1
|
Golik P. RNA processing and degradation mechanisms shaping the mitochondrial transcriptome of budding yeasts. IUBMB Life 2024; 76:38-52. [PMID: 37596708 DOI: 10.1002/iub.2779] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 07/25/2023] [Indexed: 08/20/2023]
Abstract
Yeast mitochondrial genes are expressed as polycistronic transcription units that contain RNAs from different classes and show great evolutionary variability. The promoters are simple, and transcriptional control is rudimentary. Posttranscriptional mechanisms involving RNA maturation, stability, and degradation are thus the main force shaping the transcriptome and determining the expression levels of individual genes. Primary transcripts are fragmented by tRNA excision by RNase P and tRNase Z, additional processing events occur at the dodecamer site at the 3' end of protein-coding sequences. groups I and II introns are excised in a self-splicing reaction that is supported by protein splicing factors encoded by the nuclear genes, or by the introns themselves. The 3'-to-5' exoribonucleolytic complex called mtEXO is the main RNA degradation activity involved in RNA turnover and processing, supported by an auxiliary 5'-to-3' exoribonuclease Pet127p. tRNAs and, to a lesser extent, rRNAs undergo several different base modifications. This complex gene expression system relies on the coordinated action of mitochondrial and nuclear genes and undergoes rapid evolution, contributing to speciation events. Moving beyond the classical model yeast Saccharomyces cerevisiae to other budding yeasts should provide important insights into the coevolution of both genomes that constitute the eukaryotic genetic system.
Collapse
Affiliation(s)
- Pawel Golik
- Faculty of Biology, Institute of Genetics and Biotechnology, University of Warsaw, Warsaw, Poland
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
2
|
Hubble KA, Henry MF. DPC29 promotes post-initiation mitochondrial translation in Saccharomyces cerevisiae. Nucleic Acids Res 2023; 51:1260-1276. [PMID: 36620885 PMCID: PMC9943650 DOI: 10.1093/nar/gkac1229] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 01/10/2023] Open
Abstract
Mitochondrial ribosomes synthesize essential components of the oxidative phosphorylation (OXPHOS) system in a tightly regulated process. In the yeast Saccharomyces cerevisiae, mitochondrial mRNAs require specific translational activators, which orchestrate protein synthesis by recognition of their target gene's 5'-untranslated region (UTR). Most of these yeast genes lack orthologues in mammals, and only one such gene-specific translational activator has been proposed in humans-TACO1. The mechanism by which TACO1 acts is unclear because mammalian mitochondrial mRNAs do not have significant 5'-UTRs, and therefore must promote translation by alternative mechanisms. In this study, we examined the role of the TACO1 orthologue in yeast. We found this 29 kDa protein to be a general mitochondrial translation factor, Dpc29, rather than a COX1-specific translational activator. Its activity was necessary for the optimal expression of OXPHOS mtDNA reporters, and mutations within the mitoribosomal large subunit protein gene MRP7 produced a global reduction of mitochondrial translation in dpc29Δ cells, indicative of a general mitochondrial translation factor. Northern-based mitoribosome profiling of dpc29Δ cells showed higher footprint frequencies at the 3' ends of mRNAs, suggesting a role in translation post-initiation. Additionally, human TACO1 expressed at native levels rescued defects in dpc29Δ yeast strains, suggesting that the two proteins perform highly conserved functions.
Collapse
Affiliation(s)
- Kyle A Hubble
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA,Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ 08084, USA
| | - Michael F Henry
- To whom correspondence should be addressed. Tel: +1 856 566 6970; Fax: +1 856 566 6291; E-mail:
| |
Collapse
|
3
|
Varassas SP, Kouvelis VN. Mitochondrial Transcription of Entomopathogenic Fungi Reveals Evolutionary Aspects of Mitogenomes. Front Microbiol 2022; 13:821638. [PMID: 35387072 PMCID: PMC8979003 DOI: 10.3389/fmicb.2022.821638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
Entomopathogenic fungi and more specifically genera Beauveria and Metarhizium have been exploited for the biological control of pests. Genome analyses are important to understand better their mode of action and thus, improve their efficacy against their hosts. Until now, the sequences of their mitochondrial genomes were studied, but not at the level of transcription. Except of yeasts and Neurospora crassa, whose mt gene transcription is well described, in all other Ascomycota, i.e., Pezizomycotina, related information is extremely scarce. In this work, mt transcription and key enzymes of this function were studied. RT-PCR experiments and Northern hybridizations reveal the transcriptional map of the mt genomes of B. bassiana and M. brunneum species. The mt genes are transcribed in six main transcripts and undergo post-transcriptional modifications to create single gene transcripts. Promoters were determined in both mt genomes with a comparative in silico analysis, including all known information from other fungal mt genomes. The promoter consensus sequence is 5'-ATAGTTATTAT-3' which is in accordance with the definition of the polycistronic transcripts determined with the experiments described above. Moreover, 5'-RACE experiments in the case of premature polycistronic transcript nad1-nad4-atp8-atp6 revealed the 5' end of the RNA transcript immediately after the in silico determined promoter, as also found in other fungal species. Since several conserved elements were retrieved from these analyses compared to the already known data from yeasts and N. crassa, the phylogenetic analyses of mt RNA polymerase (Rpo41) and its transcriptional factor (Mtf1) were performed in order to define their evolution. As expected, it was found that fungal Rpo41 originate from the respective polymerase of T7/T3 phages, while the ancestor of Mtf1 is of alpha-proteobacterial origin. Therefore, this study presents insights about the fidelity of the mt single-subunit phage-like RNA polymerase during transcription, since the correct identification of mt promoters from Rpo41 requires an ortholog to bacterial sigma factor, i.e., Mtf1. Thus, a previously proposed hypothesis of a phage infected alpha-proteobacterium as the endosymbiotic progenitor of mitochondrion is confirmed in this study and further upgraded by the co-evolution of the bacterial (Mtf1) and viral (Rpo41) originated components in one functional unit.
Collapse
Affiliation(s)
| | - Vassili N. Kouvelis
- Department of Genetics and Biotechnology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
4
|
Zamudio-Ochoa A, Morozov YI, Sarfallah A, Anikin M, Temiakov D. OUP accepted manuscript. Nucleic Acids Res 2022; 50:2765-2781. [PMID: 35191499 PMCID: PMC8934621 DOI: 10.1093/nar/gkac103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/27/2022] [Accepted: 02/03/2022] [Indexed: 11/13/2022] Open
Abstract
Recognition of mammalian mitochondrial promoters requires the concerted action of mitochondrial RNA polymerase (mtRNAP) and transcription initiation factors TFAM and TFB2M. In this work, we found that transcript slippage results in heterogeneity of the human mitochondrial transcripts in vivo and in vitro. This allowed us to correctly interpret the RNAseq data, identify the bona fide transcription start sites (TSS), and assign mitochondrial promoters for > 50% of mammalian species and some other vertebrates. The divergent structure of the mammalian promoters reveals previously unappreciated aspects of mtDNA evolution. The correct assignment of TSS also enabled us to establish the precise register of the DNA in the initiation complex and permitted investigation of the sequence-specific protein-DNA interactions. We determined the molecular basis of promoter recognition by mtRNAP and TFB2M, which cooperatively recognize bases near TSS in a species-specific manner. Our findings reveal a role of mitochondrial transcription machinery in mitonuclear coevolution and speciation.
Collapse
Affiliation(s)
- Angelica Zamudio-Ochoa
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Yaroslav I Morozov
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Azadeh Sarfallah
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Michael Anikin
- Department of Cell Biology and Neuroscience, Rowan University, School of Osteopathic Medicine, 42 E Laurel Rd, Stratford, NJ 08084, USA
| | | |
Collapse
|
5
|
Basu U, Bostwick AM, Das K, Dittenhafer-Reed KE, Patel SS. Structure, mechanism, and regulation of mitochondrial DNA transcription initiation. J Biol Chem 2020; 295:18406-18425. [PMID: 33127643 PMCID: PMC7939475 DOI: 10.1074/jbc.rev120.011202] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/29/2020] [Indexed: 12/14/2022] Open
Abstract
Mitochondria are specialized compartments that produce requisite ATP to fuel cellular functions and serve as centers of metabolite processing, cellular signaling, and apoptosis. To accomplish these roles, mitochondria rely on the genetic information in their small genome (mitochondrial DNA) and the nucleus. A growing appreciation for mitochondria's role in a myriad of human diseases, including inherited genetic disorders, degenerative diseases, inflammation, and cancer, has fueled the study of biochemical mechanisms that control mitochondrial function. The mitochondrial transcriptional machinery is different from nuclear machinery. The in vitro re-constituted transcriptional complexes of Saccharomyces cerevisiae (yeast) and humans, aided with high-resolution structures and biochemical characterizations, have provided a deeper understanding of the mechanism and regulation of mitochondrial DNA transcription. In this review, we will discuss recent advances in the structure and mechanism of mitochondrial transcription initiation. We will follow up with recent discoveries and formative findings regarding the regulatory events that control mitochondrial DNA transcription, focusing on those involved in cross-talk between the mitochondria and nucleus.
Collapse
Affiliation(s)
- Urmimala Basu
- Department of Biochemistry and Molecular Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA; Graduate School of Biomedical Sciences, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | | | - Kalyan Das
- Department of Microbiology, Immunology, and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | | | - Smita S Patel
- Department of Biochemistry and Molecular Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA.
| |
Collapse
|
6
|
De Wijngaert B, Sultana S, Singh A, Dharia C, Vanbuel H, Shen J, Vasilchuk D, Martinez SE, Kandiah E, Patel SS, Das K. Cryo-EM Structures Reveal Transcription Initiation Steps by Yeast Mitochondrial RNA Polymerase. Mol Cell 2020; 81:268-280.e5. [PMID: 33278362 DOI: 10.1016/j.molcel.2020.11.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 01/18/2023]
Abstract
Mitochondrial RNA polymerase (mtRNAP) is crucial in cellular energy production, yet understanding of mitochondrial DNA transcription initiation lags that of bacterial and nuclear DNA transcription. We report structures of two transcription initiation intermediate states of yeast mtRNAP that explain promoter melting, template alignment, DNA scrunching, abortive synthesis, and transition into elongation. In the partially melted initiation complex (PmIC), transcription factor MTF1 makes base-specific interactions with flipped non-template (NT) nucleotides "AAGT" at -4 to -1 positions of the DNA promoter. In the initiation complex (IC), the template in the expanded 7-mer bubble positions the RNA and NTP analog UTPαS, while NT scrunches into an NT loop. The scrunched NT loop is stabilized by the centrally positioned MTF1 C-tail. The IC and PmIC states coexist in solution, revealing a dynamic equilibrium between two functional states. Frequent scrunching/unscruching transitions and the imminent steric clashes of the inflating NT loop and growing RNA:DNA with the C-tail explain abortive synthesis and transition into elongation.
