1
|
Howe J, Barbar EJ. Dynamic interactions of dimeric hub proteins underlie their diverse functions and structures: A comparative analysis of 14-3-3 and LC8. J Biol Chem 2025; 301:108416. [PMID: 40107617 PMCID: PMC12017986 DOI: 10.1016/j.jbc.2025.108416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/06/2025] [Accepted: 02/08/2025] [Indexed: 03/22/2025] Open
Abstract
Hub proteins interact with a host of client proteins and regulate multiple cellular functions. Dynamic hubs have a single binding interface for one client at a time resulting in competition among clients with the highest affinity. Dynamic dimeric hubs with two identical sites bind either two different client proteins or two chains of the same client to form homogenous complexes and could also form heterogeneous mixtures of interconverting complexes. Here, we review the interactions of the dimeric hubs 14-3-3 and LC8. 14-3-3 is a phosphoserine/threonine binding protein involved in structuring client proteins and regulating their phosphorylation. LC8 is involved in promoting the dimerization of client peptides and the rigidification of their disordered regions. Both 14-3-3 and LC8 are essential genes, with 14-3-3 playing a crucial role in apoptosis and cell cycle regulation, while LC8 is critical for the assembly of proteins involved in transport, DNA repair, and transcription. Interestingly, both protein dimers can dissociate by phosphorylation, which results in their interactome-wide changes. Their interactions are also regulated by the phosphorylation of their clients. Both form heterogeneous complexes with various functions including phase separation, signaling, and viral hijacking where they restrict the conformational heterogeneity of their dimeric clients that bind nucleic acids. This comparative analysis highlights the importance of dynamic protein-protein interactions in the diversity of functions of 14-3-3 and LC8 and how small differences in structures of interfaces explain why 14-3-3 is primarily involved in the regulation of phosphorylation states while LC8 is primarily involved in the regulation of assembly of large dynamic complexes.
Collapse
Affiliation(s)
- Jesse Howe
- Oregon State University, Department of Biochemistry and Biophysics, Corvallis, Oregon, USA
| | - Elisar J Barbar
- Oregon State University, Department of Biochemistry and Biophysics, Corvallis, Oregon, USA.
| |
Collapse
|
2
|
Zhang J, Treinen LM, Mast SJ, McCarthy MR, Svensson B, Thomas DD, Cornea RL. Kinetics insight into the roles of the N- and C-lobes of calmodulin in RyR1 channel regulation. J Biol Chem 2025; 301:108258. [PMID: 39904484 PMCID: PMC11923823 DOI: 10.1016/j.jbc.2025.108258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 02/06/2025] Open
Abstract
Calmodulin (CaM) activates the skeletal muscle Ca2+ release channel (ryanodine receptor, RyR1) at nanomolar Ca2+ and inhibits it at micromolar Ca2+. CaM conversion from RyR1 activator to inhibitor is due to structural changes induced by Ca2+ binding at CaM's two lobes. However, it remains unclear which lobe provides the switch for this conversion. Here, we attached the environment-sensitive fluorophore acrylodan (Acr) at either lobe of intact CaM or lobe-specific Ca2+-sensitive CaM mutants, and monitored the effects of Ca2+ binding via the fluorescence change of free or RyR1-bound AcrCaM. Using steady state measurements, we found that Ca2+ binding to free CaM causes a dramatic structural change in the N-lobe, but only a slight effect on the C-lobe of the Ca2+-sensitive lobe-specific mutants, in addition to the previously known higher Ca2+ affinity at the C-lobe versus the N-lobe. Using stopped-flow measurements, we found ∼30x faster Ca2+ dissociation from the N- versus C-lobe, and ∼20x slower Ca2+ association to the N-lobe versus C-lobe. These Ca2+ binding properties hold for the CaM/RyR1 complex, and Ca2+ affinity is enhanced at the CaM C-lobe but decreased at the N-lobe by RyR1 binding. We propose that fast Ca2+-binding at the C-lobe of CaM initiates its inhibition to RyR1 at high [Ca2+], while slow Ca2+ binding to the N-lobe is necessary for timely enhancement of the inhibitory effect. The dysregulation of RyR1 by M124Q-CaM may be explained by the lower Ca2+ affinity versus WT-CaM, as suggested by both steady-state and transient kinetics results.
