1
|
|
2
|
Phototransduction in Drosophila. SCIENCE CHINA-LIFE SCIENCES 2012; 55:27-34. [PMID: 22314488 DOI: 10.1007/s11427-012-4272-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 09/12/2011] [Indexed: 10/14/2022]
Abstract
The Drosophila visual transduction is the fastest known G protein-coupled signaling cascade and has been served as a model for understanding the molecular mechanisms of other G protein-coupled signaling cascades. Numbers of components in visual transduction machinery have been identified. Based on the functional characterization of these genes, a model for Drosophila phototransduction has been outlined, including rhodopsin activation, phosphoinoside signaling, and the opening of TRP and TRPL channels. Recently, the characterization of mutants, showing slow termination, revealed the physiological significance and the mechanism of rapid termination of light response.
Collapse
|
3
|
Pak WL, Leung HT. Genetic Approaches to Visual Transduction in Drosophila melanogaster. ACTA ACUST UNITED AC 2011. [DOI: 10.3109/10606820308242] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
4
|
Wang T, Montell C. Phototransduction and retinal degeneration in Drosophila. Pflugers Arch 2007; 454:821-47. [PMID: 17487503 DOI: 10.1007/s00424-007-0251-1] [Citation(s) in RCA: 222] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Accepted: 03/05/2007] [Indexed: 01/05/2023]
Abstract
Drosophila visual transduction is the fastest known G-protein-coupled signaling cascade and has therefore served as a genetically tractable animal model for characterizing rapid responses to sensory stimulation. Mutations in over 30 genes have been identified, which affect activation, adaptation, or termination of the photoresponse. Based on analyses of these genes, a model for phototransduction has emerged, which involves phosphoinoside signaling and culminates with opening of the TRP and TRPL cation channels. Many of the proteins that function in phototransduction are coupled to the PDZ containing scaffold protein INAD and form a supramolecular signaling complex, the signalplex. Arrestin, TRPL, and G alpha(q) undergo dynamic light-dependent trafficking, and these movements function in long-term adaptation. Other proteins play important roles either in the formation or maturation of rhodopsin, or in regeneration of phosphatidylinositol 4,5-bisphosphate (PIP2), which is required for the photoresponse. Mutation of nearly any gene that functions in the photoresponse results in retinal degeneration. The underlying bases of photoreceptor cell death are diverse and involve mechanisms such as excessive endocytosis of rhodopsin due to stable rhodopsin/arrestin complexes and abnormally low or high levels of Ca2+. Drosophila visual transduction appears to have particular relevance to the cascade in the intrinsically photosensitive retinal ganglion cells in mammals, as the photoresponse in these latter cells appears to operate through a remarkably similar mechanism.
Collapse
Affiliation(s)
- Tao Wang
- Department of Biological Chemistry, Center for Sensory Biology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
5
|
Jörs S, Kazanski V, Foik A, Krautwurst D, Harteneck C. Receptor-induced activation of Drosophila TRP gamma by polyunsaturated fatty acids. J Biol Chem 2006; 281:29693-702. [PMID: 16901908 DOI: 10.1074/jbc.m602215200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Cellular calcium homeostasis is regulated by hormones and neurotransmitters, resulting in the activation of a variety of proteins, in particular, channel proteins of the plasma membrane and of intracellular compartments. Such channels are, for example, TRP channels of the TRPC protein family that are activated by various mediators from receptor-stimulated signaling cascades. In Drosophila, two TRPC channels, TRP and TRPL, are involved in phototransduction. In addition, a third Drosophila TRPC channel, TRPgamma, has been identified and described as an auxiliary subunit of TRPL. Beyond it, our data show that heterologously expressed TRPgamma formed a receptor-activated, outwardly rectifying cation channel independent from TRPL co-expression. Analysis of the activation mechanism revealed that TRPgamma is activated by various polyunsaturated fatty acids generated in a phospholipase C- and phospholipase A(2)-dependent manner. The most potent activator of TRPgamma, the stable analogue of arachidonic acid, 5,8,11,14-eicosatetraynoic acid, induced currents in single channel recordings. Here we show that upon heterologous expression TRPgamma forms a homomeric channel complex that is activated by polyunsaturated fatty acids as mediators of receptor-dependent signaling pathways. Reverse transcription PCR analysis showed that TRPgamma is expressed in Drosophila heads and bodies. Its body-wide expression pattern and its activation mechanism suggest that TRPgamma forms a fly cation channel responsible for the regulation of intracellular calcium in a variety of hormonal signaling cascades.