Collapse
Affiliation(s)
- Brent De Wijngaert
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Shemaila Sultana
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Anupam Singh
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Chhaya Dharia
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Hans Vanbuel
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Jiayu Shen
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Daniel Vasilchuk
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Sergio E Martinez
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Eaazhisai Kandiah
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38043 Grenoble, France
| | - Smita S Patel
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA.
| | - Kalyan Das
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
7
|
Gupta A, Shrivastava D, Shakya AK, Gupta K, Pratap JV, Habib S. PfKsgA1 functions as a transcription initiation factor and interacts with the N-terminal region of the mitochondrial RNA polymerase of Plasmodium falciparum. Int J Parasitol 2020; 51:23-37. [PMID: 32896572 DOI: 10.1016/j.ijpara.2020.07.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 10/23/2022]
Abstract
The small mitochondrial genome (mtDNA) of the malaria parasite is known to transcribe its genes polycistonically, although promoter element(s) have not yet been identified. An unusually large Plasmodium falciparum candidate mitochondrial phage-like RNA polymerase (PfmtRNAP) with an extended N-terminal region is encoded by the parasite nuclear genome. Using specific antibodies against the enzyme, we established that PfmtRNAP was targeted exclusively to the mitochondrion and interacted with mtDNA. Phylogenetic analysis showed that it is part of a separate apicomplexan clade. A search for PfmtRNAP-associated transcription initiation factors using sequence homology and in silico protein-protein interaction network analysis identified PfKsgA1. PfKsgA1 is a dual cytosol- and mitochondrion-targeted protein that functions as a small subunit rRNA dimethyltransferase in ribosome biogenesis. Chromatin immunoprecipitation showed that PfKsgA1 interacts with mtDNA, and in vivo crosslinking and pull-down experiments confirmed PfmtRNAP-PfKsgA1 interaction. The ability of PfKsgA1 to serve as a transcription initiation factor was demonstrated by complementation of yeast mitochondrial transcription factor Mtf1 function in Rpo41-driven in vitro transcription. Pull-down experiments using PfKsgA1 and PfmtRNAP domains indicated that the N-terminal region of PfmtRNAP interacts primarily with the PfKsgA1 C-terminal domain with some contacts being made with the linker and N-terminal domain of PfKsgA1. In the absence of full-length recombinant PfmtRNAP, solution structures of yeast mitochondrial RNA polymerase Rpo41 complexes with Mtf1 or PfKsgA1 were determined by small-angle X-ray scattering. Protein interaction interfaces thus identified matched with those reported earlier for Rpo41-Mtf1 interaction and overlaid with the PfmtRNAP-interfacing region identified experimentally for PfKsgA1. Our results indicate that in addition to a role in mitochondrial ribosome biogenesis, PfKsgA1 has an independent function as a transcription initiation factor for PfmtRNAP.
Collapse
Affiliation(s)
- Ankit Gupta
- Division of Molecular and Structural Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Deepti Shrivastava
- Division of Molecular and Structural Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anil Kumar Shakya
- Division of Molecular and Structural Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Kirti Gupta
- Division of Molecular and Structural Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - J V Pratap
- Division of Molecular and Structural Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Saman Habib
- Division of Molecular and Structural Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
8
|
Sohn BK, Basu U, Lee SW, Cho H, Shen J, Deshpande A, Johnson LC, Das K, Patel SS, Kim H. The dynamic landscape of transcription initiation in yeast mitochondria. Nat Commun 2020; 11:4281. [PMID: 32855416 PMCID: PMC7452894 DOI: 10.1038/s41467-020-17793-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 07/14/2020] [Indexed: 01/24/2023] Open
Abstract
Controlling efficiency and fidelity in the early stage of mitochondrial DNA transcription is crucial for regulating cellular energy metabolism. Conformational transitions of the transcription initiation complex must be central for such control, but how the conformational dynamics progress throughout transcription initiation remains unknown. Here, we use single-molecule fluorescence resonance energy transfer techniques to examine the conformational dynamics of the transcriptional system of yeast mitochondria with single-base resolution. We show that the yeast mitochondrial transcriptional complex dynamically transitions among closed, open, and scrunched states throughout the initiation stage. Then abruptly at position +8, the dynamic states of initiation make a sharp irreversible transition to an unbent conformation with associated promoter release. Remarkably, stalled initiation complexes remain in dynamic scrunching and unscrunching states without dissociating the RNA transcript, implying the existence of backtracking transitions with possible regulatory roles. The dynamic landscape of transcription initiation suggests a kinetically driven regulation of mitochondrial transcription.
Collapse
Affiliation(s)
- Byeong-Kwon Sohn
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Urmimala Basu
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Seung-Won Lee
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Hayoon Cho
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Jiayu Shen
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Aishwarya Deshpande
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Laura C Johnson
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Kalyan Das
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000, Leuven, Belgium
| | - Smita S Patel
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA.
| | - Hajin Kim
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea.
- Institute for Basic Science, Ulsan, Republic of Korea.
| |
Collapse
|
9
|
Basu U, Mishra N, Farooqui M, Shen J, Johnson LC, Patel SS. The C-terminal tails of the mitochondrial transcription factors Mtf1 and TFB2M are part of an autoinhibitory mechanism that regulates DNA binding. J Biol Chem 2020; 295:6823-6830. [PMID: 32241911 DOI: 10.1074/jbc.ra120.013338] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/31/2020] [Indexed: 11/06/2022] Open
Abstract
The structurally homologous Mtf1 and TFB2M proteins serve as transcription initiation factors of mitochondrial RNA polymerases in Saccharomyces cerevisiae and humans, respectively. These transcription factors directly interact with the nontemplate strand of the transcription bubble to drive promoter melting. Given the key roles of Mtf1 and TFB2M in promoter-specific transcription initiation, it can be expected that the DNA binding activity of the mitochondrial transcription factors is regulated to prevent DNA binding at inappropriate times. However, little information is available on how mitochondrial DNA transcription is regulated. While studying C-terminal (C-tail) deletion mutants of Mtf1 and TFB2M, we stumbled upon a finding that suggested that the flexible C-tail region of these factors autoregulates their DNA binding activity. Quantitative DNA binding studies with fluorescence anisotropy-based titrations revealed that Mtf1 with an intact C-tail has no affinity for DNA but deletion of the C-tail greatly increases Mtf1's DNA binding affinity. Similar observations were made with TFB2M, although autoinhibition by the C-tail of TFB2M was not as complete as in Mtf1. Analysis of available TFB2M structures disclosed that the C-tail engages in intramolecular interactions with the DNA binding groove in the free factor, which, we propose, inhibits its DNA binding activity. Further experiments showed that RNA polymerase relieves this autoinhibition by interacting with the C-tail and engaging it in complex formation. In conclusion, our biochemical and structural analyses reveal autoinhibitory and activation mechanisms of mitochondrial transcription factors that regulate their DNA binding activities and aid in specific assembly of transcription initiation complexes.
Collapse
Affiliation(s)
- Urmimala Basu
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854.,Graduate School of Biomedical Sciences, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854
| | - Nandini Mishra
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854.,Undergraduate Honors Scholars Program, School of Arts and Sciences, Rutgers University, New Brunswick, New Jersey 08901
| | - Mohammed Farooqui
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854.,Undergraduate Honors Scholars Program, School of Arts and Sciences, Rutgers University, New Brunswick, New Jersey 08901
| | - Jiayu Shen
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854.,Graduate School of Biomedical Sciences, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854
| | - Laura C Johnson
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854.,Graduate School of Biomedical Sciences, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854
| | - Smita S Patel
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854
| |
Collapse
|
10
|
Basu U, Lee SW, Deshpande A, Shen J, Sohn BK, Cho H, Kim H, Patel SS. The C-terminal tail of the yeast mitochondrial transcription factor Mtf1 coordinates template strand alignment, DNA scrunching and timely transition into elongation. Nucleic Acids Res 2020; 48:2604-2620. [PMID: 31980825 PMCID: PMC7049685 DOI: 10.1093/nar/gkaa040] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/20/2019] [Accepted: 01/13/2020] [Indexed: 11/16/2022] Open
Abstract
Mitochondrial RNA polymerases depend on initiation factors, such as TFB2M in humans and Mtf1 in yeast Saccharomyces cerevisiae, for promoter-specific transcription. These factors drive the melting of promoter DNA, but how they support RNA priming and growth was not understood. We show that the flexible C-terminal tails of Mtf1 and TFB2M play a crucial role in RNA priming by aiding template strand alignment in the active site for high-affinity binding of the initiating nucleotides. Using single-molecule fluorescence approaches, we show that the Mtf1 C-tail promotes RNA growth during initiation by stabilizing the scrunched DNA conformation. Additionally, due to its location in the path of the nascent RNA, the C-tail of Mtf1 serves as a sensor of the RNA-DNA hybrid length. Initially, steric clashes of the Mtf1 C-tail with short RNA-DNA hybrids cause abortive synthesis but clashes with longer RNA-DNA trigger conformational changes for the timely release of the promoter DNA to commence the transition into elongation. The remarkable similarities in the functions of the C-tail and σ3.2 finger of the bacterial factor suggest mechanistic convergence of a flexible element in the transcription initiation factor that engages the DNA template for RNA priming and growth and disengages when needed to generate the elongation complex.
Collapse
Affiliation(s)
- Urmimala Basu
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
- Graduate School of Biomedical Sciences at Robert Wood Johnson Medical School of the Rutgers University, USA
| | - Seung-Won Lee
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Aishwarya Deshpande
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Jiayu Shen
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
- Graduate School of Biomedical Sciences at Robert Wood Johnson Medical School of the Rutgers University, USA
| | - Byeong-Kwon Sohn
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Hayoon Cho
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Hajin Kim
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Republic of Korea
| | - Smita S Patel
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| |
Collapse
|
11
|
Structural basis of mitochondrial transcription. Nat Struct Mol Biol 2018; 25:754-765. [PMID: 30190598 DOI: 10.1038/s41594-018-0122-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/29/2018] [Indexed: 01/17/2023]
Abstract
The mitochondrial genome is transcribed by a single-subunit DNA-dependent RNA polymerase (mtRNAP) and its auxiliary factors. Structural studies have elucidated how mtRNAP cooperates with its dedicated transcription factors to direct RNA synthesis: initiation factors TFAM and TFB2M assist in promoter-DNA binding and opening by mtRNAP while the elongation factor TEFM increases polymerase processivity to the levels required for synthesis of long polycistronic mtRNA transcripts. Here, we review the emerging body of structural and functional studies of human mitochondrial transcription, provide a molecular movie that can be used for teaching purposes and discuss the open questions to guide future directions of investigation.
