1
|
Luessen DJ, Sun H, McGinnis MM, McCool BA, Chen R. Chronic intermittent ethanol exposure selectively alters the expression of Gα subunit isoforms and RGS subtypes in rat prefrontal cortex. Brain Res 2017; 1672:106-112. [PMID: 28736108 DOI: 10.1016/j.brainres.2017.07.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 07/17/2017] [Accepted: 07/18/2017] [Indexed: 10/19/2022]
Abstract
Chronic alcohol exposure induces pronounced changes in GPCR-mediated G-protein signaling. Recent microarray and RNA-seq analyses suggest associations between alcohol abuse and the expression of genes involved in G-protein signaling. The activity of G-proteins (e.g. Gαi/o and Gαq) is negatively modulated by regulator of G-protein signaling (RGS) proteins which are implicated in drugs of abuse including alcohol. The present study used 7days of chronic intermittent ethanol exposure followed by 24h withdrawal (CIE) to investigate changes in mRNA and protein levels of G-protein subunit isoforms and RGS protein subtypes in rat prefrontal cortex, a region associated with cognitive deficit attributed to excessive alcohol drinking. We found that this ethanol paradigm induced differential expression of Gα subunits and RGS subtypes. For example, there were increased mRNA and protein levels of Gαi1/3 subunits and no changes in the expression of Gαs and Gαq subunits in ethanol-treated animals. Moreover, CIE increased the mRNA but not the protein levels of Gαo. Additionally, a modest increase in Gαi2 mRNA level by CIE was accompanied by a pronounced increase in its protein level. Interestingly, we found that CIE increased mRNA and protein levels of RGS2, RGS4, RGS7 and RGS19 but had no effect on the expression of RGS5, RGS6, RGS8, RGS12 or RGS17. Changes in the expression of Gα subunits and RGS subtypes could contribute to the functional alterations of certain GPCRs following chronic ethanol exposure. The present study suggests that RGS proteins may be potential new targets for intervention of alcohol abuse via modification of Gα-mediated GPCR function.
Collapse
Affiliation(s)
- D J Luessen
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157, USA
| | - H Sun
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157, USA
| | - M M McGinnis
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157, USA
| | - B A McCool
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157, USA
| | - R Chen
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157, USA.
| |
Collapse
|
2
|
Logrip ML. Phosphodiesterase regulation of alcohol drinking in rodents. Alcohol 2015; 49:795-802. [PMID: 26095589 DOI: 10.1016/j.alcohol.2015.03.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/13/2015] [Accepted: 03/14/2015] [Indexed: 12/22/2022]
Abstract
Alcohol use disorders are chronically relapsing conditions characterized by persistent drinking despite the negative impact on one's life. The difficulty of achieving and maintaining sobriety suggests that current treatments fail to fully address the underlying causes of alcohol use disorders. Identifying additional pathways controlling alcohol consumption may uncover novel targets for medication development to improve treatment options. One family of proteins recently implicated in the regulation of alcohol consumption is the cyclic nucleotide phosphodiesterases (PDEs). As an integral component in the regulation of the second messengers cyclic AMP and cyclic GMP, and thus their cognate signaling pathways, PDEs present intriguing targets for pharmacotherapies to combat alcohol use disorders. As activation of cAMP/cGMP-dependent signaling cascades can dampen alcohol intake, PDE inhibitors may provide a novel target for reducing excessive alcohol consumption, as has been proposed for PDE4 and PDE10A. This review highlights preclinical literature demonstrating the involvement of cyclic nucleotide-dependent signaling in neuronal and behavioral responses to alcohol, as well as detailing the capacity of various PDE inhibitors to modulate alcohol intake. Together these data provide a framework for evaluating the potential utility of PDE inhibitors as novel treatments for alcohol use disorders.
Collapse
|
3
|
Chronic alcohol consumption from adolescence-to-adulthood in mice--hypothalamic gene expression changes in the dilated cardiomyopathy signaling pathway. BMC Neurosci 2014; 15:61. [PMID: 24884436 PMCID: PMC4027996 DOI: 10.1186/1471-2202-15-61] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 04/23/2014] [Indexed: 12/17/2022] Open
Abstract
Background Adolescence is a developmental stage vulnerable to alcohol drinking-related problems and the onset of alcoholism. Hypothalamus is a key brain region for food and water intake regulation, and is one of the alcohol-sensitive brain regions. However, it is not known what would be the alcohol effect on hypothalamus following adolescent alcohol intake, chronically over the adolescent development, at moderate levels. Results We employed a paradigm of chronic moderate alcohol intake from adolescence-to-adulthood in mice, and analyzed the alcohol effect on both behavioral and hypothalamic gene expression changes. A total of 751 genes were found and subjected to pathway analysis. The dilated cardiomyopathy (DCM) pathway was identified. The changes of ten genes under this pathway were further verified using RT-PCR. Chronic alcohol consumption during adolescence, even at moderate levels, led to a decrease of motor activity in mice, and also a concerted down regulation of signaling pathway initiating factor (SPIF) genes in the DCM signaling pathway, including β1-adrenergic receptor (Adrb1), Gs protein (Gnas), adenylyl cyclase 1 (Adcy1), and dihydropyridine receptor/L-type calcium channel (Cacna1d). Conclusions These findings suggest that adolescent alcohol intake may trigger gene expression changes in the CNS that parallel those found in the dilated cardiomyopathy signaling pathway. If such effects also take place in humans, our findings would serve as a warning against alcohol intake in youth, such as by teens and/or college students.
Collapse
|
4
|
Ward RJ, Lallemand F, de Witte P. Biochemical and neurotransmitter changes implicated in alcohol-induced brain damage in chronic or 'binge drinking' alcohol abuse. Alcohol Alcohol 2009; 44:128-35. [PMID: 19155229 DOI: 10.1093/alcalc/agn100] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The brain damage, which occurs after either chronic alcoholization or binge drinking regimes, shows distinct biochemical and neurotransmitter differences. An excessive amount of glutamate is released into specific brain regions during binge drinking (in excess of 4- to 5-fold of the normal basal concentration) that is not evident during periods of excessive alcohol consumption in chronic alcohol abusers. Increases in glutamate release are only observed during the initial stages of withdrawal from chronic alcoholism ( approximately 2- to 3-fold) due to alterations in the sensitivities of the NMDA receptors. Such changes in either density or sensitivity of these receptors are reported to be unaltered by binge drinking. When such excesses of glutamate are released in these two different models of alcohol abuse, a wide range of biochemical changes occur, mediated in part by increased fluxes of calcium ions and/or activation of various G-protein-associated signalling pathways. Cellular studies of alveolar macrophages isolated from these two animal models of alcohol abuse showed enhanced (binge drinking) or reduced (chronic alcoholization) lipopolysaccharide (LPS)-stimulated NO release. Such studies could suggest that neuroadaptation occurs with the development of tolerance to alcohol's effects in both neurotransmitter function and cellular processes during chronic alcoholization that delay the occurrence of brain damage. In contrast, 'binge drinking' induces immediate and toxic effects and there is no evidence of an increased preference for alcohol as seen after withdrawal from chronic alcoholization.
Collapse
Affiliation(s)
- Roberta J Ward
- Biologie du Comportement, Université Catholique de Louvain, Louvain-la-Neuve, Belgium.
| | | | | |
Collapse
|
5
|
Sarkar DK, Kuhn P, Marano J, Chen C, Boyadjieva N. Alcohol exposure during the developmental period induces beta-endorphin neuronal death and causes alteration in the opioid control of stress axis function. Endocrinology 2007; 148:2828-34. [PMID: 17347308 DOI: 10.1210/en.2006-1606] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Proopiomelanocortin-producing neurons in the arcuate nucleus of the hypothalamus secrete beta-endorphin (beta-EP), which controls varieties of body functions including the feedback regulation of the CRH neuronal activity in the paraventricular nucleus of the hypothalamus. Whether ethanol exposure in developing rats induces beta-EP neuronal death and alters their influence on CRH neurons in vivo has not been determined. We report here that binge-like ethanol exposures in newborn rats increased the number of apoptotic beta-EP neurons in the arcuate nucleus of the hypothalamus. We also found that immediately after ethanol treatments there was a significant reduction in the expression of proopiomelanocortin and adenylyl cyclases mRNA and an increased expression of several TGF-beta1-linked apoptotic genes in beta-EP neurons isolated by laser-captured microdissection from arcuate nuclei of young rats. Several weeks after the ethanol treatment, we detected a reduction in the number of beta-EP neuronal perikarya in arcuate nuclei and in the number of beta-EP neuronal terminals in paraventricular nuclei of the hypothalamus in the treated rats. Additionally, these rats showed increased response of the hypothalamic CRH mRNA to the lipopolysaccharide challenge. The ethanol-treated animals also showed incompetent ability to respond to exogenous beta-EP to alter the lipopolysaccharide-induced CRH mRNA levels. These data suggest that ethanol exposure during the developmental period causes beta-EP neuronal death by cellular mechanisms involving the suppression of cyclic AMP production and activation of TGF-beta1-linked apoptotic signaling and produces long-term structural and functional deficiency of beta-EP neurons in the hypothalamus.
