structure of cTnC at Cys-84, while C-terminal structure is altered by site II Ca2+-binding, but not cross-bridges.
Collapse
Affiliation(s)
- D A Martyn
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, USA.
| | | | | | | |
Collapse
|
25
|
Callahan LA, She ZW, Nosek TM. Superoxide, hydroxyl radical, and hydrogen peroxide effects on single-diaphragm fiber contractile apparatus. J Appl Physiol (1985) 2001; 90:45-54. [PMID: 11133892 DOI: 10.1152/jappl.2001.90.1.45] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Reactive oxygen species contribute to diaphragm dysfunction in certain pathophysiological conditions (i.e., sepsis and fatigue). However, the precise alterations induced by reactive oxygen species or the specific species that are responsible for the derangements in skeletal muscle function are incompletely understood. In this study, we evaluated the effect of the superoxide anion radical (O(2)(-).), hydroxyl radical (.OH), and hydrogen peroxide (H(2)O(2)) on maximum calcium-activated force (F(max)) and calcium sensitivity of the contractile apparatus in chemically skinned (Triton X-100) single rat diaphragm fibers. O(2)(-). was generated using the xanthine/xanthine oxidase system;.OH was generated using 1 mM FeCl(2), 1 mM ascorbate, and 1 mM H(2)O(2); and H(2)O(2) was added directly to the bathing medium. Exposure to O(2)(-). or.OH significantly decreased F(max) by 14.5% (P < 0.05) and 43.9% (P < 0. 005), respectively.OH had no effect on Ca(2+) sensitivity. Neither 10 nor 1,000 microM H(2)O(2) significantly altered F(max) or Ca(2+) sensitivity. We conclude that the diaphragm is susceptible to alterations induced by a direct effect of.OH and O(2)(-)., but not H(2)O(2), on the contractile proteins, which could, in part, be responsible for prolonged depression in contractility associated with respiratory muscle dysfunction in certain pathophysiological conditions.
Collapse
Affiliation(s)
- L A Callahan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44109, USA.
| | | | | |
Collapse
|
26
|
Li Y, Love ML, Putkey JA, Cohen C. Bepridil opens the regulatory N-terminal lobe of cardiac troponin C. Proc Natl Acad Sci U S A 2000; 97:5140-5. [PMID: 10792039 PMCID: PMC25795 DOI: 10.1073/pnas.090098997] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cardiac troponin C (cTnC) is the calcium-dependent switch for contraction in heart muscle and a potential target for drugs in the therapy of congestive heart failure. This calmodulin-like protein consists of two lobes connected by a central linker; each lobe contains two EF-hand domains. The regulatory N-terminal lobe of cTnC, unlike that of skeletal troponin C (sTnC), contains only one functional EF-hand and does not open fully upon the binding of Ca(2+). We have determined the crystal structure of cTnC, with three bound Ca(2+) ions, complexed with the calcium-sensitizer bepridil, to 2.15-A resolution. In contrast to apo- and 3Ca(2+)-cTnC, the drug-bound complex displays a fully open N-terminal lobe similar to the N-terminal lobes of 4Ca(2+)-sTnC and cTnC bound to a C-terminal fragment of cardiac troponin I (residues 147-163). The closing of the lobe is sterically hindered by one of the three bound bepridils. Our results provide a structural basis for the Ca(2+)-sensitizing effect of bepridil and reveal the details of a distinctive two-stage mechanism for Ca(2+) regulation by troponin C in cardiac muscle.
