1
|
St John JC, Okada T, Andreas E, Penn A. The role of mtDNA in oocyte quality and embryo development. Mol Reprod Dev 2023; 90:621-633. [PMID: 35986715 PMCID: PMC10952685 DOI: 10.1002/mrd.23640] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/01/2022] [Accepted: 08/08/2022] [Indexed: 09/02/2023]
Abstract
The mitochondrial genome resides in the mitochondria present in nearly all cell types. The porcine (Sus scrofa) mitochondrial genome is circa 16.7 kb in size and exists in the multimeric format in cells. Individual cell types have different numbers of mitochondrial DNA (mtDNA) copy number based on their requirements for ATP produced by oxidative phosphorylation. The oocyte has the largest number of mtDNA of any cell type. During oogenesis, the oocyte sets mtDNA copy number in order that sufficient copies are available to support subsequent developmental events. It also initiates a program of epigenetic patterning that regulates, for example, DNA methylation levels of the nuclear genome. Once fertilized, the nuclear and mitochondrial genomes establish synchrony to ensure that the embryo and fetus can complete each developmental milestone. However, altering the oocyte's mtDNA copy number by mitochondrial supplementation can affect the programming and gene expression profiles of the developing embryo and, in oocytes deficient of mtDNA, it appears to have a positive impact on the embryo development rates and gene expression profiles. Furthermore, mtDNA haplotypes, which define common maternal origins, appear to affect developmental outcomes and certain reproductive traits. Nevertheless, the manipulation of the mitochondrial content of an oocyte might have a developmental advantage.
Collapse
Affiliation(s)
- Justin C. St John
- The Mitochondrial Genetics Group, The School of Biomedicine and The Robinson Research InstituteThe University of AdelaideAdelaideSouth AustraliaAustralia
| | - Takashi Okada
- The Mitochondrial Genetics Group, The School of Biomedicine and The Robinson Research InstituteThe University of AdelaideAdelaideSouth AustraliaAustralia
| | - Eryk Andreas
- The Mitochondrial Genetics Group, The School of Biomedicine and The Robinson Research InstituteThe University of AdelaideAdelaideSouth AustraliaAustralia
| | - Alexander Penn
- The Mitochondrial Genetics Group, The School of Biomedicine and The Robinson Research InstituteThe University of AdelaideAdelaideSouth AustraliaAustralia
| |
Collapse
|
2
|
St John JC. Epigenetic Regulation of the Nuclear and Mitochondrial Genomes: Involvement in Metabolism, Development, and Disease. Annu Rev Anim Biosci 2021; 9:203-224. [PMID: 33592161 DOI: 10.1146/annurev-animal-080520-083353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Our understanding of the interactions between the nuclear and mitochondrial genomes is becoming increasingly important as they are extensively involved in establishing early development and developmental progression. Evidence from various biological systems indicates the interdependency between the genomes, which requires a high degree of compatibility and synchrony to ensure effective cellular function throughout development and in the resultant offspring. During development, waves of DNA demethylation, de novo methylation, and maintenance methylation act on the nuclear genome and typify oogenesis and pre- and postimplantation development. At the same time, significant changes in mitochondrial DNA copy number influence the metabolic status of the developing organism in a typically cell-type-specific manner. Collectively, at any given stage in development, these actions establish genomic balance that ensures each developmental milestone is met and that the organism's program for life is established.
Collapse
Affiliation(s)
- Justin C St John
- Mitochondrial Genetics Group, Robinson Research Institute and School of Medicine, University of Adelaide, Adelaide, South Australia 5005, Australia;
| |
Collapse
|
3
|
Acharya N, Khandagale P, Thakur S, Sahu JK, Utkalaja BG. Quaternary structural diversity in eukaryotic DNA polymerases: monomeric to multimeric form. Curr Genet 2020; 66:635-655. [PMID: 32236653 DOI: 10.1007/s00294-020-01071-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/13/2020] [Accepted: 03/24/2020] [Indexed: 12/14/2022]
Abstract
Sixteen eukaryotic DNA polymerases have been identified and studied so far. Based on the sequence similarity of the catalytic subunits of DNA polymerases, these have been classified into four A, B, X and Y families except PrimPol, which belongs to the AEP family. The quaternary structure of these polymerases also varies depending upon whether they are composed of one or more subunits. Therefore, in this review, we used a quaternary structure-based classification approach to group DNA polymerases as either monomeric or multimeric and highlighted functional significance of their accessory subunits. Additionally, we have briefly summarized various DNA polymerase discoveries from a historical perspective, emphasized unique catalytic mechanism of each DNA polymerase and highlighted recent advances in understanding their cellular functions.
Collapse
Affiliation(s)
- Narottam Acharya
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, India.
| | - Prashant Khandagale
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, India
| | - Shweta Thakur
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, India
| | - Jugal Kishor Sahu
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, India
| | - Bhabasha Gyanadeep Utkalaja
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, India
| |
Collapse
|
4
|
Marygold SJ, Attrill H, Speretta E, Warner K, Magrane M, Berloco M, Cotterill S, McVey M, Rong Y, Yamaguchi M. The DNA polymerases of Drosophila melanogaster. Fly (Austin) 2020; 14:49-61. [PMID: 31933406 PMCID: PMC7714529 DOI: 10.1080/19336934.2019.1710076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/19/2019] [Accepted: 12/23/2019] [Indexed: 11/08/2022] Open
Abstract
DNA synthesis during replication or repair is a fundamental cellular process that is catalyzed by a set of evolutionary conserved polymerases. Despite a large body of research, the DNA polymerases of Drosophila melanogaster have not yet been systematically reviewed, leading to inconsistencies in their nomenclature, shortcomings in their functional (Gene Ontology, GO) annotations and an under-appreciation of the extent of their characterization. Here, we describe the complete set of DNA polymerases in D. melanogaster, applying nomenclature already in widespread use in other species, and improving their functional annotation. A total of 19 genes encode the proteins comprising three replicative polymerases (alpha-primase, delta, epsilon), five translesion/repair polymerases (zeta, eta, iota, Rev1, theta) and the mitochondrial polymerase (gamma). We also provide an overview of the biochemical and genetic characterization of these factors in D. melanogaster. This work, together with the incorporation of the improved nomenclature and GO annotation into key biological databases, including FlyBase and UniProtKB, will greatly facilitate access to information about these important proteins.
Collapse
Affiliation(s)
- Steven J. Marygold
- FlyBase, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Helen Attrill
- FlyBase, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Elena Speretta
- UniProt, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridgeshire, UK
| | - Kate Warner
- UniProt, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridgeshire, UK
| | - Michele Magrane
- UniProt, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridgeshire, UK
| | - Maria Berloco
- Dipartimento di Biologia, Università degli Studi di Bari “Aldo Moro”, Bari, Italy
| | - Sue Cotterill
- Department Basic Medical Sciences, St Georges University London, London, UK
| | - Mitch McVey
- Department of Biology, Tufts University, Medford, MA, USA
| | - Yikang Rong
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Masamitsu Yamaguchi
- Department of Applied Biology and Advanced Insect Research Promotion Center, Kyoto Institute of Technology, Kyoto, Japan
| |
Collapse
|
5
|
Mitochondrial DNA replication: a PrimPol perspective. Biochem Soc Trans 2017; 45:513-529. [PMID: 28408491 PMCID: PMC5390496 DOI: 10.1042/bst20160162] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 02/20/2017] [Accepted: 02/21/2017] [Indexed: 12/20/2022]
Abstract
PrimPol, (primase-polymerase), the most recently identified eukaryotic polymerase, has roles in both nuclear and mitochondrial DNA maintenance. PrimPol is capable of acting as a DNA polymerase, with the ability to extend primers and also bypass a variety of oxidative and photolesions. In addition, PrimPol also functions as a primase, catalysing the preferential formation of DNA primers in a zinc finger-dependent manner. Although PrimPol's catalytic activities have been uncovered in vitro, we still know little about how and why it is targeted to the mitochondrion and what its key roles are in the maintenance of this multicopy DNA molecule. Unlike nuclear DNA, the mammalian mitochondrial genome is circular and the organelle has many unique proteins essential for its maintenance, presenting a differing environment within which PrimPol must function. Here, we discuss what is currently known about the mechanisms of DNA replication in the mitochondrion, the proteins that carry out these processes and how PrimPol is likely to be involved in assisting this vital cellular process.
Collapse
|
6
|
Yu Z, O'Farrell PH, Yakubovich N, DeLuca SZ. The Mitochondrial DNA Polymerase Promotes Elimination of Paternal Mitochondrial Genomes. Curr Biol 2017; 27:1033-1039. [PMID: 28318978 DOI: 10.1016/j.cub.2017.02.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/22/2017] [Accepted: 02/07/2017] [Indexed: 01/09/2023]
Abstract
Mitochondrial DNA (mtDNA) is typically inherited from only one parent [1-3]. In animals, this is usually the mother. Maternal inheritance is often presented as the passive outcome of the difference in cytoplasmic content of egg and sperm; however, active programs enforce uniparental inheritance at two levels, eliminating paternal mitochondrial genomes or destroying mitochondria delivered to the zygote by the sperm [4-13]. Both levels operate in Drosophila [8, 12, 13]. As sperm formation begins, hundreds of doomed mitochondrial genomes are visualized within the two huge mitochondria of each spermatid. These genomes abruptly disappear during spermatogenesis. Genome elimination, which is not in the interests of the restricted genomes, is directed by nuclear genes. Mutation of EndoG, which encodes a mitochondria-targeted endonuclease, retarded elimination [8]. Here, we show that knockdown of the nuclear-encoded mtDNA polymerase (Pol γ-α), Tamas, produces a more complete block of mtDNA elimination. Tamas is found in large particles that localize to mtDNA during genome elimination. We discount a simple possible mechanism by showing that the 3'-exonuclease function of the polymerase is not needed. While DNA elimination is a surprising function for DNA polymerase, it could provide a robust nexus for nuclear control of mitochondrial genome copy number, since use of common interactions for elimination and replication might limit options for the mitochondrial genome to escape restriction. We suggest that the DNA polymerase may play this role more widely and that inappropriate activation of its elimination ability might underlie association of DNA loss syndromes with mutations of the human mtDNA polymerase [14-16].