Collapse
Affiliation(s)
- Dipak K Sarkar
- Endocrinology Program, Rutgers-The State University of New Jersey, 84 Lipman Drive, New Brunswick, NJ 08901, USA.
| | | | | | | | | |
Collapse
|
6
|
Vinod KY, Hungund BL. Endocannabinoid lipids and mediated system: implications for alcoholism and neuropsychiatric disorders. Life Sci 2006; 77:1569-83. [PMID: 16005471 DOI: 10.1016/j.lfs.2005.05.041] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Several natural lipids have emerged as candidate modulators of central nervous system (CNS) functions. Fatty acid amides and their coupled signaling pathways are known to regulate several physiological and behavioral processes. Recent studies from our laboratory and others also have implicated endogenous marijuana-like brain constituents, endocannabinoids (ECs), and cannabinoid-1 (CB1) receptors in the neural circuitry that mediate drug addiction and neuropsychiatric disorders. Neuroadaptation to chronic ethanol (EtOH) has been shown to involve changes in the EC system. These changes include alterations in the synthesis of EC, their precursors, as well as density and coupling efficacy of CB1 receptors. The evidence for the participation of the EC system in the pathophysiology of various neuropsychiatric disorders is just beginning to evolve. It is of great interest to explore the components of EC system in different areas of the CNS for further understanding of its role in health and disease. This article presents a comprehensive overview of the currently available literature pertaining to the role of the EC system in alcoholism, schizophrenia, depression and/or suicide.
Collapse
Affiliation(s)
- K Yaragudri Vinod
- Division of Analytical Psychopharmacology, New York State Psychiatric Institute, New York, USA.
| | | |
Collapse
|
7
|
Covarrubias MY, Khan RL, Vadigepalli R, Hoek JB, Schwaber JS. Chronic alcohol exposure alters transcription broadly in a key integrative brain nucleus for homeostasis: the nucleus tractus solitarius. Physiol Genomics 2006; 24:45-58. [PMID: 16189278 DOI: 10.1152/physiolgenomics.00184.2005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Chronic exposure to alcohol modifies physiological processes in the brain, and the severe symptoms resulting from sudden removal of alcohol from the diet indicate that these modifications are functionally important. We investigated the gene expression patterns in response to chronic alcohol exposure (21–28 wk) in the rat nucleus tractus solitarius (NTS), a brain nucleus with a key integrative role in homeostasis and cardiorespiratory function. Using methods and an experimental design optimized for detecting transcriptional changes less than twofold, we found 575 differentially expressed genes. We tested these genes for significant associations with physiological functions and signaling pathways using Gene Ontology terms and the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, respectively. Chronic alcohol exposure resulted in significant NTS gene regulation related to the general processes of synaptic transmission, intracellular signaling, and cation transport as well as specific neuronal functions including plasticity and seizure behavior that could be related to alcohol withdrawal symptoms. The differentially expressed genes were also significantly enriched for enzymes of lipid metabolism, glucose metabolism, oxidative phosphorylation, MAP kinase signaling, and calcium signaling pathways from KEGG. Intriguingly, many of the genes we found to be differentially expressed in the NTS are known to be involved in alcohol-induced oxidative stress and/or cell death. The study provides evidence of very extensive alterations of physiological gene expression in the NTS in the adapted state to chronic alcohol exposure.
Collapse
Affiliation(s)
- Maria Yolanda Covarrubias
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | |
Collapse
|
8
|
Basavarajappa BS, Hungund BL. ROLE OF THE ENDOCANNABINOID SYSTEM IN THE DEVELOPMENT OF TOLERANCE TO ALCOHOL. Alcohol Alcohol 2004; 40:15-24. [PMID: 15550443 DOI: 10.1093/alcalc/agh111] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The present review evaluates the evidence that the endocannabinoid system plays in the development of tolerance to alcohol. The identification of a G-protein-coupled receptor, namely, the cannabinoid receptor (CB(1) receptor), which was activated by Delta(9)-tetrahydrocannabinol (Delta(9)-THC), the major psychoactive component of marijuana, led to the discovery of endogenous cannabinoid agonists. Until now, four fatty acid derivatives identified to be arachidonylethanolamide (AEA), 2-arachidonylglycerol (2-AG), 2-arachidonylglycerol ether (noladin ether) and virodhamine have been isolated from both nervous and peripheral tissues. Both AEA and 2-AG have been shown to mimic the pharmacological and behavioural effects of Delta(9)-THC. The role of the endocannabinoid system in the development of tolerance to alcohol was not known until recently. Recent studies from our laboratory have implicated for the first time a role for the endocannabinoid system in development of tolerance to alcohol. Chronic alcohol treatment has been shown to down-regulate CB(1) receptors and its signal transduction. The observed downregulation of CB(1) receptor function results from the persistent stimulation of the receptors by AEA and 2-AG, the synthesis of which has been shown to be increased by chronic alcohol treatment. The enhanced formation of endocannabinoids may subsequently influence the release of neurotransmitters. It was found that the DBA/2 mice, known to avoid alcohol intake, have significantly reduced CB(1) receptor function in the brain, consistent with other studies in which the CB(1) receptor antagonist SR 141716A has been shown to block voluntary alcohol intake in rodents. Similarly, activation of the CB(1) receptor system promoted alcohol craving, suggesting a role for the CB(1) receptor gene in excessive alcohol drinking behaviour and development of alcoholism. Ongoing investigations may lead to a better understanding of the mechanisms underlying the development of tolerance to alcohol and to develop therapeutic strategies to treat alcoholism.
Collapse
Affiliation(s)
- Balapal S Basavarajappa
- Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA.
| | | |
Collapse
|
9
|
Hungund BL, Basavarajappa BS. Role of Endocannabinoids and Cannabinoid CB1 Receptors in Alcohol-Related Behaviors. Ann N Y Acad Sci 2004; 1025:515-27. [PMID: 15542757 DOI: 10.1196/annals.1316.064] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This review presents the remarkable research during the past several years indicating that some of the pharmacological and behavioral effects of alcohol, including alcohol drinking and alcohol-preferring behavior, are mediated through one of the most abundant neurochemical systems in the central nervous system, the endocannabinoid signaling system. The advances, with the discovery of specific receptors and the existence of naturally occurring cannabis-like substances in the mammalian system and brain, have helped in understanding the neurobiological basis for drugs of abuse, including alcoholism. The cDNA and genomic sequences encoding G-protein-coupled cannabinoid receptors (CB1 and CB2) from several species have now been cloned. This has facilitated discoveries of endogenous ligands (endocannabinoids). To date, two fatty acid derivatives characterized to be arachidonylethanolamide and 2-arachidonylglycerol have been isolated from both nervous and peripheral tissues. Both these compounds have been shown to mimic the pharmacological and behavioral effects of Delta9-tetrahydrocannabinol, the psychoactive component of marijuana. The involvement of the endocannabinoid signaling system in tolerance development to drugs of abuse, including alcohol, were unknown until recently. Studies from our laboratory demonstrated for the first time the downregulation of CB1 receptor function and its signal transduction by chronic alcohol. The observed downregulation of CB1 receptor binding and its signal transduction results from the persistent stimulation of receptors by the endogenous CB1 receptor agonists arachidonylethanolamide and 2-arachidonylglycerol, the synthesis of which is increased by chronic alcohol treatment. The deletion of CB1 receptor has recently been shown to block voluntary alcohol intake in mice, which is consistent with our previous findings where the DBA/2 mice known to avoid alcohol intake had significantly reduced brain CB1 receptor function. These findings suggest a role for the CB1 receptor gene in excessive alcohol drinking behavior and development of alcoholism. Ongoing investigations may lead to the development of potential therapeutic agents to modulate the endocannabinoid signaling system, which will be helpful for the treatment of alcoholism.