Collapse
Affiliation(s)
- Y Li
- Biophysics and Structural Biology Program, Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454-9110, USA
| | | | | | | |
Collapse
|
27
|
Moncrieffe MC, Venyaminov SY, Miller TE, Guzman G, Potter JD, Prendergast FG. Optical spectroscopic characterization of single tryptophan mutants of chicken skeletal troponin C: evidence for interdomain interaction. Biochemistry 1999; 38:11973-83. [PMID: 10508400 DOI: 10.1021/bi982048j] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The effects of metal ion binding on the optical spectroscopic properties and temperature stability of two single tryptophan mutants of chicken skeletal TnC, F78W and F154W, have been examined. The absence of tyrosine and other tryptophan residues allowed the unambiguous assignment of the spectral signal from the introduced Trp residue. Changes in the molar ellipticity values in the far-UV CD spectra of the mutant proteins on metal ion binding were similar to those of wild-type TnC suggesting that the introduction of the Trp residue had no effect on the total secondary structure content. The fluorescence and near-UV absorbance data reveal that, in the apo state, Trp-78 is buried while Trp-154 is exposed to solvent. Additionally, the highly resolved (1)L(b) band of Trp-78 seen in the near-UV absorbance and CD spectra of the apo state of F78W suggest that this residue is likely in a rigid molecular environment. In the calcium-saturated state, Trp-154 becomes buried while the solvent accessibility of Trp-78 increases. The fluorescence emission and near-UV CD of Trp-78 in the N-terminal domain were sensitive to calcium binding at the C-terminal domain sites. Measurements of the temperature stability reveal that events occurring in the N-terminal domain affect the stability of the C-terminal domain and vice versa. This, coupled with the titration data, strongly suggests that there are interactions between the N- and C-terminal domains of TnC.
Collapse
Affiliation(s)
- M C Moncrieffe
- Department of Biochemistry and Molecular Biology, Mayo Foundation, Rochester, Minnesota 55905, USA
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
Compounds that sensitize cardiac muscle to Ca(2+) by intervening at the level of regulatory thin filament proteins would have potential therapeutic benefit in the treatment of myocardial infarctions. Two putative Ca(2+) sensitizers, EMD 57033 and levosimendan, are reported to bind to cardiac troponin C (cTnC). In this study, we use heteronuclear NMR techniques to study drug binding to [methyl-(13)C]methionine-labeled cTnC when free or when complexed with cardiac troponin I (cTnI). In the absence of Ca(2+), neither drug interacted with cTnC. In the presence of Ca(2+), one molecule of EMD 57033 bound specifically to the C-terminal domain of free cTnC. NMR and equilibrium dialysis failed to demonstrate binding of levosimendan to free cTnC, and the presence of levosimendan had no apparent effect on the Ca(2+) binding affinity of cTnC. Changes in the N-terminal methionine methyl chemical shifts in cTnC upon association with cTnI suggest that cTnI associates with the A-B helical interface and the N terminus of the central helix in cTnC. NMR experiments failed to show evidence of binding of levosimendan to the cTnC.cTnI complex. However, levosimendan covalently bound to a small percentage of free cTnC after prolonged incubation with the protein. These findings suggest that levosimendan exerts its positive inotropic effect by mechanisms that do not involve binding to cTnC.
Collapse
Affiliation(s)
- Q Kleerekoper
- Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston, Texas 77030, USA
| | | |
Collapse
|
29
|
Finley N, Abbott MB, Abusamhadneh E, Gaponenko V, Dong W, Gasmi-Seabrook G, Howarth JW, Rance M, Solaro RJ, Cheung HC, Rosevear PR. NMR analysis of cardiac troponin C-troponin I complexes: effects of phosphorylation. FEBS Lett 1999; 453:107-12. [PMID: 10403385 DOI: 10.1016/s0014-5793(99)00693-6] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Phosphorylation of the cardiac specific amino-terminus of troponin I has been demonstrated to reduce the Ca2+ affinity of the cardiac troponin C regulatory site. Recombinant N-terminal cardiac troponin I proteins, cardiac troponin I(33-80), cardiac troponin I(1-80), cardiac troponin I(1-80)DD and cardiac troponin I(1-80)pp, phosphorylated by protein kinase A, were used to form stable binary complexes with recombinant cardiac troponin C. Cardiac troponin I(1-80)DD, having phosphorylated Ser residues mutated to Asp, provided a stable mimetic of the phosphorylated state. In all complexes, the N-terminal domain of cardiac troponin I primarily makes contact with the C-terminal domain of cardiac troponin C. The nonphosphorylated cardiac specific amino-terminus, cardiac troponin I(1-80), was found to make additional interactions with the N-terminal domain of cardiac troponin C.
