1
|
Micsik T, Lőrincz A, Gál J, Schwab R, Peták I. MDR-1 and MRP-1 activity in peripheral blood leukocytes of rheumatoid arthritis patients. Diagn Pathol 2015; 10:216. [PMID: 26715450 PMCID: PMC4696293 DOI: 10.1186/s13000-015-0447-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 11/28/2015] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Rheumatoid Arthritis is a chronic disease leading to decreased quality of life with a rather variable response rate to Disease Modifying Anti Rheumatic Drugs. Methotrexate (MTX) is the gold standard therapy in Rheumatoid Arthritis. The Multidrug resistance Related Protein and Multi Drug Resistance protein 1, also called P-glycoprotein-170 transporters can alter the intracellular concentration of different drugs. Methotrexate is an MRP1 substrate and thus the functional activity of MRP1 might have a clinical impact on the efficiency of the Methotrexate-therapy in Rheumatoid Arthritis. METHODS We have compared the functional Multidrug Activity Factors (MAF) of the MDR1 and MRP1 transporters of Peripheral Blood Leukocytes of 59 Rheumatoid Arthritis patients with various response rate to MTX-therapy (MTX-responder, MTX-resistant and MTX-intolerant RA-groups) and 47 non-RA controls in six different leukocyte subpopulations (neutrophil leukocytes, monocytes, lymphocytes, CD4+, CD8+ and CD19+ cells). There was a decreased MAF of RA patients compared to non- Rheumatoid Arthritis patients and healthy controls in the leukocyte subpopulations. There was a significant difference between the MAF values of the MTX-responder and MTX intolerant groups. But we have not found significant differences between the MAF values of the MTX-responder and MTX-resistant Rheumatoid Arthritis -groups. RESULTS Our results suggest that MDR1 and MRP1 functional activity does not seem to affect the response rate to MTX-therapy of Rheumatoid Arthritis-patients, but it might be useful in predicting MTX-side effects. We have demonstrated the decreased functional MDR-activity on almost 60 Rheumatoid Arthritis patients, which can be interpreted as a sign of the immune-suppressive effect of the MTX-treatment.
Collapse
Affiliation(s)
- Tamás Micsik
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary.
| | - András Lőrincz
- Rational Drug Design Laboratories CRC, Semmelweis University, Budapest, Hungary.
- Institute Of Materials And Environmental Chemistry,Research Centre for Natural Sciences, Biological Nanochemistry Research Group, Hungarian Academy of Sciences, 1117 Budapest, Magyar tudósok körútja 2. 1519, P.O. Box 286, Budapest, Hungary.
| | - János Gál
- Department of Rheumatology, Bács-Kiskun County Hospital, Kecskemét, Budapest, Hungary.
| | - Richard Schwab
- KPS Medical Biotechnology and Healthcare Services Ltd, Budapest, Hungary.
| | - István Peták
- KPS Medical Biotechnology and Healthcare Services Ltd, Budapest, Hungary.
- Department of Medical Chemistry and Pathobiochemistry, Pathobiochemistry Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
2
|
Micsik T, Lőrincz A, Mersich T, Baranyai Z, Besznyák I, Dede K, Zaránd A, Jakab F, Szöllösi LK, Kéri G, Schwab R, Peták I. Decreased functional activity of multidrug resistance protein in primary colorectal cancer. Diagn Pathol 2015; 10:26. [PMID: 25885226 PMCID: PMC4415444 DOI: 10.1186/s13000-015-0264-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 04/07/2015] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The ATP-Binding Cassette (ABC)-transporter MultiDrug Resistance Protein 1 (MDR1) and Multidrug Resistance Related Protein 1 (MRP1) are expressed on the surface of enterocytes, which has led to the belief that these high capacity transporters are responsible for modulating chemosensitvity of colorectal cancer. Several immunohistochemistry and reverse transcription polymerase chain reaction (RT-PCR) studies have provided controversial results in regards to the expression levels of these two ABC-transporters in colorectal cancer. Our study was designed to determine the yet uninvestigated functional activity of MDR1 and MRP1 transporters in normal human enterocytes compared to colorectal cancer cells from surgical biopsies. METHODS 100 colorectal cancer and 28 adjacent healthy mucosa samples were obtained by intraoperative surgical sampling. Activity of MDR1 and MRP1 of viable epithelial and cancer cells were determined separately with the modified calcein-assay for multidrug resistance activity and sufficient data of 73 cancer and 11 healthy mucosa was analyzed statistically. RESULTS Significantly decreased mean MDR1 activity was found in primary colorectal cancer samples compared to normal mucosa, while mean MRP1 activity showed no significant change. Functional activity was not affected by gender, age, stage or grade and localization of the tumor. CONCLUSION We found lower MDR activity in cancer cells versus adjacent, apparently, healthy control tissue, thus, contrary to general belief, MDR activity seems not to play a major role in primary drug resistance, but might rather explain preferential/selective activity of Irinotecan and/or Oxaliplatin. Still, this picture might be more complex since chemotherapy by itself might alter MDR activity, and furthermore, today limited data is available about MDR activity of cancer stem cells in colorectal cancers. VIRTUAL SLIDES The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1675739129145824.
Collapse
Affiliation(s)
- Tamás Micsik
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, H-1085, Budapest, Hungary.
- Rational Drug Design Laboratories, Cooperative Research Center, Semmelweis University, Üllői út 26, H-1085, Budapest, Hungary.
| | - András Lőrincz
- Rational Drug Design Laboratories, Cooperative Research Center, Semmelweis University, Üllői út 26, H-1085, Budapest, Hungary.
- Hungarian Academy of Sciences,Research Centre of Natural Sciences, Institute of Molecular Pharmacology, Department of Biological Nanochemistry, Pusztaszeri út 59-67, 1025, Budapest, Hungary.
| | - Tamás Mersich
- Department of Surgery and Vascular Surgery, Uzsoki Teaching Hospital, Uzsoki street 29, H-1145, Budapest, Hungary.
| | - Zsolt Baranyai
- Tumorgenetika Human Biospecimen Collection and Research, Kerékgyártó u. 36-38, H-1147, Budapest, Hungary.
- 1st Department of Surgery, Semmelweis University, Üllői út 78, 1082, Budapest, Hungary.
| | - István Besznyák
- Department of Surgery and Vascular Surgery, Uzsoki Teaching Hospital, Uzsoki street 29, H-1145, Budapest, Hungary.
| | - Kristóf Dede
- Department of Surgery and Vascular Surgery, Uzsoki Teaching Hospital, Uzsoki street 29, H-1145, Budapest, Hungary.
| | - Attila Zaránd
- Department of Surgery and Vascular Surgery, Uzsoki Teaching Hospital, Uzsoki street 29, H-1145, Budapest, Hungary.
- 1st Department of Surgery, Semmelweis University, Üllői út 78, 1082, Budapest, Hungary.
| | - Ferenc Jakab
- Department of Surgery and Vascular Surgery, Uzsoki Teaching Hospital, Uzsoki street 29, H-1145, Budapest, Hungary.
| | | | - György Kéri
- Rational Drug Design Laboratories, Cooperative Research Center, Semmelweis University, Üllői út 26, H-1085, Budapest, Hungary.
- MTA-SE Pathobiochemistry Research Group, Department of Medical Chemistry, Semmelweis University, Tűzoltó utca 37-47, H-1094, Budapest, Hungary.
| | - Richard Schwab
- Rational Drug Design Laboratories, Cooperative Research Center, Semmelweis University, Üllői út 26, H-1085, Budapest, Hungary.
- KPS Medical Biotechnology and Healthcare Services Ltd., Retek utca. 34, H-1022, Budapest, Hungary.
| | - István Peták
- Rational Drug Design Laboratories, Cooperative Research Center, Semmelweis University, Üllői út 26, H-1085, Budapest, Hungary.
- MTA-SE Pathobiochemistry Research Group, Department of Medical Chemistry, Semmelweis University, Tűzoltó utca 37-47, H-1094, Budapest, Hungary.
- KPS Medical Biotechnology and Healthcare Services Ltd., Retek utca. 34, H-1022, Budapest, Hungary.
| |
Collapse
|
3
|
Kappes MA, Miller CL, Faaberg KS. Porcine reproductive and respiratory syndrome virus nonstructural protein 2 (nsp2) topology and selective isoform integration in artificial membranes. Virology 2015; 481:51-62. [PMID: 25768891 DOI: 10.1016/j.virol.2015.01.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 01/15/2015] [Accepted: 01/30/2015] [Indexed: 11/28/2022]
Abstract
The membrane insertion and topology of nonstructural protein 2 (nsp2) of porcine reproductive and respiratory syndrome virus (PRRSV) strain VR-2332 was assessed using a cell free translation system in the presence or absence of artificial membranes. Expression of PRRSV nsp2 in the absence of all other viral factors resulted in the genesis of both full-length nsp2 as well as a select number of C-terminal nsp2 isoforms. Addition of membranes to the translation stabilized the translation reaction, resulting in predominantly full-length nsp2 as assessed by immunoprecipitation. Analysis further showed full-length nsp2 strongly associates with membranes, along with two additional large nsp2 isoforms. Membrane integration of full-length nsp2 was confirmed through high-speed density fractionation, protection from protease digestion, and immunoprecipitation. The results demonstrated that nsp2 integrated into the membranes with an unexpected topology, where the amino (N)-terminal (cytoplasmic) and C-terminal (luminal) domains were orientated on opposite sides of the membrane surface.