Collapse
|
10
|
Effect of Ethanol Self-Administration on ??- and ??-Opioid Receptor-Mediated G-Protein Activity. Alcohol Clin Exp Res 2002. [DOI: 10.1097/00000374-200205000-00014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Sim-Selley LJ, Sharpe AL, Vogt LJ, Brunk LK, Selley DE, Samson HH. Effect of Ethanol Self-Administration on mu- and delta-Opioid Receptor-Mediated G-Protein Activity. Alcohol Clin Exp Res 2002. [DOI: 10.1111/j.1530-0277.2002.tb02592.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Ethanol-Induced Translocation of Protein Kinase A Occurs in Two Phases: Control by Different Molecular Mechanisms. Alcohol Clin Exp Res 2002. [DOI: 10.1097/00000374-200203000-00016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Dohrman DP, Chen HM, Gordon AS, Diamond I. Ethanol-Induced Translocation of Protein Kinase A Occurs in Two Phases: Control by Different Molecular Mechanisms. Alcohol Clin Exp Res 2002. [DOI: 10.1111/j.1530-0277.2002.tb02553.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
14
|
Basavarajappa BS, Hungund BL. Neuromodulatory role of the endocannabinoid signaling system in alcoholism: an overview. Prostaglandins Leukot Essent Fatty Acids 2002; 66:287-99. [PMID: 12052043 DOI: 10.1054/plef.2001.0352] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The current review evaluates the evidence that some of the pharmacological and behavioral effects of ethanol (EtOH), including EtOH-preferring behavior, may be mediated through the endocannabinoid signaling system. The recent advances in the understanding of the neurobiological basis of alcoholism suggest that the pharmacological and behavioral effects of EtOH are mediated through its action on neuronal signal transduction pathways and ligand-gated ion channels, receptor systems, and receptors that are coupled to G-proteins. The identification of a G-protein-coupled receptor, namely, the cannabinoid receptor (CB1 receptor) that was activated by Delta(9)-tetrahydrocannabinol (Delta(9)-THC), the major psychoactive component of marijuana, led to the discovery of endogenous cannabinoid agonists. To date, two fatty acid derivatives identified to be arachidonylethanolamide (AEA) and 2-arachidonylglycerol (2-AG) have been isolated from both nervous and peripheral tissues. Both these compounds have been shown to mimic the pharmacological and behavioral effects of Delta(9)-THC. The involvement of the endocannabinoid signaling system in the development of tolerance to the drugs of abuse including EtOH has not been known until recently. Recent studies from our laboratory have demonstrated for the first time the down-regulation of CB1 receptor function and its signal transduction by chronic EtOH. The observed down-regulation of CB1 receptor binding and its signal transduction results from the persistent stimulation of the receptors by the endogenous CB1 receptor agonists, AEA and 2-AG, the synthesis of which has been found to be increased by chronic EtOH treatment. This enhanced formation of endocannabinoids may subsequently influence the release of neurotransmitters. It was found that the DBA/2 mice, known to avoid EtOH intake, have significantly reduced brain-CB1-receptor function consistent with other studies, where the CB1 receptor antagonist SR141716A has been shown to block voluntary EtOH intake in rodents. Similarly, activation of the CB1 receptor system promoted alcohol craving, suggesting a role for the CB1 receptor gene in excessive EtOH drinking behavior and development of alcoholism. Ongoing investigations may lead to the development of potential therapeutic strategies for the treatment of alcoholism.
Collapse
Affiliation(s)
- B S Basavarajappa
- Division of Analytical Psychopharmacology, New York State Psychiatric Institute, New York, NY, USA.
| | | |
Collapse
|
15
|
Fenton RA, Chung ES. Chronic Ethanol Enhances Adenosine Antiadrenergic Actions in the Isolated Rat Heart. Alcohol Clin Exp Res 2001. [DOI: 10.1111/j.1530-0277.2001.tb02304.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Shih MF, Taberner PV. Changes in adipose tissue hormone-sensitive lipase activity and cAMP during ethanol withdrawal. Eur J Pharmacol 2000; 409:223-31. [PMID: 11108816 DOI: 10.1016/s0014-2999(00)00829-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The time course of the effects of ethanol withdrawal on brown and white adipose tissue hormone-sensitive lipase, cAMP production, and phosphodiesterase have been investigated after chronic drinking or liquid diet schedules. Chronic drinking significantly reduced brown adipose tissue hormone-sensitive lipase activity and cAMP levels from control. During withdrawal, there was a rebound increase to 200% control, peaking 9 h into withdrawal. White adipose tissue hormone-sensitive lipase activity and cAMP accumulation were significantly raised by both treatment schedules. Ethanol liquid diet produced a significant fall in adipose tissue hormone-sensitive lipase activity and cAMP accumulation. In brown fat, there was a rebound increase in hormone-sensitive lipase activity and cAMP; in white fat, no rebound was observed. In brown fat, the reductions in hormone-sensitive lipase activity and cAMP accumulation after chronic drinking coincided with an increase in phosphodiesterase activity. In white fat, the rise in cAMP and hormone-sensitive lipase activation coincided with a decrease in phosphodiesterase activity. We conclude that the effects of chronic ethanol on hormone-sensitive lipase activity are cAMP-dependent and mediated via alterations in phosphodiesterase activity.
Collapse
Affiliation(s)
- M F Shih
- Department of Pharmacology, University of Bristol, School of Medical Sciences, University Walk, BS8 1TD, Bristol, UK
| | | |
Collapse
|
17
|
|
18
|
Constantinescu A, Diamond I, Gordon AS. Ethanol-induced translocation of cAMP-dependent protein kinase to the nucleus. Mechanism and functional consequences. J Biol Chem 1999; 274:26985-91. [PMID: 10480911 DOI: 10.1074/jbc.274.38.26985] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ethanol induces translocation of the catalytic subunit (Calpha) of cAMP-dependent protein kinase (PKA) from the Golgi area to the nucleus in NG108-15 cells. Ethanol also induces translocation of the RIIbeta regulatory subunit of PKA to the nucleus; RI and Cbeta are not translocated. Nuclear PKA activity in ethanol-treated cells is no longer regulated by cAMP. Gel filtration and immunoprecipitation analysis confirm that ethanol blocks the reassociation of Calpha with RII but does not induce dissociation of these subunits. Ethanol also reduces inhibition of Calpha by the PKA inhibitor PKI. Pre-incubation of Calpha with ethanol decreases phosphorylation of Leu-Arg-Arg-Ala-Ser-Leu-Gly (Kemptide) and casein but has no effect on the phosphorylation of highly charged molecules such as histone H1 or protamine. cAMP-response element-binding protein (CREB) phosphorylation by Calpha is also increased in ethanol-treated cells. This increase in CREB phosphorylation is inhibited by the PKA antagonist (R(p))-cAMPS and by an adenosine receptor antagonist. These results suggest that ethanol affects a cascade of events allowing for sustained nuclear localization of Calpha and prolonged CREB phosphorylation. These events may account for ethanol-induced changes in cAMP-dependent gene expression.
Collapse
Affiliation(s)
- A Constantinescu
- Department of Neurology, Ernest Gallo Clinic and Research Center, University of California, San Francisco, California 94110-3518, USA
| | | | | |
Collapse
|
19
|
Miyamoto A, Yang SX, Laufs U, Ruan XL, Liao JK. Activation of guanine nucleotide-binding proteins and induction of endothelial tissue-type plasminogen activator gene transcription by alcohol. J Biol Chem 1999; 274:12055-60. [PMID: 10207029 DOI: 10.1074/jbc.274.17.12055] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mechanism by which moderate alcohol ingestion lowers the risk of cardiovascular disease is unknown but may be due, in part, to the ability of alcohol to increase the level of tissue-type plasminogen activator (t-PA). Human endothelial cells were treated with low concentrations of ethanol (0.25-25 mM, 0-24 h), which are associated with moderate alcohol consumption. Although treatment with ethanol alone did not affect t-PA gene transcription or mRNA expression, it augmented isoproterenol (ISO)-stimulated t-PA gene transcription and mRNA levels by 3.4- and 2.8-fold, respectively, and decreased plasminogen activator inhibitor-1 mRNA levels by 65%. These effects of ethanol correlated with 2.5- and 6.9-fold increases in ISO-stimulated cyclic AMP levels and 4x-cyclic AMP response element heterologous promoter activity, respectively. To determine whether alcohol-induced changes in agonist-stimulated cyclic AMP levels were because of modulation of guanine nucleotide-binding proteins (G proteins), we assessed the effects of ethanol on Galphas and Galphai2. Although ethanol did not affect the expression of Galphas or Galphai2, it increased ISO-stimulated Galphas GTPase and GTP binding activity by 2.2- and 2.9-fold and decreased UK14304-stimulated Galphai2 GTPase and GTP binding activity by 38 and 80%. These results indicate that treatment with relatively low concentrations of ethanol enhances agonist-stimulated cyclic AMP-dependent t-PA gene transcription in vascular endothelial cells through differential modulation of G protein.