Collapse
Affiliation(s)
- Zhongsheng Yu
- Department of Biochemistry and Biophysics, UCSF, San Francisco, CA 94107, USA
| | - Patrick H O'Farrell
- Department of Biochemistry and Biophysics, UCSF, San Francisco, CA 94107, USA.
| | - Nikita Yakubovich
- Department of Biochemistry and Biophysics, UCSF, San Francisco, CA 94107, USA
| | - Steven Z DeLuca
- Department of Biochemistry and Biophysics, UCSF, San Francisco, CA 94107, USA.
| |
Collapse
|
7
|
Euro L, Haapanen O, Róg T, Vattulainen I, Suomalainen A, Sharma V. Atomistic Molecular Dynamics Simulations of Mitochondrial DNA Polymerase γ: Novel Mechanisms of Function and Pathogenesis. Biochemistry 2017; 56:1227-1238. [PMID: 28206745 DOI: 10.1021/acs.biochem.6b00934] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
DNA polymerase γ (Pol γ) is a key component of the mitochondrial DNA replisome and an important cause of neurological diseases. Despite the availability of its crystal structures, the molecular mechanism of DNA replication, the switch between polymerase and exonuclease activities, the site of replisomal interactions, and functional effects of patient mutations that do not affect direct catalysis have remained elusive. Here we report the first atomistic classical molecular dynamics simulations of the human Pol γ replicative complex. Our simulation data show that DNA binding triggers remarkable changes in the enzyme structure, including (1) completion of the DNA-binding channel via a dynamic subdomain, which in the apo form blocks the catalytic site, (2) stabilization of the structure through the distal accessory β-subunit, and (3) formation of a putative transient replisome-binding platform in the "intrinsic processivity" subdomain of the enzyme. Our data indicate that noncatalytic mutations may disrupt replisomal interactions, thereby causing Pol γ-associated neurodegenerative disorders.
Collapse
Affiliation(s)
- Liliya Euro
- Research Programs Unit, Molecular Neurology, University of Helsinki , 00290 Helsinki, Finland
| | - Outi Haapanen
- Department of Physics, Tampere University of Technology , Tampere, Finland
| | - Tomasz Róg
- Department of Physics, Tampere University of Technology , Tampere, Finland.,Department of Physics, University of Helsinki , Helsinki, Finland
| | - Ilpo Vattulainen
- Department of Physics, Tampere University of Technology , Tampere, Finland.,Department of Physics, University of Helsinki , Helsinki, Finland.,MEMPHYS-Center for Biomembrane Physics, University of Southern Denmark , Odense, Denmark
| | - Anu Suomalainen
- Research Programs Unit, Molecular Neurology, University of Helsinki , 00290 Helsinki, Finland.,Department of Neurology, Helsinki University Hospital , Helsinki, Finland.,Neuroscience Center, University of Helsinki , 00790 Helsinki, Finland
| | - Vivek Sharma
- Department of Physics, Tampere University of Technology , Tampere, Finland.,Department of Physics, University of Helsinki , Helsinki, Finland.,Institute of Biotechnology, University of Helsinki , Helsinki, Finland
| |
Collapse
|
8
|
Abstract
Recent advances in the field of mitochondrial DNA (mtDNA) replication highlight the diversity of both the mechanisms utilized and the structural and functional organization of the proteins at mtDNA replication fork, despite the relative simplicity of the animal mtDNA genome. DNA polymerase γ, mtDNA helicase and mitochondrial single-stranded DNA-binding protein-the key replisome proteins, have evolved distinct structural features and biochemical properties. These appear to be correlated with mtDNA genomic features in different metazoan taxa and with their modes of DNA replication, although substantial integrative research is warranted to establish firmly these links. To date, several modes of mtDNA replication have been described for animals: rolling circle, theta, strand-displacement, and RITOLS/bootlace. Resolution of a continuing controversy relevant to mtDNA replication in mammals/vertebrates will have a direct impact on the mechanistic interpretation of mtDNA-related human diseases. Here we review these subjects, integrating earlier and recent data to provide a perspective on the major challenges for future research.
Collapse
Affiliation(s)
- G L Ciesielski
- Institute of Biosciences and Medical Technology, University of Tampere, Tampere, Finland; Michigan State University, East Lansing, MI, United States
| | - M T Oliveira
- Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista "Júlio de Mesquita Filho", Jaboticabal, SP, Brazil
| | - L S Kaguni
- Institute of Biosciences and Medical Technology, University of Tampere, Tampere, Finland; Michigan State University, East Lansing, MI, United States.
| |
Collapse
|
9
|
Oliveira MT, Haukka J, Kaguni LS. Evolution of the metazoan mitochondrial replicase. Genome Biol Evol 2015; 7:943-59. [PMID: 25740821 PMCID: PMC4419789 DOI: 10.1093/gbe/evv042] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2015] [Indexed: 01/10/2023] Open
Abstract
The large number of complete mitochondrial DNA (mtDNA) sequences available for metazoan species makes it a good system for studying genome diversity, although little is known about the mechanisms that promote and/or are correlated with the evolution of this organellar genome. By investigating the molecular evolutionary history of the catalytic and accessory subunits of the mtDNA polymerase, pol γ, we sought to develop mechanistic insight into its function that might impact genome structure by exploring the relationships between DNA replication and animal mitochondrial genome diversity. We identified three evolutionary patterns among metazoan pol γs. First, a trend toward stabilization of both sequence and structure occurred in vertebrates, with both subunits evolving distinctly from those of other animal groups, and acquiring at least four novel structural elements, the most important of which is the HLH-3β (helix-loop-helix, 3 β-sheets) domain that allows the accessory subunit to homodimerize. Second, both subunits of arthropods and tunicates have become shorter and evolved approximately twice as rapidly as their vertebrate homologs. And third, nematodes have lost the gene for the accessory subunit, which was accompanied by the loss of its interacting domain in the catalytic subunit of pol γ, and they show the highest rate of molecular evolution among all animal taxa. These findings correlate well with the mtDNA genomic features of each group described above, and with their modes of DNA replication, although a substantive amount of biochemical work is needed to draw conclusive links regarding the latter. Describing the parallels between evolution of pol γ and metazoan mtDNA architecture may also help in understanding the processes that lead to mitochondrial dysfunction and to human disease-related phenotypes.
Collapse
Affiliation(s)
- Marcos T Oliveira
- Institute of Biosciences and Medical Technology, University of Tampere, Finland Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista "Júlio de Mesquita Filho," Jaboticabal, SP, Brazil
| | - Jani Haukka
- Institute of Biosciences and Medical Technology, University of Tampere, Finland
| | - Laurie S Kaguni
- Institute of Biosciences and Medical Technology, University of Tampere, Finland Department of Biochemistry and Molecular Biology and Center for Mitochondrial Science and Medicine, Michigan State University
| |
Collapse
|
10
|
Viikov K, Jasnovidova O, Tamm T, Sedman J. C-terminal extension of the yeast mitochondrial DNA polymerase determines the balance between synthesis and degradation. PLoS One 2012; 7:e33482. [PMID: 22432028 PMCID: PMC3303844 DOI: 10.1371/journal.pone.0033482] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 02/15/2012] [Indexed: 11/18/2022] Open
Abstract
Saccharomyces cerevisiae mitochondrial DNA polymerase (Mip1) contains a C-terminal extension (CTE) of 279 amino acid residues. The CTE is required for mitochondrial DNA maintenance in yeast but is absent in higher eukaryotes. Here we use recombinant Mip1 C-terminal deletion mutants to investigate functional importance of the CTE. We show that partial removal of the CTE in Mip1Δ216 results in strong preference for exonucleolytic degradation rather than DNA polymerization. This disbalance in exonuclease and polymerase activities is prominent at suboptimal dNTP concentrations and in the absence of correctly pairing nucleotide. Mip1Δ216 also displays reduced ability to synthesize DNA through double-stranded regions. Full removal of the CTE in Mip1Δ279 results in complete loss of Mip1 polymerase activity, however the mutant retains its exonuclease activity. These results allow us to propose that CTE functions as a part of Mip1 polymerase domain that stabilizes the substrate primer end at the polymerase active site, and is therefore required for efficient mitochondrial DNA replication in vivo.
Collapse
Affiliation(s)
| | | | | | - Juhan Sedman
- Department of Biochemistry, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
- * E-mail:
| |
Collapse
|
11
|
Oliveira MT, Kaguni LS. Functional roles of the N- and C-terminal regions of the human mitochondrial single-stranded DNA-binding protein. PLoS One 2010; 5:e15379. [PMID: 21060847 PMCID: PMC2965674 DOI: 10.1371/journal.pone.0015379] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 08/31/2010] [Indexed: 12/31/2022] Open
Abstract
Biochemical studies of the mitochondrial DNA (mtDNA) replisome demonstrate that the mtDNA polymerase and the mtDNA helicase are stimulated by the mitochondrial single-stranded DNA-binding protein (mtSSB). Unlike Escherichia coli SSB, bacteriophage T7 gp2.5 and bacteriophage T4 gp32, mtSSBs lack a long, negatively charged C-terminal tail. Furthermore, additional residues at the N-terminus (notwithstanding the mitochondrial presequence) are present in the sequence of species across the animal kingdom. We sought to analyze the functional importance of the N- and C-terminal regions of the human mtSSB in the context of mtDNA replication. We produced the mature wild-type human mtSSB and three terminal deletion variants, and examined their physical and biochemical properties. We demonstrate that the recombinant proteins adopt a tetrameric form, and bind single-stranded DNA with similar affinities. They also stimulate similarly the DNA unwinding activity of the human mtDNA helicase (up to 8-fold). Notably, we find that unlike the high level of stimulation that we observed previously in the Drosophila system, stimulation of DNA synthesis catalyzed by human mtDNA polymerase is only moderate, and occurs over a narrow range of salt concentrations. Interestingly, each of the deletion variants of human mtSSB stimulates DNA synthesis at a higher level than the wild-type protein, indicating that the termini modulate negatively functional interactions with the mitochondrial replicase. We discuss our findings in the context of species-specific components of the mtDNA replisome, and in comparison with various prokaryotic DNA replication machineries.