Collapse
Affiliation(s)
- Matthew A Kappes
- Virus and Prion Research Unit, USDA-ARS-National Animal Disease Center, Ames, IA, USA; Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Cathy L Miller
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Kay S Faaberg
- Virus and Prion Research Unit, USDA-ARS-National Animal Disease Center, Ames, IA, USA.
| |
Collapse
|
4
|
Loo TW, Bartlett MC, Clarke DM. The W232R suppressor mutation promotes maturation of a truncation mutant lacking both nucleotide-binding domains and restores interdomain assembly and activity of P-glycoprotein processing mutants. Biochemistry 2011; 50:672-85. [PMID: 21182301 DOI: 10.1021/bi1016809] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
ATP-binding cassette (ABC) proteins contain two nucleotide-binding domains (NBDs) and two transmembrane (TM) domains (TMDs). Interdomain interactions and packing of the TM segments are critical for function, and disruption by genetic mutations contributes to disease. P-glycoprotein (P-gp) is a useful model to identify mechanisms that repair processing defects because numerous arginine suppressor mutations have been identified in the TM segments. Here, we tested the prediction that a mechanism of arginine rescue was to promote intradomain interactions between TM segments and restore interdomain assembly. We found that suppressor W232R(TM4/TMD1) rescued mutants with processing mutations in any domain and restored defective NBD1-NBD2, NBD1-TMD2, and TMD1-TMD2 interactions. W232R also promoted packing of the TM segments because it rescued a truncation mutant lacking both NBDs. The mechanism of W232R rescue likely involved intradomain hydrogen bond interactions with Asn296(TM5) since only N296A abolished rescue by W232R and rescue was only observed when Trp232 was replaced with hydrogen-bonding residues. In TMD2, suppressor T945R(TM11) also promoted packing of the TM segments because it rescued the truncation mutant lacking the NBDs and suppressed formation of alternative topologies. We propose that T945R rescue was mediated by interactions with Glu875(TM10) since T945E/E875R promoted maturation while T945R/E875A did not.
Collapse
Affiliation(s)
- Tip W Loo
- Department of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | |
Collapse
|
5
|
Patwardhan G, Gupta V, Huang J, Gu X, Liu YY. Direct assessment of P-glycoprotein efflux to determine tumor response to chemotherapy. Biochem Pharmacol 2010; 80:72-9. [PMID: 20298675 PMCID: PMC2860649 DOI: 10.1016/j.bcp.2010.03.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 03/05/2010] [Accepted: 03/09/2010] [Indexed: 01/29/2023]
Abstract
Multidrug resistance is a major impediment to the success of cancer chemotherapy. The overproduced P-glycoprotein that extrudes anticancer drugs from cells, is the most common mechanism detected in multidrug-resistant cancers. Direct measurement of cellular efflux of tumors in vivo, rather than estimation of MDR1 mRNA and P-glycoprotein levels in samples stored or embedded, can functionally characterize the mechanism of drug resistance and determine the choice of anticancer drugs for cancer patients. Herewith, we introduce a new approach to directly determine P-glycoprotein efflux of tumors. Employing Flutax-2 (Oregon green-488 paclitaxel) and fluorescence spectrophotometry, this method has successfully measured cellular transportability including efflux and accumulation in diverse cancer cell lines, tumors and other tissues with high reproducibility. With this method, we have quantitatively determined cellular efflux that is correlated with P-glycoprotein levels and the reversal effects of agents in cell lines of breast, ovarian, cervical and colon cancers, and in tumor-bearing mice. It has sensitively detected these alterations of P-glycoprotein efflux in approximately 5mg tumor or other tissues with high confidence. This direct and quick functional assessment has a potential to determine drug resistance in different types of cancers after surgical resection. Further validation of this method in clinic settings for the diagnosis of drug resistance purpose is needed.
Collapse
Affiliation(s)
- Gauri Patwardhan
- Department of Basic Pharmaceutical Sciences, University of Louisiana at Monroe, Monroe, Louisiana 71209, USA
| | - Vineet Gupta
- Department of Basic Pharmaceutical Sciences, University of Louisiana at Monroe, Monroe, Louisiana 71209, USA
| | - Juowen Huang
- Department of Basic Pharmaceutical Sciences, University of Louisiana at Monroe, Monroe, Louisiana 71209, USA
| | - Xin Gu
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130, USA
| | - Yong-Yu Liu
- Department of Basic Pharmaceutical Sciences, University of Louisiana at Monroe, Monroe, Louisiana 71209, USA
| |
Collapse
|
6
|
Chang XB. Molecular mechanism of ATP-dependent solute transport by multidrug resistance-associated protein 1. Methods Mol Biol 2010; 596:223-49. [PMID: 19949927 DOI: 10.1007/978-1-60761-416-6_11] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Millions of new cancer patients are diagnosed each year and over half of these patients die from this devastating disease. Thus, cancer causes a major public health problem worldwide. Chemotherapy remains the principal mode to treat many metastatic cancers. However, occurrence of cellular multidrug resistance (MDR) prevents efficient killing of cancer cells, leading to chemotherapeutic treatment failure. Over-expression of ATP-binding cassette transporters, such as P-glycoprotein, breast cancer resistance protein and/or multidrug resistance-associated protein 1 (MRP1), confers an acquired MDR due to their capabilities of transporting a broad range of chemically diverse anticancer drugs across the cell membrane barrier. In this review, the molecular mechanism of ATP-dependent solute transport by MRP1 will be addressed.
Collapse
Affiliation(s)
- Xiu-bao Chang
- Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, USA.
| |
Collapse
|
7
|
Enquist K, Fransson M, Boekel C, Bengtsson I, Geiger K, Lang L, Pettersson A, Johansson S, von Heijne G, Nilsson I. Membrane-integration Characteristics of Two ABC Transporters, CFTR and P-glycoprotein. J Mol Biol 2009; 387:1153-64. [DOI: 10.1016/j.jmb.2009.02.035] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 02/05/2009] [Accepted: 02/13/2009] [Indexed: 10/21/2022]
|
8
|
Wang H, Lee EW, Cai X, Ni Z, Zhou L, Mao Q. Membrane topology of the human breast cancer resistance protein (BCRP/ABCG2) determined by epitope insertion and immunofluorescence. Biochemistry 2008; 47:13778-87. [PMID: 19063604 PMCID: PMC2649121 DOI: 10.1021/bi801644v] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The human breast cancer resistance protein (BCRP/ABCG2) mediates efflux of drugs and organic anions across the plasma membrane. Hydropathy analysis suggests that BCRP consists of a nucleotide-binding domain (residues approximately 1-395) and a membrane-spanning domain (MSD) (residues approximately 396-655); however, its exact topology structure remains unknown. In this study, we determined the topology structure of BCRP by inserting hemagglutinin (HA) tags in its predicted hydrophilic regions of the MSD. HA-tagged BCRP mutants were expressed in HEK cells and tested for their ability to efflux mitoxantrone and BODIPY-prazosin. Polarity of the inserted tags with respect to the plasma membrane was determined by immunofluorescence. All of the mutants were expressed at levels comparable to wild-type BCRP as revealed by immunoblotting with specific antibodies against BCRP and the HA tag. Insertions at residues 423, 454, 462, 499, 529, 532, and 651 produced functional mutants, whereas insertions at residues 560, 594, and 623 resulted in mutants with significantly reduced activity and insertions at residues 387, 420, 474, and 502 completely abrogated the activity. HA tags inserted at residues 387, 474, 529, 532, 560, and 651 were localized intracellularly, whereas those inserted at residues 420, 423, 454, 499, 502, 594, and 623 revealed an extracellular location. Residue 462 was localized in a transmembrane (TM) segment. These results provide the first direct experimental evidence in support of a 6-TM model for BCRP with the amino and carboxyl termini of the MSD located intracellularly. These data may have important implications for understanding the transport mechanism of BCRP.
Collapse
Affiliation(s)
- Honggang Wang
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | |
Collapse
|
9
|
Sharom FJ. ABC multidrug transporters: structure, function and role in chemoresistance. Pharmacogenomics 2008; 9:105-27. [PMID: 18154452 DOI: 10.2217/14622416.9.1.105] [Citation(s) in RCA: 718] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Three ATP-binding cassette (ABC)-superfamily multidrug efflux pumps are known to be responsible for chemoresistance; P-glycoprotein (ABCB1), MRP1 (ABCC1) and ABCG2 (BCRP). These transporters play an important role in normal physiology by protecting tissues from toxic xenobiotics and endogenous metabolites. Hydrophobic amphipathic compounds, including many clinically used drugs, interact with the substrate-binding pocket of these proteins via flexible hydrophobic and H-bonding interactions. These efflux pumps are expressed in many human tumors, where they likely contribute to resistance to chemotherapy treatment. However, the use of efflux-pump modulators in clinical cancer treatment has proved disappointing. Single nucleotide polymorphisms in ABC drug-efflux pumps may play a role in responses to drug therapy and disease susceptibility. The effect of various genotypes and haplotypes on the expression and function of these proteins is not yet clear, and their true impact remains controversial.
Collapse
Affiliation(s)
- Frances J Sharom
- University of Guelph, Department of Molecular & Cellular Biology, Guelph Ontario, N1G 2W1, Canada.
| |
Collapse
|
10
|
Yang R, Scavetta R, Chang XB. The hydroxyl group of S685 in Walker A motif and the carboxyl group of D792 in Walker B motif of NBD1 play a crucial role for multidrug resistance protein folding and function. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1778:454-65. [PMID: 18088596 PMCID: PMC2955440 DOI: 10.1016/j.bbamem.2007.11.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/19/2007] [Revised: 10/22/2007] [Accepted: 11/09/2007] [Indexed: 11/19/2022]
Abstract
Structural analysis of MRP1-NBD1 revealed that the Walker A S685 forms hydrogen-bond with the Walker B D792 and interacts with magnesium and the beta-phosphate of the bound ATP. We have found that substitution of the D792 with leucine resulted in misfolding of the protein. In this report we tested whether substitution of the S685 with residues that prevent formation of this hydrogen-bond would also cause misfolding. Indeed, substitution of the S685 with residues potentially preventing formation of this hydrogen-bond resulted in misfolding of the protein. In addition, some substitutions that might form hydrogen-bond with D792 also yielded immature protein. All these mutants are temperature-sensitive variants. However, these complex-glycosylated mature mutants prepared from the cells grown at 27 degrees C still significantly affect ATP binding and ATP-dependent solute transport. In contrast, substitution of the S685 with threonine yielded complex-glycosylated mature protein that is more active than the wild-type MRP1, indicating that the interaction between the hydroxyl group of 685 residue and the carboxyl group of D792 plays a crucial role for the protein folding and the interactions of the hydroxyl group at 685 with magnesium and the beta-phosphate of the bound ATP play an important role for ATP-binding and ATP-dependent solute transport.