Collapse
Affiliation(s)
- A Miyamoto
- Department of Veterinary Pharmacology, Kagoshima University, Kagoshima 890-0065, Japan
| | | | | | | | | |
Collapse
|
20
|
Abstract
In recent years there have been remarkable developments toward the understanding of the molecular and/or cellular changes in the neuronal second-messenger pathways during ethanol dependence. In general, it is believed that the cyclic adenosine 3',5'-monophosphate (cAMP) and the phosphoinositide (PI) signal-transduction pathways may be the intracellular targets that mediate the action of ethanol and ultimately contribute to the molecular events involved in the development of ethanol tolerance and dependence. Several laboratories have demonstrated that acute ethanol exposure increases, whereas protracted ethanol exposure decreases, agonist-stimulated adenylate cyclase activity in a variety of cell systems, including the rodent brain. Recent studies indicate that various postreceptor events of the cAMP signal transduction cascade (i.e., Gs protein, protein kinase A [PKA], and cAMP-responsive element binding protein [CREB]) in the rodent brain are also modulated by chronic ethanol exposure. The PI signal-transduction cascade represents another important second-messenger system that is modulated by both acute and chronic ethanol exposure in a variety of cell systems. It has been shown that protracted ethanol exposure significantly decreases phospholipase C (PLC) activity in the cerebral cortex of mice and rats. The decreased PLC activity during chronic ethanol exposure may be caused by a decrease in the protein levels of the PLC-beta 1 isozyme but not of PLC-delta 1 or PLC-gamma 1 isozymes in the rat cerebral cortex. Protein kinase C (PKC), which is a key step in the PI-signaling cascade, has been shown to be altered in a variety of cell systems by acute or chronic ethanol exposure. It appears from the literature that PKC plays an important role in the modulation of the function of various neurotransmitter receptors (e.g., gamma-aminobutyrate type A [GABAA], N-methyl-D-aspartate [NMDA], serotonin2A [5-HT2A], and 5-HT2C, and muscarinic [m1] receptors) resulting from ethanol exposure. The findings described in this review article indicate that neuronal-signaling proteins represent a molecular locus for the action of ethanol and are possibly involved in the neuro-adaptational mechanisms to protracted ethanol exposure. These findings support the notion that alterations in the cAMP and the PI-signaling cascades during chronic ethanol exposure could be the critical molecular events associated with the development of ethanol dependence.
Collapse
Affiliation(s)
- S C Pandey
- Department of Psychiatry, College of Medicine, University of Illinois at Chicago, USA
| |
Collapse
|
21
|
Basavarajappa BS, Hungund BL. Down-regulation of cannabinoid receptor agonist-stimulated [35S]GTP gamma S binding in synaptic plasma membrane from chronic ethanol exposed mouse. Brain Res 1999; 815:89-97. [PMID: 9974126 DOI: 10.1016/s0006-8993(98)01072-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In our previous study, we demonstrated that chronic ethanol (EtOH) exposure down-regulated the cannabinoid receptors (CB1) in mouse brain synaptic plasma membrane (SPM) (Basavarajappa et al., Brain Res. 793 (1998) 212-218). In the present study, we investigated the effect of chronic EtOH (4-day inhalation) on the CB1 agonist stimulated guanosine-5'-O-(3-[35S]thio)-triphosphate ([35S]GTP gamma S) binding in SPM from mouse. Our results indicate that the net CP55,940 stimulated [35S]GTP gamma S binding was increased with increasing concentrations of CP55,940 and GDP. This net CP55,940 (1.5 microM) stimulated [35S]GTP gamma S binding was reduced significantly (-25%) in SPM from chronic EtOH group (175 +/- 5.25%, control; 150 +/- 8.14%, EtOH; P < 0.05). This effect occurs without any significant changes on basal [35S]GTP gamma S binding (152.1 +/- 10.7 for control, 147.4 +/- 5.0 fmol/mg protein for chronic EtOH group, P > 0.05). Non-linear regression analysis of net CP55,940 stimulated [35S]GTP gamma S binding in SPM showed that the Bmax of cannabinoid stimulated binding was significantly reduced in chronic EtOH exposed mouse (Bmax = 7.58 +/- 0.22 for control; 6.42 +/- 0.20 pmol/mg protein for EtOH group; P < 0.05) without any significant changes in the G-protein affinity (Kd = 2.68 +/- 0.24 for control; 3.42 +/- 0.31 nM for EtOH group; P > 0.05). The pharmacological specificity of CP55,940 stimulated [35S]GTP gamma S binding in SPM was examined with CB1 receptor antagonist, SR141716A and these studies indicated that CP55,940 stimulated [35S]GTP gamma S binding was blocked by SR141716A with a decrease (P < 0.05) in the IC50 values in the SPM from chronic EtOH group. These results suggest that the observed down-regulation of CB1 receptors by chronic EtOH has a profound effect on desensitization of cannabinoid-activated signal transduction and possible involvement of CB1 receptors in EtOH tolerance and dependence.
Collapse
Affiliation(s)
- B S Basavarajappa
- Division of Analytical Psychopharmacology, New York State Psychiatric Institute at NKI, Orangeburg 10962, USA
| | | |
Collapse
|
22
|
Szegedi A, Anghelescu I, Pauly T, Dahmen N, Müller MJ, Wetzel H, Hiemke C. Activity of the Adenylyl Cyclase in Lymphocytes of Male Alcoholic Patients Is State Dependent. Alcohol Clin Exp Res 1998. [DOI: 10.1111/j.1530-0277.1998.tb05918.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Wenrich D, Lichtenberg-Kraag B, Rommelspacher H. G-protein pattern and adenylyl cyclase activity in the brain of rats after long-term ethanol. Alcohol 1998; 16:285-93. [PMID: 9818980 DOI: 10.1016/s0741-8329(98)00015-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Previous studies have described changes in levels of GTP binding proteins (G-proteins) following exposure of rodents to ethanol that did not correlate with the altered activation of the transmembrane signaling pathway. Possible reasons for these inconsistencies were taken into account in the present study by measuring the levels of four different G-protein subunits (G(alpha s), G(alpha i1/2), G(alpha o), Gbetagamma) in six brain regions. Rats were exposed to ethanol for 4 weeks (forced intake of ethanol liquid diet) and 40 weeks (free-choice ethanol). G-protein levels and activation of adenylyl cyclase (AC) were measured on day 1, day 8, and day 28 after withdrawal. When there were changes in the G-protein levels at all, increases were observed mostly in brain regions from rats with the 40-week exposure and decreases in regions from rats with the 4-week exposure that consumed a higher amount of ethanol per day. In some regions the changes had not normalized by day 28 in the 40-week ethanol group whereas in the 4-week ethanol group changes were observed only at day 1 and day 8. Activation of AC was disturbed in the 4-week ethanol group. Reduced activation was detected in membranes of the cerebral cortex, whereas increased activation was observed in the cerebellum, hypothalamus, pons, and striatum. Addition of ethanol (100 mM) to the tissue homogenate facilitated the stimulating action of Gpp(NH)p only in the hippocampus, cerebellum, and striatum. This in vitro action of ethanol was not affected by the long-term ethanol exposure. Activation of AC in the 40-week ethanol group was reduced in the cerebral cortex, pons, and striatum and increased in the cerebellum and hypothalamus if changes occurred at all. The findings support the contention that changes of the transmembrane signaling pathway in ethanol-exposed rats depend on the brain region and on the mode of application. Furthermore, a clear dissociation was observed between changes of the activation of the adenylyl cyclase and the changes in the levels of G-proteins.
Collapse
Affiliation(s)
- D Wenrich
- Department of Clinical Neurobiology, Free University of Berlin, Germany
| | | | | |
Collapse
|
24
|
Grenett HE, Aikens ML, Torres JA, Demissie S, Tabengwa EM, Davis GC, Booyse FM. Ethanol Transcriptionally Upregulates t-PA and u-PA Gene Expression in Cultured Human Endothelial Cells. Alcohol Clin Exp Res 1998. [DOI: 10.1111/j.1530-0277.1998.tb03878.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Hashimoto E, Frölich L, Ozawa H, Saito T, Maurer K, Böning J, Takahata N, Riederer P. Reduced immunoreactivity of type I adenylyl cyclase in the postmortem brains of alcoholics. Alcohol Clin Exp Res 1998; 22:88S-92S. [PMID: 9622380 DOI: 10.1111/acer.1998.22.s3_part1.88s] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Reduced adenylyl cyclase activity after chronic ethanol exposure has been reported. In this study, we investigated by immunoblotting whether quantitative changes of adenylyl cyclase isoforms (type I, type II, and type V/VI adenylyl cyclases) exist in membrane preparations of the temporal cortex obtained from six alcoholics and six age-matched controls. The immunoreactivity of type I adenylyl cyclase decreased significantly in the temporal cortex of alcoholics when compared with controls (p < 0.05), whereas those of type II and type V/VI adenylyl cyclases showed no changes between the groups. These findings suggest that these isoform-specific afterations in the adenylyl cyclase system may be involved in the pathophysiology of alcoholism.