Collapse
|
12
|
Ramachandran A, Basu U, Sultana S, Nandakumar D, Patel SS. Human mitochondrial transcription factors TFAM and TFB2M work synergistically in promoter melting during transcription initiation. Nucleic Acids Res 2016; 45:861-874. [PMID: 27903899 PMCID: PMC5314767 DOI: 10.1093/nar/gkw1157] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 11/02/2016] [Accepted: 11/04/2016] [Indexed: 12/26/2022] Open
Abstract
Human mitochondrial DNA is transcribed by POLRMT with the help of two initiation factors, TFAM and TFB2M. The current model postulates that the role of TFAM is to recruit POLRMT and TFB2M to melt the promoter. However, we show that TFAM has ‘post-recruitment’ roles in promoter melting and RNA synthesis, which were revealed by studying the pre-initiation steps of promoter binding, bending and melting, and abortive RNA synthesis. Our 2-aminopurine mapping studies show that the LSP (Light Strand Promoter) is melted from −4 to +1 in the open complex with all three proteins and from −4 to +3 with addition of ATP. Our equilibrium binding studies show that POLRMT forms stable complexes with TFB2M or TFAM on LSP with low-nanomolar Kd values, but these two-component complexes lack the mechanism to efficiently melt the promoter. This indicates that POLRMT needs both TFB2M and TFAM to melt the promoter. Additionally, POLRMT+TFB2M makes 2-mer abortives on LSP, but longer RNAs are observed only with TFAM. These results are explained by TFAM playing a role in promoter melting and/or stabilization of the open complex on LSP. Based on our results, we propose a refined model of transcription initiation by the human mitochondrial transcription machinery.
Collapse
Affiliation(s)
- Aparna Ramachandran
- Department of Biochemistry and Molecular Biology, Rutgers, Robert Wood Johnson Medical school, Piscataway, NJ 08854, USA
| | - Urmimala Basu
- Department of Biochemistry and Molecular Biology, Rutgers, Robert Wood Johnson Medical school, Piscataway, NJ 08854, USA.,Graduate School of Biomedical Sciences, Rutgers University, Piscataway, NJ 08854, USA
| | - Shemaila Sultana
- Department of Biochemistry and Molecular Biology, Rutgers, Robert Wood Johnson Medical school, Piscataway, NJ 08854, USA
| | - Divya Nandakumar
- Department of Biochemistry and Molecular Biology, Rutgers, Robert Wood Johnson Medical school, Piscataway, NJ 08854, USA
| | - Smita S Patel
- Department of Biochemistry and Molecular Biology, Rutgers, Robert Wood Johnson Medical school, Piscataway, NJ 08854, USA
| |
Collapse
|
13
|
Bohne AV, Teubner M, Liere K, Weihe A, Börner T. In vitro promoter recognition by the catalytic subunit of plant phage-type RNA polymerases. PLANT MOLECULAR BIOLOGY 2016; 92:357-369. [PMID: 27497992 PMCID: PMC5040748 DOI: 10.1007/s11103-016-0518-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 07/20/2016] [Indexed: 06/06/2023]
Abstract
We identified sequence motifs, which enhance or reduce the ability of the Arabidopsis phage-type RNA polymerases RPOTm (mitochondrial RNAP), RPOTp (plastidial RNAP), and RPOTmp (active in both organelles) to recognize their promoters in vitro with help of a 'specificity loop'. The importance of this data for the evolution and function of the organellar RNA polymerases is discussed. The single-subunit RNA polymerase (RNAP) of bacteriophage T7 is able to perform all steps of transcription without additional transcription factors. Dicotyledonous plants possess three phage-type RNAPs, RPOTm-the mitochondrial RNAP, RPOTp-the plastidial RNAP, and RPOTmp-an RNAP active in both organelles. RPOTm and RPOTp, like the T7 polymerase, are able to recognize promoters, while RPOTmp displays no significant promoter specificity in vitro. To find out which promoter motifs are crucial for recognition by the polymerases we performed in vitro transcription assays with recombinant Arabidopsis RPOTm and RPOTp enzymes. By comparing different truncated and mutagenized promoter constructs, we observed the same minimal promoter sequence supposed to be needed in vivo for transcription initiation. Moreover, we identified elements of core and flanking sequences, which are of critical importance for promoter recognition and activity in vitro. We further intended to reveal why RPOTmp does not efficiently recognize promoters in vitro and if promoter recognition is based on a structurally defined specificity loop of the plant enzymes as described for the yeast and T7 RNAPs. Interestingly, the exchange of only three amino acids within the putative specificity loop of RPOTmp enabled the enzyme for specific promoter transcription in vitro. Thus, also in plant phage-type RNAPs the specificity loop is engaged in promoter recognition. The results are discussed with respect to their relevance for transcription in organello and to the evolution of RPOT enzymes including the divergence of their functions.
Collapse
Affiliation(s)
- Alexandra-Viola Bohne
- Institute of Biology, Humboldt University, Philippstr.13, Rhoda Erdmann Haus, 10115, Berlin, Germany
- Molecular Plant Sciences, Ludwig-Maximillians-University, Grosshaderner Str. 2-4, 82152, Planegg-Martinsried, Germany
| | - Marlene Teubner
- Institute of Biology, Humboldt University, Philippstr.13, Rhoda Erdmann Haus, 10115, Berlin, Germany
| | - Karsten Liere
- Institute of Biology, Humboldt University, Philippstr.13, Rhoda Erdmann Haus, 10115, Berlin, Germany
- SMB Services in Molecular Biology GmbH, Rudolf-Breitscheidstr. 70, 15562, Rüdersdorf, Germany
| | - Andreas Weihe
- Institute of Biology, Humboldt University, Philippstr.13, Rhoda Erdmann Haus, 10115, Berlin, Germany
| | - Thomas Börner
- Institute of Biology, Humboldt University, Philippstr.13, Rhoda Erdmann Haus, 10115, Berlin, Germany.
| |
Collapse
|
14
|
Sanchez-Sandoval E, Diaz-Quezada C, Velazquez G, Arroyo-Navarro LF, Almanza-Martinez N, Trasviña-Arenas CH, Brieba LG. Yeast mitochondrial RNA polymerase primes mitochondrial DNA polymerase at origins of replication and promoter sequences. Mitochondrion 2015; 24:22-31. [PMID: 26184436 DOI: 10.1016/j.mito.2015.06.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 06/22/2015] [Accepted: 06/23/2015] [Indexed: 11/15/2022]
Abstract
Three proteins phylogenetically grouped with proteins from the T7 replisome localize to yeast mitochondria: DNA polymerase γ (Mip1), mitochondrial RNA polymerase (Rpo41), and a single-stranded binding protein (Rim1). Human and T7 bacteriophage RNA polymerases synthesize primers for their corresponding DNA polymerases. In contrast, DNA replication in yeast mitochondria is explained by two models: a transcription-dependent model in which Rpo41 primes Mip1 and a model in which double stranded breaks create free 3' OHs that are extended by Mip1. Herein we found that Rpo41 transcribes RNAs that can be extended by Mip1 on single and double-stranded DNA. In contrast to human mitochondrial RNA polymerase, which primes DNA polymerase γ using transcripts from the light-strand and heavy-strand origins of replication, Rpo41 primes Mip1 at replication origins and promoter sequences in vitro. Our results suggest that in ori1, short transcripts serve as primers, whereas in ori5 an RNA transcript longer than 29 nucleotides is used as primer.
Collapse
Affiliation(s)
- Eugenia Sanchez-Sandoval
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, CP 36500 Irapuato, Guanajuato, Mexico
| | - Corina Diaz-Quezada
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, CP 36500 Irapuato, Guanajuato, Mexico
| | - Gilberto Velazquez
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, CP 36500 Irapuato, Guanajuato, Mexico
| | - Luis F Arroyo-Navarro
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, CP 36500 Irapuato, Guanajuato, Mexico
| | - Norineli Almanza-Martinez
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, CP 36500 Irapuato, Guanajuato, Mexico
| | - Carlos H Trasviña-Arenas
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, CP 36500 Irapuato, Guanajuato, Mexico
| | - Luis G Brieba
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, CP 36500 Irapuato, Guanajuato, Mexico.
| |
Collapse
|
15
|
Deshpande AP, Patel SS. Interactions of the yeast mitochondrial RNA polymerase with the +1 and +2 promoter bases dictate transcription initiation efficiency. Nucleic Acids Res 2014; 42:11721-32. [PMID: 25249624 PMCID: PMC4191429 DOI: 10.1093/nar/gku868] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mitochondrial promoters of Saccharomyces cerevisiae share a conserved -8 to +1 sequence with +1+2 AA, AG or AT initiation sequence, which dictates the efficiency of transcription initiation by the mitochondrial RNA polymerase Rpo41 and its initiation factor Mtf1. We used 2-aminopurine fluorescence to monitor promoter melting and measured the kcat/Km of 2-mer synthesis to quantify initiation efficiency with systematic changes of the +1+2 base pairs to matched and mismatched pairs. We show that AA promoters are most efficient, followed by AG and then AT promoters, and the differences in their efficiencies stem specifically from differential melting of +1+2 region without affecting melting of the upstream -4 to -1 region. Inefficient +1+2 melting increases the initial NTPs Kms of the AG and AT promoters relative to AA or singly mispaired promoters. The 16-100-fold higher catalytic efficiency of AA initiation sequence relative to AG and AT, respectively, is partly due to Rpo41-Mtf1 interactions with the +1+2 non-template adenines that generate a stable pre-transcribing complex. We propose a model where the +2 base pair regulates the efficiency of initial transcription by controlling multiple steps including downstream promoter opening, +1+2 NTPs binding, and the rate of 2-mer synthesis.
Collapse
Affiliation(s)
- Aishwarya P Deshpande
- Department of Biochemistry and Molecular Biology, RUTGERS-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Smita S Patel
- Department of Biochemistry and Molecular Biology, RUTGERS-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| |
Collapse
|
16
|
Drakulic S, Wang L, Cuéllar J, Guo Q, Velázquez G, Martín-Benito J, Sousa R, Valpuesta JM. Yeast mitochondrial RNAP conformational changes are regulated by interactions with the mitochondrial transcription factor. Nucleic Acids Res 2014; 42:11246-60. [PMID: 25183523 PMCID: PMC4176174 DOI: 10.1093/nar/gku795] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Mitochondrial RNA polymerases (MtRNAPs) are members of the single-subunit RNAP family, the most well-characterized member being the RNAP from T7 bacteriophage. MtRNAPs are, however, functionally distinct in that they depend on one or more transcription factors to recognize and open the promoter and initiate transcription, while the phage RNAPs are capable of performing these tasks alone. Since the transcriptional mechanisms that are conserved in phage and mitochondrial RNAPs have been so effectively characterized in the phage enzymes, outstanding structure-mechanism questions concern those aspects that are distinct in the MtRNAPs, particularly the role of the mitochondrial transcription factor(s). To address these questions we have used both negative staining and cryo-EM to generate three-dimensional reconstructions of yeast MtRNAP initiation complexes with and without the mitochondrial transcription factor (MTF1), and of the elongation complex. Together with biochemical experiments, these data indicate that MTF1 uses multiple mechanisms to drive promoter opening, and that its interactions with the MtRNAP regulate the conformational changes undergone by the latter enzyme as it traverses the template strand.