Collapse
Affiliation(s)
- N Finley
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, College of Medicine, OH 45267, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Gaponenko V, Abusamhadneh E, Abbott MB, Finley N, Gasmi-Seabrook G, Solaro RJ, Rance M, Rosevear PR. Effects of troponin I phosphorylation on conformational exchange in the regulatory domain of cardiac troponin C. J Biol Chem 1999; 274:16681-4. [PMID: 10358006 DOI: 10.1074/jbc.274.24.16681] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Conformational exchange has been demonstrated within the regulatory domain of calcium-saturated cardiac troponin C when bound to the NH2-terminal domain of cardiac troponin I-(1-80), and cardiac troponin I-(1-80)DD, having serine residues 23 and 24 mutated to aspartate to mimic the phosphorylated form of the protein. Binding of cardiac troponin I-(1-80) decreases conformational exchange for residues 29, 32, and 34. Comparison of average transverse cross correlation rates show that both the NH2- and COOH-terminal domains of cardiac troponin C tumble with similar correlation times when bound to cardiac troponin I-(1-80). In contrast, the NH2- and COOH-terminal domains in free cardiac troponin C and cardiac troponin C bound cardiac troponin I-(1-80)DD tumble independently. These results suggest that the nonphosphorylated cardiac specific NH2 terminus of cardiac troponin I interacts with the NH2-terminal domain of cardiac troponin C.
Collapse
Affiliation(s)
- V Gaponenko
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, College of Medicine, Cincinnati, Ohio 45267, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Hazard AL, Kohout SC, Stricker NL, Putkey JA, Falke JJ. The kinetic cycle of cardiac troponin C: calcium binding and dissociation at site II trigger slow conformational rearrangements. Protein Sci 1998; 7:2451-9. [PMID: 9828012 PMCID: PMC2143865 DOI: 10.1002/pro.5560071123] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The goal of this study is to characterize the kinetic mechanism of Ca2+ activation and inactivation of cardiac troponin C (cTnC), the Ca2+ signaling protein which triggers heart muscle contraction. Previous studies have shown that IAANS covalently coupled to Cys84 of wild-type cTnC is sensitive to conformational change caused by Ca2+ binding to the regulatory site II; the present study also utilizes the C35S mutant, in which Cys84 is the lone cysteine, to ensure the specificity of IAANS labeling. Site II Ca2+ affinities for cTnC-wt, cTnC-C35S, cTnC-wt-IAANS2, and cTnC-C35S-IAANS were similar (KD = 2-5 microM at 25 degrees C; KD = 2-8 microM at 4 degrees C), indicating that neither the IAANS label nor the C35S mutation strongly perturbs site II Ca2+ affinity. To directly determine the rate of Ca2+ dissociation from site II, the Ca2+-loaded protein was rapidly mixed with a spectroscopically sensitive chelator in a stopped flow spectrometer. The resulting site II Ca2+ off-rates were k(off) = 700-800 s(-1) (4 degrees C) for both cTnC-wt and cTnC-C35S, yielding calculated macroscopic site II Ca2+ on-rates of k(on) = k(off)/KD = 2-4 x 10(8) M(-1) s(-1) (4 degrees C). As observed for Ca2+ affinities, neither the C35S mutation nor IAANS labeling significantly altered the Ca2+ on- and off-rates. Using IAANS fluorescence as a monitor of the protein conformational state, the intramolecular conformational changes (delta) induced by Ca2+ binding and release at site II were found to be significantly slower than the Ca2+ on- and off-rates. The conformational rate constants measured for cTnC-wt-IAANS2 and cTnC-C35S-IAANS were k(delta on) = 120-210 s(-1) and k(delta off) = 90-260 s(-1) (4 degrees C) . Both conformational events were slowed in cTnC-wt-IAANS2 relative to cTnC-C35S-IAANS, presumably due to the bulky IAANS probe coupled to Cys35. Together, the results provide a nearly complete kinetic description of the Ca2+ activation cycle of isolated cTnC, revealing rapid Ca2+ binding and release at site II accompanied by slow conformational steps that are likely to be retained by the full troponin complex during heart muscle contraction and relaxation.