Collapse
Affiliation(s)
- Simone Jörs
- Institut für Pharmakologie, Charité Campus Benjamin Franklin, Thielallee 69-73, 14195 Berlin, Germany
| | | | | | | | | |
Collapse
|
6
|
Matthies HJG, Broadie K. Techniques to dissect cellular and subcellular function in the Drosophila nervous system. Methods Cell Biol 2004; 71:195-265. [PMID: 12884693 DOI: 10.1016/s0091-679x(03)01011-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Heinrich J G Matthies
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235, USA
| | | |
Collapse
|
7
|
Oberwinkler J. Calcium homeostasis in fly photoreceptor cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 514:539-83. [PMID: 12596943 DOI: 10.1007/978-1-4615-0121-3_32] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
In fly photoreceptor cells, two processes dominate the Ca2+ homeostasis: light-induced Ca2+ influx through members of the TRP family of ion channels, and Ca2+ extrusion by Na+/Ca2+ exchange. Ca2+ release from intracellular stores is quantitatively insignificant. Both, the light-activated channels and the Ca2+-extruding exchangers are located in or close to the rhabdomeric microvilli, small protrusions of the plasma membrane. The microvilli also contain the molecular machinery necessary for generating quantum bumps, short electrical responses caused by the absorption of a single photon. Due to this anatomical arrangement, the light-induced Ca2+ influx results in two separate Ca2+ signals that have different functions: a global, homogeneous increase of the Ca2+ concentration in the cell body, and rapid but large amplitude Ca2+ transients in the microvilli. The global rise of the Ca2+ concentration mediates light adaptation, via regulatory actions on the phototransduction cascade, the voltage-gated K+ channels and small pigment granules controlling the light intensity. The local Ca2+ transients in the microvilli are responsible for shaping the quantum bumps into fast, all-or-nothing events. They achieve this by facilitating strongly the phototransduction cascade at early stages ofthe light response and subsequently inhibiting it. Many molecular targets of these feedback mechanisms have been identified and characterized due to the availability of numerous Drosophila mutant showing defects in the phototransduction.
Collapse
|
8
|
Li C, Geng C, Leung HT, Hong YS, Strong LL, Schneuwly S, Pak WL. INAF, a protein required for transient receptor potential Ca(2+) channel function. Proc Natl Acad Sci U S A 1999; 96:13474-9. [PMID: 10557345 PMCID: PMC23972 DOI: 10.1073/pnas.96.23.13474] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The trp gene of Drosophila encodes a subunit of a class of Ca(2+)-selective light-activated channels that carry the bulk of the phototransduction current. Transient receptor potential (TRP) homologs have been identified throughout animal phylogeny. In vertebrates, TRP-related channels have been suggested to mediate "store-operated Ca(2+) entry," which is important in Ca(2+) homeostasis in a wide variety of cell types. However, the mechanisms of activation and regulation of the TRP channel are not known. Here, we report on the Drosophila inaF gene, which encodes a highly eye-enriched protein, INAF, that appears to be required for TRP channel function. A null mutation in this gene significantly reduces the amount of the TRP protein and, in addition, specifically affects the TRP channel function so as to nearly shut down its activity. The inaF mutation also dramatically suppresses the severe degeneration caused by a constitutively active mutation in the trp gene. Although the reduction in the amount of the TRP protein may contribute to these phenotypes, several lines of evidence support the view that inaF mutations also more directly affect the TRP channel function, suggesting that the INAF protein may have a regulatory role in the channel function.
Collapse
Affiliation(s)
- C Li
- Department of Biological Sciences, 1392 Lilly Hall, Purdue University, West Lafayette, IN 47907-1392, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Sakakibara M, Inoue H, Yoshioka T. Evidence for the involvement of inositol trisphosphate but not cyclic nucleotides in visual transduction in Hermissenda eye. J Biol Chem 1998; 273:20795-801. [PMID: 9694824 DOI: 10.1074/jbc.273.33.20795] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although several second messengers are known to be involved in invertebrate photoresponses, the mechanism underlying invertebrate phototransduction remains unclear. In the present study, brief injection of inositol trisphosphate into Hermissenda photoreceptors induced a transient Na+ current followed by burst activity, which accurately reproduced the native photoresponse. Injection of Ca2+ did not induce a significant change in the membrane potential but potentiated the native photoresponse. Injection of a Ca2+ chelator decreased the response amplitude and increased the response latency. Injection of cGMP induced a Ca2+-dependent, transient depolarization with a short latency. cAMP injection evoked Na+-dependent action potentials without a rise in membrane potential. Taken together, these results suggest that phototransduction in Hermissenda is mediated by Na+ channels that are directly activated by inositol trisphosphate without mobilization of cytosolic Ca2+.
Collapse
Affiliation(s)
- M Sakakibara
- Department of Biological Science and Technology, School of High Technology for Human Welfare, Tokai University, Numazu 410-03, Japan.