Collapse
Affiliation(s)
- Runying Yang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA
| | - Robert Scavetta
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA
| | - Xiu-bao Chang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA
| |
Collapse
|
11
|
Bogdanov M, Mileykovskaya E, Dowhan W. Lipids in the assembly of membrane proteins and organization of protein supercomplexes: implications for lipid-linked disorders. Subcell Biochem 2008; 49:197-239. [PMID: 18751913 PMCID: PMC2579957 DOI: 10.1007/978-1-4020-8831-5_8] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lipids play important roles in cellular dysfunction leading to disease. Although a major role for phospholipids is in defining the membrane permeability barrier, phospholipids play a central role in a diverse range of cellular processes and therefore are important factors in cellular dysfunction and disease. This review is focused on the role of phospholipids in normal assembly and organization of the membrane proteins, multimeric protein complexes, and higher order supercomplexes. Since lipids have no catalytic activity, it is difficult to determine their function at the molecular level. Lipid function has generally been defined by affects on protein function or cellular processes. Molecular details derived from genetic, biochemical, and structural approaches are presented for involvement of phosphatidylethanolamine and cardiolipin in protein organization. Experimental evidence is presented that changes in phosphatidylethanolamine levels results in misfolding and topological misorientation of membrane proteins leading to dysfunctional proteins. Examples are presented for diseases in which proper protein folding or topological organization is not attained due to either demonstrated or proposed involvement of a lipid. Similar changes in cardiolipin levels affects the structure and function of individual components of the mitochondrial electron transport chain and their organization into supercomplexes resulting in reduced mitochondrial oxidative phosphorylation efficiency and apoptosis. Diseases in which mitochondrial dysfunction has been linked to reduced cardiolipin levels are described. Therefore, understanding the principles governing lipid-dependent assembly and organization of membrane proteins and protein complexes will be useful in developing novel therapeutic approaches for disorders in which lipids play an important role.
Collapse
Affiliation(s)
- Mikhail Bogdanov
- Department of Biochemistry and Molecular Biology, University of Texas-Houston, Houston, TX 77030, USA
| | | | | |
Collapse
|
12
|
Tschantz WR, Pfeifer ND, Meade CL, Wang L, Lanzetti A, Kamath AV, Berlioz-Seux F, Hashim MF. Expression, purification and characterization of the human membrane transporter protein OATP2B1 from Sf9 insect cells. Protein Expr Purif 2007; 57:163-71. [PMID: 18024077 DOI: 10.1016/j.pep.2007.10.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Revised: 10/04/2007] [Accepted: 10/11/2007] [Indexed: 11/30/2022]
Abstract
OATP2B1 is an important member of the organic anion transporting polypeptides (OATP) family and is implicated in the intestinal and hepatic disposition of endo- and xenobiotics. The purpose of this work was to produce a highly purified protein for use as a reference standard for quantification of OATP2B1 in human tissue and in vitro assay systems. Here, we report the successful expression, purification and characterization of OATP2B1 in a heterologous expression system. Protein expressed by the Sf9-baculovirus expression system is functionally active as demonstrated by saturable uptake kinetics with a K(m) of 5.9+/-0.76 microM for estrone-3-sulfate. OATP2B1 was extracted from Sf9-membranes with ABS-14-4 detergent and purified using a one-step FLAG-tag purification method. Yield of OATP2B1 from Sf9 cells was 1.1mg per liter of culture, for a final recovery of 1.8%. SDS-PAGE resolution and Western blot of purified protein displayed multiple banding of OATP2B1-specific protein, which was thoroughly investigated to confirm homogeneity of the sample. C-terminal FLAG-tag purification and immunoblot detection, together with N-terminal sequencing, confirmed the presence of only full-length protein. Treatment with endoglycosidases had little effect on the migration pattern in SDS-PAGE, suggesting that multiple banding was not due to different glycosylation states of the protein. Amino acid analysis further confirmed the homogeneity of the protein with a calculated extinction coefficient of 80,387 cm(-1) M(-1). Physical, biochemical and functional characterization show that purified human OATP2B1 is pure, homogeneous and appropriate for use as a standard to quantitate expression of OATP2B1 in in vitro systems and tissue samples.
Collapse
Affiliation(s)
- William R Tschantz
- Department of Protein Engineering, Pfizer Inc., Research Technology Center, 620 Memorial Drive, Cambridge, MA 02139, USA.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Zhang JT. Use of arrays to investigate the contribution of ATP-binding cassette transporters to drug resistance in cancer chemotherapy and prediction of chemosensitivity. Cell Res 2007; 17:311-23. [PMID: 17404598 DOI: 10.1038/cr.2007.15] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Multidrug resistance (MDR) is a major problem in cancer chemotherapy. One of the best known mechanisms of MDR is the elevated expression of ATP-binding cassette (ABC) transporters. While some members of human ABC transporters have been shown to cause drug resistance with elevated expression, it is not yet known whether the over-expression of other members could also contribute to drug resistance in many model cancer cell lines and clinics. The recent development of microarrays and quantitative PCR arrays for expression profiling analysis of ABC transporters has helped address these issues. In this article, various arrays with limited or full list of ABC transporter genes and their use in identifying ABC transporter genes in drug resistance and chemo-sensitivity prediction will be reviewed.
Collapse
Affiliation(s)
- Jian-Ting Zhang
- Department of Pharmacology and Toxicology, Walther Oncology Center/Walther Cancer Institute and IU Cancer Center, Indiana University School of Medicine, 1044 W. Walnut Street, R4-166, Indianapolis, IN 46202, USA.
| |
Collapse
|
14
|
Schwab R, Micsik T, Szokolóczi O, Schafer E, Tihanyi B, Tihanyi T, Kupcsulik P, Diófalvi K, Mersich T, Besznyak I, Zarand A, Mihalik R, Sarkadi B, Kéri G, Pap A, Jakab F, Kopper L, Petak I. Functional evaluation of multidrug resistance transporter activity in surgical samples of solid tumors. Assay Drug Dev Technol 2007; 5:541-550. [PMID: 17767422 DOI: 10.1089/adt.2007.067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Determination of multidrug resistance (MDR) activity of tumor cells could provide important information for the personalized therapy of cancer patients. The functional calcein assay (MultiDrug Quant Assay, Solvo Biotechnology, Budaörs, Hungary) has been proven to be clinically valuable in hematological malignancies by determining the transporter activity of MDR protein 1 (MDR1, ATP-binding cassette protein [ABC] B1, P-glycoprotein-170) and MDR-related protein 1 (MRP1, ABCC1). In this study, we evaluated if the same functional test was adaptable for the analysis of MDR activity in solid tumors. For this purpose, tissue specimens of human colorectal cancer samples were subjected to limited enzymatic digestion by collagenase to provide a single-cell suspension; dead cells were excluded by 7-aminoactinomycin D staining, and epithelial cancer cells were detected by Cy5-conjugated anti-BerEP4 monoclonal antibody. The transporter functions of MDR1 and MRP1 in viable epithelial cells were assessed by flow cytometry detecting the intracellular accumulation of calcein dye after exposing cells to various MDR inhibitors. Collagenase disintegration preserved the MDR activity and the antigenicity of tumor cells. Thus using the extended calcein assay provided sufficient viable and functionally active tumor cells from surgical biopsies to determine the functional MDR activity. In conclusion, the newly described modified calcein assay may be applicable for evaluating the MDR phenotype in solid tissue specimens from colorectal forceps biopsy to surgical samples.
Collapse
Affiliation(s)
- Richard Schwab
- Rational Drug Design Laboratories CRC, Semmelweis University, Budapest, Hungary
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Chang XB. A molecular understanding of ATP-dependent solute transport by multidrug resistance-associated protein MRP1. Cancer Metastasis Rev 2007; 26:15-37. [PMID: 17295059 DOI: 10.1007/s10555-007-9041-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Over a million new cases of cancers are diagnosed each year in the United States and over half of these patients die from these devastating diseases. Thus, cancers cause a major public health problem in the United States and worldwide. Chemotherapy remains the principal mode to treat many metastatic cancers. However, occurrence of cellular multidrug resistance (MDR) prevents efficient killing of cancer cells, leading to chemotherapeutic treatment failure. Numerous mechanisms of MDR exist in cancer cells, such as intrinsic or acquired MDR. Overexpression of ATP-binding cassette (ABC) drug transporters, such as P-glycoprotein (P-gp or ABCB1), breast cancer resistance protein (BCRP or ABCG2) and/or multidrug resistance-associated protein (MRP1 or ABCC1), confers an acquired MDR due to their capabilities of transporting a broad range of chemically diverse anticancer drugs. In addition to their roles in MDR, there is substantial evidence suggesting that these drug transporters have functions in tissue defense. Basically, these drug transporters are expressed in tissues important for absorption, such as in lung and gut, and for metabolism and elimination, such as in liver and kidney. In addition, these drug transporters play an important role in maintaining the barrier function of many tissues including blood-brain barrier, blood-cerebral spinal fluid barrier, blood-testis barrier and the maternal-fetal barrier. Thus, these ATP-dependent drug transporters play an important role in the absorption, disposition and elimination of the structurally diverse array of the endobiotics and xenobiotics. In this review, the molecular mechanism of ATP-dependent solute transport by MRP1 will be addressed.
Collapse
Affiliation(s)
- Xiu-bao Chang
- Mayo Clinic College of Medicine, Scottsdale, AZ 85259, USA.
| |
Collapse
|
16
|
Wang Y, Loo TW, Bartlett MC, Clarke DM. Modulating the folding of P-glycoprotein and cystic fibrosis transmembrane conductance regulator truncation mutants with pharmacological chaperones. Mol Pharmacol 2007; 71:751-8. [PMID: 17132688 DOI: 10.1124/mol.106.029926] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) and P-glycoprotein (P-gp) are ATP-binding cassette (ABC) transporters that have two transmembrane domains (TMDs) and two nucleotide-binding domains (NBDs). Defective folding of CFTR lacking phenylalanine 508 (DeltaPhe508) in NBD1 is the most common cause of cystic fibrosis. The Phe508 position seems to be universally important in ABC transporters because deletion of the equivalent residue (Tyr490) in P-gp also inhibits maturation of the protein. The pharmacological chaperone VRT-325 can repair the DeltaPhe508-type folding defects in P-gp or CFTR. VRT-325 may repair the folding defects by promoting dimerization of the two NBDs or by promoting folding of the TMDs. To distinguish between these two mechanisms, we tested the ability of VRT-325 to promote folding of truncation mutants lacking one or both NBDs. Sensitivity to glycosidases was used as an indirect indicator of folding. It was found that VRT-325 could promote maturation of truncation mutants lacking NBD2. Truncation mutants of CFTR or P-gp lacking both NBDs showed deficiencies in core-glycosylation that could be partially reversed by carrying out expression in the presence of VRT-325. The results show that dimerization of the two NBDs to form a "nucleotide-sandwich" structure or NBD interactions with the TMDs are not essential for VRT-325 enhancement of folding. Instead, VRT-325 can promote folding of the TMDs alone. The ability of VRT-325 to promote core-glycosylation of the NBD-less truncation mutants suggests that one mechanism whereby the compound enhances folding is by promoting proper insertion of TM segments attached to the glycosylated loops so that they adopt an orientation favorable for glycosylation.