Collapse
Affiliation(s)
- Marcos T. Oliveira
- Department of Biochemistry and Molecular Biology, Center for Mitochondrial Science and Medicine, and Graduate Program in Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Laurie S. Kaguni
- Department of Biochemistry and Molecular Biology, Center for Mitochondrial Science and Medicine, and Graduate Program in Genetics, Michigan State University, East Lansing, Michigan, United States of America
- * E-mail:
| |
Collapse
|
12
|
Viikov K, Väljamäe P, Sedman J. Yeast mitochondrial DNA polymerase is a highly processive single-subunit enzyme. Mitochondrion 2010; 11:119-26. [PMID: 20807588 DOI: 10.1016/j.mito.2010.08.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 07/30/2010] [Accepted: 08/20/2010] [Indexed: 10/19/2022]
Abstract
Polymerase γ is solely responsible for fast and faithful replication of the mitochondrial genome. High processivity of the polymerase γ is often achieved by association of the catalytic subunit with accessory factors that enhance its catalytic activity and/or DNA binding. Here we characterize the intrinsic catalytic activity and processivity of the recombinant catalytic subunit of yeast polymerase γ, the Mip1 protein. We demonstrate that Mip1 can efficiently synthesize DNA stretches of up to several thousand nucleotides without dissociation from the template. Furthermore, we show that Mip1 can perform DNA synthesis on double-stranded templates utilizing a strand displacement mechanism. Our observations confirm that in contrast to its homologues in other organisms, Mip1 can function as a single-subunit replicative polymerase.
Collapse
Affiliation(s)
- Katrin Viikov
- Department of Biochemistry, Institute of Molecular and Cell Biology, University of Tartu, Vanemuise 46, Tartu 51014, Estonia
| | | | | |
Collapse
|
13
|
St. John JC, Facucho-Oliveira J, Jiang Y, Kelly R, Salah R. Mitochondrial DNA transmission, replication and inheritance: a journey from the gamete through the embryo and into offspring and embryonic stem cells. Hum Reprod Update 2010; 16:488-509. [DOI: 10.1093/humupd/dmq002] [Citation(s) in RCA: 196] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
14
|
Palin EJH, Lesonen A, Farr CL, Euro L, Suomalainen A, Kaguni LS. Functional analysis of H. sapiens DNA polymerase gamma spacer mutation W748S with and without common variant E1143G. Biochim Biophys Acta Mol Basis Dis 2010; 1802:545-51. [PMID: 20153822 DOI: 10.1016/j.bbadis.2010.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 02/06/2010] [Accepted: 02/09/2010] [Indexed: 01/14/2023]
Abstract
Mitochondrial DNA polymerase, POLG, is the sole DNA polymerase found in animal mitochondria. In humans, POLGalpha W748S in cis with an E1143G mutation has been linked to a new type of recessive ataxia, MIRAS, which is the most common inherited ataxia in Finland. We investigated the biochemical phenotypes of the W748S amino acid change, using recombinant human POLG. We measured processive and non-processive DNA polymerase activity, DNA binding affinity, enzyme processivity, and subunit interaction with recombinant POLGbeta. In addition, we studied the effects of the W748S and E1143G mutations in primary human cell cultures using retroviral transduction. Here, we examined cell viability, mitochondrial DNA copy number, and products of mitochondrial translation. Our results indicate that the W748S mutant POLGalpha does not exhibit a clear biochemical phenotype, making it indistinguishable from wild type POLGalpha and as such, fail to replicate previously published results. Furthermore, results from the cell models were concurrent with the findings from patients, and support our biochemical findings.
Collapse
Affiliation(s)
- Eino J H Palin
- Research Program of Molecular Neurology, Biomedicum-Helsinki, r. C523b, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
15
|
Bailey CM, Anderson KS. A mechanistic view of human mitochondrial DNA polymerase gamma: providing insight into drug toxicity and mitochondrial disease. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:1213-22. [PMID: 20083238 DOI: 10.1016/j.bbapap.2010.01.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 12/30/2009] [Accepted: 01/04/2010] [Indexed: 02/08/2023]
Abstract
Mitochondrial DNA polymerase gamma (Pol gamma) is the sole polymerase responsible for replication of the mitochondrial genome. The study of human Pol gamma is of key importance to clinically relevant issues such as nucleoside analog toxicity and mitochondrial disorders such as progressive external ophthalmoplegia. The development of a recombinant form of the human Pol gamma holoenzyme provided an essential tool in understanding the mechanism of these clinically relevant phenomena using kinetic methodologies. This review will provide a brief history on the discovery and characterization of human mitochondrial DNA polymerase gamma, focusing on kinetic analyses of the polymerase and mechanistic data illustrating structure-function relationships to explain drug toxicity and mitochondrial disease.
Collapse
Affiliation(s)
- Christopher M Bailey
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | |
Collapse
|
16
|
Lee YS, Lee S, Demeler B, Molineux IJ, Johnson KA, Yin YW. Each monomer of the dimeric accessory protein for human mitochondrial DNA polymerase has a distinct role in conferring processivity. J Biol Chem 2010; 285:1490-9. [PMID: 19858216 PMCID: PMC2801274 DOI: 10.1074/jbc.m109.062752] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2009] [Revised: 10/18/2009] [Indexed: 11/06/2022] Open
Abstract
The accessory protein polymerase (pol) gammaB of the human mitochondrial DNA polymerase stimulates the synthetic activity of the catalytic subunit. pol gammaB functions by both accelerating the polymerization rate and enhancing polymerase-DNA interaction, thereby distinguishing itself from the accessory subunits of other DNA polymerases. The molecular basis for the unique functions of human pol gammaB lies in its dimeric structure, where the pol gammaB monomer proximal to pol gammaA in the holoenzyme strengthens the interaction with DNA, and the distal pol gammaB monomer accelerates the reaction rate. We further show that human pol gammaB exhibits a catalytic subunit- and substrate DNA-dependent dimerization. By duplicating the monomeric pol gammaB of lower eukaryotes, the dimeric mammalian proteins confer additional processivity to the holoenzyme polymerase.
Collapse
Affiliation(s)
- Young-Sam Lee
- From the Institute for Cellular and Molecular Biology
| | - Sujin Lee
- From the Institute for Cellular and Molecular Biology
| | - Borries Demeler
- the Department of Biochemistry, University of Texas at San Antonio Health Sciences Center, San Antonio, Texas 78229
| | - Ian J. Molineux
- From the Institute for Cellular and Molecular Biology
- Section of Molecular Genetics and Microbiology, and
| | - Kenneth A. Johnson
- From the Institute for Cellular and Molecular Biology
- Department of Chemistry and Biochemistry, University of Texas, Austin, Texas 78712 and
| | - Y. Whitney Yin
- From the Institute for Cellular and Molecular Biology
- Department of Chemistry and Biochemistry, University of Texas, Austin, Texas 78712 and
| |
Collapse
|
17
|
Structural insight into processive human mitochondrial DNA synthesis and disease-related polymerase mutations. Cell 2009; 139:312-24. [PMID: 19837034 PMCID: PMC3018533 DOI: 10.1016/j.cell.2009.07.050] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Revised: 05/18/2009] [Accepted: 07/21/2009] [Indexed: 01/07/2023]
Abstract
Human mitochondrial DNA polymerase (Pol gamma) is the sole replicase in mitochondria. Pol gamma is vulnerable to nonselective antiretroviral drugs and is increasingly associated with mutations found in patients with mitochondriopathies. We determined crystal structures of the human heterotrimeric Pol gamma holoenzyme and, separately, a variant of its processivity factor, Pol gammaB. The holoenzyme structure reveals an unexpected assembly of the mitochondrial DNA replicase where the catalytic subunit Pol gammaA interacts with its processivity factor primarily via a domain that is absent in all other DNA polymerases. This domain provides a structural module for supporting both the intrinsic processivity of the catalytic subunit alone and the enhanced processivity of holoenzyme. The Pol gamma structure also provides a context for interpreting the phenotypes of disease-related mutations in the polymerase and establishes a foundation for understanding the molecular basis of toxicity of anti-retroviral drugs targeting HIV reverse transcriptase.
Collapse
|
18
|
Oliveira MT, Kaguni LS. Comparative purification strategies for Drosophila and human mitochondrial DNA replication proteins: DNA polymerase gamma and mitochondrial single-stranded DNA-binding protein. Methods Mol Biol 2009; 554:37-58. [PMID: 19513666 PMCID: PMC4703109 DOI: 10.1007/978-1-59745-521-3_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
The mitochondrion is the eukaryotic organelle that carries out oxidative phosphorylation, fulfilling cellular requirements for ATP production. Disruption of mitochondrial energy metabolism can occur by genetic and biochemical mechanisms involving nuclear-encoded proteins that are required at the mitochondrial DNA replication fork, which often leads to human disorders and to animal lethality during development. DNA polymerase gamma (pol gamma), the mitochondrial replicase, and the mitochondrial single-stranded DNA-binding protein (mtSSB) have been the focus of study in our lab for a number of years. Here we describe the purification strategies that we developed for obtaining the recombinant forms of pol gamma and mtSSB from both Drosophila melanogaster and humans. Despite the fact that similar approaches can be used for purifying the homologous proteins, we have observed that there are differences in the behavior of the proteins in some specific steps that may reflect differences in their structural and biochemical properties. Their purification in homogeneous, active form represents the first step toward our long-term goal to understand their biochemistry, biology, and functions at the mitochondrial DNA replication fork.