Collapse
Affiliation(s)
- A L Hazard
- Department of Chemistry and Biochemistry, University of Colorado, Boulder 80309-0215, USA
| | | | | | | | | |
Collapse
|
32
|
Andrade FH, Reid MB, Allen DG, Westerblad H. Effect of hydrogen peroxide and dithiothreitol on contractile function of single skeletal muscle fibres from the mouse. J Physiol 1998; 509 ( Pt 2):565-75. [PMID: 9575304 PMCID: PMC2230964 DOI: 10.1111/j.1469-7793.1998.565bn.x] [Citation(s) in RCA: 323] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
1. We used intact single fibres from a mouse foot muscle to study the role of oxidation-reduction in the modulation of contractile function. 2. The oxidant hydrogen peroxide (H2O2, 100-300 microM) for brief periods did not change myoplasmic Ca2+ concentrations ([Ca2+]i) during submaximal tetani. However, force increased by 27 % during the same contractions. 3. The effects of H2O2 were time dependent. Prolonged exposures resulted in increased resting and tetanic [Ca2+]i, while force was significantly diminished. The force decline was mainly due to reduced myofibrillar Ca2+ sensitivity. There was also evidence of altered sarcoplasmic reticulum (SR) function: passive Ca2+ leak was increased and Ca2+ uptake was decreased. 4. The reductant dithiothreitol (DTT, 0.5-1 mM) did not change tetanic [Ca2+]i, but decreased force by over 40 %. This was completely reversed by subsequent incubations with H2O2. The force decline induced by prolonged exposure to H2O2 was reversed by subsequent exposure to DTT. 5. These results show that the elements of the contractile machinery are differentially responsive to changes in the oxidation-reduction balance of the muscle fibres. Myofibrillar Ca2+ sensitivity appears to be especially susceptible, while the SR functions (Ca2+ leak and uptake) are less so.
Collapse
Affiliation(s)
- F H Andrade
- Department of Physiology and Pharmacology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | | | | | | |
Collapse
|
33
|
Kleerekoper Q, Liu W, Choi D, Putkey JA. Identification of binding sites for bepridil and trifluoperazine on cardiac troponin C. J Biol Chem 1998; 273:8153-60. [PMID: 9525919 DOI: 10.1074/jbc.273.14.8153] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The solution structure of cardiac troponin C (cTnC) (Sia, S., Li, M. X., Spyracopoulos, L., Gagne, S. M., Liu, W., Putkey, J. A. & Sykes, B. D. (1997) J. Biol. Chem. 272, 18216-18221) challenges existing structure/function models for this critical regulatory protein. For example, it is clear that the closed conformation of the regulatory N-terminal domain in Ca2+-bound cardiac troponin C (cTnC) presents a much different binding surface for Ca2+-sensitizing compounds than previously thought. We report here the use of Met methyl groups as site-specific structural markers to identify drug binding sites for trifluoperazine and bepridil on cTnC. Drug dependent changes in the NMR heteronuclear single-quantum coherence spectra of [methyl-13C]Met-labeled cTnC indicate that bepridil and trifluoperazine bind to similar sites but only in the presence of Ca2+. There are 3-4 drug binding sites in the N- and C-terminal domains of intact cTnC that exhibit fast exchange on the NMR time scale. Use of a novel spin-labeled phenothiazine and detection of isotope-filtered nuclear Overhauser effects allowed identification of drug binding sites in the shallow hydrophobic cup in the C-terminal domain and on two hydrophobic surfaces on the N-terminal regulatory domain. The data presented here, coupled with our previous study using covalent blocking groups, support a model in which the Ca2+-sensitizing binding site includes Met-45 in helix B of site I, and Met-60 and -80 in helices B and C of the regulatory site II. This subregion in cTnC makes a likely target against which to design new and selective Ca2+-sensitizing compounds.