Collapse
Affiliation(s)
- Ying Wang
- Department of Medicine, University of Toronto, Rm. 7342, 1 King's College Circle, Toronto, Ontario, M5S 1A8 Canada
| | | | | | | |
Collapse
|
17
|
Sadlish H, Skach WR. Biogenesis of CFTR and other polytopic membrane proteins: new roles for the ribosome-translocon complex. J Membr Biol 2005; 202:115-26. [PMID: 15798900 DOI: 10.1007/s00232-004-0715-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2004] [Accepted: 09/14/2004] [Indexed: 10/25/2022]
Abstract
Polytopic protein biogenesis represents a critical, yet poorly understood area of modern biology with important implications for human disease. Inherited mutations in a growing array of membrane proteins frequently lead to improper folding and/or trafficking. The cystic fibrosis transmembrane conductance regulator (CFTR) is a primary example in which point mutations disrupt CFTR folding and lead to rapid degradation in the endoplasmic reticulum (ER). It has been difficult, however, to discern the mechanistic principles of such disorders, in part, because membrane protein folding takes place coincident with translation and within a highly specialized environment formed by the ribosome, Sec61 translocon, and the ER membrane. This ribosome-translocon complex (RTC) coordinates the synthesis, folding, orientation and integration of transmembrane segments across and into the ER membrane. At the same time, RTC function is controlled by specific sequence determinants within the nascent polypeptide. Recent studies of CFTR and other native membrane proteins have begun to define novel variations in translocation pathways and to elucidate the specific steps that establish complex topology. This article will attempt to reconcile advances in our understanding of protein biogenesis with emerging models of RTC function. In particular, it will emphasize how information within the nascent polypeptide is interpreted by and in turn controls RTC dynamics to generate the broad structural and functional diversity observed for naturally occurring membrane proteins.
Collapse
Affiliation(s)
- H Sadlish
- Division of Molecular Medicine, Oregon Health and Sciences University, Portland, OR 97239, USA
| | | |
Collapse
|
18
|
Han B, Dong Z, Liu Y, Chen Q, Hashimoto K, Zhang JT. Regulation of constitutive expression of mouse PTEN by the 5'-untranslated region. Oncogene 2003; 22:5325-37. [PMID: 12917634 DOI: 10.1038/sj.onc.1206783] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PTEN tumor suppressor serves as a major negative regulator of survival signaling mediated by PI3 kinase/AKT/protein kinase B pathway, and is inactivated in various human tumors. Elucidation of mechanisms responsible for PTEN expression is important for providing insight into strategies to control the loss of PTEN expression in human cancers. Although recent studies suggested that p53 and Egr-1 can modulate induced PTEN expression, the mechanism responsible for ubiquitous constitutive expression of PTEN remains elusive. PTEN mRNA contains a highly conserved and GC-rich 5'-untranslated region (5'-UTR). Recently, it has been shown that the long 5'-UTR sequences of several growth-regulated mRNAs contain promoters that can generate mRNAs with shorter 5'-UTRs. In this paper, we tested whether the 5'-UTR sequence of mouse PTEN contains a promoter that is responsible for constitutive expression of PTEN. We found that the long 5'-UTR sequence of mouse PTEN severely inhibits translation of PTEN and a heterologous gene firefly luciferase. Deletion of the most 5'-UTR sequence would enhance translation efficiency 100-fold. We also showed that the 5'-UTR sequence of mouse PTEN does not have an internal ribosome entry site (IRES) that can mediate cap-independent initiation of translation. Instead, we found that the 5'-UTR sequence of mouse PTEN contains a strong promoter that drives the production of a transcript with shorter 5'-UTRs, which can be translated with higher efficiency. This promoter was mapped to the region between -551 and -220 bases upstream of the translation start codon. Cotransfection analysis using Drosophila SL2 cells showed that Sp1 is one of the major transcription factors that can constitutively activate this promoter. Two endogenous PTEN transcripts with 5'-UTRs of 193 and 109 bases were found in DU145 and H226 cell lines. Based on these observations, we conclude that the PTEN expression may be regulated at both transcriptional and translational levels, and that the 5'-UTR sequence of PTEN contains a promoter that is responsible for constitutive PTEN expression.
Collapse
Affiliation(s)
- Baoguang Han
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | |
Collapse
|
19
|
Han B, Zhang JT. Regulation of gene expression by internal ribosome entry sites or cryptic promoters: the eIF4G story. Mol Cell Biol 2002; 22:7372-84. [PMID: 12370285 PMCID: PMC135655 DOI: 10.1128/mcb.22.21.7372-7384.2002] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
As an alternative to the scanning mechanism of initiation, the direct-internal-initiation mechanism postulates that the translational machinery assembles at the AUG start codon without traversing the entire 5' untranslated region (5'-UTR) of the mRNA. Although the existence of internal ribosome entry sites (IRESs) in viral mRNAs is considered to be well established, the existence of IRESs in cellular mRNAs has recently been challenged, in part because when testing is carried out using a conventional dicistronic vector, Northern blot analyses might not be sensitive enough to detect low levels of monocistronic transcripts derived via a cryptic promoter or splice site. To address this concern, we created a new promoterless dicistronic vector to test the putative IRES derived from the 5'-UTR of an mRNA that encodes the translation initiation factor eIF4G. Our analysis of this 5'-UTR sequence unexpectedly revealed a strong promoter. The activity of the internal promoter relies on the integrity of a polypyrimidine tract (PPT) sequence that had been identified as an essential component of the IRES. The PPT sequence overlaps with a binding site for transcription factor C/EBPbeta. Two other transcription factors, Sp1 and Ets, were also found to bind to and mediate expression from the promoter in the 5'-UTR of eIF4G mRNA. The biological significance of the internal promoter in the eIF4G mRNA might lie in the production of an N-terminally truncated form of the protein. Consistent with the idea that the cryptic promoter we identified underlies the previously reported IRES activity, we found no evidence of IRES function when a dicistronic mRNA containing the eIF4G sequence was translated in vitro or in vivo. Using the promoterless dicistronic vector, we also found promoter activities in the long 5'-UTRs of human Sno and mouse Bad mRNAs although monocistronic transcripts were not detectable on Northern blot analyses. The promoterless dicistronic vector might therefore prove useful in future studies to examine more rigorously the claim that there is IRES activity in cellular mRNAs.
Collapse
Affiliation(s)
- Baoguang Han
- Department of Pharmacology and Toxicology, Walther Oncology Center/Walther Cancer Institute and I.U. Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | |
Collapse
|
20
|
Romano JD, Michaelis S. Topological and mutational analysis of Saccharomyces cerevisiae Ste14p, founding member of the isoprenylcysteine carboxyl methyltransferase family. Mol Biol Cell 2001; 12:1957-71. [PMID: 11451995 PMCID: PMC55642 DOI: 10.1091/mbc.12.7.1957] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Eukaryotic proteins that terminate in a CaaX motif undergo three processing events: isoprenylation, C-terminal proteolytic cleavage, and carboxyl methylation. In Saccharomyces cerevisiae, the latter step is mediated by Ste14p, an integral endoplasmic reticulum membrane protein. Ste14p is the founding member of the isoprenylcysteine carboxyl methyltransferase (ICMT) family, whose members share significant sequence homology. Because the physiological substrates of Ste14p, such as Ras and the yeast a-factor precursor, are isoprenylated and reside on the cytosolic side of membranes, the Ste14p residues involved in enzymatic activity are predicted to be cytosolically disposed. In this study, we have investigated the topology of Ste14p by analyzing the protease protection of epitope-tagged versions of Ste14p and the glycosylation status of Ste14p-Suc2p fusions. Our data lead to a topology model in which Ste14p contains six membrane spans, two of which form a helical hairpin. According to this model most of the Ste14p hydrophilic regions are located in the cytosol. We have also generated ste14 mutants by random and site-directed mutagenesis to identify residues of Ste14p that are important for activity. Notably, four of the five loss-of-function mutations arising from random mutagenesis alter residues that are highly conserved among the ICMT family. Finally, we have identified a novel tripartite consensus motif in the C-terminal region of Ste14p. This region is similar among all ICMT family members, two phospholipid methyltransferases, several ergosterol biosynthetic enzymes, and a group of bacterial open reading frames of unknown function. Site-directed and random mutations demonstrate that residues in this region play a critical role in the function of Ste14p.
Collapse
Affiliation(s)
- J D Romano
- Department of Cell Biology and Anatomy, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
21
|
|
22
|
Zhang JT. The multi-structural feature of the multidrug resistance gene product P-glycoprotein: implications for its mechanism of action (hypothesis). Mol Membr Biol 2001; 18:145-52. [PMID: 11463206 DOI: 10.1080/09687680110048831] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
P-glycoprotein is a member of the ATP-binding cassette (ABC) transport superfamily. It plays an important role in the development of multidrug resistance in cancers by effluxing a wide variety of anticancer drugs. A large amount of information on the structure and function of P-glycoprotein has been accumulated over recent years from studies using molecular, biochemical, and biophysical approaches. It remains unclear, however, how this protein folds in membranes and how it transports such a wide variety of hydrophobic compounds. This paper highlights the recent progress in the structural and biogenesis aspects of P-glycoprotein. A model mechanism of P-glycoprotein action is proposed as a hypothesis that is based on recent progress in studying the topological folding of P-glycoprotein.