Collapse
|
19
|
Entecavir for treatment of hepatitis B virus displays no in vitro mitochondrial toxicity or DNA polymerase gamma inhibition. Antimicrob Agents Chemother 2007; 52:598-605. [PMID: 18056280 DOI: 10.1128/aac.01122-07] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Therapy with nucleoside reverse transcriptase inhibitors (NRTIs) can be associated with mitochondrial toxicity. In vitro studies have been used to predict the predisposition for and characterize the mechanisms causing mitochondrial toxicity. Entecavir (ETV) is an approved deoxyguanosine nucleoside for the treatment of chronic hepatitis B virus (HBV) infection that exhibits potent activity against viral reverse transcriptase. We assessed the potential for mitochondrial toxicity of ETV in long-term cultures of HepG2 hepatoma cells by measuring mitochondrial function (through lactate secretion), levels of mitochondrial DNA (mtDNA), and levels of mitochondrial proteins COX II and COX IV. Furthermore, we tested the activity of ETV-triphosphate (ETV-TP) against mitochondrial DNA polymerase gamma (Pol gamma) in vitro. ETV concentrations as high as 100 times the maximal clinical exposure (C(max)) did not affect cell proliferation, levels of lactate, mitochondrial DNA, or mitochondrial proteins throughout the 15-day culture. The lack of mitochondrial toxicity was consistent with the finding that ETV-TP was not recognized by mitochondrial DNA Pol gamma and failed to be incorporated into DNA or inhibit the polymerase assay at the highest levels tested, 300 microM. Combinations of ETV with each of the other HBV NRTI antivirals, adefovir, tenofovir, and lamivudine at 10 times their respective C(max) levels also failed to result in cellular or mitochondrial toxicity. In summary, cell culture and enzymatic studies yielded no evidence that would predict mitochondrial toxicity of ETV at exposure levels in excess of those expected to be achieved clinically.
Collapse
|
20
|
Graziewicz MA, Longley MJ, Copeland WC. DNA polymerase gamma in mitochondrial DNA replication and repair. Chem Rev 2006; 106:383-405. [PMID: 16464011 DOI: 10.1021/cr040463d] [Citation(s) in RCA: 211] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Maria A Graziewicz
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA
| | | | | |
Collapse
|
21
|
Garesse R, Kaguni LS. A Drosophila model of mitochondrial DNA replication: proteins, genes and regulation. IUBMB Life 2006; 57:555-61. [PMID: 16118113 DOI: 10.1080/15216540500215572] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Mitochondrial biogenesis is a critical process in animal development, cellular homeostasis and aging. Mitochondrial DNA replication is an essential part of this process, and both nuclear and mitochondrial DNA mutations are found to result in mitochondrial dysfunction that leads to developmental defects and delays, aging and disease. Drosophila provides an amenable model system to study mitochondrial biogenesis in normal and disease states. This review provides an overview of current approaches to study the proteins involved in mitochondrial DNA replication, the genes that encode them and their regulation. It also presents a survey of cell and animal models under development to mimic the pathophysiology of human mitochondrial disorders.
Collapse
Affiliation(s)
- Rafael Garesse
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain.
| | | |
Collapse
|
22
|
Yakubovskaya E, Chen Z, Carrodeguas JA, Kisker C, Bogenhagen DF. Functional human mitochondrial DNA polymerase gamma forms a heterotrimer. J Biol Chem 2005; 281:374-82. [PMID: 16263719 DOI: 10.1074/jbc.m509730200] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial DNA polymerase gamma (pol gamma) is responsible for replication and repair of mtDNA and is mutated in individuals with genetic disorders such as chronic external ophthalmoplegia and Alpers syndrome. pol gamma is also an adventitious target for toxic side effects of several antiviral compounds, and mutation of its proofreading exonuclease leads to accelerated aging in mouse models. We have used a variety of physical and functional approaches to study the interaction of the human pol gamma catalytic subunit with both the wild-type accessory factor, pol gammaB, and a deletion derivative that is unable to dimerize and consequently is impaired in its ability to stimulate processive DNA synthesis. Our studies clearly showed that the functional human holoenzyme contains two subunits of the processivity factor and one catalytic subunit, thereby forming a heterotrimer. The structure of pol gamma seems to be variable, ranging from a single catalytic subunit in yeast to a heterodimer in Drosophila and a heterotrimer in mammals.
Collapse
Affiliation(s)
- Elena Yakubovskaya
- Department of Pharmacological Sciences and Center for Structural Biology, State University of New York, Stony Brook, New York 11794-8651, USA
| | | | | | | | | |
Collapse
|
23
|
Oshige M, Takeuchi R, Ruike T, Ruike R, Kuroda K, Sakaguchi K. Subunit protein-affinity isolation of Drosophila DNA polymerase catalytic subunit. Protein Expr Purif 2005; 35:248-56. [PMID: 15135399 DOI: 10.1016/j.pep.2004.02.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2003] [Revised: 01/26/2004] [Indexed: 10/26/2022]
Abstract
gfLittle is known at present about the biochemical properties of very large-sized Drosophila DNA polymerases. In a previous study, we tried to purify Drosophila pol. catalytic subunit from embryos through seven column chromatographies and study its biochemical properties. However, we failed to characterize it precisely because an insufficient amount of the enzyme was generated. In this report, we describe direct purification from Drosophila embryos to near homogeneity using Drosophila DNA polymerase second subunit (Drosophila pol. 2) protein-conjugated affinity column chromatography and characterization of the enzyme in detail. To our knowledge this is the first demonstration of native DNA polymerase purification with activity using a subunit protein-affinity column. We observed new characteristics of Drosophila pol. catalytic subunit as follows: Drosophila pol. catalytic subunit synthesized DNA processively in the presence of both Mn(2+) and Mg(2+) ions, but Mn(2+) inhibited the 3'-5' proofreading activity, thereby decreasing the fidelity of DNA replication by 50%.
Collapse
Affiliation(s)
- Masahiko Oshige
- Frontier Research Center for Genome and Drug Research, Tokyo University of Science, Ymazaki 2641, Noda-shi, Chiba-ken 278-8510, Japan
| | | | | | | | | | | |
Collapse
|
24
|
Takeuchi R, Oshige M, Uchida M, Ishikawa G, Takata KI, Shimanouchi K, Kanai Y, Ruike T, Morioka H, Sakaguchi K. Purification of Drosophila DNA polymerase zeta by REV1 protein-affinity chromatography. Biochem J 2005; 382:535-43. [PMID: 15175013 PMCID: PMC1133810 DOI: 10.1042/bj20031833] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2003] [Revised: 05/17/2004] [Accepted: 06/03/2004] [Indexed: 11/17/2022]
Abstract
Studies on the biochemical properties of very-large-size eukaryotic DNA polymerases have been limited by the difficulty in obtaining sufficient purified forms of each enzyme. Our aim was to determine and elucidate the biochemical properties of one such polymerase, pol zeta (DNA polymerase zeta) from Drosophila melanogaster (Dmpol zeta). Using an REV1 (UV-revertible gene 1) protein-affinity column, we have isolated the enzyme directly from Drosophila embryos. Completely purified Dmpol zeta was found to have a molecular mass of approx. 240 kDa, and to be sensitive to aphidicolin and resistant to ddTTP (2',3'-dideoxythymidine-5-triphosphate) and N-ethylmaleimide. The enzyme has a preference for poly(dA)/oligo(dT)(10:1) as a template primer and has high processivity for DNA synthesis. Moreover, Dmpol zeta showed significantly higher fidelity compared with Rattus norvegicus DNA polymerase, an error-prone DNA polymerase, in an M13 forward mutation assay. The activities of bypassing pyrimidine dimers and (6-4) photoproducts and extending from mismatched primer-template termini in (6-4) photoproduct by Dmpol zeta were not detected. Drosophila REV7 interacted with Dmpol zeta in vitro, but did not influence the DNA synthesis activity of Dmpol zeta. The present study is the first report about characterization of purified pol zeta from multicellular organisms, and the second concerning the characterization of yeast pol zeta.
Collapse
Affiliation(s)
- Ryo Takeuchi
- *Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda-shi, Chiba-ken 278-8510, Japan
| | - Masahiko Oshige
- †Frontier Research Center for Genome and Drug Research, Tokyo University of Science, Noda-shi, Chiba-ken 278-8510, Japan
| | - Makiyo Uchida
- ‡Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Gen Ishikawa
- *Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda-shi, Chiba-ken 278-8510, Japan
| | - Kei-ichi Takata
- *Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda-shi, Chiba-ken 278-8510, Japan
| | - Kaori Shimanouchi
- *Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda-shi, Chiba-ken 278-8510, Japan
| | - Yoshihiro Kanai
- *Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda-shi, Chiba-ken 278-8510, Japan
| | - Tatsushi Ruike
- *Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda-shi, Chiba-ken 278-8510, Japan
| | - Hiroshi Morioka
- ‡Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Kengo Sakaguchi
- *Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda-shi, Chiba-ken 278-8510, Japan
- †Frontier Research Center for Genome and Drug Research, Tokyo University of Science, Noda-shi, Chiba-ken 278-8510, Japan
- To whom correspondence should be addressed (email )
| |
Collapse
|
25
|
Sedman T, Jõers P, Kuusk S, Sedman J. Helicase Hmi1 stimulates the synthesis of concatemeric mitochondrial DNA molecules in yeast Saccharomyces cerevisiae. Curr Genet 2005; 47:213-22. [PMID: 15690159 DOI: 10.1007/s00294-005-0566-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2004] [Revised: 12/30/2004] [Accepted: 01/04/2005] [Indexed: 11/26/2022]
Abstract
Hmi1p is a helicase in the yeast Saccharomyces cerevisiae required for maintenance of the wild-type mitochondrial genome. Disruption of the HMI1 ORF generates rho(-) and rho(0) cells. Here we demonstrate that, in rho(-) yeast strains, Hmi1p stimulates the synthesis of long concatemeric mitochondrial DNA molecules associated with a reduction in the number of nucleoids used for mitochondrial DNA packaging. Surprisingly, the ATPase negative mutants of Hmi1p can also stimulate the synthesis of long concatemeric rho(-) mitochondrial DNA molecules and support the maintenance of the wild-type mitochondrial genome, albeit with reduced efficiency. We show that, in the mutant hmi1-5 background, the wild-type mitochondrial DNA is fragmented; and we propose that, in hmi1Delta yeast cells, the loss of the wild-type mitochondrial genome is caused by this fragmentation of the mitochondrial DNA.