Collapse
Affiliation(s)
- Q Kleerekoper
- Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
34
|
Sia SK, Li MX, Spyracopoulos L, Gagné SM, Liu W, Putkey JA, Sykes BD. Structure of cardiac muscle troponin C unexpectedly reveals a closed regulatory domain. J Biol Chem 1997; 272:18216-21. [PMID: 9218458 DOI: 10.1074/jbc.272.29.18216] [Citation(s) in RCA: 154] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The regulation of cardiac muscle contraction must differ from that of skeletal muscles to effect different physiological and contractile properties. Cardiac troponin C (TnC), the key regulator of cardiac muscle contraction, possesses different functional and Ca2+-binding properties compared with skeletal TnC and features a Ca2+-binding site I, which is naturally inactive. The structure of cardiac TnC in the Ca2+-saturated state has been determined by nuclear magnetic resonance spectroscopy. The regulatory domain exists in a "closed" conformation even in the Ca2+-bound (the "on") state, in contrast to all predicted models and differing significantly from the calcium-induced structure observed in skeletal TnC. This structure in the Ca2+-bound state, and its subsequent interaction with troponin I (TnI), are crucial in determining the specific regulatory mechanism for cardiac muscle contraction. Further, it will allow for an understanding of the action of calcium-sensitizing drugs, which bind to cardiac TnC and are known to enhance the ability of cardiac TnC to activate cardiac muscle contraction.
Collapse
Affiliation(s)
- S K Sia
- Department of Biochemistry, Medical Research Council Group in Protein Structure and Function, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | | | | | | | |
Collapse
|
35
|
Putkey JA, Liu W, Lin X, Ahmed S, Zhang M, Potter JD, Kerrick WG. Fluorescent probes attached to Cys 35 or Cys 84 in cardiac troponin C are differentially sensitive to Ca(2+)-dependent events in vitro and in situ. Biochemistry 1997; 36:970-8. [PMID: 9020797 DOI: 10.1021/bi9617466] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The goal of the current study was to generate recombinant cTnC proteins with single Cys residues as sites for attachment of fluorescent probes that can distinguish between the structural effects of myosin cross bridges and direct Ca2+ binding to cTnC (cardiac and slow skeletal troponin C) in skinned fibers. We anticipated that cTnC proteins which retain the endogenous Cys 35 (cTnC(C35)) or Cys 84 (cTnC(C84)) would provide fluorescent probes with distinct microenvironments, since these residues are on opposite sides of the globular regulatory domain. In vitro experiments that showed IAANS (2-(4'-(iodoacetamido)anilino)naphthalene-6-sulfonic acid) coupled to Cys 35 can induce unwanted structural perturbations as evidenced by a decreased affinity of site II for Ca2+ when IAANS-labeled cTnC(C35) is bound to cTnI. Important structural features involving Cys 35 in the inactive site I are suggested by a Ca(2+)-dependent increase in reactivity of Cys 35 with sulfhydryl specific reagents when cTnC(C35) is associated with cTnI. These characteristics are not seen for cTnC(C84). When incorporated in situ into skinned cardiac muscle fibers, native cTnC with IAANS bound to both Cys 35 and Cys 84 showed a pCa50 of fluorescence which preceded that of force, while the pCa50 values of both force and fluorescence were coincident for IAANS-labeled cTnC(C84). Disruption of force-producing myosin cross bridges had no effect on the pCa50 of fluorescence for IAANS-labeled cTnC(C84), but induced a rightward shift in the pCa50 of fluorescence for IAANS-labeled native cTnC. These data can be interpreted to indicate that cTnC with IAANS bound to both Cys 35 and C84 senses either myosin cross bridges or direct Ca2+ binding and myosin-induced cooperativity, while IAANS bound to Cys 84 alone senses conformations that are tightly coupled with force generation.
Collapse
Affiliation(s)
- J A Putkey
- Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston 77225, USA.