Collapse
Affiliation(s)
- E Hashimoto
- Department of Psychiatry, University of Würzburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Stair SM, May LG, Puhl HL, Phelps SH, Williams CL, Aronstam RS. Ethanol Disrupts Carbamylcholine-Stimulated Release of Arachidonic Acid from Chinese Hamster Ovary Cells Expressing Different Subtypes of Human Muscarinic Receptor. Alcohol Clin Exp Res 1998. [DOI: 10.1111/j.1530-0277.1998.tb03667.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Aikens ML, Grenett HE, Benza RL, Tabengwa EM, Davis GC, Booyse FM. Alcohol-Induced Upregulation of Plasminogen Activators and Fibrinolytic Activity in Cultured Human Endothelial Cells. Alcohol Clin Exp Res 1998. [DOI: 10.1111/j.1530-0277.1998.tb03663.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Duttaroy A, Gregorio G, Shah S, Shen J, Philippe J, Monderson T, Yoburn BC. Acute ethanol exposure decreases the analgesic potency of morphine in mice. Life Sci 1998; 62:PL35-41. [PMID: 9488119 DOI: 10.1016/s0024-3205(97)01067-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chronic (7 days), forced ethanol drinking can decrease the analgesic potency of opioid agonists in mice. In the present study, the effect of short-term ethanol treatment was examined using forced ethanol access and ethanol injection protocols. Mice were given forced access to 1, 3 or 7% (v/v) ethanol for 24 hr and then tested for s.c. morphine analgesia using the tailflick assay. Controls had access to water. Another group of mice was injected i.p. with 2.5 g/kg ethanol or water 4 times over a 21 hr period and tested 3 hr after the final injection for morphine analgesia. Other mice were injected once i.p. with 1, 2 or 3 g/kg ethanol or water and tested 24 hr later using the tailflick. In the forced access study, ethanol dose-dependently decreased morphine's analgesic potency with the highest dose (7%) producing a 1.6-fold shift in the ED50. This decrease in morphine potency was similar to that found in a related study using 7% ethanol for 7 days (1.8-fold shift). Repeated ethanol injections significantly reduced the analgesic potency of morphine (1.9-fold shift), whereas, a single injection of 1, 2 or 3 g/kg ethanol did not alter the potency of morphine. Control studies indicated that neither 24 hr water nor food deprivation affected morphine potency. Overall, these data show that sustained exposure to ethanol over a 24 hr period will dose-dependently decrease morphine's analgesic potency.
Collapse
Affiliation(s)
- A Duttaroy
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, St. John's University, Queens, NY 11439, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Tabakoff B, Hoffman PL. Adenylyl cyclases and alcohol. ADVANCES IN SECOND MESSENGER AND PHOSPHOPROTEIN RESEARCH 1998; 32:173-93. [PMID: 9421591 DOI: 10.1016/s1040-7952(98)80011-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- B Tabakoff
- Department of Pharmacology, University of Colorado Health Sciences Center, Denver 80262, USA
| | | |
Collapse
|
30
|
Abstract
This study examined adenylyl cyclase (AC) signal transduction in alcohol-sensitive brain regions of rats selectively bred for high (HAD) and low (LAD) alcohol drinking and correlated these findings with differences in sensitivity and tolerance to alcohol-induced sedation found within these lines. LAD rats were more sensitive to the sedative effects of alcohol than were HAD rats as evidenced by a shorter latency to lose the righting response (RR) after a single alcohol challenge. When time to recover the RR was compared after each of two alcohol challenges, HAD rats recovered the RR more rapidly following the second challenge compared to the first, indicating that the HAD rats rapidly developed tolerance to the sedative effects of alcohol. Tolerance did not develop in rats of the LAD line. Two months after completion of behavioral testing, adenylyl cyclase (AC) signal transduction was examined in alcohol-sensitive brain regions of rats from both lines. Immunoblot analyses indicated that LAD rats had greater Gs alpha expression in the frontal cortex (FC) and hippocampus (HIP) compared to HAD rats. Rats with the highest HIP and FC Gs alpha levels were more rapidly affected by the sedative properties of alcohol than were rats with lower Gs alpha levels. G protein expression and AC activity in the FC, HIP, cerebellum (CERE), and nucleus accumbens (ACB) were also correlated with sensitivity to the sedative properties of alcohol and with the rapid development of tolerance to this alcohol effect. The results suggest that sensitivity and tolerance to alcohol-induced sedation may be mediated in part through AC signal transduction.
Collapse
Affiliation(s)
- J C Froehlich
- Department of Medicine, Indiana University School of Medicine, Indianapolis 46202, USA
| | | |
Collapse
|
31
|
Jamensky NT, Gianoulakis C. Content of Dynorphins and k-Opioid Receptors in Distinct Brain Regions of C57BL/6 and DBA/2 Mice. Alcohol Clin Exp Res 1997. [DOI: 10.1111/j.1530-0277.1997.tb04476.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Shen J, Chan KW, Chen BT, Philippe J, Sehba F, Duttaroy A, Carroll J, Yoburn BC. The effect of in vivo ethanol consumption on cyclic AMP and delta-opioid receptors in mouse striatum. Brain Res 1997; 770:65-71. [PMID: 9372204 DOI: 10.1016/s0006-8993(97)00747-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In this study the effect of in vivo ethanol consumption on cyclic AMP (cAMP) and [D-Ala2,D-Leu5]enkephalin (DADLE) inhibition of forskolin-stimulated cAMP production was examined in mouse striatum. Effects of ethanol on striatal delta-opioid receptor (DOR) density and mRNA were also examined. Mice had unlimited access to 7% (v/v) ethanol alone or water for 1 or 7 days and were then sacrificed and striatum removed for analysis. There was no difference in basal cAMP formation between water and ethanol-treated mouse striatum following 7 day treatment, and a small, but statistically significant increase in basal cAMP in the ethanol group following 1 day treatment. Both 1 day and 7 day ethanol treatment did not significantly alter the percentage increase in cAMP following treatment with 10 microM forskolin. There was a significant effect of ethanol treatment on the maximum inhibitory effect of DADLE on forskolin-stimulated cAMP formation following both 1 and 7 day ethanol treatment. The DADLE IC50 was unaffected by ethanol treatment. Saturation binding studies ([3H]Deltorphin II) indicated no effect of ethanol on Bmax or Kd in striatum. Similarly, no difference between water and ethanol-treated was observed for DOR mRNA in striatum. These data indicate that ethanol consumption can alter opioid regulation of cAMP formation. However, this effect is not related to changes in any delta-opioid receptor parameters that were examined.
Collapse
Affiliation(s)
- J Shen
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, St. John's University, Queens, NY 11439, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
KRANZLER HENRYR, McCAUL MARYE, GELERNTER JOEL, WAND GARYS. No allelic association of an exon 13 polymorphism of the Gsα gene to alcohol and/or drug dependence. Addict Biol 1997; 2:309-16. [PMID: 26735787 DOI: 10.1080/13556219772606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The adenylyl cyclase signal transduction system, a ubiquitous second messenger system, has been identified as a potential marker for genetic risk of alcohol and drug dependence. Using the polymerase chain reaction (PCR) to amplify exon 13 of the Gsα gene, two alleles were distinguished by denaturing gradient gel electrophoresis. One allele, designed A, contained the previously published C in the codon for asparagine 371, while the second allele, designated A, contains a C-T transition that conserves the asparagine residue at codon 371. The neutral polymorphism eliminates a Fok I restriction enzyme cleavage site, allowing use of restriction fragment length polymorphisms of PCR products to determine allelic frequency in 235 subjects with alcohol and/or drug dependence and in 85 control subjects. Since allele frequencies differ significantly by race, comparisons between affected individuals and controls were conducted separately for white and black groups. Within race, there were no significant differences in the frequency of the A allele among alcoholics, subjects dependent on cocaine or opioids, subjects dependent on these drugs and alcohol, and controls. We conclude that there is no association between alcohol and/or drug dependence and alleles of an exon 13 polymorphism of the Gsα gene in either black or white individuals.
Collapse
|
34
|
Yang X, Lee FY, Wand GS. Increased expression of Gs(alpha) enhances activation of the adenylyl cyclase signal transduction cascade. Mol Endocrinol 1997; 11:1053-61. [PMID: 9212053 DOI: 10.1210/mend.11.8.9957] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Expression of the stimulatory G protein, G(S)alpha, can vary over a 3-fold range in human tissues and in rodent central nervous system. In fact, the offspring of alcoholics have higher levels of G(S)alpha expression in certain tissues compared with the offspring of nonalcoholics. The aim of this research was to test the hypothesis that a causal relationship exists between the level of expression of G(S)alpha and induction of the adenylyl cyclase (AC) cascade. The methodology employed transient transfection of HEK 293 cells with a cDNA for the 52-kDa form of G(S)alpha under regulation by inducible metallothionein promoters. Transfectants were exposed to varying concentrations (0-125 microM) of zinc sulfate that produced a 3-fold range of membrane G(S)alpha expression. The range of G(S)alpha expression produced was found to mimic a physiologically relevant spectrum of G(S)alpha expression in membranes derived from human tissues and rat brain. It was observed that induction of G(S)alpha expression increased constitutive as well as stimulated cAMP accumulation. Moreover, induction of G(S)alpha expression increased events distal to the accumulation of cAMP including the phosphorylation of the transcription factor, cAMP response element binding protein and transcriptional activation of cAMP-dependent reporter genes. In summary, these studies show that the amount of G(S)alpha expression has a marked impact on the level of activity of the AC cascade from the membrane through to the nucleus. It is hypothesized that individuals who differ in G(S)alpha expression may also differ in the expression of certain cAMP-dependent genes.