| | | | | |
Collapse
|
10
|
Mitchell J, Mayeenuddin LH. Purification, G protein activation, and partial amino acid sequence of a novel phospholipase C from squid photoreceptors. Biochemistry 1998; 37:9064-72. [PMID: 9636052 DOI: 10.1021/bi972768a] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Invertebrate visual signal transduction is initiated by rhodopsin activation of a guanine nucleotide binding protein, Gq, which stimulates phospholipase C (PLC) activity. We have previously purified a 140-kDa PLC enzyme from squid photoreceptors that is regulated by squid Gq. In these studies, an additional PLC enzyme was purified from the cytosol of squid photoreceptors and identified as a 70-kDa protein by SDS-polyacrylamide gel electrophoresis. Hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) by PLC-70 was optimal at pH 5 in the presence of 100 microM Ca2+ with a specific activity of 10.3 micromol min-1 mg-1. A polyclonal antibody raised against purified PLC-70 did not recognize purified PLC-140, and proteolytic digestion of the two purified enzymes with trypsin or Staphylococcus aureaus V8 protease showed distinct patterns of peptide fragments, indicating that PLC-70 is not a fragment of PLC-140. The partial amino acid sequence of the protein showed homology with PLC21 and norpA isozymes cloned from Drosophila, and mammalian PLC beta isozymes. Reconstitution of purified GTPgammaS-bound soluble squid Gq with PLC-70 resulted in significant enhancement of PIP2 hydrolysis over a range of Ca2+ concentrations and shifted the maximum activation by calcium to 1 microM. These results suggest that cephalopod phototransduction is mediated by Gq activation of more than one cytosolic PLC enzyme.
Collapse
Affiliation(s)
- J Mitchell
- Department of Pharmacology, University of Toronto, Ontario, Canada.
| | | |
Collapse
|
11
|
Baumann O. Distribution of Na+,K(+)-ATPase in photoreceptor cells of insects. INTERNATIONAL REVIEW OF CYTOLOGY 1997; 176:307-48. [PMID: 9394922 DOI: 10.1016/s0074-7696(08)61613-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Light stimulation of insect photoreceptors causes opening of cation channels and an inward current that is partially carried by Na+ ions. There is also an efflux of K+ ions upon photostimulation. Na+ and K+ gradients across the photoreceptor membrane are reestablished by the activity of the enzyme Na+,K(+)-ATPase. About two-thirds of the total amount of ATP consumed in response to a light stimulus is attributed to the activity of this ion pump, demonstrating the importance of this enzyme for photoreceptor function. Insect photoreceptor cells are polarized epithelial cells; their plasma membrane is organized into two domains having a distinct morphology, molecular composition, and function. The visual pigment rhodopsin and the molecular components of the transduction machinery are localized in the rhabdomere, an array of densely packed microvilli, whereas Na+,K(+)-ATPase resides in the nonrhabdomeric membrane. Comparative immunolocalization studies on compound eyes of diverse insect species have demonstrated subtle variations in the distribution patterns of Na+,K(+)-ATPase. These may be accounted for by differences in the mechanisms responsible for Na+,K(+)-ATPase positioning.
Collapse
Affiliation(s)
- O Baumann
- Institut für Zoophysiologie und Zellbiologie, Universität Potsdam, Germany
| |
Collapse
|
12
|
Hardie RC. A quantitative estimate of the maximum amount of light-induced Ca2+ release in Drosophila photoreceptors. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 1996; 35:83-9. [PMID: 8823937 DOI: 10.1016/1011-1344(96)07314-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Simultaneous measurements of the light-induced current (LIC) and cytosolic Ca2+ (using INDO-1) were made in Drosophila photoreceptors. In the presence of 1.5 mM Cao2+, the UV light used to measure INDO-1 fluorescence saturated the LIC and induced a large Ca2+ rise. In the absence of extracellular Ca2+ and with Na+ replaced by N-methyl-D-glucamine, the light-induced Ca2+ rise was virtually abolished. A residual rise of about 20 nM is regarded as an upper estimate of Ca2+ released from internal stores. To estimate the Ca2+ flux required to generate such a rise, Ca2+ influx signals in response to weak light steps (500 ms LED stimulus) were measured in the presence of external Ca2+. The relationship between [Ca(in)] and the total charge carried during the LIC had a slope of 2.7 nM pC-1. Assuming that 50% of the LIC is carried by Ca2+ and that the single-channel Ca2+ current carried by the InsP3 receptor is 0.04 pA, it was estimated that about 350 InsP3 receptors should have been sufficient to generate a Ca2+ rise of 20 nM within 500 ms. By contrast, the current activated by the UV measuring light was equivalent to the activation of at least 5000 quantum bumps, making it unlikely that InsP3-induced Ca2+ release could have been the causal event for excitation under these conditions.
Collapse
Affiliation(s)
- R C Hardie
- Department of Anatomy, Cambridge University, UK
| |
Collapse
|
13
|
Pearn MT, Randall LL, Shortridge RD, Burg MG, Pak WL. Molecular, biochemical, and electrophysiological characterization of Drosophila norpA mutants. J Biol Chem 1996; 271:4937-45. [PMID: 8617767 DOI: 10.1074/jbc.271.9.4937] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Inositol phosphate signaling has been implicated in a wide variety of eukaryotic cellular processes. In Drosophila, the phototransduction cascade is mediated by a phosphoinositide-specific phospholipase C (PLC) encoded by the norpA gene. We have characterized eight norpA mutants by electroretinogram (ERG), Western, molecular, and in vitro PLC activity analyses. ERG responses of the mutants show allele-dependent reductions in amplitudes and retardation in kinetics. The mutants also exhibit allele-dependent reductions in in vitro PLC activity levels and greatly reduced or undetectable NorpA protein levels. Three carry a missense mutation and five carry a nonsense mutation within the norpA coding sequence. In missense mutants, the amino acid substitution occurs at residues highly conserved among PLCs. These substitutions reduce the levels of both the NorpA protein and the PLC activity, with the reduction in PLC activity being greater than can be accounted for simply by the reduction in protein. The effects of the mutations on the amount and activity of the protein are much greater than their effects on the ERG, suggesting an amplification of the transduction signal at the effector (NorpA) protein level. Transgenic flies were generated by germline transformation of a null norpA mutant using a P-element construct containing the wild-type norpA cDNA driven by the ninaE promoter. Transformed flies show rescue of the electrophysiological phenotype in R1-R6 photoreceptors, but not in R7 or R8. The degeneration phenotype of R1-R6 photoreceptors is also rescued.