Collapse
Affiliation(s)
- Tiina Sedman
- Department of General and Microbial Biochemistry, University of Tartu, Vanemuise 46, Tartu 51014, Estonia
| | | | | | | |
Collapse
|
26
|
Luo N, Kaguni LS. Mutations in the spacer region of Drosophila mitochondrial DNA polymerase affect DNA binding, processivity, and the balance between Pol and Exo function. J Biol Chem 2004; 280:2491-7. [PMID: 15537632 DOI: 10.1074/jbc.m411447200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The catalytic subunit (alpha) of mitochondrial DNA polymerase (pol gamma) shares conserved DNA polymerase and 3'-5' exonuclease active site motifs with Escherichia coli DNA polymerase I and bacteriophage T7 DNA polymerase. A major difference between the prokaryotic and mitochondrial proteins is the size and sequence of the region between the exonuclease and DNA polymerase domains, referred to as the spacer in pol gamma-alpha. Four gamma-specific conserved sequence elements are located within the spacer region of the catalytic subunit in eukaryotic species from yeast to humans. To elucidate the functional roles of the spacer region, we pursued deletion and site-directed mutagenesis of Drosophila pol gamma. Mutant proteins were expressed from baculovirus constructs in insect cells, purified to near homogeneity, and analyzed biochemically. We find that mutations in three of the four conserved sequence elements within the spacer alter enzyme activity, processivity, and/or DNA binding affinity. In addition, several mutations affect differentially DNA polymerase and exonuclease activity and/or functional interactions with mitochondrial single-stranded DNA-binding protein. Based on these results and crystallographic evidence showing that the template-primer binds in a cleft between the exonuclease and DNA polymerase domains in family A DNA polymerases, we propose that conserved sequences within the spacer of pol gamma may position the substrate with respect to the enzyme catalytic domains.
Collapse
Affiliation(s)
- Ningguang Luo
- Graduate Program in Genetics and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48823, USA
| | | |
Collapse
|
27
|
Abstract
DNA polymerase (pol) gamma is the sole DNA polymerase in animal mitochondria. Biochemical and genetic evidence document a key role for pol gamma in mitochondrial DNA replication, and whereas DNA repair and recombination were thought to be limited or absent in animal mitochondria, both have been demonstrated in recent years. Thus, the mitochondrial replicase is also apparently responsible for the relevant DNA synthetic reactions in these processes. Pol gamma comprises a catalytic core in a heterodimeric complex with an accessory subunit. The two-subunit holoenzyme is an efficient and processive polymerase, which exhibits high fidelity in nucleotide selection and incorporation while proofreading errors with its intrinsic 3' 5' exonuclease. Incorporation of nucleotide analogs followed by proofreading failure leads to mitochondrial toxicity in antiviral therapy, and misincorporation during DNA replication leads to mitochondrial mutagenesis and dysfunction. This review describes our current understanding of pol gamma biochemistry and biology, and it introduces other key proteins that function at the mitochondrial DNA replication fork.
Collapse
Affiliation(s)
- Laurie S Kaguni
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319, USA.
| |
Collapse
|
28
|
Farr CL, Matsushima Y, Lagina AT, Luo N, Kaguni LS. Physiological and biochemical defects in functional interactions of mitochondrial DNA polymerase and DNA-binding mutants of single-stranded DNA-binding protein. J Biol Chem 2004; 279:17047-53. [PMID: 14754882 DOI: 10.1074/jbc.m400283200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Functional interactions between mitochondrial DNA polymerase (pol gamma) and mitochondrial single-stranded DNA-binding protein (mtSSB) from Drosophila embryos greatly enhance the overall activity of pol gamma by increasing primer recognition and binding and stimulating the rate of initiation of DNA strands (Farr, C. L., Wang, Y., and Kaguni, L. S. (1999) J. Biol. Chem. 274, 14779-14785). We show here that DNA-binding mutants of mtSSB are defective in stimulation of DNA synthesis by pol gamma. RNAi knock-down of mtSSB reduces expression to <5% of its normal level in Schneider cells, resulting in growth defects and in the depletion of mitochondrial DNA (mtDNA). Overexpression of mtSSB restores cell growth rate and the copy number of mtDNA, whereas overexpression of a DNA-binding and functionally impaired form of mtSSB neither rescues the cell growth defect nor the mtDNA depletion phenotype. Further development of Drosophila animal models, in which induced mtDNA depletion is manipulated by controlling exogenous expression of wild-type or mutant forms, will offer new insight into the mechanism and progression of human mtDNA depletion syndromes and possible intervention schemes.
Collapse
Affiliation(s)
- Carol L Farr
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319, USA
| | | | | | | | | |
Collapse
|
29
|
Lewis W. Mitochondrial dysfunction and nucleoside reverse transcriptase inhibitor therapy: experimental clarifications and persistent clinical questions. Antiviral Res 2003; 58:189-97. [PMID: 12767466 DOI: 10.1016/s0166-3542(03)00069-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nucleoside reverse transcriptase inhibitors (NRTIs) in combination with other antiretrovirals (HAART) are critical in current AIDS therapy, but mitochondrial side effects have come to light with the increased use of these compounds. Clinical experience, pharmacological, cell and molecular biological evidence links altered mitochondrial (mt-) DNA replication to the toxicity of NRTIs in many tissues, and conversely, mtDNA replication defects and mtDNA depletion in specific target tissues are observed. The shared features of mtDNA depletion and energy depletion became key observations and related the clinical and in vivo experimental findings to inhibition of mtDNA replication by NRTI triphosphates in vitro. Subsequent to those findings, other observations suggested that mitochondrial energy deprivation is concomitant with or the result of mitochondrial oxidative stress in AIDS (from HIV, for example) or from NRTI therapy itself. With increased use of NRTIs, mtDNA mutations may become increasingly important pathophysiologically. One important future goal is to prevent or attenuate the side effects so that improved efficacy is achieved.
Collapse
Affiliation(s)
- William Lewis
- Department of Pathology, Emory University, Room 7117, 1639 Pierce Drive, Atlanta, GA 30030, USA.
| |
Collapse
|
30
|
Lewis W. Mitochondrial DNA replication, nucleoside reverse-transcriptase inhibitors, and AIDS cardiomyopathy. Prog Cardiovasc Dis 2003; 45:305-18. [PMID: 12638094 DOI: 10.1053/pcad.2003.3b] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Nucleoside reverse-transcriptase inhibitors (NRTIs) in combination with other antiretrovirals (HAART) are the cornerstones of current AIDS therapy, but extensive use brought mitochondrial side effects to light. Clinical experience, pharmacological, cell, and molecular biological evidence links altered mitochondrial (mt-) DNA replication to the toxicity of NRTIs in many tissues, and conversely, mtDNA replication defects and mtDNA depletion in target tissues are observed. Organ-specific pathological changes or diverse systemic effects result from and are frequently attributed to HAART in which NRTIs are included. The shared features of mtDNA depletion and energy depletion became key observations and related the clinical and in vivo experimental findings to inhibition of mtDNA replication by NRTI triphosphates in vitro. Subsequent to those findings, other observations suggested that mitochondrial energy deprivation is concomitant with or the result of mitochondrial oxidative stress in AIDS (from HIV, for example) or from NRTI therapy itself.
Collapse
Affiliation(s)
- William Lewis
- Department of Pathology, Emory University Atlanta, GA 30322, USA.
| |
Collapse
|
31
|
Lewis W. Defective mitochondrial DNA replication and NRTIs: pathophysiological implications in AIDS cardiomyopathy. Am J Physiol Heart Circ Physiol 2003; 284:H1-9. [PMID: 12485813 DOI: 10.1152/ajpheart.00814.2002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
32
|
Srivastava VK, Busbee DL. Replicative enzymes and ageing: importance of DNA polymerase alpha function to the events of cellular ageing. Ageing Res Rev 2002; 1:443-63. [PMID: 12067597 DOI: 10.1016/s1568-1637(02)00011-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A hallmark of cellular ageing is the failure of senescing cells to initiate DNA synthesis and transition from G1 into S phase of the cell cycle. This transition is normally dependent on or concomitant with expression of a set of genes specifying cellular proteins, some of which directly participate in DNA replication. Deregulation of this gene expression may play a pivotal role in the ageing process. The number of known enzymes and co-factors required to maintain integrity of the genome during eukaryotic DNA replication has increased significantly in the past few years, and includes proteins essential for DNA replication and repair, as well as for cell cycle regulation. In eukaryotic cells, ranging from yeast to man, a replicative enzyme essential for initiation of transcription is DNA polymerase alpha (pol alpha), the activity of which is coordinately regulated with the initiation of DNA synthesis. DNA pol alpha, by means of its primase subunit, has the unique ability to initiate de novo DNA synthesis, and as a consequence, is required for the initiation of continuous (leading-strand) DNA synthesis at an origin of replication, as well as for initiation of discontinuous (lagging-strand) DNA synthesis. The dual role of the pol alpha-primase complex makes it a potential interactant with the regulatory mechanisms controlling entry into S phase. The purpose of this review is to address the regulation and/or modulation of DNA pol alpha during ageing that may play a key role in the cascade of events which ultimately leads to the failure of old cells to enter or complete S phase of the cell cycle.