| | | | | | | | | | | | | |
Collapse
|
36
|
Lin X, Dotson DG, Putkey JA. Covalent binding of peptides to the N-terminal hydrophobic region of cardiac troponin C has limited effects on function. J Biol Chem 1996; 271:244-9. [PMID: 8550567 DOI: 10.1074/jbc.271.1.244] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Exposure of an N-terminal hydrophobic region in troponin C is thought to be important for the regulation of contraction in striated muscle. To test this hypothesis, single Cys residues were engineered at positions 45, 81, 84, or 85 in the N-terminal hydrophobic region of cardiac troponin C (cTnC) to provide specific sites for attachment of blocking groups. A synthetic peptide, Ac-Val-Arg-Ala-Ile-Gly-Lys-Leu-Ser-Ser, or biotin was coupled to these Cys residues, and the covalent adducts were tested for activity in TnC-extracted myofibrils. Covalent modification of cTnC(C45) had no effect on maximal myofibril ATPase activity. Greatly decreased myofibril ATPase activity (70-80% inhibited) resulted when the peptide was conjugated to Cys-81 in cTnC(C81), while a lesser degree of inhibition (10-25% inhibited) resulted from covalent modification of cTnC(C84) and cTnC(C85). Inhibition was not due to an altered affinity of the cTnC(C81)/peptide conjugate for the myofibrils, and the Ca2+ dependence of ATPase activity was essentially identical to the unmodified protein. Thus, a subregion of the N-terminal hydrophobic region in cTnC is sensitive to disruption, while other regions are less important or can adapt to rather bulky blocking groups. The data suggest that Ca(2+)-sensitizing drugs may bind to the N-terminal hydrophobic region on cTnC but not interfere with transmission of the Ca2+ signal.
Collapse
Affiliation(s)
- X Lin
- Department of Biochemistry & Molecular Biology, University of Texas Medical School, Houston 77030, USA
| | | | | |
Collapse
|
37
|
Bárány K, Bárány M, Giometti CS. Polyacrylamide gel electrophoretic methods in the separation of structural muscle proteins. J Chromatogr A 1995; 698:301-32. [PMID: 7773366 DOI: 10.1016/0021-9673(94)01189-l] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Polyacrylamide gel electrophoresis plays a major role in analyzing the function of muscle structural proteins. This review describes one- and two-dimensional gel electrophoretic methods for qualitative and quantitative investigation of the muscle proteins, with special emphasis on determination of protein phosphorylation. The electrophoretic studies established the subunit structures of the muscle proteins, characterized their multiple forms, revealed changes in subunit composition or shifts in isoform distribution of specific proteins during development, upon stimulation or denervation of the muscle. Protein phosphorylation during muscle contraction is preferentially studied by two-dimensional gel electrophoresis. The same method demonstrated protein alterations in human neuromuscular diseases.
Collapse
Affiliation(s)
- K Bárány
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago 60612-7342, USA
| | | | | |
Collapse
|
38
|
Howarth JW, Krudy GA, Lin X, Putkey JA, Rosevear PR. An NMR and spin label study of the effects of binding calcium and troponin I inhibitory peptide to cardiac troponin C. Protein Sci 1995; 4:671-80. [PMID: 7613465 PMCID: PMC2143097 DOI: 10.1002/pro.5560040407] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The paramagnetic relaxation reagent, 4-hydroxy-2,2,6,6-tetramethylpiperidinyl-1-oxy (HyTEMPO), was used to probe the surface exposure of methionine residues of recombinant cardiac troponin C (cTnC) in the absence and presence of Ca2+ at the regulatory site (site II), as well as in the presence of the troponin I inhibitory peptide (cTnIp). Methyl resonances of the 10 Met residues of cTnC were chosen as spectral probes because they are thought to play a role in both formation of the N-terminal hydrophobic pocket and in the binding of cTnIp. Proton longitudinal relaxation rates (R1's) of the [13C-methyl] groups in [13C-methyl]Met-labeled cTnC(C35S) were determined using a T1 two-dimensional heteronuclear single- and multiple-quantum coherence pulse sequence. Solvent-exposed Met residues exhibit increased relaxation rates from the paramagnetic effect of HyTEMPO. Relaxation rates in 2Ca(2+)-loaded and Ca(2+)-saturated cTnC, both in the presence and absence of HyTEMPO, permitted the topological mapping of the conformational changes induced by the binding of Ca2+ to site II, the site responsible for triggering muscle contraction. Calcium binding at site II resulted in an increased exposure of Met residues 45 and 81 to the soluble spin label HyTEMPO. This result is consistent with an opening of the hydrophobic pocket in the N-terminal domain of cTnC upon binding Ca2+ at site II. The binding of the inhibitory peptide cTnIp, corresponding to Asn 129 through Ile 149 of cTnI, to both 2Ca(2+)-loaded and Ca(2+)-saturated cTnC was shown to protect Met residues 120 and 157 from HyTEMPO as determined by a decrease in their measured R1 values. These results suggest that in both the 2Ca(2+)-loaded and Ca(2+)-saturated forms of cTnC, cTnIp binds primarily to the C-terminal domain of cTnC.