Collapse
Affiliation(s)
- M T Pearn
- Department of Biological Science, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | | | |
Collapse
|
14
|
Affiliation(s)
- V Raboy
- USDA-ARS Range Weeds and Cereals Research Unit, Montana State University, Bozeman 59717, USA
| | | |
Collapse
|
15
|
Hardie RC, Minke B. Phosphoinositide-mediated phototransduction in Drosophila photoreceptors: the role of Ca2+ and trp. Cell Calcium 1995; 18:256-74. [PMID: 8556766 DOI: 10.1016/0143-4160(95)90023-3] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Drosphoinate photoreceptors, represent a paradigm for the genetic dissection of phototransduction and, more generally for Ca2+ signaling. As in most invertebrates, phototransduction in Drosophila is mediated by the phosphoinositide (PI) cascade and is completely blocked by null mutations of the norpA gene which encodes a phospholipase C-beta isoform. The light-activated conductance in Drosophila is normally highly permeable to Ca2+, but in null mutants of the trp gene Ca2+ permeability is greatly reduced. Furthermore, the trp gene sequence shows homologies with voltage gated Ca2+ channels, suggesting that trp encodes a light-sensitive channel subunit. Ca2+ influx via these channels is instrumental in light adaptation, and profoundly influences phototransduction via positive and negative feedback at multiple molecular targets including protein kinase C. The mechanism of activation of the light-sensitive channels remains unresolved. A requirement for Ca2+ release from internal stores is suggested by the finding that Drosophila photoreceptors cannot sustain a maintained response under various conditions which might be expected to result in depletion of Ca2+ stores. However, Ca2+ release cannot be detected by Ca2+ indicator dyes and raising Ca2+ by photorelease of caged Ca2+ fails to mimic excitation. Recent studies, both in situ and with heterologously expressed trp protein, suggest that the trp-dependent channels may be activated by a process analogous to 'capacitative Ca2+ entry', a widespread, but poorly understood mode of PI-regulated Ca2+ influx in vertebrate cells.
Collapse
Affiliation(s)
- R C Hardie
- Department of Anatomy, University of Cambridge, UK
| | | |
Collapse
|
16
|
Running Deer JL, Hurley JB, Yarfitz SL. G protein control of Drosophila photoreceptor phospholipase C. J Biol Chem 1995; 270:12623-8. [PMID: 7759511 DOI: 10.1074/jbc.270.21.12623] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Light stimulates phosphatidylinositol bisphosphate phospholipase C (PLC) activity in Drosophila photoreceptors. We have investigated the mechanism of this reaction by assaying PLC activity in Drosophila head membranes using exogenous phospholipid substrates. PLC activation depends on the photoconversion of rhodopsin to metarhodopsin and is reduced in norpAEE5 PLC and ninaEP332 rhodopsin mutants. NorpA PLC is stimulated by light at free Ca2+ concentrations between 10 nM and 1 microM. This finding is consistent with a Ca(2+)-mediated positive feedback mechanism that contributes to the rapid temporal response of invertebrate photoreceptor cells. The guanyl nucleotide dependence of light-stimulated PLC activity indicates that a G protein regulates NorpA. This was confirmed by the observation that light stimulation of PLC activity is deficient in mutants that lack the eye-specific G protein beta subunit G beta e. These results indicate that G beta e functions as the beta subunit of the G protein coupling rhodopsin to NorpA PLC.
Collapse
Affiliation(s)
- J L Running Deer
- Howard Hughes Medical Institute, University of Washington, Seattle 98195, USA
| | | | | |
Collapse
|
17
|
Suzuki K, Nishihata J, Arai Y, Honma N, Yamamoto K, Irimura T, Toyoshima S. Molecular cloning of a novel actin-binding protein, p57, with a WD repeat and a leucine zipper motif. FEBS Lett 1995; 364:283-8. [PMID: 7758584 DOI: 10.1016/0014-5793(95)00393-n] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A 57 kDa protein (p57) was obtained during the study on phosphatidylinositol-specific phospholipase C. Its cDNA was isolated from calf spleen and human leukemia cell line HL60 libraries and cloned. In the primary structures of p57, they have two unique amino acid sequence motifs, a WD repeat and a leucine zipper motif. Furthermore, p57 shared sequence similarity (40%) with coronin, an actin-binding protein responsible for chemotaxis, cell motility, and cytokinesis of Dictyostelium discoideum, which has only the WD repeat. p57 also showed an actin-binding activity and was mainly expressed in immune tissues. From these results, we conclude that p57 is a coronin-like novel actin-binding protein in mammalian cells but may also have a different function from coronin.