Collapse
Affiliation(s)
- Srdja Drakulic
- Department for Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), Madrid 28049, Spain
| | - Liping Wang
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas, TX 78229-3900, USA
| | - Jorge Cuéllar
- Department for Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), Madrid 28049, Spain
| | - Qing Guo
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas, TX 78229-3900, USA
| | - Gilberto Velázquez
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas, TX 78229-3900, USA
| | - Jaime Martín-Benito
- Department for Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), Madrid 28049, Spain
| | - Rui Sousa
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas, TX 78229-3900, USA
| | - José M Valpuesta
- Department for Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), Madrid 28049, Spain
| |
Collapse
|
17
|
Manna S, Le P, Barth C. A unique mitochondrial transcription factor B protein in Dictyostelium discoideum. PLoS One 2013; 8:e70614. [PMID: 23923009 PMCID: PMC3724811 DOI: 10.1371/journal.pone.0070614] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 06/20/2013] [Indexed: 11/19/2022] Open
Abstract
Unlike their bacteriophage homologs, mitochondrial RNA polymerases require the assistance of transcription factors in order to transcribe mitochondrial DNA efficiently. The transcription factor A family has been shown to be important for transcription of the human mitochondrial DNA, with some of its regulatory activity located in its extended C-terminal tail. The mitochondrial transcription factor B family often has functions not only in transcription, but also in mitochondrial rRNA modification, a hallmark of its α-proteobacterial origin. We have identified and characterised a mitochondrial transcription factor B homolog in the soil dwelling cellular slime mould Dictyostelium discoideum, an organism widely established as a model for studying eukaryotic cell biology. Using in bacterio functional assays, we demonstrate that the mitochondrial transcription factor B homolog not only functions as a mitochondrial transcription factor, but that it also has a role in rRNA methylation. Additionally, we show that the transcriptional activation properties of the D. discoideum protein are located in its extended C-terminal tail, a feature not seen before in the mitochondrial transcription factor B family, but reminiscent of the human mitochondrial transcription factor A. This report contributes to our current understanding of the complexities of mitochondrial transcription, and its evolution in eukaryotes.
Collapse
Affiliation(s)
- Sam Manna
- Department of Microbiology, La Trobe University, Melbourne, Victoria, Australia
| | - Phuong Le
- Tokyo Metropolitan University, Department of Biological Science, Tokyo, Japan
| | - Christian Barth
- Department of Microbiology, La Trobe University, Melbourne, Victoria, Australia
- * E-mail:
| |
Collapse
|
18
|
Velazquez G, Guo Q, Wang L, Brieba LG, Sousa R. Conservation of promoter melting mechanisms in divergent regions of the single-subunit RNA polymerases. Biochemistry 2012; 51:3901-10. [PMID: 22524540 DOI: 10.1021/bi300074j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The single-subunit RNA polymerases make up a widespread family of proteins found in phage, mitochondria, and chloroplasts. Unlike the phage RNAPs, the eukaryotic RNAPs require accessory factors to melt their promoters and diverge from the phage RNAPs in the regions where functions associated with promoter melting in the latter have been mapped, suggesting that promoter melting mechanisms in the eukaryotic RNAPs diverge from those in the phage enzymes. However, here we show that an element in the yeast mitochondrial RNAP, identified by sequence alignment with the T7 phage RNAP, fulfills a role in promoter melting similar to that filled by the T7RNAP "intercalating hairpin". The yeast mitochondrial RNAP intercalating hairpin appears to be as important in promoter melting as the mitochondrial transcription factor, MTF1, and both a structurally integral hairpin and MTF1 are required to achieve high levels of transcription on a duplex promoter. Deletions from the hairpin also relieve MTF1 inhibition of promoter escape on premelted promoters, likely because such deletions disrupt interactions with the upstream edge of the transcription bubble. These results are consistent with recent structural and functional studies of human mitochondrial RNAP and further reveal the surprising extent of mechanistic conservation between the eukaryotic and phage-encoded members of the single-subunit RNAP family.
Collapse
Affiliation(s)
- Gilberto Velazquez
- Langebio/Cinvestav, Km. 9.6 Libramiento Norte Carr., Irapuato-León, 36821 Irapuato Gto., Mexico
| | | | | | | | | |
Collapse
|
19
|
Mechanism of transcription initiation by the yeast mitochondrial RNA polymerase. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:930-8. [PMID: 22353467 DOI: 10.1016/j.bbagrm.2012.02.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 02/03/2012] [Accepted: 02/04/2012] [Indexed: 02/03/2023]
Abstract
Mitochondria are the major supplier of cellular energy in the form of ATP. Defects in normal ATP production due to dysfunctions in mitochondrial gene expression are responsible for many mitochondrial and aging related disorders. Mitochondria carry their own DNA genome which is transcribed by relatively simple transcriptional machinery consisting of the mitochondrial RNAP (mtRNAP) and one or more transcription factors. The mtRNAPs are remarkably similar in sequence and structure to single-subunit bacteriophage T7 RNAP but they require accessory transcription factors for promoter-specific initiation. Comparison of the mechanisms of T7 RNAP and mtRNAP provides a framework to better understand how mtRNAP and the transcription factors work together to facilitate promoter selection, DNA melting, initiating nucleotide binding, and promoter clearance. This review focuses primarily on the mechanistic characterization of transcription initiation by the yeast Saccharomyces cerevisiae mtRNAP (Rpo41) and its transcription factor (Mtf1) drawing insights from the homologous T7 and the human mitochondrial transcription systems. We discuss regulatory mechanisms of mitochondrial transcription and the idea that the mtRNAP acts as the in vivo ATP "sensor" to regulate gene expression. This article is part of a Special Issue entitled: Mitochondrial Gene Expression.
Collapse
|
20
|
Kim H, Tang GQ, Patel SS, Ha T. Opening-closing dynamics of the mitochondrial transcription pre-initiation complex. Nucleic Acids Res 2011; 40:371-80. [PMID: 21911357 PMCID: PMC3245942 DOI: 10.1093/nar/gkr736] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Promoter recognition and local melting of DNA are key steps of transcription initiation catalyzed by RNA polymerase and initiation factors. From single molecule fluorescence resonance energy transfer studies of the yeast (Saccharomyces cerevisiae) mitochondrial RNA polymerase Rpo41 and its transcription factor Mtf1, we show that the pre-initiation complex is highly dynamic and undergoes repetitive opening-closing transitions that are modulated by Mtf1 and ATP. We found that Rpo41 alone has the intrinsic ability to bend the promoter but only very briefly. Mtf1 enhances bending/opening transition and suppresses closing transition, indicating its dual roles of nucleating promoter opening and stabilizing the open state. The cognate initiating ATP prolongs the lifetime of the open state, plausibly explaining the 'ATP sensing mechanism' suggested for the system. We discovered short-lived opening trials upon initial binding of Rpo41-Mtf1 before the establishment of the opening/closing equilibrium, which may aid in promoter selection before the formation of stable pre-initiation complex. The dynamics of open complex formation provides unique insights into the interplay between RNA polymerase and transcription factors in regulating initiation.
Collapse
Affiliation(s)
- Hajin Kim
- Physics Department and Center for Physics of Living Cells, University of Illinois, Urbana-Champaign, Howard Hughes Medical Institute, Urbana, IL 61801, USA
| | | | | | | |
Collapse
|
21
|
Tang GQ, Deshpande AP, Patel SS. Transcription factor-dependent DNA bending governs promoter recognition by the mitochondrial RNA polymerase. J Biol Chem 2011; 286:38805-38813. [PMID: 21911502 DOI: 10.1074/jbc.m111.261966] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Promoter recognition is the first and the most important step during gene expression. Our studies of the yeast (Saccharomyces cerevisiae) mitochondrial (mt) transcription machinery provide mechanistic understandings on the basic problem of how the mt RNA polymerase (RNAP) with the help of the initiation factor discriminates between promoter and non-promoter sequences. We have used fluorescence-based approaches to quantify DNA binding, bending, and opening steps by the core mtRNAP subunit (Rpo41) and the transcription factor (Mtf1). Our results show that promoter recognition is not achieved by tight and selective binding to the promoter sequence. Instead, promoter recognition is achieved by an induced-fit mechanism of transcription factor-dependent differential conformational changes in the promoter and non-promoter DNAs. While Rpo41 induces a slight bend upon binding both the DNAs, addition of the Mtf1 results in severe bending of the promoter and unbending of the non-promoter DNA. Only the sharply bent DNA results in the catalytically active open complex. Such an induced-fit mechanism serves three purposes: 1) assures catalysis at promoter sites, 2) prevents RNA synthesis at non-promoter sites, and 3) provides a conformational state at the non-promoter sites that would aid in facile translocation to scan for specific sites.
Collapse
Affiliation(s)
- Guo-Qing Tang
- Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine & Dentistry of New Jersey (UMDNJ), Piscataway, New Jersey 08854
| | - Aishwarya P Deshpande
- Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine & Dentistry of New Jersey (UMDNJ), Piscataway, New Jersey 08854
| | - Smita S Patel
- Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine & Dentistry of New Jersey (UMDNJ), Piscataway, New Jersey 08854.
| |
Collapse
|
22
|
Paratkar S, Deshpande AP, Tang GQ, Patel SS. The N-terminal domain of the yeast mitochondrial RNA polymerase regulates multiple steps of transcription. J Biol Chem 2011; 286:16109-20. [PMID: 21454631 DOI: 10.1074/jbc.m111.228023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription of the yeast (Saccharomyces cerevisiae) mitochondrial (mt) genome is catalyzed by nuclear-encoded proteins that include the core RNA polymerase (RNAP) subunit Rpo41 and the transcription factor Mtf1. Rpo41 is homologous to the single-subunit bacteriophage T7/T3 RNAP. Its ∼80-kDa C-terminal domain is highly conserved among mt RNAPs, but its ∼50-kDa N-terminal domain (NTD) is less conserved and not present in T7/T3 RNAP. To understand the role of the NTD, we have biochemically characterized a series of NTD deletion mutants of Rpo41. Our studies show that NTD regulates multiple steps of transcription initiation. Interestingly, NTD functions in an autoinhibitory manner during initiation, and its partial deletion increases the efficiency of RNA synthesis. Deletion of 1-270 amino acids (DN270) reduces abortive synthesis and increases full-length to abortive RNA ratio relative to full-length (FL) Rpo41. A larger deletion of 1-380 amino acids (DN380), decreases RNA synthesis on duplex but not on premelted promoter. We show that DN380 is defective in promoter opening near the transcription start site. Most strikingly, both DN270 and DN380 catalyze highly processive RNA synthesis on the premelted promoter, and unlike the FL Rpo41, the mutants are not inhibited by Mtf1. Both mutants show weaker interactions with Mtf1, which explains many of our results, and particularly the ability of the mutants to efficiently transition from initiation to elongation. We propose that in vivo the accessory proteins that bind NTD may modulate interactions of Rpo41 with the promoter/Mtf1 to activate and allow timely release from Mtf1 for transition into elongation.