Collapse
Affiliation(s)
- J T Zhang
- Department of Pharmacology and Toxicology, Indiana University Cancer Center and Walther Oncology Institute, Indiana University School of Medicine, Indianapolis 46202, USA.
| |
Collapse
|
23
|
Abstract
Abstractγ-Glutamyl carboxylase (GC), a polytopic membrane protein found in the endoplasmic reticulum (ER), catalyzes vitamin K–dependent posttranslational modification of glutamate to γ-carboxyl glutamate. In an attempt to delineate the structure of this important enzyme, in vitro translation and in vivo mapping were used to study its membrane topology. Using terminus-tagged full-length carboxylase, expressed in 293 cells, it was demonstrated that the amino-terminus of the GC is on the cytoplasmic side of the ER, while the carboxyl-terminus is on the lumenal side. In addition, a series of fusions were made to encode each predicted transmembrane domain (TMD) followed by a leader peptidase (Lep) reporter tag, as analyzed by the computer algorithm TOPPRED II. Following in vitro translation of each fusion in the presence of canine microsomes, the topological orientation of the Lep tag was determined by proteinase K digestion and endoglycosidase H (Endo H) cleavage. From the topological orientation of the Lep tag in each fusion, the GC spans the ER membrane at least 5 times, with its N-terminus in the cytoplasm and its C-terminus in the lumen.
Collapse
|
24
|
Abstract
γ-Glutamyl carboxylase (GC), a polytopic membrane protein found in the endoplasmic reticulum (ER), catalyzes vitamin K–dependent posttranslational modification of glutamate to γ-carboxyl glutamate. In an attempt to delineate the structure of this important enzyme, in vitro translation and in vivo mapping were used to study its membrane topology. Using terminus-tagged full-length carboxylase, expressed in 293 cells, it was demonstrated that the amino-terminus of the GC is on the cytoplasmic side of the ER, while the carboxyl-terminus is on the lumenal side. In addition, a series of fusions were made to encode each predicted transmembrane domain (TMD) followed by a leader peptidase (Lep) reporter tag, as analyzed by the computer algorithm TOPPRED II. Following in vitro translation of each fusion in the presence of canine microsomes, the topological orientation of the Lep tag was determined by proteinase K digestion and endoglycosidase H (Endo H) cleavage. From the topological orientation of the Lep tag in each fusion, the GC spans the ER membrane at least 5 times, with its N-terminus in the cytoplasm and its C-terminus in the lumen.
Collapse
|
25
|
Zhang JT, Han E, Liu Y. Role of the ribosome in sequence-specific regulation of membrane targeting and translocation of P-glycoprotein signal-anchor transmembrane segments. J Cell Sci 2000; 113 ( Pt 14):2545-55. [PMID: 10862712 DOI: 10.1242/jcs.113.14.2545] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It is thought that the topology of a polytopic protein is generated by sequential translocation and membrane integration of independent signal-anchor and stop-transfer sequences. Two well-characterized cell-free systems (rabbit reticulocyte lysate and wheat germ extract) have been widely used to study the biogenesis of secretory and membrane proteins, but different results have been observed with proteins expressed in these two different systems. For example, different topologies of P-glycoprotein (Pgp) were observed in the two systems and the cause was thought to be the source of ribosomes. To understand how the ribosome is involved in dictating membrane translocation and orientation of polytopic proteins, individual signal-anchor sequences of Pgp were dissected and examined for their membrane targeting and translocation in a combined system of wheat germ ribosomes (WGR) and rabbit reticulocyte lysate (RRL). Addition of wheat germ ribosomes to the rabbit reticulocyte lysate translation system can enhance, reduce, or have no effect on the membrane targeting and translocation of individual Pgp signal-anchor sequences, and these effects appear to be determined by the amino acid residues flanking each signal-anchor. Ribosomes regulate the membrane targeting and translocation of Pgp signal-anchors in a polytopic form differently from the same signal-anchors in isolation. Furthermore, we demonstrated that ribosomes regulate the membrane targeting and translocation of each signal-anchor cotranslationally and that this activity of ribosomes is associated with the 60S subunit. Based on this and previous studies, we propose a mechanism by which ribosomes dynamically dictate the membrane targeting and translocation of nascent polytopic membrane proteins.
Collapse
Affiliation(s)
- J T Zhang
- Department of Pharmacology and Toxicology, IU Cancer Center and Walther Oncology Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | | | | |
Collapse
|
26
|
Abstract
P-glycoprotein was initially isolated due to its role in multidrug resistance to cancer chemotherapeutics. Recent work, however, makes it increasingly apparent that this transporter is also involved in the pharmacokinetics of many drugs. P-gp is strategically expressed in the luminal epithelial cells of organs often associated with drug absorption and disposition, for example, hepatocyte canalicular membrane, renal proximal tubules, and the intestinal mucosa. P-gp is also expressed in the endothelial cells comprising the blood-brain barrier. This localization clearly suggests the potential for this protein to serve as a protective mechanism against entry of toxic xenobiotics and also suggests that P-gp is well situated to participate in the removal of therapeutic agents. Numerous investigations with drugs such as digoxin, etoposide, cyclosporine, vinblastine, Taxol, loperamide, dom-peridone, and ondansteron demonstrate that P-gp has an important role in determining the pharmacokinetics of substrate drugs. Pharmacological modulation of P-gp function to increase drug bioavailability, both on a organismal and a cellular level, is one approach currently being explored to enhance therapeutic effectiveness. This approach is not without potential collateral consequences given the wide tissue distribution of P-gp. While animals deficient in P-gp are viable and without obvious abnormalities, the pharmacokinetics and toxic consequences of several compounds are significantly altered in these animals. Thus blockade of the protective P-gp barrier in humans may have adverse effects on substrate drugs. In particular, this situation may arise when several compounds which may be substrates compete for P-gp-mediated transport. Additional multidrug transporters, notably MRP and family members, have been identified and may also determine the fate of pharmaceuticals. Further understanding the physiological role of each of the multidrug transporters is critical for determining their role in pharmacokinetics and for evaluating the consequences of modification of their activities. Such information is also important in the development of novel drugs which may be substrates for these transporters.
Collapse
|
27
|
Loo TW, Clarke DM. Determining the structure and mechanism of the human multidrug resistance P-glycoprotein using cysteine-scanning mutagenesis and thiol-modification techniques. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1461:315-25. [PMID: 10581364 DOI: 10.1016/s0005-2736(99)00165-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The multidrug resistance P-glycoprotein is an ATP-dependent drug pump that extrudes a broad range of hydrophobic compounds out of cells. Its physiological role is likely to protect us from exogenous and endogenous toxins. The protein is important because it contributes to the phenomenon of multidrug resistance during AIDS and cancer chemotherapy. We have used cysteine-scanning mutagenesis and thiol-modification techniques to map the topology of the protein, show that both nucleotide-binding domains are essential for activity, examine packing of the transmembrane segments, map the drug-binding site, and show that there is cross-talk between the ATP-binding sites and the transmembrane segments.
Collapse
Affiliation(s)
- T W Loo
- Department of Medicine and Biochemistry, University of Toronto, Rm. 7342, Medical Sciences Building, 1 King's College Circle, Toronto, Ont., Canada
| | | |
Collapse
|
28
|
Holland IB, Blight MA. ABC-ATPases, adaptable energy generators fuelling transmembrane movement of a variety of molecules in organisms from bacteria to humans. J Mol Biol 1999; 293:381-99. [PMID: 10529352 DOI: 10.1006/jmbi.1999.2993] [Citation(s) in RCA: 445] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The approximately 27 kDa ABC-ATPase, an extraordinarily conserved, unique type of ATPase, acts as a machine to fuel the movement across membranes of almost any type of molecule, from large polypeptides to small ions, via many different membrane-spanning proteins. A particular ABC-ATPase must therefore be tailor-made to function in a complex with its cognate membrane protein, forming a transport pathway appropriate for a specific type of molecule, or in the case of some ABC-transporters, several types of molecule. Molecules to be transported recognise their own transporter, bind and switch on the ATPase, which in turn activates or opens the transport pathway. ABC-dependent transport can be inwards across the membrane, or outwards to the cell exterior, and the ABC-ATPase can fuel transport through pathways which may involve a classical channel (CFTR), a "gateway" mechanism through a proteinacious chamber spanning the bilayer, or conceivably via a pathway at the protein-lipid interface of the outside of the membrane domain. This may be the case for drugs transported by Pgp, a multidrug resistance transporter. In this review, we try to identify the common fundamental principles which unite all ABC-transporters, including the basis of specificity for different transported compounds (allocrites), the interactions between the ATPase and membrane domains, activation of the ATPase and the coupling of consequent conformational changes, to the final movement of an allocrite through a given transport pathway. We discuss the so far limited structural information for the intact ABC-transporter complex and the exciting information from the first crystal structure of an ABC-ATPase. Finally, the action of specific transporters, CFTR (Cl- transport), Pgp, MRP and LmrA, all transporting many different drug molecules and HlyB transporting a large protein toxin are discussed.
Collapse
Affiliation(s)
- I B Holland
- Institut de Genetique et Microbiologie, Batiment 409, Universite Paris-Sud, 91405, France.
| | | |
Collapse
|
29
|
Abstract
The formation of a lipoprotein membrane within specialized areas of the cytoplasm is the first visible step in poxvirus morphogenesis. The A17L viral protein, an essential nonglycosylated membrane component, was predicted to have four centrally located alpha-helical membrane-spanning domains. The gene was expressed as a 23-kDa protein in a cell-free transcription/translation system containing canine pancreatic microsomes. The N- and C-terminal ends of the membrane-associated protein were susceptible to proteinase digestion, whereas the central region was resistant, consistent with a model in which the first and fourth hydrophobic domains are membrane spanning. This topology was supported by the sizes of the major proteinase-resistant membrane-associated products of genes containing one or more deleted hydrophobic domains and by evidence that the C-terminus was intraluminal and glycosylated on deletion of the second, third, and fourth domains, the third and fourth domains, or just the fourth domain. Moreover, glycosylation also occurred when an N-glycosylation site was introduced into the second hydrophobic domain of the full-length A17L protein. The data indicated a predominant topology in which the N- and C-termini are cytoplasmic, the first and fourth hydrophobic domains span the microsomal membrane, and the second and third hydrophobic domains are intraluminal. This arrangement has important implications for interactions of the A17L protein with other membrane components.