Collapse
Affiliation(s)
- K Suzuki
- Pharmaceutical Basic Research Laboratories, Japan Tobacco Inc., Kanagawa
| | | | | | | | | | | | | |
Collapse
|
18
|
Suzuki T, Narita K, Yoshihara K, Nagai K, Kito Y. Phosphatidyl inositol-phospholipase C in squid photoreceptor membrane is activated by stable metarhodopsin via GTP-binding protein, Gq. Vision Res 1995; 35:1011-7. [PMID: 7762157 DOI: 10.1016/0042-6989(94)00219-c] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Phosphatidyl inositol-phospholipase C (PI-PLC) in squid retina was studied by immunoblotting and its activities were determined using [3H]phosphatidyl inositol bisphosphate ([3H]PIP2) as substrate. PI-PLC activity was found mostly in soluble fraction when the retina homogenate was treated with 400 mM KCl, but was associated with rhabdomal membranes under low salt conditions (20 mM Hepes). A protein with apparent molecular mass of 130kD was recognized by an antibody against PLC beta 4/norp A in both 400 mM KCl soluble and rhabdomal membrane fractions. A 42 kD protein recognized by antibody against the C-terminus of Gq alpha was also present in these two fractions. GTP gamma S stimulated only the PI-PLC activity associated with membrane and was magnesium dependent. PI-PLC activity was found to be (i) highly dependent upon calcium concentrations, (ii) enhanced by GTP but not by other nucleotides, and (iii) significantly stimulated by light at lower concentrations of GTP gamma S. The stimulation by light was still observed when irradiated membrane was incubated at 10 degrees C for 10 min and then mixed with GTP gamma S. These results suggest that stable metarhodopsin stimulates a PLC beta 4/norp A-like enzyme via a G-protein, Gq.
Collapse
Affiliation(s)
- T Suzuki
- Department of Pharmacology, Hyogo College of Medicine, Japan
| | | | | | | | | |
Collapse
|
19
|
Mitchell J, Gutierrez J, Northup JK. Purification, characterization, and partial amino acid sequence of a G protein-activated phospholipase C from squid photoreceptors. J Biol Chem 1995; 270:854-9. [PMID: 7822322 DOI: 10.1074/jbc.270.2.854] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Invertebrate visual transduction is thought to be initiated by photoactivation of rhodopsin and its subsequent interaction with a guanyl nucleotide-binding protein (G protein). The identities of the G protein and its target effector have remained elusive, although evidence suggests the involvement of a phospholipase C (PLC). We have identified a phosphatidylinositol-specific PLC from the cytosol of squid retina. The enzyme was purified to near-homogeneity by a combination of carboxymethyl-Sepharose and heparin-Sepharose chromatography. The purified PLC, identified as an approximately 140-kDa protein by sodium dodecyl sulfate-polyacrylamide gels, hydrolyzed phosphatidylinositol 4,5-bisphosphate (PIP2) at a rate of 10-15 mumol/min/mg of protein with 1 microM Ca2+. The partial amino acid sequence of the protein showed homology with a PLC cloned from a Drosophila head library (PLC21) and lesser homology with Drosophila norpA protein and mammalian PLC beta isozymes. Reconstitution of purified squid PLC with an AlF(-)-activated 44-kDa G protein alpha subunit extracted from squid photoreceptor membranes resulted in a significant increase in PIP2 hydrolysis over a range of Ca2+ concentrations while reconstitution with mammalian Gt alpha or Gi 1 alpha was without effect. These results suggest that cephalopod phototransduction is mediated by G alpha-44 activation of a 140-kDa cytosolic PLC.
Collapse
Affiliation(s)
- J Mitchell
- Department of Pharmacology, University of Toronto, Canada
| | | | | |
Collapse
|
20
|
McKay RR, Zhu L, Shortridge RD. Membrane association of phospholipase C encoded by the norpA gene of Drosophila melanogaster. Neuroscience 1994; 61:141-8. [PMID: 7969889 DOI: 10.1016/0306-4522(94)90067-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Severe mutations within the norpA gene of Drosophila abolish the photoreceptor potential and render the fly blind by deleting phospholipase C, an essential component of the phototransduction pathway. To study the membrane association of phospholipase C, we have utilized biochemical assays of phospholipase C activity, which predominant measurable phospholipase C activity in head homogenates has been shown to be encoded by norpA, as well as antisera generated against the major gene product of norpA to examine its subcellular distribution before and during phototransduction. We find that both phospholipase C activity and the norpA protein are predominantly associated with membrane fractions in heads of both light- and dark-adapted flies. Moreover, phospholipase C activity as well as norpA protein can be easily extracted from membrane preparations of light- or dark-adapted flies using high salt, indicating that the norpA protein is peripherally localized on the membrane. These data suggest that the norpA encoded phospholipase C of Drosophila is a permanent peripheral membrane protein. If this is indeed the case, then it would mean that the reversible redistribution of phospholipase C from the cytosol to the membrane, as observed in epidermal growth factor receptor stimulation of mammalian phospholipase C gamma, is not a universal mechanism utilized by all types of phosphatidylinositol-specific phospholipase C.