Collapse
Affiliation(s)
- Jingyan Zhang
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, USA
| | - Levy M Treinen
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, USA
| | - Skylar J Mast
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, USA
| | - Megan R McCarthy
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, USA
| | - Bengt Svensson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, USA
| | - David D Thomas
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, USA
| | - Razvan L Cornea
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, USA.
| |
Collapse
|
3
|
Turina P, Dal Cortivo G, Enriquez Sandoval CA, Alexov E, Ascher DB, Babbi G, Bakolitsa C, Casadio R, Fariselli P, Folkman L, Kamandula A, Katsonis P, Li D, Lichtarge O, Martelli PL, Panday SK, Pires DEV, Portelli S, Pucci F, Rodrigues CHM, Rooman M, Savojardo C, Schwersensky M, Shen Y, Strokach AV, Sun Y, Woo J, Radivojac P, Brenner SE, Dell'Orco D, Capriotti E. Assessing the predicted impact of single amino acid substitutions in calmodulin for CAGI6 challenges. Hum Genet 2025; 144:113-125. [PMID: 39714488 PMCID: PMC11975486 DOI: 10.1007/s00439-024-02720-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 12/02/2024] [Indexed: 12/24/2024]
Abstract
Recent thermodynamic and functional studies have been conducted to evaluate the impact of amino acid substitutions on Calmodulin (CaM). The Critical Assessment of Genome Interpretation (CAGI) data provider at University of Verona (Italy) measured the melting temperature (Tm) and the percentage of unfolding (%unfold) of a set of CaM variants (CaM challenge dataset). Thermodynamic measurements for the equilibrium unfolding of CaM were obtained by monitoring far-UV Circular Dichroism as a function of temperature. These measurements were used to determine the Tm and the percentage of protein remaining unfolded at the highest temperature. The CaM challenge dataset, comprising a total of 15 single amino acid substitutions, was used to evaluate the effectiveness of computational methods in predicting the Tm and unfolding percentages associated with the variants, and categorizing them as destabilizing or not. For the sixth edition of CAGI, nine independent research groups from four continents (Asia, Australia, Europe, and North America) submitted over 52 sets of predictions, derived from various approaches. In this manuscript, we summarize the results of our assessment to highlight the potential limitations of current algorithms and provide insights into the future development of more accurate prediction tools. By evaluating the thermodynamic stability of CaM variants, this study aims to enhance our understanding of the relationship between amino acid substitutions and protein stability, ultimately contributing to more accurate predictions of the effects of genetic variants.
Collapse
Affiliation(s)
- Paola Turina
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Giuditta Dal Cortivo
- Department of Neurosciences, Biomedicine, and Movement Sciences, Section of Biological Chemistry, University of Verona, 37134, Verona, Italy
| | | | - Emil Alexov
- Department of Physics and Astronomy, Clemson University, Clemson, SC, 29634, USA
| | - David B Ascher
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia
- School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Giulia Babbi
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Constantina Bakolitsa
- Department of Plant and Microbial Biology and Center for Computational Biology, University of California, Berkeley, CA, USA
| | - Rita Casadio
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Piero Fariselli
- Department of Medical Sciences, University of Torino, Turin, Italy
| | - Lukas Folkman
- Institute for Integrated and Intelligent Systems, Griffith University, Southport, QLD, Australia
| | - Akash Kamandula
- Khoury College of Computer Sciences, Northeastern University, Boston, MA, 02115, USA
| | - Panagiotis Katsonis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Dong Li
- Computational Biology and Bioinformatics, Université Libre de Bruxelles, 50 Roosevelt Ave, 1050, Brussels, Belgium
| | - Olivier Lichtarge
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Pier Luigi Martelli
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | | | - Douglas E V Pires
- School of Computing and Information Systems, The University of Melbourne, Melbourne, VIC, 3053, Australia
| | - Stephanie Portelli
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia
- School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Fabrizio Pucci
- Computational Biology and Bioinformatics, Université Libre de Bruxelles, 50 Roosevelt Ave, 1050, Brussels, Belgium
| | - Carlos H M Rodrigues
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia
| | - Marianne Rooman
- Computational Biology and Bioinformatics, Université Libre de Bruxelles, 50 Roosevelt Ave, 1050, Brussels, Belgium
| | - Castrense Savojardo
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Martin Schwersensky
- Computational Biology and Bioinformatics, Université Libre de Bruxelles, 50 Roosevelt Ave, 1050, Brussels, Belgium
| | - Yang Shen
- Department of Electrical and Computer Engineering Texas, A&M University, College Station, TX, USA
| | - Alexey V Strokach
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
| | - Yuanfei Sun
- Department of Electrical and Computer Engineering Texas, A&M University, College Station, TX, USA
| | | | - Predrag Radivojac
- Khoury College of Computer Sciences, Northeastern University, Boston, MA, 02115, USA
| | - Steven E Brenner
- Department of Plant and Microbial Biology and Center for Computational Biology, University of California, Berkeley, CA, USA
- Biophysics Graduate Group, University of California, Berkeley, CA, 94720, USA
- Center for Computational Biology, University of California, Berkeley, CA, 94720, USA
| | - Daniele Dell'Orco
- Department of Neurosciences, Biomedicine, and Movement Sciences, Section of Biological Chemistry, University of Verona, 37134, Verona, Italy.
| | - Emidio Capriotti
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy.