Collapse
Affiliation(s)
- Swaroopa Paratkar
- Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey 08854, USA
| | | | | | | |
Collapse
|
23
|
Jiang H, Sun W, Wang Z, Zhang J, Chen D, Murchie AIH. Identification and characterization of the mitochondrial RNA polymerase and transcription factor in the fission yeast Schizosaccharomyces pombe. Nucleic Acids Res 2011; 39:5119-30. [PMID: 21357609 PMCID: PMC3130274 DOI: 10.1093/nar/gkr103] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We have characterized the mitochondrial transcription factor (Mtf1) and RNA polymerase (Rpo41) of Schizosaccharomyces pombe. Deletion mutants show Mtf1 or Rpo41 to be essential for cell growth, cell morphology and mitochondrial membrane potential. Overexpression of Mtf1 and Rpo41 can induce mitochondrial transcription. Mtf1 and Rpo41 can bind and transcribe mitochondrial promoters in vitro and the initiating nucleotides were the same in vivo and in vitro. Mtf1 is required for efficient transcription. We discuss the functional differences between Mtf1 and Rpo41 of S. pombe with Saccharomyces cerevisiae and higher organisms. In contrast to S. cerevisiae, the established model for mitochondrial transcription, S. pombe, a petite-negative yeast, resembles higher organisms that cannot tolerate the loss of mitochondrial function. The S. pombe and human mitochondrial genomes are similar in size and much smaller than that of S. cerevisiae. This is an important first step in the development of S. pombe as an alternative and complementary model system for molecular genetic and biochemical studies of mitochondrial transcription and mitochondrial–nuclear interactions. This is the first systematic study of the cellular function and biochemistry of Rpo41 and Mtf1 in S. pombe.
Collapse
Affiliation(s)
- Hengyi Jiang
- School of Pharmacy, Fudan University, Zhang Heng Road 826, Pudong, Postcode 201203, Shanghai, China
| | | | | | | | | | | |
Collapse
|
24
|
Core human mitochondrial transcription apparatus is a regulated two-component system in vitro. Proc Natl Acad Sci U S A 2010; 107:12133-8. [PMID: 20562347 DOI: 10.1073/pnas.0910581107] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The core human mitochondrial transcription apparatus is currently regarded as an obligate three-component system comprising the bacteriophage T7-related mitochondrial RNA polymerase, the rRNA methyltransferase-related transcription factor, h-mtTFB2, and the high mobility group box transcription/DNA-packaging factor, h-mtTFA/TFAM. Using a faithful recombinant human mitochondrial transcription system from Escherichia coli, we demonstrate that specific initiation from the mtDNA promoters, LSP and HSP1, only requires mitochondrial RNA polymerase and h-mtTFB2 in vitro. When h-mtTFA is added to these basal components, LSP exhibits a much lower threshold for activation and a larger amplitude response than HSP1. In addition, when LSP and HSP1 are together on the same transcription template, h-mtTFA-independent transcription from HSP1 and h-mtTFA-dependent transcription from both promoters is enhanced and a higher concentration of h-mtTFA is required to stimulate HSP1. Promoter competition experiments revealed that, in addition to LSP competing transcription components away from HSP1, additional cis-acting signals are involved in these aspects of promoter regulation. Based on these results, we speculate that the human mitochondrial transcription system may have evolved to differentially regulate transcription initiation and transcription-primed mtDNA replication in response to the amount of h-mtTFA associated with nucleoids, which could begin to explain the heterogeneity of nucleoid structure and activity in vivo. Furthermore, this study sheds new light on the evolution of mitochondrial transcription components by showing that the human system is a regulated two-component system in vitro, and thus more akin to that of budding yeast than thought previously.
Collapse
|
25
|
Richter U, Kühn K, Okada S, Brennicke A, Weihe A, Börner T. A mitochondrial rRNA dimethyladenosine methyltransferase in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 61:558-69. [PMID: 19929881 PMCID: PMC2860759 DOI: 10.1111/j.1365-313x.2009.04079.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
S-adenosyl-L-methionine-dependent rRNA dimethylases mediate the methylation of two conserved adenosines near the 3' end of the rRNA in the small ribosomal subunits of bacteria, archaea and eukaryotes. Proteins related to this family of dimethylases play an essential role as transcription factors (mtTFBs) in fungal and animal mitochondria. Human mitochondrial rRNA is methylated and human mitochondria contain two related mtTFBs, one proposed to act as rRNA dimethylase, the other as transcription factor. The nuclear genome of Arabidopsis thaliana encodes three dimethylase/mtTFB-like proteins, one of which, Dim1B, is shown here to be imported into mitochondria. Transcription initiation by mitochondrial RNA polymerases appears not to be stimulated by Dim1B in vitro. In line with this finding, phylogenetic analyses revealed Dim1B to be more closely related to a group of eukaryotic non-mitochondrial rRNA dimethylases (Dim1s) than to fungal and animal mtTFBs. We found that Dim1B was capable of substituting the E. coli rRNA dimethylase activity of KsgA. Moreover, we observed methylation of the conserved adenines in the 18S rRNA of Arabidopsis mitochondria; this modification was not detectable in a mutant lacking Dim1B. These data provide evidence: (i) for rRNA methylation in Arabidopsis mitochondria; and (ii) that Dim1B is the enzyme catalyzing this process.
Collapse
Affiliation(s)
- Uwe Richter
- Institut für Biologie/Genetik, Humboldt-UniversitätChausseestr. 117, 10115 Berlin, Germany
| | - Kristina Kühn
- Institut für Biologie/Genetik, Humboldt-UniversitätChausseestr. 117, 10115 Berlin, Germany
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western AustraliaCrawley 6009, WA, Australia
| | - Sachiko Okada
- Molekulare Botanik, Universität Ulm89069 Ulm, Germany
| | | | - Andreas Weihe
- Institut für Biologie/Genetik, Humboldt-UniversitätChausseestr. 117, 10115 Berlin, Germany
| | - Thomas Börner
- Institut für Biologie/Genetik, Humboldt-UniversitätChausseestr. 117, 10115 Berlin, Germany
- *(fax +49 302 093 8141; e-mail )
| |
Collapse
|
26
|
Lipinski KA, Kaniak-Golik A, Golik P. Maintenance and expression of the S. cerevisiae mitochondrial genome--from genetics to evolution and systems biology. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1086-98. [PMID: 20056105 DOI: 10.1016/j.bbabio.2009.12.019] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2009] [Revised: 12/18/2009] [Accepted: 12/24/2009] [Indexed: 10/20/2022]
Abstract
As a legacy of their endosymbiotic eubacterial origin, mitochondria possess a residual genome, encoding only a few proteins and dependent on a variety of factors encoded by the nuclear genome for its maintenance and expression. As a facultative anaerobe with well understood genetics and molecular biology, Saccharomyces cerevisiae is the model system of choice for studying nucleo-mitochondrial genetic interactions. Maintenance of the mitochondrial genome is controlled by a set of nuclear-coded factors forming intricately interconnected circuits responsible for replication, recombination, repair and transmission to buds. Expression of the yeast mitochondrial genome is regulated mostly at the post-transcriptional level, and involves many general and gene-specific factors regulating splicing, RNA processing and stability and translation. A very interesting aspect of the yeast mitochondrial system is the relationship between genome maintenance and gene expression. Deletions of genes involved in many different aspects of mitochondrial gene expression, notably translation, result in an irreversible loss of functional mtDNA. The mitochondrial genetic system viewed from the systems biology perspective is therefore very fragile and lacks robustness compared to the remaining systems of the cell. This lack of robustness could be a legacy of the reductive evolution of the mitochondrial genome, but explanations involving selective advantages of increased evolvability have also been postulated.
Collapse
Affiliation(s)
- Kamil A Lipinski
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5A, 02-106, Warsaw, Poland
| | | | | |
Collapse
|
27
|
Savkina M, Temiakov D, McAllister WT, Anikin M. Multiple functions of yeast mitochondrial transcription factor Mtf1p during initiation. J Biol Chem 2009; 285:3957-3964. [PMID: 19920143 DOI: 10.1074/jbc.m109.051003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Transcription of the yeast mitochondrial genome is carried out by an RNA polymerase (Rpo41p) that is related to single subunit bacteriophage RNA polymerases but requires an additional factor (Mtf1p) for initiation. In this work we show that Mtf1p is involved in multiple roles during initiation including discrimination of upstream base pairs in the promoter, initial melting of three to four base pairs around the site of transcript initiation, and suppression of nonspecific initiation. It, thus, appears that Mtf1p is functionally analogous to initiation factors of multisubunit RNA polymerases, such as sigma. Photocross-linking experiments reveal close proximity between Mtf1p and the promoter DNA and show that the C-terminal domain makes contacts with the template strand in the vicinity of the start site. Interestingly, Mtf1p is related to a class of RNA methyltransferases, suggesting an early evolutionary link between RNA synthesis and processing.
Collapse
Affiliation(s)
- Maria Savkina
- From the Department of Cell Biology, School of Osteopathic Medicine, University of Medicine and Dentistry of New Jersey, Stratford Division, Stratford, New Jersey 08084; Graduate School of Biomedical Sciences, University of Medicine and Dentistry of New Jersey, Stratford Division, Stratford, New Jersey 08084
| | - Dmitry Temiakov
- From the Department of Cell Biology, School of Osteopathic Medicine, University of Medicine and Dentistry of New Jersey, Stratford Division, Stratford, New Jersey 08084
| | - William T McAllister
- From the Department of Cell Biology, School of Osteopathic Medicine, University of Medicine and Dentistry of New Jersey, Stratford Division, Stratford, New Jersey 08084
| | - Michael Anikin
- From the Department of Cell Biology, School of Osteopathic Medicine, University of Medicine and Dentistry of New Jersey, Stratford Division, Stratford, New Jersey 08084.
| |
Collapse
|
28
|
Tang GQ, Paratkar S, Patel SS. Fluorescence mapping of the open complex of yeast mitochondrial RNA polymerase. J Biol Chem 2008; 284:5514-22. [PMID: 19116203 DOI: 10.1074/jbc.m807880200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mitochondrial RNA polymerase (mtRNAP) of Saccharomyces cerevisiae, consisting of a complex of Rpo41 and Mtf1, is homologous to the phage single polypeptide T7/T3 RNA polymerases. The yeast mtRNAP recognizes a conserved nonanucleotide sequence to initiate specific transcription. In this work, we have defined the region of the nonanucleotide that is melted by the mtRNAP using 2-aminopurine (2AP) fluorescence that is sensitive to changes in base stacking interactions. We show that mtRNAP spontaneously melts the promoter from -4 to +2 forming a bubble around the transcription start site at +1. The location and size of the DNA bubble in this open complex of the mtRNAP closely resembles that of the T7 RNA polymerase. We show that DNA melting requires the simultaneous presence of Rpo41 and Mtf1. Adding the initiating nucleotide ATP does not expand the size of the initially melted DNA, but the initiating nucleotide differentially affects base stacking interactions at -1 and -2. Thus, the promoter structure upstream of the transcription start site is slightly rearranged during early initiation from its structure in the pre-initiation stage. Unlike on the duplex promoter, Rpo41 alone was able to form a competent open complex on a pre-melted promoter. The results indicate that Rpo41 contains the elements for recognizing the melted promoter through interactions with the template strand. We propose that Mtf1 plays a role in base pair disruption during the early stages of open complex formation.