Collapse
Affiliation(s)
- T Betakova
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-0445, USA
| | | | | |
Collapse
|
30
|
Han ES, Zhang JT. Membrane orientation of carboxyl-terminal half P-glycoprotein: topogenesis of transmembrane segments. Eur J Cell Biol 1999; 78:624-31. [PMID: 10535304 DOI: 10.1016/s0171-9335(99)80047-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Multiple topological orientations of the carboxyl-terminal half of P-glycoprotein have been observed. One orientation is consistent with the hydropathy-predicted model and contains six transmembrane (TM)-spanning regions. In another orientation, the cytoplasmic-predicted loop between TM8 and TM9 is extracellular and glycosylated. In support of this "alternative" topology, TM8 was previously established to function as a signal-anchor sequence to insert with its amino-terminal end in the cytoplasm and the carboxyl-terminal end in the extracytoplasmic space. However, it is unclear how downstream TM segments fold in the membrane when TM8 functions as a signal-anchor sequence. Here, we created several chimeric Pgp molecules to examine the membrane insertion of TM segments 9 and 10 using a cell-free system. We found that TM9 functions as a stop-transfer sequence when following the signal-anchor sequence, TM8. However, the stop-transfer activity of TM9 depends on the presence of TM10. In the absence of TM10, TM9 partially translocated across the membrane into the endoplasmic reticulum lumen. In contrast, TM9 efficiently stopped the translocation event of the nascent chain in the presence of TM10. Our results suggest that the membrane insertion of TM8 and TM9 establishes the extracellular loop between TM8 and TM9. Formation of this loop apparently involves the interactions between Pgp TM segments, which facilitate proper folding of the Pgp carboxyl-terminal half.
Collapse
Affiliation(s)
- E S Han
- Department of Physiology and Biophysics, University of Texas Medical Branch, Galveston, USA
| | | |
Collapse
|
31
|
Zhou Y, Gottesman MM, Pastan I. The extracellular loop between TM5 and TM6 of P-glycoprotein is required for reactivity with monoclonal antibody UIC2. Arch Biochem Biophys 1999; 367:74-80. [PMID: 10375401 DOI: 10.1006/abbi.1999.1221] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
P-glycoprotein (P-gp), encoded by the MDR1 gene, is a plasma membrane transporter which confers resistance to many chemotherapeutic drugs. Monoclonal antibodies raised against P-gp have been used as tools to study P-gp topology and activity. Monoclonal antibody UIC2 recognizes a functional conformation of P-gp on the cell surface and blocks P-gp-mediated drug transport. Knowledge about the UIC2 epitope and the mechanism of its inhibitory effects may be helpful for understanding P-gp structure and developing P-gp inhibitors. In the present work, using several chimeras of MDR1 and MDR2, we found that the native sequence of the predicted extracellular loop between transmembrane domains (TM) 5 and 6 of P-gp is necessary, but not sufficient, for UIC2 reactivity. In addition, UIC2 reactivity is also affected by mutations in TM6, a region known to be involved in interactions of P-gp with substrates. These observations suggest that residues in the extracellular loop between TM5 and TM6 are directly involved in the display of the UIC2 epitope. Since TM6 has been shown to be actively involved in drug transport process, the proximity of this region to TM6 may help to explain why UIC2 binding is sensitive to the functional state of P-gp and why binding of UIC2 inhibits P-gp-mediated drug transport.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/chemistry
- ATP Binding Cassette Transporter, Subfamily B/genetics
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- ATP Binding Cassette Transporter, Subfamily B, Member 1/chemistry
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/immunology
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- ATP-Binding Cassette Transporters/chemistry
- ATP-Binding Cassette Transporters/genetics
- ATP-Binding Cassette Transporters/metabolism
- Amino Acid Sequence
- Amino Acid Substitution
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- Antibody Specificity
- Binding Sites/drug effects
- Biological Transport/drug effects
- Cyclosporine/pharmacology
- Epitopes/chemistry
- Epitopes/genetics
- Epitopes/immunology
- Flow Cytometry
- Fluorescent Dyes/metabolism
- HeLa Cells
- Humans
- Molecular Sequence Data
- Mutation
- Protein Conformation/drug effects
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Recombinant Fusion Proteins/metabolism
- Sequence Alignment
- Transfection
- Vinblastine/pharmacology
Collapse
Affiliation(s)
- Y Zhou
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, Maryland, 20892, USA
| | | | | |
Collapse
|
32
|
Romagnoli G, Poloni F, Flego M, Moretti F, Di Modugno F, Chersi A, Falasca G, Signoretti C, Castagna M, Cianfriglia M. Epitope mapping of the monoclonal antibody MM12.10 to external MDR1 P-glycoprotein domain by synthetic peptide scanning and phage display technologies. Biol Chem 1999; 380:553-9. [PMID: 10384961 DOI: 10.1515/bc.1999.070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Epitope mapping of MDR1-P-glycoprotein using specific monoclonal antibodies (mAbs) may help in delineating P-glycoprotein topology and hence in elucidating the relationship between its structural organization and drug-efflux pump function. In this work, by using synthetic peptide scanning and phage display technologies, the binding sites of the mAb MM12.10, a novel antibody to intact human multidrug resistant (MDR) cells, were studied. The results we obtained confirm that two regions localized on the predicted fourth and sixth loops are indeed external and that MDR1 peptides covering the inner domain of the current 12 transmembrane segment (TMs) model of P-glycoprotein could form part of the MM12.10 epitope.
Collapse
Affiliation(s)
- G Romagnoli
- Laboratorio di Immunologia, Istituto Superiore di Sanità, Roma, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Loo TW, Clarke DM. The glycosylation and orientation in the membrane of the third cytoplasmic loop of human P-glycoprotein is affected by mutations and substrates. Biochemistry 1999; 38:5124-9. [PMID: 10213617 DOI: 10.1021/bi982525y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Multiple topologies have been detected for the COOH-terminal half of the human multidrug resistance P-glycoprotein (P-gp). In one topology, the predicted third cytoplasmic loop (CL3) is on the cytoplasmic side (P-gp-CL3-cyt) of the membrane. In an alternate topology, CL3 is on the extracellular side of the membrane (P-gp-CL3-ext). It is not known if both forms of P-gp are active because it is difficult to distinguish either topology in the full-length molecule. When the halves of P-gp are expressed as separate polypeptides, the two topologies of the C-Half are readily distinguished on SDS-PAGE, because only the C-Half (CL3-ext) is glycosylated. To test whether both topologies can fold into an active enzyme, we assayed for interaction between the N- and C-Halves of P-gp since functional P-gp requires interaction between both halves. In a mutant P-gp (E875C) that gave about equal amounts of both topologies, only the C-Half (CL3-cyt) could be recovered by nickel chromatography after coexpression with the histidine-tagged N-Half P-gp. The isolated N-Half and E875C C-Half (CL3-cyt) polypeptides, when expressed together, exhibited verapamil- and vinblastine-stimulated ATPase activities that were similar to the wild-type enzyme. We also found that biosynthesis of mutant E875C C-Half in the presence of the N-Half P-gp resulted in enhanced expression of C-Half (CL3-cyt). By contrast, interaction of C-Half (CL3-ext) with N-Half P-gp was not detected. These results show that the topology of the C-Half portion of P-gp greatly influences its interactions with the amino-terminal half of the molecule.
Collapse
Affiliation(s)
- T W Loo
- Medical Research Council Group in Membrane Biology, Department of Medicine, University of Toronto, Ontario, Canada
| | | |
Collapse
|
34
|
Puskás F, Marcolongo P, Watkins SL, Mandl J, Allan BB, Houston P, Burchell A, Benedetti A, Bánhegyi G. Conformational change of the catalytic subunit of glucose-6-phosphatase in rat liver during the fetal-to-neonatal transition. J Biol Chem 1999; 274:117-22. [PMID: 9867818 DOI: 10.1074/jbc.274.1.117] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The glucose-6-phosphatase system was investigated in fetal rat liver microsomal vesicles. Several observations indicate that the orientation of the catalytic subunit is different in the fetal liver in comparison with the adult form: (i) the phosphohydrolase activity was not latent using glucose-6-phosphate as substrate, and in the case of other phosphoesters it was less latent; (ii) the intravesicular accumulation of glucose upon glucose-6-phosphate hydrolysis was lower; (iii) the size of the intravesicular glucose-6-phosphate pool was independent of the glucose-6-phosphatase activities; (iv) antibody against the loop containing the proposed catalytic site of the enzyme inhibited the phosphohydrolase activity in fetal but not in adult rat liver microsomes. Glucose-6-phosphate, phosphate, and glucose uptake could be detected by both light scattering and/or rapid filtration method in fetal liver microsomes; however, the intravesicular glucose-6-phosphate and glucose accessible spaces were proportionally smaller than in adult rat liver microsomes. These data demonstrate that the components of the glucose-6-phosphatase system are already present, although to a lower extent, in fetal liver, but they are functionally uncoupled by the extravesicular orientation of the catalytic subunit.
Collapse
Affiliation(s)
- F Puskás
- Istituto di Patologia Generale, Università di Siena, 53100 Siena, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Seal RP, Leighton BH, Amara SG. Transmembrane topology mapping using biotin-containing sulfhydryl reagents. Methods Enzymol 1998; 296:318-31. [PMID: 9779458 DOI: 10.1016/s0076-6879(98)96024-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- R P Seal
- Program in Neuroscience, Vollum Institute for Advanced Biomedical Research, Oregon Health Sciences University, Portland 97201, USA
| | | | | |
Collapse
|
36
|
Moss K, Helm A, Lu Y, Bragin A, Skach WR. Coupled translocation events generate topological heterogeneity at the endoplasmic reticulum membrane. Mol Biol Cell 1998; 9:2681-97. [PMID: 9725920 PMCID: PMC25541 DOI: 10.1091/mbc.9.9.2681] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/1998] [Accepted: 06/10/1998] [Indexed: 01/04/2023] Open
Abstract
Topogenic determinants that direct protein topology at the endoplasmic reticulum membrane usually function with high fidelity to establish a uniform topological orientation for any given polypeptide. Here we show, however, that through the coupling of sequential translocation events, native topogenic determinants are capable of generating two alternate transmembrane structures at the endoplasmic reticulum membrane. Using defined chimeric and epitope-tagged full-length proteins, we found that topogenic activities of two C-trans (type II) signal anchor sequences, encoded within the seventh and eighth transmembrane (TM) segments of human P-glycoprotein were directly coupled by an inefficient stop transfer (ST) sequence (TM7b) contained within the C-terminus half of TM7. Remarkably, these activities enabled TM7 to achieve both a single- and a double-spanning TM topology with nearly equal efficiency. In addition, ST and C-trans signal anchor activities encoded by TM8 were tightly linked to the weak ST activity, and hence topological fate, of TM7b. This interaction enabled TM8 to span the membrane in either a type I or a type II orientation. Pleiotropic structural features contributing to this unusual topogenic behavior included 1) a short, flexible peptide loop connecting TM7a and TM7b, 2) hydrophobic residues within TM7b, and 3) hydrophilic residues between TM7b and TM8.