Collapse
Affiliation(s)
- X Yang
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
35
|
Kenan Y, Levinson M, Pines M, Naim M. Adenylyl cyclase inhibitory pathway is differentially modified in rat white and brown fat by high-energy diets. THE AMERICAN JOURNAL OF PHYSIOLOGY 1997; 272:E1043-9. [PMID: 9227450 DOI: 10.1152/ajpendo.1997.272.6.e1043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Incubation of white adipose tissue (WAT) adipocytes from rats fed a high-energy diet (Exp group) with antilipolytic Gi-coupled adenylyl cyclase inhibitory agonists, nicotinic acid (Nic) and N8-(L-2-phenylisopropyl)adenosine (PIA), resulted in lower cellular adenosine 3',5'-cyclic monophosphate (cAMP) levels than in stimulated adipocytes from rats fed a nutritionally balanced diet (Con group). In contrast to WAT, incubation of brown adipose tissue (BAT) adipocytes with Nic yielded higher cAMP levels in the Exp vs. Con rats. In both WAT and BAT adipocytes, pertussis toxin treatment abolished the differences in Nic- and PIA-inhibited cAMP formation between Exp and Con animals. Immunoblotting of adipocyte membranes indicated a lower content of Gi alpha but not Gs alpha in BAT membranes of Exp vs. Con animals after 6 and 10 wk of feeding. No such differences were found in the Gs alpha or Gi alpha contents of WAT membranes. Thus the inhibitory pathway of adenylyl cyclase is proposed to be sensitized in WAT and desensitized in BAT of rats fed high-energy diets. These modifications in sensitivity are in line with reduced cAMP and lipolysis in WAT and increased cAMP and thermogenesis in BAT during obesity.
Collapse
Affiliation(s)
- Y Kenan
- Institute of Biochemistry, Food Sciences and Nutrition, Hebrew University of Jerusalem, Rehovot, Israel
| | | | | | | |
Collapse
|
36
|
Conway S, Garbouzova Y. Effect of fetal alcohol exposure on postnatal pituitary adenosine 3', 5'-cyclic phosphate content and growth hormone release. Alcohol Clin Exp Res 1996; 20:1212-20. [PMID: 8904974 DOI: 10.1111/j.1530-0277.1996.tb01115.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This study examines the influence of fetal ethanol (ETOH) exposure and pair-feeding dams on postnatal, releasing factor-induced pituitary growth hormone (GH) release and adenosine 3',5'-cyclic phosphate (cAMP) accumulation. Fetuses were exposed to ETOH in utero by feeding dams a 36% (calories derived from ETOH: 6.6% v/v) ETOH liquid diet. Postnatal body weights were measured at sacrifice to evaluate the influence of ETOH on growth. Pituitary weight and protein content were measured to determine if changes in GH secretion or cAMP are proportional to the overall effect of ETOH on the pituitary. Pituitaries from 1-, 10-, and 60-day-old pups were explanted and incubated without hormones or with either somatostatin [somatotropin-release inhibiting factor (SRIF); 10(-9) M], or GH-releasing factor (GRF; 5 x 10(-9) M). Radioimmunoassays were used to determine tissue cAMP content, after extraction, and media GH concentration. Results indicate that fetal ETOH exposure specifically reduces the weight of both male and female pups. However, by 60 days of age, this reduction is not different from that found in pups of pair-fed controls, and both groups weighed less than pups of ad libitum controls. Furthermore, both pituitary weight and protein content were proportionately reduced in ETOH-exposed pups. In regard to releasing factor sensitivity, compared with pituitaries from ad libitum controls, the capacity of GRF to simulate GH release was diminished in 10-day-old males (p < 0.006) exposed to ETOH. On the other hand, the capacity of GRF to stimulate cAMP accumulation was generally enhanced by prenatal ETOH exposure. The capacity of SRIF to depress GH release was diminished in ETOH pups, compared with both pair-fed and ad libitum-fed controls (p < 0.0001). This difference in GH release was more apparent in pituitaries from females than males (p < 0.001). However, the depressed SRIF response was not associated with altered cAMP accumulation. These data suggest that fetal ETOH exposure has a sexually dimorphic effect on pituitary sensitivity to GH-releasing factors that may be related to altered regulation of GH release and susceptibility to growth retardation.
Collapse
Affiliation(s)
- S Conway
- Biology Department, Northern Illinois University, DeKalb 60115, USA
| | | |
Collapse
|
37
|
Stefanini GF, Castelli E, Foschi FG, Terzi A, Biagi PL, Bordoni A, Celadon M, Hrelia S. Defective calcium increase and inositol phosphate production in anti-CD3-stimulated lymphocytes of alcoholics without progressive liver disease. Alcohol Clin Exp Res 1996; 20:523-7. [PMID: 8727248 DOI: 10.1111/j.1530-0277.1996.tb01086.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Intracellular free calcium concentration, phosphoinositide turnover, and inositol phosphate production were analyzed in peripheral blood lymphocytes from seven well-nourished alcoholic patients without severe acute or chronic liver disease, before and after stimulation with anti-CD3 antibody. Seven comparable nondrinkers were studied as controls. A lower increase in intracellular free calcium concentration was detected in alcoholics, after anti-CD3 stimulation of lymphocytes, than in control subjects. Lymphocyte activation generated inositol phosphates in both controls and alcoholics, but inositol phosphate production was significantly lower in alcoholics. The agreement between these findings indicates that the reduction in inositol phosphates is one of the most important events in the early phases of lymphocyte activation in alcoholics.
Collapse
Affiliation(s)
- G F Stefanini
- Department of Biochemistry G. Moruzzi, University of Bologna, Italy
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Torres G, Horowitz JM. Individual and combined effects of ethanol and cocaine on intracellular signals and gene expression. Prog Neuropsychopharmacol Biol Psychiatry 1996; 20:561-96. [PMID: 8843485 DOI: 10.1016/0278-5846(96)00034-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
1. Ethanol and cocaine are drugs of abuse that can produce long-lived changes in behavior, including dependence. 2. A common set of neural pathways appears to mediate the addictive actions of ethanol and cocaine. 3. Many prominent aspects of drug dependence may be the result of alterations in intracellular signals as well as specific patterns of gene expression. 4. For instance, changes in G proteins and cAMP, phosphorylation of proteins and induction of c-fos and zif/268 in specific drug-sensitive brain regions may represent adaptive changes in response to a drug-dependent state. 5. The concurrent use of ethanol and cocaine is the most prevalent pattern of drug abuse in humans. However, the number of studies investigating the behavioral and molecular effects of this combination are few. 6. Emerging evidence indicates a possible antagonistic effect of ethanol and cocaine action on transcription factor function. In addition, cocaethylene (a psychoactive metabolite derived from combined ethanol and cocaine exposure) has significant effects on gene expression as well.
Collapse
Affiliation(s)
- G Torres
- Department of Psychology, State University of New York at Buffalo, USA
| | | |
Collapse
|
39
|
Nakamura J. Role of protein synthesis on ethanol regulation of adenylyl cyclase activity in wild-type S49 murine lymphoma cells. Alcohol Clin Exp Res 1996; 20:302-6. [PMID: 8730221 DOI: 10.1111/j.1530-0277.1996.tb01643.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Adenylyl cyclase activity was determined in membranes from wild-type S49 murine lymphoma cells that had been exposed to ethanol for 4 hr. Mn-, NaF-, and forskolin-stimulated adenylyl cyclase activities of cells-pretreated with cycloheximide, puromycin, or serum deprivation-were significantly decreased by treatment with 50 mM of ethanol. As demonstrated for Mn-stimulated activity, the decrease was dose-dependent on ethanol and was temporal; a normal activity recovered after 16-24 hr treatment, even in the presence of cycloheximide and ethanol. Studies with a cell-free membrane system of S49 cells revealed a similar activity decrease after treatment of the membranes with ethanol. In contrast, cells treated with 50 mM of ethanol in a regular culture condition showed no decrease in adenylyl cyclase activity over 24 hr. These results indicate that ethanol regulation of adenylyl cyclase activity in S49 cells depends on reduced or impaired protein synthesis.