Collapse
Affiliation(s)
- Guo-Qing Tang
- Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey 08854, USA
| | | | | |
Collapse
|
29
|
Scarpulla RC. Transcriptional paradigms in mammalian mitochondrial biogenesis and function. Physiol Rev 2008; 88:611-38. [PMID: 18391175 DOI: 10.1152/physrev.00025.2007] [Citation(s) in RCA: 1224] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mitochondria contain their own genetic system and undergo a unique mode of cytoplasmic inheritance. Each organelle has multiple copies of a covalently closed circular DNA genome (mtDNA). The entire protein coding capacity of mtDNA is devoted to the synthesis of 13 essential subunits of the inner membrane complexes of the respiratory apparatus. Thus the majority of respiratory proteins and all of the other gene products necessary for the myriad mitochondrial functions are derived from nuclear genes. Transcription of mtDNA requires a small number of nucleus-encoded proteins including a single RNA polymerase (POLRMT), auxiliary factors necessary for promoter recognition (TFB1M, TFB2M) and activation (Tfam), and a termination factor (mTERF). This relatively simple system can account for the bidirectional transcription of mtDNA from divergent promoters and key termination events controlling the rRNA/mRNA ratio. Nucleomitochondrial interactions depend on the interplay between transcription factors (NRF-1, NRF-2, PPARalpha, ERRalpha, Sp1, and others) and members of the PGC-1 family of regulated coactivators (PGC-1alpha, PGC-1beta, and PRC). The transcription factors target genes that specify the respiratory chain, the mitochondrial transcription, translation and replication machinery, and protein import and assembly apparatus among others. These factors are in turn activated directly or indirectly by PGC-1 family coactivators whose differential expression is controlled by an array of environmental signals including temperature, energy deprivation, and availability of nutrients and growth factors. These transcriptional paradigms provide a basic framework for understanding the integration of mitochondrial biogenesis and function with signaling events that dictate cell- and tissue-specific energetic properties.
Collapse
Affiliation(s)
- Richard C Scarpulla
- Department of Cell and Molecular Biology, Northwestern Medical School, Chicago, Illinois 60611, USA
| |
Collapse
|
30
|
Adán C, Matsushima Y, Hernández-Sierra R, Marco-Ferreres R, Fernández-Moreno MA, González-Vioque E, Calleja M, Aragón JJ, Kaguni LS, Garesse R. Mitochondrial transcription factor B2 is essential for metabolic function in Drosophila melanogaster development. J Biol Chem 2008; 283:12333-42. [PMID: 18308726 DOI: 10.1074/jbc.m801342200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Characterization of the basal transcription machinery of mitochondrial DNA (mtDNA) is critical to understand mitochondrial pathophysiology. In mammalian in vitro systems, mtDNA transcription requires mtRNA polymerase, transcription factor A (TFAM), and either transcription factor B1 (TFB1M) or B2 (TFB2M). We have silenced the expression of TFB2M by RNA interference in Drosophila melanogaster. RNA interference knockdown of TF2BM causes lethality by arrest of larval development. Molecular analysis demonstrates that TF2BM is essential for mtDNA transcription during Drosophila development and is not redundant with TFB1M. The impairment of mtDNA transcription causes a dramatic decrease in oxidative phosphorylation and mitochondrial ATP synthesis in the long-lived larvae, and a metabolic shift to glycolysis, which partially restores ATP levels and elicits a compensatory response at the nuclear level that increases mitochondrial mass. At the cellular level, the mitochondrial dysfunction induced by TFB2M knockdown causes a severe reduction in cell proliferation without affecting cell growth, and increases the level of apoptosis. In contrast, cell differentiation and morphogenesis are largely unaffected. Our data demonstrate the essential role of TFB2M in mtDNA transcription in a multicellular organism, and reveal the complex cellular, biochemical, and molecular responses induced by impairment of oxidative phosphorylation during Drosophila development.
Collapse
Affiliation(s)
- Cristina Adán
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, CIBERER ISCIII, Facultad de Medicina, Universidad Autónoma de Madrid, C/Arzobispo Morcillo 4, E-28029 Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Shadel GS, Seidel-Rogol BL. Diagnostic assays for defects in mtDNA replication and transcription in yeast and humans. Methods Cell Biol 2007; 80:465-79. [PMID: 17445709 DOI: 10.1016/s0091-679x(06)80023-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Affiliation(s)
- Gerald S Shadel
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | |
Collapse
|
32
|
Bonawitz ND, Clayton DA, Shadel GS. Initiation and beyond: multiple functions of the human mitochondrial transcription machinery. Mol Cell 2007; 24:813-25. [PMID: 17189185 DOI: 10.1016/j.molcel.2006.11.024] [Citation(s) in RCA: 271] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mitochondria contain their own DNA (mtDNA) that is expressed and replicated by nucleus-encoded factors imported into the organelle. Recently, the core human mitochondrial transcription machinery has been defined, comprising a bacteriophage-related mtRNA polymerase (POLRMT), an HMG-box transcription factor (h-mtTFA), and two transcription factors (h-mtTFB1 and h-mtTFB2) that also serve as rRNA methyltransferases. Here, we describe these transcription components as well as recent insights into the mechanism of human mitochondrial transcription initiation and its regulation. We also discuss novel roles for the mitochondrial transcription machinery beyond transcription initiation, including priming of mtDNA replication, packaging of mtDNA, coordination of ribosome biogenesis, and coupling of transcription to translation.
Collapse
Affiliation(s)
- Nicholas D Bonawitz
- Department of Pathology, Yale University School of Medicine, 310 Cedar Street, P.O. Box 208023, New Haven, Connecticut 06520, USA
| | | | | |
Collapse
|
33
|
Cotney J, Shadel GS. Evidence for an early gene duplication event in the evolution of the mitochondrial transcription factor B family and maintenance of rRNA methyltransferase activity in human mtTFB1 and mtTFB2. J Mol Evol 2006; 63:707-17. [PMID: 17031457 DOI: 10.1007/s00239-006-0075-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Accepted: 06/26/2006] [Indexed: 10/24/2022]
Abstract
Most metazoans have two nuclear genes encoding orthologues of the well-characterized Saccharomyces cerevisiae mitochondrial transcription factor B (sc-mtTFB). This class of transcription factors is homologous to the bacterial KsgA family of rRNA methyltransferases, which in Escherichia coli dimethylates adjacent adenine residues in a stem-loop of the 16S rRNA. This posttranscriptional modification is conserved in most metazoan cytoplasmic and mitochondrial rRNAs. Homo sapiens mitochondrial transcription factor B1 (h-mtTFB1) possesses this enzymatic activity, implicating it as a dual-function protein involved in mitochondrial transcription and translation. Here we demonstrate that h-mtTFB2 also has rRNA methyltransferase activity but is a less efficient enzyme than h-mtTFB1. In contrast, sc-mtTFB has no detectable rRNA methyltransferase activity, correlating with the lack of the corresponding modification in the mitochondrial rRNA of budding yeast. Based on these results, and reports that Drosophila melanogaster mtTFB1 and mtTFB2 do not have completely overlapping functions, we propose a model for human mtDNA regulation that takes into account h-mtTFB1 and h-mtTFB2 likely having partially redundant transcription factor and rRNA methyltransferase functions. Finally, phylogenetic analyses of this family of proteins strongly suggest that the presence of two mtTFB homologues in metazoans is the result of a gene duplication event that occurred early in eukaryotic evolution prior to the divergence of fungi and metazoans. This model suggests that, after the gene duplication event, differential selective pressures on the rRNA methyltransferase and transcription factor activities of mtTFB genes occurred, with extreme cases culminating in the loss of one of the paralogous genes in certain species.
Collapse
Affiliation(s)
- Justin Cotney
- Department of Pathology, Yale University School of Medicine, 310 Cedar Street, PO Box 208023, New Haven, CT 06520-8023, USA
| | | |
Collapse
|
34
|
Amiott EA, Jaehning JA. Sensitivity of the yeast mitochondrial RNA polymerase to +1 and +2 initiating nucleotides. J Biol Chem 2006; 281:34982-8. [PMID: 17003030 DOI: 10.1074/jbc.m608638200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Despite a simple consensus sequence, there is considerable variation of promoter strengths, transcription rates, and the kinetics of initiating nucleotide incorporation among the promoters found in the Saccharomyces cerevisiae mitochondrial genome. We asked how changes in the initiating (+1 and +2) nucleotides, conformation of the promoter DNA template, and mutation of the mitochondrial RNA polymerase (mtRNAP) affect the kinetics of nucleotide (NTP) utilization. Using a highly purified in vitro mitochondrial transcription system, we found that 1) the mtRNAP requires the highest concentrations of the +1 and +2 initiating NTPs, intermediate concentrations of NTPs at positions 5 to 11, and low concentrations of elongating NTPs; 2) the mtRNAP requires a higher concentration of the +2 NTP than the +1 NTP for initiation; 3) the kinetics of +2 NTP utilization are altered by a point mutation in the mtRNAP subunit Mtf1; and 4) a supercoiled or pre-melted promoter DNA template restores normal +2 NTP utilization by the Mtf1 mutant. Based on comparisons to the structural and biochemical properties of the bacterial RNAP and the closely related T7 RNAP, we propose that initiating nucleotides, particularly the +2 NTP, are required at high concentrations to drive mitochondrial promoter opening or to stabilize a productive open complex.
Collapse
Affiliation(s)
- Elizabeth A Amiott
- Department of Biochemistry and Molecular Genetics and the Program in Molecular Biology, University of Colorado at Denver and Health Sciences Center, Aurora, Colorado 80045, USA
| | | |
Collapse
|
35
|
Amiott EA, Jaehning JA. Mitochondrial transcription is regulated via an ATP "sensing" mechanism that couples RNA abundance to respiration. Mol Cell 2006; 22:329-38. [PMID: 16678105 DOI: 10.1016/j.molcel.2006.03.031] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2005] [Revised: 12/16/2005] [Accepted: 03/30/2006] [Indexed: 11/29/2022]
Abstract
The information encoded in both the nuclear and mitochondrial genomes must be coordinately regulated to respond to changes in cellular growth and energy states. Despite identification of the mitochondrial RNA polymerase (mtRNAP) from several organisms, little is known about mitochondrial transcriptional regulation. Studying the shift from fermentation to respiration in Saccharomyces cerevisiae, we have demonstrated a direct correlation between in vivo changes in mitochondrial transcript abundance and in vitro sensitivity of mitochondrial promoters to ATP concentration (K(m)ATP). Consistent with the idea that the mtRNAP itself senses in vivo ATP levels, we found that transcript abundance correlates with respiration, but only when coupled to mitochondrial ATP synthesis. In addition, we characterized mutations in the mitochondrial promoter and the mtRNAP accessory factor Mtf1 that alter both in vitro K(m)ATP and in vivo transcription in response to respiratory changes. We propose that shifting cellular pools of ATP coordinately control nuclear and mitochondrial transcription.