Collapse
Affiliation(s)
- K Moss
- Departments of Molecular and Cellular Engineering and Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
37
|
Affiliation(s)
- W R Skach
- Department of Molecular and Cellular Engineering, University of Pennsylvania, Philadelphia 19104, USA
| |
Collapse
|
38
|
Zhang JT. Use of cell-free systems to determine P-glycoprotein transmembrane topology. Methods Enzymol 1998; 292:279-89. [PMID: 9711561 DOI: 10.1016/s0076-6879(98)92022-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/biosynthesis
- ATP Binding Cassette Transporter, Subfamily B, Member 1/chemistry
- ATP Binding Cassette Transporter, Subfamily B, Member 1/isolation & purification
- Amino Acid Sequence
- Animals
- Cell Membrane/metabolism
- Cell Membrane/ultrastructure
- Cell-Free System
- Cloning, Molecular/methods
- DNA, Complementary
- DNA-Directed RNA Polymerases/metabolism
- Dogs
- Electrophoresis, Polyacrylamide Gel/methods
- Glycosylation
- Indicators and Reagents
- Microsomes/metabolism
- Models, Molecular
- Molecular Sequence Data
- Pancreas/metabolism
- Protein Biosynthesis
- Protein Conformation
- Recombinant Proteins/biosynthesis
- Recombinant Proteins/chemistry
- Recombinant Proteins/isolation & purification
- Transcription, Genetic
Collapse
Affiliation(s)
- J T Zhang
- Department of Physiology and Biophysics, University of Texas Medical Branch, Galveston 77555, USA
| |
Collapse
|
39
|
Rea PA, Li ZS, Lu YP, Drozdowicz YM, Martinoia E. FROM VACUOLAR GS-X PUMPS TO MULTISPECIFIC ABC TRANSPORTERS. ACTA ACUST UNITED AC 1998; 49:727-760. [PMID: 15012252 DOI: 10.1146/annurev.arplant.49.1.727] [Citation(s) in RCA: 175] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
While the concept of H+-coupling has dominated studies of energy-dependent organic solute transport in plants for over two decades, recent studies have demonstrated the existence of a group of organic solute transporters, belonging to the ATP-binding cassette (ABC) superfamily, that are directly energized by MgATP rather than by a transmembrane H+-electrochemical potential difference. Originally identified in microbial and animal cells, the ABC superfamily is one of the largest and most widespread protein families known. Competent in the transport of a broad range of substances including sugars, peptides, alkaloids, inorganic anions, and lipids, all ABC transporters are constituted of one or two copies each of an integral membrane sector and cytosolically oriented ATP-binding domain. To date, two major subclasses, the multidrug resistance-associated proteins (MRPs) and multidrug resistance proteins (MDRs) (so named because of the phenotypes conferred by their animal prototypes), have been identified molecularly in plants. However, only the MRPs have been defined functionally. This review therefore focuses on the functional capabilities, energetics, organization, and regulation of the plant MRPs. Otherwise known as GS-X pumps, or glutathione-conjugate or multispecific organic anion Mg2+-ATPases, the MRPs are considered to participate in the transport of exogenous and endogenous amphipathic anions and glutathionated compounds from the cytosol into the vacuole. Encoded by a multigene family and possessing a unique domain organization, the types of processes that likely converge and depend on plant MRPs include herbicide detoxification, cell pigmentation, the alleviation of oxidative damage, and the storage of antimicrobial compounds. Additional functional capabilities might include channel regulation or activity, and/or the transport of heavy metal chelates. The identification of the MRPs, in particular, and the demonstration of a central role for ABC transporters, in general, in plant function not only provide fresh insights into the molecular basis of energy-dependent solute transport but also offer the prospect for manipulating and investigating many fundamental processes that have hitherto evaded analysis at the transport level.
Collapse
Affiliation(s)
- Philip A. Rea
- Plant Science Institute, Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104; e-mail: , Institut de Botanique, Universite de Neuchatel, 2007 Neuchatel, Switzerland
| | | | | | | | | |
Collapse
|
40
|
Zhang JT, Chen M, Han E, Wang C. Dissection of de novo membrane insertion activities of internal transmembrane segments of ATP-binding-cassette transporters: toward understanding topological rules for membrane assembly of polytopic membrane proteins. Mol Biol Cell 1998; 9:853-63. [PMID: 9529383 PMCID: PMC25312 DOI: 10.1091/mbc.9.4.853] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The membrane assembly of polytopic membrane proteins is a complicated process. Using Chinese hamster P-glycoprotein (Pgp) as a model protein, we investigated this process previously and found that Pgp expresses more than one topology. One of the variations occurs at the transmembrane (TM) domain including TM3 and TM4: TM4 inserts into membranes in an N(in)-C(out) rather than the predicted N(out)-C(in) orientation, and TM3 is in cytoplasm rather than the predicted N(in)-C(out) orientation in the membrane. It is possible that TM4 has a strong activity to initiate the N(in)-C(out) membrane insertion, leaving TM3 out of the membrane. Here, we tested this hypothesis by expressing TM3 and TM4 in isolated conditions. Our results show that TM3 of Pgp does not have de novo N(in)-C(out) membrane insertion activity whereas TM4 initiates the N(in)-C(out) membrane insertion regardless of the presence of TM3. In contrast, TM3 and TM4 of another polytopic membrane protein, cystic fibrosis transmembrane conductance regulator (CFTR), have a similar level of de novo Nin-Cout membrane insertion activity and TM4 of CFTR functions only as a stop-transfer sequence in the presence of TM3. Based on these findings, we propose that 1) the membrane insertion of TM3 and TM4 of Pgp does not follow the sequential model, which predicts that TM3 initiates N(in)-C(out) membrane insertion whereas TM4 stops the insertion event; and 2) "leaving one TM segment out of the membrane" may be an important folding mechanism for polytopic membrane proteins, and it is regulated by the N(in)-C(out) membrane insertion activities of the TM segments.
Collapse
Affiliation(s)
- J T Zhang
- Department of Physiology and Biophysics, University of Texas Medical Branch, Galveston, Texas 77555-0641, USA
| | | | | | | |
Collapse
|
41
|
Davies TG, Theodoulou FL, Hallahan DL, Forde BG. Cloning and characterisation of a novel P-glycoprotein homologue from barley. Gene 1997; 199:195-202. [PMID: 9358056 DOI: 10.1016/s0378-1119(97)00367-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
P-glycoproteins are members of a large superfamily of transport proteins (the 'traffic ATPases') that utilize ATP to translocate a wide range of substrates across biological membranes. Using a PCR-based approach, and degenerate oligonucleotides corresponding to conserved motifs, two 300-bp cDNA fragments (pBMDR1 and pBMDR2) with a significant sequence similarity to mammalian P-glycoproteins were amplified from barley (Hordeum vulgare) root poly A+ RNA and used as probes to screen a barley root cDNA library. A single full-length clone pHVMDR2 coding for a polypeptide of 1232 residues (c. 134 kDa) was isolated. Comparison of this barley sequence with Arabidopsis ATPGP1 and human MDR1 and MDR3 P-glycoprotein sequences showed that the barley cDNA has 44%, 37% and 38% amino acid (aa) identity, respectively, with these sequences, and conserved structural features. RNase protection analysis showed that HVMDR2 mRNA is expressed at low levels in both barley roots and leaves. Southern blot analyses indicated that there is a small multigene family related to P-glycoproteins in barley. Possible functions for these barley P-glycoproteins are discussed.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B
- ATP Binding Cassette Transporter, Subfamily B, Member 1/chemistry
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP-Binding Cassette Transporters/chemistry
- ATP-Binding Cassette Transporters/genetics
- Amino Acid Sequence
- Base Sequence
- Cloning, Molecular
- DNA, Complementary/genetics
- DNA, Plant/genetics
- Gene Dosage
- Gene Expression Regulation, Plant
- Genes, Plant/genetics
- Hordeum/genetics
- Molecular Sequence Data
- Phylogeny
- Plant Leaves/chemistry
- Plant Roots/chemistry
- RNA, Messenger/analysis
- RNA, Plant/chemistry
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- T G Davies
- Biochemistry and Physiology Department, IACR-Rothamsted, Harpenden, Hertfordshire, UK.
| | | | | | | |
Collapse
|
42
|
Hipfner DR, Almquist KC, Leslie EM, Gerlach JH, Grant CE, Deeley RG, Cole SP. Membrane topology of the multidrug resistance protein (MRP). A study of glycosylation-site mutants reveals an extracytosolic NH2 terminus. J Biol Chem 1997; 272:23623-30. [PMID: 9295302 DOI: 10.1074/jbc.272.38.23623] [Citation(s) in RCA: 160] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Multidrug resistance protein, MRP, is a 190-kDa integral membrane phosphoglycoprotein that belongs to the ATP-binding cassette superfamily of transport proteins and is capable of conferring resistance to multiple chemotherapeutic agents. Previous studies have indicated that MRP consists of two membrane spanning domains (MSD) each followed by a nucleotide binding domain, plus an additional extremely hydrophobic NH2-terminal MSD. Computer-assisted hydropathy analyses and multiple sequence alignments suggest several topological models for MRP. To aid in determining the topology most likely to be correct, we have identified which of the 14 N-glycosylation sequons in this protein are utilized. Limited proteolysis of MRP-enriched membranes and deglycosylation of intact MRP and its tryptic fragments with PNGase F was carried out followed by immunoblotting with antibodies known to react with specific regions of MRP. The results obtained indicated that the sequon at Asn354 in the middle MSD is not utilized and suggested approximate sites of N-glycosylation. Subsequent site-directed mutagenesis studies established that Asn19 and Asn23 in the NH2-terminal MSD and Asn1006 in the COOH-terminal MSD are the only sites in MRP that are modified with N-linked oligosaccharides. N-Glycosylation of Asn19 and Asn23 provides the first direct experimental evidence that MRP has an extracytosolic NH2 terminus. This finding, together with those of previous studies, strongly suggests that the NH2-terminal MSD of MRP contains an odd number of transmembrane helices. These results may have important implications for the further understanding of the interaction of drugs with MRP.