Collapse
Affiliation(s)
- J Nakamura
- Institute for Clinical Medicine, University of Tsukuba, Ibaraki-ken, Japan
| |
Collapse
|
40
|
Ortiz J, Fitzgerald LW, Charlton M, Lane S, Trevisan L, Guitart X, Shoemaker W, Duman RS, Nestler EJ. Biochemical actions of chronic ethanol exposure in the mesolimbic dopamine system. Synapse 1995; 21:289-98. [PMID: 8869159 DOI: 10.1002/syn.890210403] [Citation(s) in RCA: 154] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In previous studies, we have demonstrated that chronic administration of morphine or cocaine produces some common biochemical adaptations in the ventral tegmental area (VTA) and nucleus accumbens (NAc), components of the mesolimbic dopamine system implicated in the reinforcing actions of these and other drugs of abuse. Since this neural pathway is also implicated in the reinforcing actions of ethanol, it was of interest to determine whether chronic ethanol exposure results in similar biochemical adaptations. Indeed, as seen for chronic morphine and cocaine treatments, we show here that chronic ethanol treatment increased levels of tyrosine hydroxylase and glial fibrillary acidic protein immunoreactivity, and decreases levels of neurofilament protein immunoreactivity, in the VTA. Also like morphine and cocaine, ethanol increases levels of cyclic AMP-dependent protein kinase activity in the NAc. These actions of ethanol required long-term exposure to the drug, and were in most cases not seen in the substantia nigra or caudateputamen, components of the nigrostriatal dopamine system studied for comparison. Altered levels of tyrosine hydroxylase in catecholaminergic cells frequently reflect altered states of activation of the cells. Moreover, increasing evidence indicates that ethanol produces many of its acute effects on the brain by regulating NMDA glutamate and GABAA receptors. We therefore examined the influence of chronic ethanol treatment on levels of expression of specific glutamate and GABA receptor subunits in the VTA. It was found that long-term, but not short-term, ethanol exposure increased levels of immunoreactivity of the NMDAR1 subunit, an obligatory component of NMDA glutamate receptors, and of the GluR1 subunit, a component of many AMPA glutamate receptors; but at the same time, long-term ethanol exposure decreased immunoreactivity levels of the alpha 1 subunit of the GABAA receptor complex. These changes are consistent with an increased state of activation of VTA neurons inferred from the observed increase in tyrosine hydroxylase (TH) expression. These results demonstrate that chronic ethanol exposure results in several biochemical adaptations in the mesolimbic dopamine system, which may underlie prominent changes in the structural and functional properties of this neural pathway related to alcohol abuse and alcoholism.
Collapse
Affiliation(s)
- J Ortiz
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut 06508, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
McKenzie PP, McClaran JD, Caudle MR, Fukuda A, Wimalasena J. Alcohol inhibits epidermal growth factor-stimulated progesterone secretion from human granulosa cells. Alcohol Clin Exp Res 1995; 19:1382-8. [PMID: 8749799 DOI: 10.1111/j.1530-0277.1995.tb00996.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In this study, luteinized human granulosa cells (GC) obtained during in vitro fertilization procedures were used as a model system to evaluate the effects of ethanol (EtOH), a well-known reproductive toxin, on epidermal growth factor (EGF) and gonadotropin-stimulated steroidogenesis. Our results demonstrate that the basal progesterone (P4) and estradiol (E2) secretion by human GC in vitro was dependent on the ovarian stimulation protocol. EGF significantly enhanced P4, but not E2, secretion in human GC from clomiphene citrate (CC), human menopausal gonadotropin (hMG), and hMG/gonadotropin-releasing hormone agonist (GnRH-a)-treated patients. The effects of EGF plus luteinizing hormone (LH) were additive in cells from the CC group, but less than additive in hMG and hMG/GnRH-a groups. EtOH at 20 mM or more inhibited EGF stimulated P4 secretion in human GC from all three patient groups. EtOH inhibited P4 secretion stimulated by EGF and LH cotreatment in the CC and hMG/GnRH-a groups, but not in human GC from the hMG-treated patients. These results suggest that basal and EGF or LH-stimulated P4 secretion by human GC, as well as the effects of EtOH, are profoundly influenced by the follicle's hormonal milieu.
Collapse
Affiliation(s)
- P P McKenzie
- Department of Obstetrics and Gynecology, University of Tennessee Medical Center, Knoxville 37920, USA
| | | | | | | | | |
Collapse
|
42
|
Abstract
Defective vasodilator function could be important in the pathogenesis and/or maintenance of the hypertensive state and the predisposition of the elderly to hypertension. Impaired beta-adrenergic-mediated vasodilation and reduced lymphocyte beta-adrenergic activation of adenyl cyclase have been demonstrated both in aging and with hypertension. The cellular mechanisms responsible for these alterations remain unclear. To determine if these defects may be due to alterations in guanine nucleotide regulatory proteins (G proteins) that link receptor activation with effector function, we assessed (1) human lymphocyte adenyl cyclase activity, (2) stimulatory G proteins by cholera toxin-mediated [32P]ADP ribosylation and, in hypertensive subjects, with alpha s-specific and beta-subunit antisera, and (3) inhibitory G proteins by pertussis toxin-mediated [32P]ADP ribosylation and, in older subjects, with alpha i,1,2- and beta-subunit-specific antisera. Lymphocytes from older subjects and from hypertensive subjects demonstrated a comparable reduction in isoproterenol-stimulated adenyl cyclase. However, aluminum fluoride-stimulated activity was reduced only in lymphocytes from hypertensive subjects. Furthermore, aluminum fluoride-stimulated activity was inversely correlated with mean arterial pressure. In lymphocytes from younger hypertensive subjects, cholera toxin-mediated labeling was significantly increased. In contrast, inhibitory G protein labeling by immunodetection was unaltered. In lymphocytes from older subjects, cholera toxin-mediated labeling was not altered; however, pertussis toxin-mediated labelling was significantly increased. In contrast, inhibitory G protein labeling by immunodetection was unaltered. Overall, the study suggests alterations of G protein function of adenyl cyclase is impaired. However, these defects are associated with divergent alterations in stimulatory and inhibitory G proteins.
Collapse
Affiliation(s)
- R D Feldman
- Department of Medicine, University of Western Ontario, London, Canada
| | | | | |
Collapse
|
43
|
POSTER COMMUNICATIONS. Br J Pharmacol 1995. [DOI: 10.1111/j.1476-5381.1995.tb16904.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
44
|
Iles KE, Nagy LE. Chronic ethanol feeding increases the quantity of Gαs-protein in rat liver plasma membranes. Hepatology 1995. [DOI: 10.1002/hep.1840210439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
45
|
Kelly E, Harrison PK, Williams RJ. Effects of acute and chronic ethanol on cyclic AMP accumulation in NG108-15 cells: differential dependence of changes on extracellular adenosine. Br J Pharmacol 1995; 114:1433-41. [PMID: 7541691 PMCID: PMC1510298 DOI: 10.1111/j.1476-5381.1995.tb13366.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
1. This study investigated the effects of acute and chronic ethanol on basal, agonist- and forskolin-stimulated cyclic AMP formation in NG108-15 mouse neuroblastoma x rat glioma hybrid cells, and examined the role of changes in extracellular adenosine concentrations on the effects observed. 2. NG108-15 cells incubated acutely with ethanol (1-200 mM) displayed concentration-dependent increases in basal and iloprost-stimulated (300 nM; a prostanoid IP receptor agonist) cyclic AMP accumulation but a concentration-dependent decrease in forskolin-stimulated (10 microM) accumulation. 3. Cells treated chronically with ethanol (200 mM) for 48 h displayed increases over control in basal, iloprost- (0.001-10 microM) and forskolin (0.01-100 microM)-stimulated cyclic AMP formation. However, chronic ethanol did not affect [3H]-iloprost binding to cell membranes. 4. Inclusion of adenosine deaminase (ADA; 1 unit ml-1) during the incubation period to measure cyclic AMP accumulation completely abolished the increase in basal accumulation following chronic ethanol, but did not affect the increase in iloprost stimulation. On the other hand ADA partially reversed the increase in forskolin stimulation following chronic ethanol, but even in the presence of high concentrations of ADA (5 units ml-1) the forskolin stimulation remained elevated above control. 5. Cells treated chronically with the adenosine receptor agonist 5'-(N-ethylcarboxamido)-adenosine (NECA; 10 microM for 48 h) displayed a reduction in subsequent NECA- and forskolin-stimulated cyclic AMP accumulation, but iloprost stimulation was not affected. ADA included acutely during the incubation period to measure cyclic AMP accumulation abolished the reduction in forskolin but not NECA stimulation produced by the chronic NECA pretreatment. 6. We have previously noted that ethanol inhibits NG108-15 cell proliferation and alters cell morphology.To mimic this, cells were incubated in the absence of foetal calf serum for 48 h. Following this time, basal, iloprost- and forskolin-stimulated cyclic AMP formation was enhanced over that in cells grown in the presence of serum.7. These results indicate that chronic ethanol enhances cyclic AMP formation in intact NG108-15 cells by more than one mechanism: one involves increased extracellular adenosine concentrations and the other a change in the transduction system beyond the receptor, possibly involving the adenylyl cyclase enzyme. Furthermore the ethanol-induced changes in cyclic AMP accumulation may relate to alterations in NG108-15 cell growth and development.