Collapse
Affiliation(s)
- Elizabeth A Amiott
- Department of Biochemistry and Molecular Genetics and Molecular Biology Program, University of Colorado at Denver and Health Sciences Center, MS 8101, P.O. Box 6511, Aurora, 80045, USA
| | | |
Collapse
|
36
|
Shutt TE, Gray MW. Homologs of mitochondrial transcription factor B, sparsely distributed within the eukaryotic radiation, are likely derived from the dimethyladenosine methyltransferase of the mitochondrial endosymbiont. Mol Biol Evol 2006; 23:1169-79. [PMID: 16533820 DOI: 10.1093/molbev/msk001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mitochondrial transcription factor B (mtTFB), an essential component in regulating the expression of mitochondrial DNA-encoded genes in both yeast and humans, is a dimethyladenosine methyltransferase (DMT) that has acquired a secondary role in mitochondrial transcription. So far, mtTFB has only been well studied in Opisthokonta (metazoan animals and fungi). Here we investigate the phylogenetic distribution of mtTFB homologs throughout the domain Eucarya, documenting the first examples of this protein outside of the opisthokonts. Surprisingly, we identified putative mtTFB homologs only in amoebozoan protists and trypanosomatids. Phylogenetic analysis together with conservation of intron positions in amoebozoan and human genes supports the grouping of the putative mtTFB homologs as a distinct clade. Phylogenetic analysis further demonstrates that the mtTFB is most likely derived from the DMT of the mitochondrial endosymbiont.
Collapse
Affiliation(s)
- Timothy E Shutt
- Program in Evolutionary Biology, Canadian Institute for Advanced Research, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| | | |
Collapse
|
37
|
Rogowska AT, Puchta O, Czarnecka AM, Kaniak A, Stepien PP, Golik P. Balance between transcription and RNA degradation is vital for Saccharomyces cerevisiae mitochondria: reduced transcription rescues the phenotype of deficient RNA degradation. Mol Biol Cell 2005; 17:1184-93. [PMID: 16371505 PMCID: PMC1382308 DOI: 10.1091/mbc.e05-08-0796] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The Saccharomyces cerevisiae SUV3 gene encodes the helicase component of the mitochondrial degradosome (mtEXO), the principal 3'-to-5' exoribonuclease of yeast mitochondria responsible for RNA turnover and surveillance. Inactivation of SUV3 (suv3Delta) causes multiple defects related to overaccumulation of aberrant transcripts and precursors, leading to a disruption of mitochondrial gene expression and loss of respiratory function. We isolated spontaneous suppressors that partially restore mitochondrial function in suv3Delta strains devoid of mitochondrial introns and found that they correspond to partial loss-of-function mutations in genes encoding the two subunits of the mitochondrial RNA polymerase (Rpo41p and Mtf1p) that severely reduce the transcription rate in mitochondria. These results show that reducing the transcription rate rescues defects in RNA turnover and demonstrates directly the vital importance of maintaining the balance between RNA synthesis and degradation.
Collapse
Affiliation(s)
- Agata T Rogowska
- Department of Genetics, Warsaw University, 02-106 Warsaw, Poland
| | | | | | | | | | | |
Collapse
|
38
|
Schäfer B. RNA maturation in mitochondria of S. cerevisiae and S. pombe. Gene 2005; 354:80-5. [PMID: 15913924 DOI: 10.1016/j.gene.2005.03.032] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2005] [Accepted: 03/25/2005] [Indexed: 11/24/2022]
Abstract
Although the gene content is rather conserved, the genomes in mitochondria of yeasts vary dramatically in size [Clark-Walker, G.D., Evans, R.J., Hoeben, P., McArthur, C.R., 1985. Basis of diversity in yeast mitochondrial DNAs. In: Quagliariello, E.C., Palmieri, F., Saccone, C., Kroon, A.M. (Eds.). Achievements and Perspectives of Mitochondrial Research 2. Science Publishers, Amsterdam, pp. 71-78] and in the number of transcription units. Since the fidelity and processivity of the mitochondrial single-subunit phage-like RNA polymerase present in yeast mitochondria are certainly limited, one might speculate that the density of transcription initiation sites on the mitochondrial genomes is one of the factors influencing the genome size. In an effort to find common features among the apparent idiosyncrasies of Saccharomyces cerevisiae (with its extremely large mtDNA) and Schizosaccharomyces pombe (with its extremely small mitochondrial genome), the aim of this review is to compare recent data about transcription and generation of 5' and 3' ends of mature RNA transcripts in S. cerevisiae and in S. pombe. Both organisms are two attractive model systems enabling investigation of various aspects of mitochondrial genetics.
Collapse
Affiliation(s)
- Bernd Schäfer
- Department of Biology IV (Microbiology), RWTH Aachen University, Worringer Weg, D-52074 Aachen, Germany.
| |
Collapse
|
39
|
Taanman JW, Llewelyn Williams S. The Human Mitochondrial Genome. OXIDATIVE STRESS AND DISEASE 2005. [DOI: 10.1201/9781420028843.ch3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
40
|
Tarasenko VI, Subota IY, Kobzev VF, Konstantinov YM. Isolation of Mitochondrial DNA-Binding Proteins Specific to the Maize cox1 Promoter. Mol Biol 2005. [DOI: 10.1007/s11008-005-0049-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
41
|
Biswas TK, Getz GS. Requirement of different mitochondrial targeting sequences of the yeast mitochondrial transcription factor Mtf1p when synthesized in alternative translation systems. Biochem J 2005; 383:383-91. [PMID: 15257659 PMCID: PMC1134080 DOI: 10.1042/bj20040691] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mitochondrial (mt) translocation of the nuclearly encoded mt transcription factor Mtf1p appears to occur independent of a cleavable presequence, mt receptor, mt membrane potential or ATP [Biswas and Getz (2002) J. Biol. Chem. 277, 45704-45714]. To understand further the import strategy of Mtf1p, we investigated the import of the wild-type and N-terminal-truncated Mtf1p mutants synthesized in two different in vitro translation systems. These Mtf1p derivatives were generated either in the RRL (rabbit reticulocyte lysate) or in the WGE (wheat germ extract) translation system. Under the in vitro import conditions, the RRL-synthesized full-length Mtf1p but not the N-terminal-truncated Mtf1p product was efficiently imported into mitochondria, suggesting that the N-terminal sequence is important for its import. On the other hand, when these Mtf1p products were generated in the WGE system, surprisingly, the N-terminal-truncated products, but not the full-length protein, were effectively translocated into mitochondria. Despite these differences between the translation systems, in both cases, import occurs at a low temperature and has no requirement for a trypsin-sensitive mt receptor, mt membrane potential or ATP hydrolysis. Together, these observations suggest that, in the presence of certain cytoplasmic factors (derived from either RRL or WGE), Mtf1p is capable of using alternative import signals present in different regions of the protein. This appears to be the first example of usage of different targeting sequences for the transport of a single mt protein into the mt matrix.
Collapse
Affiliation(s)
- Tapan K Biswas
- Department of Pathology, University of Chicago, 5841 South Maryland Avenue, Chicago, IL 60637, USA.
| | | |
Collapse
|
42
|
Abstract
Mitochondria are the central processing units for cellular energy metabolism and, in addition to carrying out oxidative phosphorylation, regulate important processes such as apoptosis and calcium homeostasis. Because mitochondria possess a genome that is central to their multiple functions, an understanding of the mechanism of mitochondrial gene expression is required to decipher the many ways mitochondrial dysfunction contributes to human disease. Towards this end, two human transcription factors that are related to rRNA methyltransferases have recently been characterized, providing new insight into the mechanism of mitochondrial transcription and a novel link to maternally inherited deafness. Furthermore, studies in the Saccharomyces cerevisiae model system have revealed a functional coupling of transcription and translation at the inner mitochondrial membrane, where assembly of the oxidative phosphorylation system commences. Defects in an analogous coupling mechanism in humans might underlie the cytochrome oxidase deficiency that causes a form of Leigh Syndrome.
Collapse
Affiliation(s)
- Gerald S Shadel
- Department of Pathology, Yale University School of Medicine, 300 Cedar Street, PO Box 208023, New Haven, CT 06520-8023, USA.
| |
Collapse
|
43
|
Jiang M, Ma N, Vassylyev DG, McAllister WT. RNA displacement and resolution of the transcription bubble during transcription by T7 RNA polymerase. Mol Cell 2004; 15:777-88. [PMID: 15350221 DOI: 10.1016/j.molcel.2004.07.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2004] [Revised: 06/07/2004] [Accepted: 06/17/2004] [Indexed: 11/26/2022]
Abstract
Unlike DNA polymerases, RNA polymerases (RNAPs) must displace the nascent product from the template and restore the DNA to duplex form after passage of the transcription complex. To accomplish this, RNAPs establish a locally denatured "bubble" that encloses a short RNA:DNA hybrid. As the polymerase advances along the template, the RNA is displaced at the trailing edge of the bubble and the two DNA strands are reannealed. Structural analyses have revealed a number of elements that are likely to be involved in this process in T7 RNAP. In this work, we used genetic and biochemical methods to explore the roles of these elements during the transition from an initiation complex to an elongation complex. The results indicate that the transition is a multistep process and reveal a critical role for the nontemplate strand of the DNA.