Collapse
Affiliation(s)
- D R Hipfner
- Department of Pathology, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | | | | | | | | | | | | |
Collapse
|
43
|
Demmer A, Thole H, Kubesch P, Brandt T, Raida M, Fislage R, Tümmler B. Localization of the iodomycin binding site in hamster P-glycoprotein. J Biol Chem 1997; 272:20913-9. [PMID: 9252419 DOI: 10.1074/jbc.272.33.20913] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
P-glycoprotein, the overexpression of which is a major cause for the failure of cancer chemotherapy in man, recognizes and transports a broad range of structurally unrelated amphiphilic compounds. This study reports on the localization of the binding site of P-glycoprotein for iodomycin, the Bolton-Hunter derivative of the anthracycline daunomycin. Plasma membrane vesicles isolated from multidrug-resistant Chinese hamster ovary B30 cells were photolabeled with [125I]iodomycin. After chemical cleavage behind the tryptophan residues, 125I-labeled peptides were separated by electrophoresis and high performance liquid chromatography. Edman sequencing revealed that [125I]iodomycin had been predominantly incorporated into the fragment 230-312 of isoform I of hamster P-glycoprotein. According to models based on hydropathy plots, the amino acid sequence 230-312 forms the distal part of transmembrane segment 4, the second cytoplasmic loop, and the proximal part of transmembrane segment 5 in the N-terminal half of P-glycoprotein. The binding site for iodomycin is recognized with high affinity by vinblastine and cyclosporin A.
Collapse
Affiliation(s)
- A Demmer
- Klinische Forschergruppe, Zentrum Biochemie and Zentrum Kinderheilkunde, OE 4350, Medizinische Hochschule Hannover, D-30623 Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
44
|
Popov M, Tam LY, Li J, Reithmeier RA. Mapping the ends of transmembrane segments in a polytopic membrane protein. Scanning N-glycosylation mutagenesis of extracytosolic loops in the anion exchanger, band 3. J Biol Chem 1997; 272:18325-32. [PMID: 9218473 DOI: 10.1074/jbc.272.29.18325] [Citation(s) in RCA: 149] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Band 3, the anion exchanger of human erythrocytes, contains up to 14 transmembrane (TM) segments and has a single endogenous site of N-glycosylation at Asn642 in extracellular (EC) loop 4. The requirements for N-glycosylation of EC loops and the topology of this polytopic membrane protein were determined by scanning N-glycosylation mutagenesis and cell-free translation in a reticulocyte lysate supplemented with microsomal membranes. The endogenous and novel acceptor sites located near the middle of the 35 residue EC loop 4 were efficiently N-glycosylated; however, no N-glycosylation occurred at sites located within sharply defined regions close to the adjacent TM segments. Acceptor sites located in the center of EC loop 3, which contains 25 residues, were poorly N-glycosylated. Expansion of this loop with a 4-residue insert containing an acceptor site increased N-glycosylation. Acceptor sites located in short (<10 residues) loops (putative EC loops 1, 2, 6, and 7) were not N-glycosylated; however, insertion of EC loop 4 into EC loops 1, 2, or 7, but not 6, resulted in efficient N-glycosylation. Acceptor sites in putative intracellular (IC) loop 5 exhibited a similar pattern of N-glycosylation as EC loop 4, indicating a lumenal disposition during biosynthesis. To be efficiently N-glycosylated, EC loops in polytopic membrane proteins must be larger than 25 residues in size, with acceptor sites located greater than 12 residues away from the preceding TM segment and greater than 14 residues away from the following TM segment. Application of this requirement allowed a significant refinement of the topology of Band 3 including a more accurate mapping of the ends of TM segments. The strict distance dependence for N-glycosylation of loops suggests that TM segments in polytopic membrane proteins are held quite precisely within the translocation machinery during the N-glycosylation process.
Collapse
Affiliation(s)
- M Popov
- Medical Research Council of Canada Group in Membrane Biology, Departments of Medicine and Biochemistry, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | | | | | | |
Collapse
|
45
|
|
46
|
Elliott T. Transporter Associated with Antigen Processing**This article was accepted for publication on 1 October 1996. Adv Immunol 1997. [DOI: 10.1016/s0065-2776(08)60741-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
47
|
Bosch I, Croop J. P-glycoprotein multidrug resistance and cancer. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1288:F37-54. [PMID: 8876632 DOI: 10.1016/0304-419x(96)00022-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- I Bosch
- Division of Pediatric Oncology, Dana-Farber Cancer Institute, Children's Hospital, Harward Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
48
|
Sonveaux N, Shapiro AB, Goormaghtigh E, Ling V, Ruysschaert JM. Secondary and tertiary structure changes of reconstituted P-glycoprotein. A Fourier transform attenuated total reflection infrared spectroscopy analysis. J Biol Chem 1996; 271:24617-24. [PMID: 8798727 DOI: 10.1074/jbc.271.40.24617] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The structure of purified P-glycoprotein functionally reconstituted into liposomes was investigated by attenuated total reflection Fourier transform infrared spectroscopy. A quantitative evaluation of the secondary structure and a kinetic of 2H/H exchange of the P-glycoprotein were performed both in the presence and in the absence of MgATP, MgATP-verapamil, and MgADP. This approach was previously shown to be a useful tool to detect tertiary structure changes resulting from the interaction between a protein and its specific ligands, as established for the Neurospora crassa H+-ATPase. 2H/H exchange measurements provided evidence that a large fraction of the P-glycoprotein is poorly accessible to the aqueous medium. Addition of MgATP induced an increased accessibility to the solvent of a population of amino acids, while addition of MgATP-verapamil resulted in a subtraction of a part of the protein from access to the aqueous solvent. No significant changes were observed upon addition of MgADP or verapamil alone. The secondary structure of P-glycoprotein was not affected by addition of ligands. The variations observed in the 2H/H exchange rate when P-glycoprotein interacted with the above ligands therefore represented tertiary structure changes. Fluorescence quenching experiments confirmed that MgATP-induced changes are to be found in the tertiary structure of the enzyme.
Collapse
Affiliation(s)
- N Sonveaux
- Laboratoire de Chimie Physique des Macromolécules aux Interfaces, Université Libre de Bruxelles, B-1050 Brussels, Belgium
| | | | | | | | | |
Collapse
|
49
|
Yang Y, Sempé P, Peterson PA. Molecular mechanisms of class I major histocompatibility complex antigen processing and presentation. Immunol Res 1996; 15:208-33. [PMID: 8902577 DOI: 10.1007/bf02918250] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The presentation of antigenic peptides by class I major histocompatibility complex molecules plays a central role in the cellular immune response, since immune surveillance for detection of viral infections or malignant transformations is achieved by CD8+ T lymphocytes which inspect peptides, derived from intracellular proteins, bind to class I molecules on the surface of most cells. The transporter associated with antigen processing selectively translocates cytoplasmically derived peptides of appropriate sequence and length into the lumen of the endoplasmic reticulum where they associate with newly synthesized class I molecules. The translocated peptides are generated by multicatalytic and multisubunit proteasomes which degrade cytoplasmic proteins in a ATP-ubiquitin-dependent manner. This review discusses our current molecular understanding of class I antigen processing and presentation.
Collapse
Affiliation(s)
- Y Yang
- R.W. Johnson Pharmaceutical Research Institute, Scripps Research Institute, La Jolla, Calif 92037, USA
| | | | | |
Collapse
|
50
|
von Dippe P, Amoui M, Stellwagen RH, Levy D. The functional expression of sodium-dependent bile acid transport in Madin-Darby canine kidney cells transfected with the cDNA for microsomal epoxide hydrolase. J Biol Chem 1996; 271:18176-80. [PMID: 8663355 DOI: 10.1074/jbc.271.30.18176] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Previous studies have suggested that the enzyme microsomal epoxide hydrolase (mEH) is able to mediate sodium-dependent transport of bile acids such as taurocholate into hepatocytes (von Dippe, P., Amoui, M., Alves, C., and Levy, D.(1993) Am. J. Physiol. 264, G528-G534). In order to characterize directly the putative transport properties of the enzyme, a pCB6 vector containing the cDNA for this protein (pCB6-mEH) was transfected into Madin-Darby canine kidney (MDCK) cells, and stable transformants were isolated that could express mEH at levels comparable with the levels expressed in hepatocytes. Sodium-dependent transport of taurocholate was shown to be dependent on the expression of mEH and to be inhibited by the bile acid transport inhibitor 4,4'-diisothiocyanostilbene-2,2'disulfonic acid (DIDS), as well as by other bile acids. Kinetic analysis of this system indicated a Km of 26.3 microM and a Vmax of 117 pmol/mg protein/min. The Km value is essentially the same as that observed in intact hepatocytes. The transfected MDCK cells also exhibited sodium-dependent transport of cholate at levels 150% of taurocholate in contrast to hepatocytes where cholate transport is only 30% of taurocholate levels, suggesting that total hepatocyte bile acid transport is a function of multiple transport systems with different substrate specificities, where mEH preferentially transports cholate. This hypothesis is further supported by the observation that a monoclonal antibody that partially protects (26%) taurocholate transport from inhibition by DIDS in hepatocytes provides almost complete protection (88%) from DIDS inhibition of hepatocyte cholate transport, suggesting that taurocholate is also taken up by an alternative system not recognized by this antibody. Additional support for this concept is provided by the observation that the taurocholate transport system is almost completely protected (92%) from DIDS inhibition by this antibody in MDCK cells that express mEH as the only bile acid transporter. These results demonstrate that mEH is expressed on the surface of hepatocytes as well as on transfected MDCK cells and is able to mediate sodium-dependent transport of taurocholate and cholate.
Collapse
Affiliation(s)
- P von Dippe
- University of Southern California, School of Medicine, Department of Biochemistry and Molecular Biology, Los Angeles, California 90033, USA
| | | | | | | |
Collapse
|