Collapse
Affiliation(s)
- Vinod K Srivastava
- Department of Anatomy and Public Health, College of Veterinary Medicine, Center for Rural Public Health, Texas A&M University, College Station, TX 77843, USA.
| | | |
Collapse
|
33
|
Iyengar B, Luo N, Farr CL, Kaguni LS, Campos AR. The accessory subunit of DNA polymerase gamma is essential for mitochondrial DNA maintenance and development in Drosophila melanogaster. Proc Natl Acad Sci U S A 2002; 99:4483-8. [PMID: 11917141 PMCID: PMC123674 DOI: 10.1073/pnas.072664899] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DNA polymerase gamma, Pol gamma, is the key replicative enzyme in animal mitochondria. The Drosophila enzyme is a heterodimer comprising catalytic and accessory subunits of 125 kDa and 35 kDa, respectively. Both subunits have been cloned and characterized in a variety of model systems, and genetic mutants of the catalytic subunit were first identified in Drosophila, as chemically induced mutations that disrupt larval behavior (tamas). Mutations in the gene encoding the accessory subunit have not yet been described in any organism. Here, we report the consequences of null mutations upon mitochondrial DNA (mtDNA) replication and morphology, cell proliferation, and organismal viability. Mutations in the accessory subunit cause lethality during early pupation, concomitant with loss of mtDNA and mitochondrial mass, and reduced cell proliferation in the central nervous system. Surprisingly, the function of the central nervous system and muscle, as assessed in a locomotion assay, are only marginally affected. This finding is in contrast to our previous findings that disruption in the function of the catalytic subunit causes severe reduction in larval locomotion. We discuss our results in the context of current hypotheses for the function of the accessory subunit in mtDNA replication.
Collapse
Affiliation(s)
- Balaji Iyengar
- Department of Biology, McMaster University, Hamilton, ON, Canada L8S 4K1
| | | | | | | | | |
Collapse
|
34
|
Johnson AA, Johnson KA. Fidelity of nucleotide incorporation by human mitochondrial DNA polymerase. J Biol Chem 2001; 276:38090-6. [PMID: 11477093 DOI: 10.1074/jbc.m106045200] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have examined the fidelity of polymerization catalyzed by the human mitochondrial DNA polymerase using wild-type and exonuclease-deficient (E200A mutation) forms of recombinant, reconstituted holoenzyme. Each of the four nucleotides bind and incorporate with similar kinetics; the average dissociation constant for ground state binding is 0.8 microm, and the average rate of polymerization is 37 x s(-1), defining a specificity constant kcat/Km = 4.6 x 10(7) x m(-1) x s(-1). Mismatched nucleotides show weaker ground-state nucleotide binding affinities ranging from 57 to 364 microm and slower rates of polymerization ranging from 0.013 to 1.16 x s(-1). The kinetic parameters yield fidelity estimates of 1 error out of 260,000 nucleotides for a T:T mismatch, 3563 for G:T, and 570,000 for C:T. The accessory subunit increases fidelity 14-fold by facilitating both ground-state binding and the incorporation rate of the correct A:T base pair compared with a T:T mismatch. Correctly base-paired DNA dissociates from the polymerase at a rate of 0.02 x s(-1) promoting processive polymerization. Thus, the mitochondrial DNA polymerase catalyzed incorporation with an average processivity of 1850, defined by the ratio of polymerization rate to the dissociation rate (37/0.02) and with an average fidelity of one error in 280,000 base pairs.
Collapse
Affiliation(s)
- A A Johnson
- Institute for Cellular and Molecular Biology, University of Texas, Austin, 78712, USA
| | | |
Collapse
|
35
|
Lewis W, Copeland WC, Day BJ. Mitochondrial dna depletion, oxidative stress, and mutation: mechanisms of dysfunction from nucleoside reverse transcriptase inhibitors. J Transl Med 2001; 81:777-90. [PMID: 11406640 DOI: 10.1038/labinvest.3780288] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- W Lewis
- Department of Pathology, Emory University, Atlanta, Georgia 30322, USA.
| | | | | |
Collapse
|
36
|
Fan L, Kaguni LS. Multiple regions of subunit interaction in Drosophila mitochondrial DNA polymerase: three functional domains in the accessory subunit. Biochemistry 2001; 40:4780-91. [PMID: 11294646 DOI: 10.1021/bi010102h] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Drosophila mitochondrial DNA polymerase, pol gamma, is a heterodimeric complex of catalytic subunit and accessory subunits. Physical interactions between the two subunits were investigated by deletion mutagenesis in both in vivo reconstitution and in vitro protein overlay analyses. Our results suggest that the accessory subunit may consist of three domains, designated the N, M, and C domains. The M and C regions comprise the major contacts involved in subunit interaction, likely with multiple sites in the exonuclease (exo) region and part of the spacer between the exo and DNA polymerase (pol) regions in the catalytic subunit. Furthermore, the N region in the accessory subunit may modulate subunit assembly and/or conformation through weak interaction with the pol region in the catalytic subunit. Sequence comparisons identify a significant similarity between the M region of the accessory subunit and the RNase H domain of HIV-1 reverse transcriptase. On the basis of these results, the proposed function of the C-terminus of the accessory subunit in RNA primer recognition, and previous observations that mitochondrial DNA polymerase is itself a reverse transcriptase, we propose that the overall conformation and arrangement of functional regions in the Drosophila pol gamma complex resemble those of HIV-1 reverse transcriptase.
Collapse
Affiliation(s)
- L Fan
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319, USA
| | | |
Collapse
|
37
|
Maier D, Farr CL, Poeck B, Alahari A, Vogel M, Fischer S, Kaguni LS, Schneuwly S. Mitochondrial single-stranded DNA-binding protein is required for mitochondrial DNA replication and development in Drosophila melanogaster. Mol Biol Cell 2001; 12:821-30. [PMID: 11294889 PMCID: PMC32269 DOI: 10.1091/mbc.12.4.821] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The discovery that several inherited human diseases are caused by mtDNA depletion has led to an increased interest in the replication and maintenance of mtDNA. We have isolated a new mutant in the lopo (low power) gene from Drosophila melanogaster affecting the mitochondrial single-stranded DNA-binding protein (mtSSB), which is one of the key components in mtDNA replication and maintenance. lopo(1) mutants die late in the third instar before completion of metamorphosis because of a failure in cell proliferation. Molecular, histochemical, and physiological experiments show a drastic decrease in mtDNA content that is coupled with the loss of respiration in these mutants. However, the number and morphology of mitochondria are not greatly affected. Immunocytochemical analysis shows that mtSSB is expressed in all tissues but is highly enriched in proliferating tissues and in the developing oocyte. lopo(1) is the first mtSSB mutant in higher eukaryotes, and its analysis demonstrates the essential function of this gene in development, providing an excellent model to study mitochondrial biogenesis in animals.
Collapse
Affiliation(s)
- D Maier
- Lehrstuhl für Entwicklungsbiologie, Universität Regensburg, Regensburg, Germany D-93040
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Garesse R, Vallejo CG. Animal mitochondrial biogenesis and function: a regulatory cross-talk between two genomes. Gene 2001; 263:1-16. [PMID: 11223238 DOI: 10.1016/s0378-1119(00)00582-5] [Citation(s) in RCA: 202] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mitochondria play a pivotal role in cell physiology, producing the cellular energy and other essential metabolites as well as controlling apoptosis by integrating numerous death signals. The biogenesis of the oxidative phosphorylation system (OXPHOS) depends on the coordinated expression of two genomes, nuclear and mitochondrial. As a consequence, the control of mitochondrial biogenesis and function depends on extremely complex processes that require a variety of well orchestrated regulatory mechanisms. It is now clear that in order to provide cells with the correct number of structural and functional differentiated mitochondria, a variety of intracellular and extracellular signals including hormones and environmental stimuli need to be integrated. During the last few years a considerable effort has been devoted to study the factors that regulate mtDNA replication and transcription as well as the expression of nuclear-encoded mitochondrial genes in physiological and pathological conditions. Although still in their infancy, these studies are starting to provide the molecular basis that will allow to understand the mechanisms involved in the nucleo-mitochondrial communication, a cross-talk essential for cell life and death.
Collapse
Affiliation(s)
- R Garesse
- Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid, Arturo Duperier, 4, 28029 Madrid, Spain.
| | | |
Collapse
|
39
|
Carrodeguas JA, Theis K, Bogenhagen DF, Kisker C. Crystal structure and deletion analysis show that the accessory subunit of mammalian DNA polymerase gamma, Pol gamma B, functions as a homodimer. Mol Cell 2001; 7:43-54. [PMID: 11172710 DOI: 10.1016/s1097-2765(01)00153-8] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Polymerase gamma, which replicates and repairs mitochondrial DNA, requires the Pol gamma B subunit for processivity. We determined the crystal structure of mouse Pol gamma B, a core component of the mitochondrial replication machinery. Pol gamma B shows high similarity to glycyl-tRNA synthetase and dimerizes through an unusual intermolecular four-helix bundle. A human Pol gamma B mutant lacking the four-helix bundle failed to dimerize in solution or to stimulate the catalytic subunit Pol gamma A, but retained the ability to bind with Pol gamma A to a primer-template construct, indicating that the functional holoenzyme contains two Pol gamma B molecules. Other mutants retained stimulatory activity but lost the ability to bind folded ssDNA. These results suggest that the Pol gamma B dimer contains distinct sites for Pol gamma A binding, dimerization, and DNA binding.