Collapse
Affiliation(s)
- R R McKay
- Department of Biological Sciences, State University of New York, Buffalo 14260
| | | | | |
Collapse
|
21
|
Sahly I, Schröder WH, Zierold K, Minke B. Accumulation of calcium in degenerating photoreceptors of several Drosophila mutants. Vis Neurosci 1994; 11:763-72. [PMID: 7918226 DOI: 10.1017/s0952523800003060] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The hypothesis that a large, possibly toxic, increase in cellular calcium accompanies photoreceptor cell degeneration in several different Drosophila mutants was tested. The calcium content of wild type and mutant photoreceptors of Drosophila was measured using rapid freezing of the eyes and energy-dispersive x-ray analysis (e.d.x.) of cryosections and semithin sections of cryosubstituted material. Light- and dark-raised mutants of the following strains were studied: retinal degeneration B (rdgB); retinal degeneration C (rdgC); neither inactivation nor afterpotential C (ninaC), and no receptor potential A (norpA). These are light-dependent retinal degeneration mutants in which the affected gene products had been previously shown as myosin-kinase (ninaC), calcium-dependent phosphoprotein phosphatase (rdgC), phosphoinositide transfer protein (rdgB), and phospholipase C (norpA). In light-raised mutants, ommatidia of variable degrees of degeneration were observed. Mass-dense globular bodies of 200-500 nm diameter in relatively large quantities were found in the degenerating photoreceptor of all the mutants tested. These subcellular globules were found to have a very high calcium content, which was not found in wild type or in nondegenerating photoreceptors of the mutants. Nondegenerating photoreceptors were found not only in dark-raised mutants, but in smaller quantities also in light-raised mutants. Usually these globular structures contained high levels of phosphorus, indicating that at least part of the calcium in the mutant photoreceptors is precipitated as calcium phosphate. The results indicate that a large increase in cellular calcium accompanies light-induced photoreceptor degeneration in degenerating Drosophila mutants even when induced by very different mutations, suggesting that the calcium accumulation is a secondary rather than a primary effect in the degeneration process.
Collapse
Affiliation(s)
- I Sahly
- Institut für Biologische Informationsverarbeitung, KFA Jülich, Germany
| | | | | | | |
Collapse
|
22
|
Komori N, Usukura J, Kurien B, Shichi H, Matsumoto H. Phosrestin I, an arrestin homolog that undergoes light-induced phosphorylation in dipteran photoreceptors. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 1994; 24:607-617. [PMID: 7519097 DOI: 10.1016/0965-1748(94)90097-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Two classes of phosphorylated homologs of vertebrate arrestins, designated phosrestins I (PRI) and phosrestin II (PRII), are expressed in the photoreceptors of a fruit fly, Drosophila melanogaster. This study presents evidence that the housefly, Musca domestica, also has a protein similar to Drosophila PRI. Our conclusion is based on the following evidence. (1) We identified a Musca photoreceptor protein exhibiting a molecular mass (51 kDa) and an isoelectric point (pI = 8.6) similar to those of Drosophila PRI. This Musca protein, designated Musca PRI, changes its pI upon illumination in vivo. Drosophila PRI. This Musca protein, designated Musca PRI, changes its pI upon illumination in vivo. (2) Rabbit antibodies raised against Musca PRI, against bovine arrestin, and against a synthetic peptide based on the Drosophila PRI sequence stained the Drosophila and Musca PRIs specifically on 1 and 2-dimensional Western immunoblots. (3) Both Drosophila and Musca PRIs incorporated 32P-radioactivity from gamma-32P-ATP in cell-free homogenates of retinas. Partial peptide digestions of Drosophila and Musca PRIs revealed similarity between these proteins. We observed that Drosophila PRI exists in the random preparation, but it also exists in other subcellular fractions. Immunocytochemistry at the EM level revealed a distribution of both Drosophila and Musca PRI epitopes in membranous vesicular structures in the cytosol as well as in the rhabdomeric microvillar membranes where the visual pigment, rhodopsin, exists. Such distribution of PRI epitopes suggests that PRI and its light-dependent phosphorylation may function in a space remote from the rhabdomere as well as the immediate milieu of photoreception.