Collapse
Affiliation(s)
- Manli Jiang
- Morse Institute of Molecular Genetics, Department of Microbiology and Immunology, SUNY Health Science Center at Brooklyn, 450 Clarkson Avenue, Brooklyn, NY 11203, USA
| | | | | | | |
Collapse
|
44
|
O'Farrell HC, Scarsdale JN, Rife JP. Crystal structure of KsgA, a universally conserved rRNA adenine dimethyltransferase in Escherichia coli. J Mol Biol 2004; 339:337-53. [PMID: 15136037 DOI: 10.1016/j.jmb.2004.02.068] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2003] [Revised: 02/20/2004] [Accepted: 02/23/2004] [Indexed: 11/25/2022]
Abstract
The bacterial enzyme KsgA catalyzes the transfer of a total of four methyl groups from S-adenosyl-l-methionine (S-AdoMet) to two adjacent adenosine bases in 16S rRNA. This enzyme and the resulting modified adenosine bases appear to be conserved in all species of eubacteria, eukaryotes, and archaebacteria, and in eukaryotic organelles. Bacterial resistance to the aminoglycoside antibiotic kasugamycin involves inactivation of KsgA and resulting loss of the dimethylations, with modest consequences to the overall fitness of the organism. In contrast, the yeast ortholog, Dim1, is essential. In yeast, and presumably in other eukaryotes, the enzyme performs a vital role in pre-rRNA processing in addition to its methylating activity. Another ortholog has been discovered recently, h-mtTFB in human mitochondria, which has a second function; this enzyme is a nuclear-encoded mitochondrial transcription factor. The KsgA enzymes are homologous to another family of RNA methyltransferases, the Erm enzymes, which methylate a single adenosine base in 23S rRNA and confer resistance to the MLS-B group of antibiotics. Despite their sequence similarity, the two enzyme families have strikingly different levels of regulation that remain to be elucidated. We have crystallized KsgA from Escherichia coli and solved its structure to a resolution of 2.1A. The structure bears a strong similarity to the crystal structure of ErmC' from Bacillus stearothermophilus and a lesser similarity to sc-mtTFB, the Saccharomyces cerevisiae version of h-mtTFB. Comparison of the three crystal structures and further study of the KsgA protein will provide insight into this interesting group of enzymes.
Collapse
Affiliation(s)
- Heather C O'Farrell
- Department of Biochemistry, Virginia Commonwealth University, Richmond VA 23298-0133, USA
| | | | | |
Collapse
|
45
|
Matsushima Y, Garesse R, Kaguni LS. Drosophila Mitochondrial Transcription Factor B2 Regulates Mitochondrial DNA Copy Number and Transcription in Schneider Cells. J Biol Chem 2004; 279:26900-5. [PMID: 15060065 DOI: 10.1074/jbc.m401643200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report the cloning and molecular analysis of Drosophila mitochondrial transcription factor B2 (d-mt-TFB2), a protein that plays a role in mitochondrial transcription and mitochondrial DNA (mtDNA) replication in Drosophila. An RNA interference (RNAi) construct was designed that reduces expression of d-mtTFB2 to 5% of its normal level in Schneider cells. RNAi knock-down of d-mtTFB2 reduces the abundance of specific mitochondrial RNA transcripts 2- to 8-fold and decreases the copy number of mtDNA approximately 3-fold. In a corollary manner, we find that overexpression of d-mtTFB2 increases both the abundance of mitochondrial RNA transcripts and the copy number of mtDNA. In a comparative experiment, we find that overexpression of Drosophila mitochondrial transcription factor A (d-TFAM) increases mtDNA copy number with no significant effect on mitochondrial transcripts. This argues for a direct role for mtTFB2 in mitochondrial transcription and suggests that, if TFAM serves a role in transcription, its endogenous level limits mtDNA copy number but not transcription. Furthermore, we suggest that mtTFB2 increases mtDNA copy number by increasing the frequency of initiation of DNA replication, whereas TFAM serves to stabilize and package mtDNA in mitochondrial nucleoids. Our work represents the first study to document the function of mtTFB2 in vivo, establishing a dual role in regulation of both transcription and replication, and provides a benchmark for comparative biochemical studies in various animal systems.
Collapse
Affiliation(s)
- Yuichi Matsushima
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319, USA
| | | | | |
Collapse
|
46
|
|
47
|
Matsunaga M, Jaehning JA. A Mutation in the Yeast Mitochondrial Core RNA Polymerase, Rpo41, Confers Defects in Both Specificity Factor Interaction and Promoter Utilization. J Biol Chem 2004; 279:2012-9. [PMID: 14570924 DOI: 10.1074/jbc.m307819200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The yeast mitochondrial RNA polymerase (RNAP) is composed of the core RNAP, Rpo41, and the mitochondrial transcription factor, Mtf1. Both are required for mitochondrial transcription, but how the two proteins interact to create a functional, promoter-selective holoenzyme is still unknown. Rpo41 is similar to the single polypeptide bacteriophage T7RNAP, which does not require additional factors for promoter-selective initiation but whose activity is modulated during infection by association with T7 lysozyme. In this study we used the co-crystal structure of T7RNAP and T7 lysozyme as a model to define a potential Mtf1 interaction surface on Rpo41, making site-directed mutations in Rpo41 at positions predicted to reside at the same location as the T7RNAP/T7 lysozyme interface. We identified Rpo41 mutant E1224A as having reduced interactions with Mtf1 in a two-hybrid assay and a temperature-sensitive petite phenotype in vivo. Although the E1224A mutant has full activity in a non-selective in vitro transcription assay, it is temperature-sensitive for selective transcription from linear DNA templates containing the 14S rRNA, COX2, and tRNAcys mitochondrial promoters. The tRNAcys promoter defect can be rescued by template supercoiling but not by addition of a dinucleotide primer. The fact that mutation of Rpo41 results in selective transcription defects indicates that the core RNAP, like T7RNAP, plays an important role in promoter utilization.
Collapse
Affiliation(s)
- Michio Matsunaga
- Department of Biochemistry and Molecular Genetics and Program in Molecular Biology, University of Colorado Health Sciences Center, 4200 East Ninth Avenue, Denver, CO 80262, USA
| | | |
Collapse
|
48
|
Carter RH, Demidenko AA, Hattingh-Willis S, Rothman-Denes LB. Phage N4 RNA polymerase II recruitment to DNA by a single-stranded DNA-binding protein. Genes Dev 2003; 17:2334-45. [PMID: 12975320 PMCID: PMC196469 DOI: 10.1101/gad.1121403] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Transcription of bacteriophage N4 middle genes is carried out by a phage-coded, heterodimeric RNA polymerase (N4 RNAPII), which belongs to the family of T7-like RNA polymerases. In contrast to phage T7-RNAP, N4 RNAPII displays no activity on double-stranded templates and low activity on single-stranded templates. In vivo, at least one additional N4-coded protein (p17) is required for N4 middle transcription. We show that N4 ORF2 encodes p17 (gp2). Characterization of purified gp2revealed that it is a single-stranded DNA-binding protein that activates N4 RNAPII transcription on single-stranded DNA templates through specific interaction with N4 RNAPII. On the basis of the properties of the proteins involved in N4 RNAPII transcription and of middle promoters, we propose a model for N4 RNAPII promoter recognition, in which gp2plays two roles, stabilization of a single-stranded region at the promoter and recruitment of N4 RNAPII through gp2-N4 RNAPII interactions. Furthermore, we discuss our results in the context of transcription initiation by mitochondrial RNA polymerases.
Collapse
Affiliation(s)
- Richard H Carter
- Departments of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|
49
|
Matsushima Y, Matsumura K, Ishii S, Inagaki H, Suzuki T, Matsuda Y, Beck K, Kitagawa Y. Functional domains of chicken mitochondrial transcription factor A for the maintenance of mitochondrial DNA copy number in lymphoma cell line DT40. J Biol Chem 2003; 278:31149-58. [PMID: 12759347 DOI: 10.1074/jbc.m303842200] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nuclear and mitochondrial (mt) forms of chicken mt transcription factor A (c-TFAM) generated by alternative splicing of a gene (c-tfam) were cloned. c-tfam mapped at 6q1.1-q1.2 has similar exon/intron organization as mouse tfam except that the first exons encoding the nuclear and the mt form-specific sequences were positioned oppositely. When cDNA encoding the nuclear form was transiently expressed in chicken lymphoma DT40 cells after tagging at the C terminus with c-Myc, the product was localized into nucleus, whereas the only endogenous mt form of DT40 cells was immunostained exclusively within mitochondria. c-TFAM is most similar to Xenopus (xl-) TFAM in having extended C-terminal regions in addition to two high mobility group (HMG) boxes, a linker region between them, and a C-terminal tail, also found in human and mouse TFAM. Similarities between c- and xl-TFAM are higher in linker and C-terminal regions than in HMG boxes. Disruption of both tfam alleles in DT40 cells prevented proliferation. The tfam+/tfam- cells showed a 50 and 40-60% reduction of mtDNA and its transcripts, respectively. Expression of exogenous wild type c-tfam cDNA in the tfam+/tfam- cells increased mtDNA up to 4-fold in a dose-dependent manner, whereas its transcripts increased only marginally. A deletion mutant lacking the first HMG box lost this activity, whereas only marginal reduction of the activity was observed in a deletion mutant at the second HMG box. Despite the essential role of the C-terminal tail in mtDNA transcription demonstrated in vitro, deletion of c-TFAM at this region reduced the activity of maintenance of the mtDNA level only by 50%. A series of deletion mutant at the tail region suggested stimulatory and suppressive sequences in this region for the maintenance of mtDNA level.
Collapse
Affiliation(s)
- Yuichi Matsushima
- Graduate Courses for Regulation of Biological Signals, Nagoya University, Nagoya-shi, Japan
| | | | | | | | | | | | | | | |
Collapse
|
50
|
McCulloch V, Shadel GS. Human mitochondrial transcription factor B1 interacts with the C-terminal activation region of h-mtTFA and stimulates transcription independently of its RNA methyltransferase activity. Mol Cell Biol 2003; 23:5816-24. [PMID: 12897151 PMCID: PMC166325 DOI: 10.1128/mcb.23.16.5816-5824.2003] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A significant advancement in understanding mitochondrial gene expression is the recent identification of two new human mitochondrial transcription factors, h-mtTFB1 and h-mtTFB2. Both proteins stimulate transcription in collaboration with the high-mobility group box transcription factor, h-mtTFA, and are homologous to rRNA methyltransferases. In fact, the dual-function nature of h-mtTFB1 was recently demonstrated by its ability to methylate a conserved rRNA substrate. Here, we demonstrate that h-mtTFB1 binds h-mtTFA both in HeLa cell mitochondrial extracts and in direct-binding assays via an interaction that requires the C-terminal tail of h-mtTFA, a region necessary for transcriptional activation. In addition, point mutations in conserved methyltransferase motifs of h-mtTFB1 revealed that it stimulates transcription in vitro independently of S-adenosylmethionine binding and rRNA methyltransferase activity. Furthermore, one mutation (G65A) eliminated the ability of h-mtTFB1 to bind DNA yet did not affect transcriptional activation. These results, coupled with the observation that h-mtTFB1 and human mitochondrial RNA (h-mtRNA) polymerase can also be coimmunoprecipitated, lead us to propose a model in which h-mtTFA demarcates mitochondrial promoter locations and where h-mtTFB proteins bridge an interaction between the C-terminal tail of h-mtTFA and mtRNA polymerase to facilitate specific initiation of transcription. Altogether, these data provide important new insight into the mechanism of transcription initiation in human mitochondria and indicate that the dual functions of h-mtTFB1 can be separated.
Collapse
Affiliation(s)
- Vicki McCulloch
- Department of Biochemistry, Rollins Research Center, Emory University School of Medicine, Atlanta, Georgia 30322-3050, USA
| | | |
Collapse
|