Collapse
Affiliation(s)
- J A Carrodeguas
- Department of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
| | | | | | | |
Collapse
|
40
|
Chavalitshewinkoon-Petmitr P, Chawprom S, Naesens L, Balzarini J, Wilairat P. Partial purification and characterization of mitochondrial DNA polymerase from Plasmodium falciparum. Parasitol Int 2000; 49:279-88. [PMID: 11077262 DOI: 10.1016/s1383-5769(00)00057-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mitochondria of chloroquine-resistant Plasmodium falciparum (K1 strain) were isolated from mature trophozoites by differential centrifugation. The mitochondrial marker enzyme cytochrome c reductase was employed to monitor the steps of mitochondria isolation. Partial purification of DNA polymerase from P. falciparum mitochondria was performed using fast protein liquid chromatography (FPLC). DNA polymerase of P. falciparum mitochondria was characterized as a gamma-like DNA polymerase based on its sensitivity to the inhibitors aphidicolin, N-ethylmaleimide and 9-beta-D-arabinofuranosyladenine-5'-triphosphate. In contrast, the enzyme was found to be strongly resistant to 2',3'-dideoxythymidine-5'-triphosphate (IC(50)>400 microM) and differed in this aspect from the human homologue, possibly indicating structural differences between human and P. falciparum DNA polymerase gamma. In addition, the DNA polymerase of parasite mitochondria was shown to be resistant (IC(50)>1 mM) to the nucleotide analogue (S)-1-[3-hydroxy-2-phosphonylmethoxypropyl]adenine diphosphate (HPMPApp).
Collapse
Affiliation(s)
- P Chavalitshewinkoon-Petmitr
- Department of Protozoology, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok 10400, Thailand.
| | | | | | | | | |
Collapse
|
41
|
Oshige M, Yoshida H, Hirose F, Takata KI, Inoue Y, Aoyagi N, Yamaguchi M, Koiwai O, Matsukage A, Sakaguchi K. Molecular cloning and expression during development of the Drosophila gene for the catalytic subunit of DNA polymerase epsilon. Gene 2000; 256:93-100. [PMID: 11054539 DOI: 10.1016/s0378-1119(00)00370-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We have cloned the genomic DNA and cDNA of Drosophila DNA polymerase epsilon (pol-epsilon) catalytic subunit (GenBank No. AB035512). The gene is separated into four exons by three short introns, and the open reading frame consists of 6660 base pairs (bp) capable of encoding a polypeptide of 2220 amino acid residues. The calculated molecular mass is 255018, similar to that of mammalian and yeast homologues. The deduced amino acid sequence of the pol-epsilon catalytic subunit shares approximately 41% identity with human and mouse homologues as well as significant homology those of C. elegans, S. cerevisiae and S. pombe. Similar to the pol-epsilon catalytic subunits from other species, the pol-epsilon catalytic subunit contains domains for DNA polymerization and 3'-5' exonuclease in the N-terminal region, and two potential zinc-finger domains in the C-terminal regions. Interestingly, a 38 amino acid sequence in the C-terminal region from amino acid positions 1823 to 1861 is similar to the site for Mycoplasma ATP binding and/or ATPase domain (GenBank No. P47365). Northern hybridization analysis indicated that the gene is expressed at the highest levels in unfertilized eggs, followed by zero to 4h embryos and adult females, and then embryos at other embryonic stages, instar larva stages and adult males. Low levels of the mRNA were also detected at the pupa stage. This pattern of expression is similar to those of DNA replication-related enzymes such as DNA polymerase alpha and delta except for the high level of expression in adult males.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Catalytic Domain
- Cloning, Molecular
- DNA/chemistry
- DNA/genetics
- DNA Polymerase II/genetics
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Drosophila melanogaster/embryology
- Drosophila melanogaster/genetics
- Drosophila melanogaster/growth & development
- Exons
- Female
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Enzymologic
- Genes, Insect/genetics
- Introns
- Male
- Molecular Sequence Data
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- M Oshige
- Department of Applied Biological Science, Faculty of Science and Technology, Science University of Tokyo, Chiba 278-8510, Noda, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
In this review, we sum up the research carried out over two decades on mitochondrial DNA (mtDNA) replication, primarily by comparing this system in Saccharomyces cerevisiae and Homo sapiens. Brief incursions into systems of other organisms have also been achieved when they provide new information.S. cerevisiae and H. sapiens mitochondrial DNA (mtDNA) have been thought for a long time to share closely related architecture and replication mechanisms. However, recent studies suggest that mitochondrial genome of S. cerevisiae may be formed, at least partially, from linear multimeric molecules, while human mtDNA is circular. Although several proteins involved in the replication of these two genomes are very similar, divergences are also now increasingly evident. As an example, the recently cloned human mitochondrial DNA polymerase beta-subunit has no counterpart in yeast. Yet, yeast Abf2p and human mtTFA are probably not as closely functionally related as thought previously. Some mtDNA metabolism factors, like DNA ligases, were until recently largely uncharacterized, and have been found to be derived from alternative nuclear products. Many factors involved in the metabolism of mitochondrial DNA are linked through genetic or biochemical interconnections. These links are presented on a map. Finally, we discuss recent studies suggesting that the yeast mtDNA replication system diverges from that observed in man, and may involve recombination, possibly coupled to alternative replication mechanisms like rolling circle replication.
Collapse
Affiliation(s)
- N Lecrenier
- Unité de Biochimie Physiologique, Place Croix-du-Sud 2/20, 1348, Louvain-la-Neuve, Belgium
| | | |
Collapse
|
43
|
Johnson AA, Tsai YC, Graves SW, Johnson KA. Human mitochondrial DNA polymerase holoenzyme: reconstitution and characterization. Biochemistry 2000; 39:1702-8. [PMID: 10677218 DOI: 10.1021/bi992104w] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have reconstituted the holoenzyme of the human mitochondrial DNA polymerase from cloned and overexpressed catalytic and accessory subunits. We have examined the polymerization activity of the catalytic subunit alone and of the holoenzyme to establish the function of the accessory subunit in this two subunit enzyme. The accessory subunit associates with the catalytic subunit with a dissociation constant of 35 +/- 16 nM as measured by the concentration dependence of its effect in stimulating maximal DNA binding and polymerization. At saturating concentrations, the accessory subunit contributes to every kinetic parameter examined to facilitate tighter binding of DNA and nucleotide and faster replication. The accessory protein makes the DNA binding 3.5-fold tighter (K(d) of 9.9 +/- 2.1 nM compared to 39 +/- 10 nM for the catalytic subunit alone) without significantly affecting the DNA dissociation rate (0.02 +/- 0.001 compared to 0.03 +/- 0.001 s(-)(1)). The ground-state nucleotide binding is improved from 4.7 +/- 2.0 to 0.78 +/- 0.065 microM, and the maximum DNA polymerization rate is increased from 8.7 +/- 1.1 to 45 +/- 1 s(-)(1) by the addition of the accessory protein. This leads to an increase in processivity from an estimated 290 +/- 46 to 2250 +/- 162. Although the accessory protein has been described as a "processivity factor" because of its effect on the ratio of rate constants defining processivity, this terminology falls short of adequately describing the profound effects of the small subunit on nucleotide-binding and incorporation catalyzed by the large subunit. By using the complete holoenzyme, we can now proceed with a comprehensive analysis of the structural and mechanistic determinants of enzyme specificity that govern toxicity of nucleoside analogues used in the treatment of viral infections such as AIDS.
Collapse
Affiliation(s)
- A A Johnson
- Institute for Cellular and Molecular Biology, A4800, MBB 3.122, University of Texas at Austin, Austin, Texas 78712, USA
| | | | | | | |
Collapse
|
44
|
Nielsen-Preiss SM, Low RL. Identification of a beta-like DNA polymerase activity in bovine heart mitochondria. Arch Biochem Biophys 2000; 374:229-40. [PMID: 10666302 DOI: 10.1006/abbi.1999.1590] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A new DNA polymerase activity, distinct from DNA polymerase gamma, has been identified in bovine heart mitochondria. First detected among proteins isolated in a complex with mitochondrial DNA, the DNA polymerase activity has been partially purified 47,000-fold. Enzyme activity separates from DNA polymerase gamma on several chromatographic columns and appears to copurify with a 38 +/- 2-kDa polypeptide. Unlike DNA polymerase gamma, this enzyme is relatively resistant to inhibition by N-ethylmaleimide and dideoxynucleotides, has moderately low monovalent and high divalent cation requirements, and possesses 20-fold-higher apparent K(m) values for deoxynucleotides. The enzyme polymerizes deoxynucleotides onto a primed template DNA in a relatively nonprocessive fashion and lacks a detectable 3' to 5' exonuclease activity. Many of these characteristics resemble a beta-like mitochondrial DNA polymerase previously identified in, and considered unique to, trypanosomes. We propose that the bovine and trypanosomal enzymes are related and represent a new class of ubiquitous mitochondrial DNA polymerases.