Collapse
Affiliation(s)
- N Komori
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City 73190
| | | | | | | | | |
Collapse
|
23
|
Matsumoto H, Kurien BT, Takagi Y, Kahn ES, Kinumi T, Komori N, Yamada T, Hayashi F, Isono K, Pak WL. Phosrestin I undergoes the earliest light-induced phosphorylation by a calcium/calmodulin-dependent protein kinase in Drosophila photoreceptors. Neuron 1994; 12:997-1010. [PMID: 8185954 DOI: 10.1016/0896-6273(94)90309-3] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Activation of PI-PLC initiates two independent branches of protein phosphorylation cascades catalyzed by either PKC or Ca2+/calmodulin-dependent protein kinase (CaMK). We find that phosrestin I (PRI), a Drosophila homolog of vertebrate photoreceptor arrestin, undergoes light-induced phosphorylation on a subsecond time scale which is faster than that of any other protein in vivo. We determine that a CaMK activity is responsible for in vitro PRI phosphorylation at Ser366 in the C-terminal tryptic segment, MetLysSer(P)IleGluGlnHisArg, in which Ser(P) represents phosphoserine366. We also demonstrate that Ser366 is the phosphorylation site of PRI in vivo by identifying the molecular species resulting from in-gel tryptic digestion of purified phospho-PRI using HPLC-electrospray ionization tandem quadrupole mass spectroscopy. From these data, we conclude that the CaMK pathway, not the PKC pathway, is responsible for the earliest protein phosphorylation event following activation of PI-PLC in living Drosophila photoreceptors.
Collapse
Affiliation(s)
- H Matsumoto
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City 73190
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Affiliation(s)
- K S Bruzik
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago 60612
| | | |
Collapse
|
25
|
Bovine phospholipase C highly homologous to the norpA protein of Drosophila is expressed specifically in cones. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)41835-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
26
|
Yoshioka T, Inoue H, Ichikawa K, Sakakibara M, Tsuda M, Suzuki H. Biophysical aspect of information flow from receptor to channel. Ann N Y Acad Sci 1993; 707:328-37. [PMID: 9137563 DOI: 10.1111/j.1749-6632.1993.tb38063.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- T Yoshioka
- School of Human Sciences, Waseda University, Saitama, Japan
| | | | | | | | | | | |
Collapse
|
27
|
Szuts EZ. Concentrations of phosphatidylinositol 4,5-bisphosphate and inositol 1,4,5-trisphosphate within the distal segment of squid photoreceptors. Vis Neurosci 1993; 10:921-9. [PMID: 8217941 DOI: 10.1017/s0952523800006131] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Although inositol trisphosphate (InsP3) is a key substance in phototransduction of invertebrate photoreceptors, its intracellular concentration remains unknown. The purpose of this study was to assay its concentration and the concentration of its precursor, phosphatidylinositol bisphosphate (PtdInsP2), within squid photoreceptors. Rhabdomeric membranes were purified and their PtdInsP2 content measured with a phosphate assay after the extracted phospholipids were deacylated and separated by ion-exchange chromatography. At least 75% of the total PtdInsP2 found in the retinal homogenate was associated with the plasma membranes of the rhabdomeric microvilli, where PtdInsP2 was 3.1 +/- 0.7% of the total phospholipids, a level comparable to values published for rat brain. In terms of rhodopsin, microvillar membranes contained 3.7 +/- 0.9 mol PtdInsP2/mol rho. The InsP3 content of living retinas was measured with a radioreceptor assay. The basal content of dark-adapted retinas was 0.15 +/- 0.05 InsP3/rho, equivalent to 30 +/- 9 nmol/g tissue that is about twice that of rat brains. Flash illumination (approximately 1 ms in duration) that photoactivated 1% of rhodopsin increased the level about fivefold to 0.68 +/- 0.22 InsP3/rho. Corresponding decrease in PtdInsP2 was undetectable as it was within measurement errors. For PtdInsP2, the measured content corresponds to 5.6 +/- 1.4 mM within the volume of rhabdomere. Maximal light-induced concentration of InsP3 is calculated to be 1.2 +/- 0.4 mM within the cytoplasm of the distal segment. Each photoactivated rhodopsin leads to the formation of < or = 500 InsP3 molecules when measured 15 s after the flash.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- E Z Szuts
- Laboratory of Sensory Physiology, Marine Biological Laboratory, Woods Hole, MA 02543
| |
Collapse
|
28
|
Zhu L, McKay R, Shortridge R. Tissue-specific expression of phospholipase C encoded by the norpA gene of Drosophila melanogaster. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)82349-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
29
|
Yoshikawa S, Tanimura T, Miyawaki A, Nakamura M, Yuzaki M, Furuichi T, Mikoshiba K. Molecular cloning and characterization of the inositol 1,4,5-trisphosphate receptor in Drosophila melanogaster. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42047-9] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
30
|
Inoue H, Yoshioka T, Hotta Y. Partial purification and characterization of membrane-associated diacylglycerol kinase of Drosophila heads. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1122:219-24. [PMID: 1322704 DOI: 10.1016/0167-4838(92)90327-a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A membrane-associated diacylglycerol kinase of Drosophila heads was purified to near homogeneity from the KCl extract of Drosophila heads. The purification procedure involved chromatography on Q-Sepharose, ammonium sulfate fractionation, Superose 12, hydroxyapatite and ATP-agarose. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of fractions after the ATP-agarose column chromatography showed that only a 115 kDa protein correlated well with the enzyme activity. The apparent Km values of partially purified DG kinase were 220 microM for ATP and 540 microM for diolein, respectively. The activity of the DG kinase was inhibited by deoxycholate and was not activated by Ca2+.