Collapse
Affiliation(s)
- E Kelly
- Department of Pharmacology, School of Medical Sciences, University of Bristol
| | | | | |
Collapse
|
46
|
Tabakoff B, Whelan JP, Ovchinnikova L, Nhamburo P, Yoshimura M, Hoffman PL. Quantitative changes in G proteins do not mediate ethanol-induced downregulation of adenylyl cyclase in mouse cerebral cortex. Alcohol Clin Exp Res 1995; 19:187-94. [PMID: 7771650 DOI: 10.1111/j.1530-0277.1995.tb01491.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Our prior work, and the work of others, demonstrated that chronic administration of ethanol to cells in culture or to mice resulted in decreased responsiveness of adenylyl cyclase (EC4.6.1.1) to a number of stimulatory agents. In this study, we substantiated the ethanol-induced changes in cerebral cortical adenylyl cyclase activity in alcohol-tolerant and alcohol-dependent mice, and we examined whether chronic ethanol treatment of mice altered the quantity of heterotrimeric guanine nucleotide-binding regulatory proteins (G proteins) in cerebral cortex and other mouse brain areas. Amounts of various G protein subunits--including the alpha subunits of GS (GS alpha), Gi alpha 1-3, G(o) alpha, and beta subunits--were examined by Western blot analysis. There was no change in quantity of these G protein subunits in cerebral cortex, hippocampus, or cerebellum of ethanol-fed mice, compared with controls. In striatum of ethanol-fed mice, small increases in Gi alpha 1 and G(o) alpha were observed, but these changes could not explain the ethanol-induced desensitization of adenylyl cyclase in brain areas such as the cerebral cortex. Forskolin activation of cerebral cortical adenylyl cyclase activity showed two components of activation, with high and low "affinity" for forskolin. Ethanol treatment caused a decrease in the efficacy of forskolin for both components, whereas the EC50 of forskolin for each component did not change. Adenylyl cyclase activity measured in the presence of manganese was also diminished in cortical membranes of ethanol-treated mice.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- B Tabakoff
- Department of Pharmacology, University of Colorado Health Sciences Center, Denver 80262, USA
| | | | | | | | | | | |
Collapse
|
47
|
Ng GY, O'Dowd BF, George SR. Genotypic differences in brain dopamine receptor function in the DBA/2J and C57BL/6J inbred mouse strains. Eur J Pharmacol 1994; 269:349-64. [PMID: 7895774 DOI: 10.1016/0922-4106(94)90043-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The propensity for high ethanol preference and high ethanol consumption (herein referred to as ethanol abuse) may be a consequence of a congenital deficit in central dopaminergic activity. This hypothesis was examined in the ethanol-avoiding DBA/2J (DBA) and ethanol-preferring C57BL/6J (C57) inbred mouse strains. Endogenous dopamine D1 and D2 receptor functions differed between strains in the nigrostriatal/mesolimbic dopamine system. At the level of the forebrain, the C57 mouse exhibited higher dopamine D1 and D2 receptor mRNA abundance and elevated dopamine D1 and D2 receptor densities in the striatum compared to DBA mouse. A likely explanation for these observations might be that higher dopamine receptor gene expression could be a consequence of low synaptic dopamine activity. Accordingly, we found higher striatal dopamine-sensitive adenylyl cyclase activity in the C57 mouse. The C57 mouse exhibited an enhanced dopamine D1-D2 receptor link as suggested by an enhanced up-regulation of striatal dopamine D2 receptor mRNA following dopamine D1 receptor blockade with SCH-23390 compared to DBA mouse. At the level of the mesencephalon and hind brain, the C57 mouse had lower dopamine D2 receptor mRNA in the medulla pons, and correspondingly lower midbrain and medulla pons dopamine D2 receptor densities. Adenylyl cyclase activities in these regions were similar to the DBA mouse suggesting that the coupling of these dopamine D2 receptors could be a factor regulating their function. Strain differences in dopamine D2 receptor function were also observed in the diencephalic dopamine system. The C57 mouse exhibited lower dopamine D2 receptor density in the hippocampus and lower dopamine D2 receptor mRNA abundance and lower adenylyl cyclase activity in the hypothalamus. Changes in brain dopamine receptor gene expression following ethanol intake inferred an increase in the activities of central dopamine pathways in both the DBA and C57 mouse supporting an association between dopamine receptor function and ethanol drinking. These lines of evidence provide a basis for the hypothesis that a genetically determined brain dopaminergic deficit mediated by dopamine D1-D2 receptor mechanisms may be involved in at least a part of the risk for ethanol abuse in the C57 inbred mouse strain.
Collapse
Affiliation(s)
- G Y Ng
- Department of Pharmacology, University of Toronto, Ontario, Canada
| | | | | |
Collapse
|
48
|
Daly JW, Shi D, Wong V, Nikodijevic O. Chronic effects of ethanol on central adenosine function of mice. Brain Res 1994; 650:153-6. [PMID: 7953667 DOI: 10.1016/0006-8993(94)90219-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Chronic ingestion of 5% ethanol had no significant effect on open field locomotor of NIH Swiss strain male mice, nor were the depressant effects of a non-selective adenosine receptor agonist, NECA, or the stimulant effects of a non-selective antagonist, caffeine significantly altered. The density of cerebral cortical A1-adenosine receptors and of nitrendipine binding sites on calcium channels were significantly increased after chronic ethanol, while the density of striatal A2a-adenosine receptors were unchanged. The locomotor stimulant effects of ethanol (2.5 g/kg) were slightly decreased after chronic ethanol, but were markedly reduced in mice after chronic caffeine ingestion. The results suggest some involvement of adenosine systems in the effects of ethanol.
Collapse
Affiliation(s)
- J W Daly
- Laboratory of Bioorganic Chemistry, National Institutes of Health, Bethesda, MD 20892
| | | | | | | |
Collapse
|
49
|
Druse MJ, Tajuddin NF, Eshed M, Gillespie R. Maternal ethanol consumption: effects on G proteins and second messengers in brain regions of offspring. Alcohol Clin Exp Res 1994; 18:47-52. [PMID: 8198226 DOI: 10.1111/j.1530-0277.1994.tb00879.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Previous work in this and other laboratories has demonstrated that in utero ethanol exposure adversely affects the development of the serotonergic, dopaminergic, cholinergic, and other neurotransmitter systems. In several of these systems, receptor number is significantly altered. To determine whether the altered number of two G protein-linked receptors is reflected in changes in cell function, we examined dopamine-stimulated adenylate cyclase in the striatum and cortex and carbachol-stimulated phosphoinositide (PI) hydrolysis in the cortex. Serotonin-stimulated cortical PI hydrolysis was assessed for comparison. We also studied G proteins that link adenylate cyclase and other second messenger systems to their receptors. The G proteins that were analyzed include the alpha-subunits for Gs, G0, Gi1, Gi2, and Gi3. G proteins were analyzed in the cortex and cortical regions, as well as in the brain stem. The results of these experiments demonstrated that dopamine-stimulated adenylate cyclase activity was comparable in the striatum of 5- and 19-day offspring of control and ethanol-fed rats and in the motor cortex of 19-day offspring. We also found that carbachol- and serotonin-stimulated hydrolysis of cortical phosphoinositides was unchanged in ethanol-exposed offspring on gestational day 19, and on postnatal days 5 and 19. G protein content was examined by Western blot analysis, using antibodies directed against the alpha-subunits of Gs, G0, and the Gi1/Gi2 and Gi3/G0 combinations. These investigations indicated that, with two minor exceptions (approximately 10% change in the proteins detected by antibodies against the alpha-subunits of the Gi1/Gi2 and Gi3/G0 combinations), there were no significant differences in the content of any of the G proteins analyzed.
Collapse
Affiliation(s)
- M J Druse
- Department of Molecular and Cellular Biochemistry, Loyola University of Chicago, Stritch School of Medicine, Maywood, Illinois
| | | | | | | |
Collapse
|
50
|
Emala CW, Schwindinger WF, Wand GS, Levine MA. Signal-transducing G proteins: basic and clinical implications. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1994; 47:81-111. [PMID: 8016326 DOI: 10.1016/s0079-6603(08)60250-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The pivotal role that G proteins play in transmembrane signal transduction is highlighted by the rapidly expanding list of receptors and effector molecules that are coupled through G proteins. G proteins are poised to allow discrimination and diversification of cellular signals into the cytosolic milieu. The utilization of an evolutionarily conserved "GTPase clock" by G proteins, offers insight into the fundamental role these proteins play in biology. Knowledge of the implication of altered expression or function of G proteins in human disease is now emerging. It is not surprising that deficiency or expression of altered forms of these important proteins can lead to global or restricted metabolic disturbances, depending upon the distribution and role of the G protein. Human disorders, including heart failure, alcoholism, endocrine abnormalities, and neoplasia, are now recognized as due in part to altered expression or function of G proteins.
Collapse
Affiliation(s)
- C W Emala
- Department of Anesthesiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | | | | | | |
Collapse
|