Collapse
Affiliation(s)
- J W Howarth
- Department of Biochemistry and Molecular Biology, University of Texas Medical School-Houston 77225, USA
| | | | | | | | | |
Collapse
|
39
|
Affiliation(s)
- S S Lehrer
- Boston Biomedical Research Institute, Massachusetts
| |
Collapse
|
40
|
Lin X, Krudy GA, Howarth J, Brito RM, Rosevear PR, Putkey JA. Assignment and calcium dependence of methionyl epsilon C and epsilon H resonances in cardiac troponin C. Biochemistry 1994; 33:14434-42. [PMID: 7981203 DOI: 10.1021/bi00252a009] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The 10 Met methyl groups in recombinant cardiac troponin (cTnC) were metabolically labeled with [13C-methyl]Met and detected as 10 individual cross-peaks using two-dimensional heteronuclear single- and multiple-quantum coherence (HSMQC) spectroscopy. The epsilon C and epsilon H chemical shifts for all 10 Met residues were sequence-specifically assigned using a combination of HSMQC and systematic conversion of the Met residues to Leu. The only negative functional consequence of these changes was seen when both Met 45 and 81 were mutated. Binding of Ca2+ to the high affinity C-terminal sites III and IV induced relatively large changes in the epsilon H and epsilon C chemical shifts of all Met residues in the C-terminal domain as well as small but significant changes in the chemical shifts of epsilon H Met 47 and Met 81 in the N-terminal half of cTnC. Binding of Ca2+ to the low affinity N-terminal site II induced large changes in the epsilon H and epsilon C chemical shifts of Met 45, Met 80, and Met 81. Binding of Ca2+ to site II had no effect on the chemical shifts of Met residues located in the C-terminal domain. The nature of the chemical shift changes of Met residues in the N- versus the C-terminal halves of cTnC were consistent with different Ca(2+)-induced conformational changes in these domains. Thus, the assigned methyl Met chemical shifts can serve as useful structural markers to study conformational transitional in free cTnC and potentially after association with small ligands, peptides, and other troponin subunits.
Collapse
Affiliation(s)
- X Lin
- Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston 77030
| | | | | | | | | | | |
Collapse
|
41
|
Liu W, Dotson DG, Lin X, Mullen JJ, Gonzalez-Garay ML, Lu Q, Putkey JA. The presence but not the sequence of the N-terminal peptide in cardiac TnC is important for function. FEBS Lett 1994; 347:152-6. [PMID: 8033994 DOI: 10.1016/0014-5793(94)00526-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The most diverged region of the primary amino acid sequence between cardiac (cTnC) and fast skeletal troponin C is the N-terminal ten amino acids. We report here that major changes in the primary sequence of this region in cTnC had a minimal effect on the ability of the mutant proteins to recover maximal activity in TnC-extracted cardiac and fast skeletal muscle myofibrils. However, deletion of the N-terminal nine amino acids resulted in a 60% decrease in maximal Ca(2+)-dependent ATPase activity with only a small change in the pCa50 of activation. Deletion of the N-terminal peptide did not appear to appreciably affect the Ca(2+)-binding properties of cTnC, but it did alter the interaction with hydrophobic fluorescent probes. Thus, the presence but not the sequence, of the N-terminal extension is important for the maximal activity of cTnC. The N-terminal helix may function in a relatively non-specific manner to prevent unfavorable interactions between domains in cTnC or between cTnC and other troponin subunits.