Collapse
Affiliation(s)
- H Inoue
- Department of Basic Sciences, School of Human Sciences, Waseda University, Tokorozawa, Japan
| | | | | |
Collapse
|
31
|
Hardie RC, Minke B. The trp gene is essential for a light-activated Ca2+ channel in Drosophila photoreceptors. Neuron 1992; 8:643-51. [PMID: 1314617 DOI: 10.1016/0896-6273(92)90086-s] [Citation(s) in RCA: 566] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Invertebrate phototransduction is an important model system for studying the ubiquitous inositol-lipid signaling system. In the transient receptor potential (trp) mutant, one of the most intensively studied transduction mutants of Drosophila, the light response quickly declines to baseline during prolonged intense light. Using whole-cell recordings from Drosophila photoreceptors, we show that the wild-type response is mediated by at least two functionally distinct classes of light-sensitive channels and that both the trp mutation and a Ca2+ channel blocker (La3+) selectively abolish one class of channel with high Ca2+ permeability. Evidence is also presented that Ca2+ is necessary for excitation and that Ca2+ depletion mimics the trp phenotype. We conclude that the recently sequenced trp protein represents a class of light-sensitive channel required for inositide-mediated Ca2+ entry and suggest that this process is necessary for maintained excitation during intense illumination in fly photoreceptors.
Collapse
Affiliation(s)
- R C Hardie
- Department of Zoology, Cambridge University, England
| | | |
Collapse
|
32
|
Suzuki E, Hirosawa K. Immunocytochemical studies on light-induced changes in phosphatidylinositol 4,5-bisphosphate immunoreactivity in the visual system of normal and norpA mutant of Drosophila. Neurosci Res 1992; 13:155-60. [PMID: 1316594 DOI: 10.1016/0168-0102(92)90096-u] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The distribution of phosphatidylinositol 4,5-bisphosphate (PIP2) in the visual system of Drosophila was studied by indirect immunofluorescence staining using a monoclonal antibody against PIP2. The retina of the compound eye and the cortical regions of the optic lobe were heavily stained by the antibody. In the retina, photoreceptor cells were stained with the antibody, but non-neuronal cells such as pigment cells and cone cells were not stained. The staining intensity in the light-adapted photoreceptor cells was lower than that in dark-adapted cells in normal flies, whereas no such difference in immunoreactivity was observed in the norpAEE5 mutant, whose photoreceptor cells are deficient in phospholipase C. These results suggest that the PIP2 in the photoreceptor cells is hydrolyzed by phospholipase C coded by the norpA gene upon light stimulation.
Collapse
Affiliation(s)
- E Suzuki
- Department of Fine Morphology, University of Tokyo, Japan
| | | |
Collapse
|
33
|
Yarfitz S, Niemi GA, McConnell JL, Fitch CL, Hurley JB. A G beta protein in the Drosophila compound eye is different from that in the brain. Neuron 1991; 7:429-38. [PMID: 1910788 DOI: 10.1016/0896-6273(91)90295-b] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A G protein beta subunit gene (Gbe) is expressed only in the eyes of adult D. melanogaster. This gene was identified by probing a Drosophila head cDNA expression library with monoclonal antibodies to a previously characterized Drosophila G protein beta subunit (Gbb). Immunoblot and Northern analyses demonstrate that Gbe protein and mRNA is not present in Drosophila mutants that lack eyes. Immunocytochemical and in situ hybridization analyses further demonstrate that Gbe is expressed in the eyes but not in the brain, whereas Gbb is abundantly expressed in the brain. The Gbe product is approximately 45% identical to previously identified G beta subunits and defines a new G beta class. Its localization suggests a possible role in phototransduction.
Collapse
Affiliation(s)
- S Yarfitz
- Howard Hughes Medical Institute, University of Washington, Seattle 98195
| | | | | | | | | |
Collapse
|
34
|
Shortridge R, Yoon J, Lending C, Bloomquist B, Perdew M, Pak W. A Drosophila phospholipase C gene that is expressed in the central nervous system. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)98923-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
35
|
Abstract
Numerous hormones, neurotransmitters and growth factors regulate intracellular events by acting at cell surface receptors which are coupled to the generation of inositol phospholipid-derived intracellular messengers. Receptors trigger the hydrolysis of inositol phospholipids by activating phosphoinositidase C (PIC) enzymes. At least four families of genes encode structurally distinct PIC enzymes and it is likely that distinct PIC isoenzymes participate in different pathways of signal transduction. Two different modes of receptor regulation have been identified and these involve distinct PIC isoenzymes. In the first of these, PIC-gamma is a substrate for growth factor receptor protein-tyrosine kinases. The second of these pathways involves PIC-beta plus other isoenzymes whose activities are regulated by G proteins in response to agonist binding to G protein-linked receptors. At least two types of G proteins regulate PIC activity and each may control the activity of different PIC isoenzymes.
Collapse
Affiliation(s)
- T F Martin
- Zoology Department, University of Wisconsin, Madison 53706
| |
Collapse
|