Collapse
Affiliation(s)
- S M Nielsen-Preiss
- Department of Pathology, School of Medicine, Health Sciences Center, University of Colorado, 4200 East Ninth Avenue, Denver, Colorado 80262, USA
| | | |
Collapse
|
45
|
Noma T, Murakami R, Yamashiro Y, Fujisawa K, Inouye S, Nakazawa A. cDNA cloning and chromosomal mapping of the gene encoding adenylate kinase 2 from Drosophila melanogaster. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1490:109-14. [PMID: 10786623 DOI: 10.1016/s0167-4781(99)00223-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
As a step toward understanding of the role of adenylate kinase (AK) in energy metabolism, we analyzed this enzyme in Drosophila melanogaster. The enzyme activities of all three AK isozymes were determined in cell-free extracts of flies, and their proteins were detected by Western blot analysis using polyclonal antibodies against the mammalian isozymes. A cDNA encoding adenylate kinase was isolated from D. melanogaster cDNA library. The cDNA encodes a 240-amino acid protein, which shows high similarity to bovine, human and rat AK2, and hence was named DAK2. Preliminary subcellular fractionation analysis indicated that DAK2 is localized in both cytoplasm and mitochondria. In situ hybridization to salivary gland polytene chromosomes revealed that the Dak2 gene is located at 60B on the right arm of the second chromosome.
Collapse
Affiliation(s)
- T Noma
- Department of Biochemistry, Yamaguchi University School of Medicine, Ube, Japan.
| | | | | | | | | | | |
Collapse
|
46
|
Lim SE, Longley MJ, Copeland WC. The mitochondrial p55 accessory subunit of human DNA polymerase gamma enhances DNA binding, promotes processive DNA synthesis, and confers N-ethylmaleimide resistance. J Biol Chem 1999; 274:38197-203. [PMID: 10608893 DOI: 10.1074/jbc.274.53.38197] [Citation(s) in RCA: 164] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human DNA polymerase gamma is composed of a 140-kDa catalytic subunit and a smaller accessory protein variously reported to be 43-54 kDa. Immunoblot analysis of the purified, heterodimeric native human polymerase gamma complex identified the accessory subunit as 55 kDa. We isolated the full-length cDNA encoding a 55-kDa polypeptide, expressed the cDNA in Escherichia coli and purified the 55-kDa protein to homogeneity. Recombinant Hp55 forms a high affinity, salt-stable complex with Hp140 during protein affinity chromatography. Immunoprecipitation, gel filtration, and sedimentation analyses revealed a 190-kDa complex indicative of a native heterodimer. Reconstitution of Hp140.Hp55 raises the salt optimum of Hp140, stimulates the polymerase and exonuclease activities, and increases the processivity of the enzyme by several 100-fold. Similar to Hp140, isolated Hp55 binds DNA with moderate strength and was a specificity for double-stranded primer-template DNA. However, Hp140.Hp55 has a surprisingly high affinity for DNA, and kinetic analyses indicate Hp55 enhances the affinity of Hp140 for primer termini by 2 orders of magnitude. Thus the enhanced DNA binding caused by Hp55 is the basis for the salt tolerance and high processivity characteristic of DNA polymerase gamma. Observation of native DNA polymerase gamma both as an Hp140 monomer and as a heterodimer with Hp55 supports the notion that the two forms act in mitochondrial DNA repair and replication. Additionally, association of Hp55 with Hp140 protects the polymerase from inhibition by N-ethylmaleimide.
Collapse
Affiliation(s)
- S E Lim
- Laboratory of Molecular Genetics, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | |
Collapse
|
47
|
Wang Y, Kaguni LS. Baculovirus expression reconstitutes Drosophila mitochondrial DNA polymerase. J Biol Chem 1999; 274:28972-7. [PMID: 10506144 DOI: 10.1074/jbc.274.41.28972] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Drosophila mitochondrial DNA polymerase has been reconstituted and purified from baculovirus-infected insect cells. Baculoviruses encoding full-length and mature forms of the catalytic and accessory subunits were generated and used in single and co-infection studies. Recombinant heterodimeric holoenzyme was reconstituted in both the mitochondria and cytoplasm of Sf9 cells and required the mitochondrial presequences in both subunits. The recombinant holoenzyme contains DNA polymerase and 3'-5' exonuclease that are stimulated substantially by both salt and mitochondrial single-stranded DNA-binding protein. Thus, the recombinant enzyme exhibits biochemical properties indistinguishable from those of the native enzyme from Drosophila embryos. Production of the catalytic subunit alone yielded soluble protein with the chromatographic properties of the heterodimeric holoenzyme. However, the purified catalytic core has a 50-fold lower specific activity. This provides evidence of a critical role for the accessory subunit in the catalytic efficiency of Drosophila mitochondrial DNA polymerase.
Collapse
Affiliation(s)
- Y Wang
- Department of Biochemistry, Michigan State University, East Lansing, Michigan 48824-1319, USA
| | | |
Collapse
|
48
|
Cann IK, Ishino S, Nomura N, Sako Y, Ishino Y. Two family B DNA polymerases from Aeropyrum pernix, an aerobic hyperthermophilic crenarchaeote. J Bacteriol 1999; 181:5984-92. [PMID: 10498710 PMCID: PMC103625 DOI: 10.1128/jb.181.19.5984-5992.1999] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DNA polymerase activities in fractionated cell extract of Aeropyrum pernix, a hyperthermophilic crenarchaeote, were investigated. Aphidicolin-sensitive (fraction I) and aphidicolin-resistant (fraction II) activities were detected. The activity in fraction I was more heat stable than that in fraction II. Two different genes (polA and polB) encoding family B DNA polymerases were cloned from the organism by PCR using degenerated primers based on the two conserved motifs (motif A and B). The deduced amino acid sequences from their entire coding regions contained all of the motifs identified in family B DNA polymerases for 3'-->5' exonuclease and polymerase activities. The product of polA gene (Pol I) was aphidicolin resistant and heat stable up to 80 degrees C. In contrast, the product of polB gene (Pol II) was aphidicolin sensitive and stable at 95 degrees C. These properties of Pol I and Pol II are similar to those of fractions II and I, respectively, and moreover, those of Pol I and Pol II of Pyrodictium occultum. The deduced amino acid sequence of A. pernix Pol I exhibited the highest identities to archaeal family B DNA polymerase homologs found only in the crenarchaeotes (group I), while Pol II exhibited identities to homologs found in both euryarchaeotes and crenarchaeotes (group II). These results provide further evidence that the subdomain Crenarchaeota has two family B DNA polymerases. Furthermore, at least two DNA polymerases work in the crenarchaeal cells, as found in euryarchaeotes, which contain one family B DNA polymerase and one heterodimeric DNA polymerase of a novel family.
Collapse
Affiliation(s)
- I K Cann
- Department of Molecular Biology, Biomolecular Engineering Research Institute, Suita, Osaka 565-0874, Japan
| | | | | | | | | |
Collapse
|
49
|
Fan L, Sanschagrin PC, Kaguni LS, Kuhn LA. The accessory subunit of mtDNA polymerase shares structural homology with aminoacyl-tRNA synthetases: implications for a dual role as a primer recognition factor and processivity clamp. Proc Natl Acad Sci U S A 1999; 96:9527-32. [PMID: 10449726 PMCID: PMC22242 DOI: 10.1073/pnas.96.17.9527] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The accessory subunit of the heterodimeric mtDNA polymerase (polgamma) from Drosophila embryos is required to maintain the structural integrity or catalytic efficiency of the holoenzyme. cDNAs for the accessory subunit from Drosophila, man, mouse, and rat have been identified, and comparative sequence alignment reveals that the C-terminal region of about 120 aa is the most conserved. Furthermore, we demonstrate that the accessory subunit of animal polgamma has both sequence and structural similarity with class IIa aminoacyl-tRNA synthetases. Based on sequence similarity and fold recognition followed by homology modeling, we have developed a model of the three-dimensional structure of the C-terminal region of the accessory subunit of polgamma. The model reveals a rare five-stranded beta-sheet surrounded by four alpha-helices with structural homology to the anticodon-binding domain of class IIa aminoacyl-tRNA synthetases. We postulate that the accessory subunit plays a role in the recognition of RNA primers in mtDNA replication, to recruit polgamma to the template-primer junction. A similar role is served by the gamma-complex in Escherichia coli DNA polymerase III, and indeed our accessory subunit model shows structural similarity with the N-terminal domain of the delta' subunit of the gamma-complex. Structural similarity is also found with E. coli thioredoxin, the accessory subunit and processivity factor in bacteriophage T7 DNA polymerase. Thus, we propose that the accessory subunit of polgamma is involved both in primer recognition and in processive DNA strand elongation.
Collapse
Affiliation(s)
- L Fan
- Department of Biochemistry, Michigan State University, East Lansing, MI 48824-1319, USA
| | | | | | | |
Collapse
|
50
|
Abstract
Archaeal organisms are currently recognized as very exciting and useful experimental materials. A major challenge to molecular biologists studying the biology of Archaea is their DNA replication mechanism. Undoubtedly, a full understanding of DNA replication in Archaea requires the identification of all the proteins involved. In each of four completely sequenced genomes, only one DNA polymerase (Pol BI proposed in this review from family B enzyme) was reported. This observation suggested that either a single DNA polymerase performs the task of replicating the genome and repairing the mutations or these genomes contain other DNA polymerases that cannot be identified by amino acid sequence. Recently, a heterodimeric DNA polymerase (Pol II, or Pol D as proposed in this review) was discovered in the hyperthermophilic archaeon, Pyrococcus furiosus. The genes coding for DP1 and DP2, the subunits of this DNA polymerase, are highly conserved in the Euryarchaeota. Euryarchaeotic DP1, the small subunit of Pol II (Pol D), has sequence similarity with the small subunit of eukaryotic DNA polymerase delta. DP2 protein, the large subunit of Pol II (Pol D), seems to be a catalytic subunit. Despite possessing an excellent primer extension ability in vitro, Pol II (Pol D) may yet require accessory proteins to perform all of its functions in euryarchaeotic cells. This review summarizes our present knowledge about archaeal DNA polymerases and their relationship with those accessory proteins, which were predicted from the genome sequences.
Collapse
Affiliation(s)
- I K Cann
- Department of Molecular Biology, Biomolecular Engineering Research Institute, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan
| | | |
Collapse
|