Collapse
Affiliation(s)
- W Liu
- Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston 77030
| | | | | | | | | | | | | |
Collapse
|
42
|
Chase PB, Martyn DA, Hannon JD. Activation dependence and kinetics of force and stiffness inhibition by aluminiofluoride, a slowly dissociating analogue of inorganic phosphate, in chemically skinned fibres from rabbit psoas muscle. J Muscle Res Cell Motil 1994; 15:119-29. [PMID: 8051286 DOI: 10.1007/bf00130423] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
To examine the mechanism by which aluminiofluoride, a tightly binding analogue of inorganic phosphate, inhibits force in single, chemically skinned fibres from rabbit psoas muscle, we measured the Ca(2+)-dependence of the kinetics of inhibitor dissociation and the kinetics of actomyosin interactions when aluminiofluoride was bound to the crossbridges. The relation between stiffness and the speed of stretch during small amplitude ramp stretches (< 5 nm per h.s.) was used to characterize the kinetic properties of crossbridges attached to actin; sarcomere length was assessed with HeNe laser diffraction. During maximum Ca(2+)-activation at physiological ionic strength (pCa 4.0, 0.2 M gamma/2), stiffness exhibited a steep dependence on the rate of stretch; aluminiofluoride inhibition at pCa 4.0 (0.2 M gamma/2) resulted in an overall decrease in stiffness, with stiffness at high rates of stretch (10(3)-10(4) nm per h.s. per s) being disproportionately reduced. Thus the slope of the stiffness-speed relation was reduced during aluminiofluoride inhibition of activated fibres. Relaxation of inhibited fibres (pCa 9.2, 0.2 M gamma/2) resulted in aluminiofluoride being 'trapped' and was accompanied by a further decrease in stiffness at all rates of stretch which was comparable to that found in control relaxed fibres. In relaxed, low ionic strength conditions (pCa 9.2, 0.02 M gamma/2) which promote weak crossbridge binding, stiffness at all rates of stretch was significantly inhibited by aluminiofluoride 'trapped' in the fibre. To determine the Ca(2+)-dependence of inhibitor dissociation, force was regulated independent of Ca2+ using an activating troponin C (aTnC). Results obtained with a TnC-activated fibres confirmed that there is no absolute requirement for Ca2+ for recovery from force inhibition by inorganic phosphate analogues in skinned fibres; the only requirement is thin filament activation which enables active crossbridge cycling. These results indicate that aluminiofluoride preferentially inhibits rapid equilibrium or weak crossbridge attachment to actin, that aluminiofluoride-bound crossbridges attach tightly to the activated thin filament, and that, at maximal (or near-maximal) activation, crossbridge attachment to actin prior to inorganic phosphate analogue dissociation is the primary event regulated by Ca2+.
Collapse
Affiliation(s)
- P B Chase
- Department of Radiology, University of Washington, Seattle 98195
| | | | | |
Collapse
|
43
|
Dotson D, Putkey J. Differential recovery of Ca2+ binding activity in mutated EF-hands of cardiac troponin C. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(20)80493-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
44
|
Hancock WO, Martyn DA, Huntsman LL. Ca2+ and segment length dependence of isometric force kinetics in intact ferret cardiac muscle. Circ Res 1993; 73:603-11. [PMID: 8370118 DOI: 10.1161/01.res.73.4.603] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The influence of Ca2+ and sarcomere length on myocardial crossbridge kinetics was studied in ferret papillary muscle by measuring the rate of force redevelopment following a rapid length step that dropped the force to zero. Tetanic stimulation with 5 mumol/L ryanodine was used to obtain a steady-state contraction, and segment length was measured and controlled using a sense-coil technique that measures changes in the cross-sectional area of the central region of the muscle. The rate constant for the recovery of force (ktr) following a rapid length release was obtained by fitting the data with a single exponential function. Contrary to results from skinned skeletal fibers in which ktr increases almost 10-fold from low to maximal activation levels, ktr was found not to increase at higher activation levels in this study. Similarly, although force increased with segment length under all conditions, ktr never increased with length. Data presented here are consistent with a model of myocardial Ca2+ activation in which Ca2+ modulates the number of crossbridges interacting with the thin filament and are inconsistent with a model in which Ca2+ modulates the kinetics of transitions to force producing states within the actomyosin cycle. Differences in the activation dependence of the force redevelopment rate between cardiac and skeletal muscle suggest that there are fundamental differences in the mechanism of Ca2+ activation between these two muscle types.
Collapse
Affiliation(s)
- W O Hancock
- Center for Bioengineering, University of Washington, Seattle 98195
| | | | | |
Collapse
|