- Computational Genomics Platform, IRCCS University Hospital of Bologna, 40138, Bologna, Italy.
| |
Collapse
|
4
|
Linkevicius D, Chadwick A, Faas GC, Stefan MI, Sterratt DC. Fitting and comparison of calcium-calmodulin kinetic schemes to a common data set using non-linear mixed effects modelling. PLoS One 2025; 20:e0318646. [PMID: 39919077 PMCID: PMC11805441 DOI: 10.1371/journal.pone.0318646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 01/21/2025] [Indexed: 02/09/2025] Open
Abstract
Calmodulin is a calcium binding protein that is essential in calcium signalling in the brain. There are many computational models of calcium-calmodulin binding that capture various calmodulin features. However, existing models have generally been fit to different data sets, with some publications not reporting their training and validation performance. Moreover, there is no model comparison using a common benchmark data set as is common practice in other modeling domains. Finally, some calmodulin models have been fit as a part of a larger kinetic scheme, which may have resulted in parameters being underdetermined. We address these three limitations of previous models by fitting the published calcium-calmodulin schemes to a common calcium-calmodulin data set comprising equilibrium data from Shifman et al. and dynamical data from Faas et al. Due to technical limitations, the amount of uncaged calcium in Faas et al. data could not be predicted with certainty. To find good parameter fits, despite this uncertainty, we used non-linear mixed effects modelling as implemented in the Pumas.jl package. The Akaike information criterion values for our reaction rate constants were significantly lower than for the published parameters, indicating that the published parameters are suboptimal. Moreover, there were significant differences in calmodulin activation, both between the schemes and between our reaction rate and those previously published. A kinetic scheme with independent lobes and unique, rather than identical, binding sites fit the data best. Our results support two hypotheses: (1) partially bound calmodulin is important in cellular signalling; and (2) calcium binding sites within a calmodulin lobe are kinetically distinct rather than identical. We conclude that more attention should be given to validation and comparison of models of individual molecules.
Collapse
Affiliation(s)
- Domas Linkevicius
- Institute for Adaptive and Neural Computation, School of Informatics, University of Edinburgh, Edinburgh, United Kingdom
| | - Angus Chadwick
- Institute for Adaptive and Neural Computation, School of Informatics, University of Edinburgh, Edinburgh, United Kingdom
| | - Guido C. Faas
- Department of Neurology, School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | | | - David C. Sterratt
- Institute for Adaptive and Neural Computation, School of Informatics, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
5
|
Walker V. The Molecular Biology of Placental Transport of Calcium to the Human Foetus. Int J Mol Sci 2025; 26:383. [PMID: 39796238 PMCID: PMC11720126 DOI: 10.3390/ijms26010383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/23/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
From fertilisation to delivery, calcium must be transported into and within the foetoplacental unit for intracellular signalling. This requires very rapid, precisely located Ca2+ transfers. In addition, from around the eighth week of gestation, increasing amounts of calcium must be routed directly from maternal blood to the foetus for bone mineralisation through a flow-through system, which does not impact the intracellular Ca2+ concentration. These different processes are mediated by numerous membrane-sited Ca2+ channels, transporters, and exchangers. Understanding the mechanisms is essential to direct interventions to optimise foetal development and postnatal bone health and to protect the mother and foetus from pre-eclampsia. Ethical issues limit the availability of human foetal tissue for study. Our insight into the processes of placental Ca2+ handling is advancing rapidly, enabled by developing genetic, analytical, and computer technology. Because of their diverse sources, the reports of new findings are scattered. This review aims to pull the data together and to highlight areas of uncertainty. Areas needing clarification include trafficking, membrane expression, and recycling of channels and transporters in the placental microvilli; placental metabolism of vitamin D in gestational diabetes and pre-eclampsia; and the vascular effects of increased endothelial Orai expression by pregnancy-specific beta-1-glycoproteins PSG1 and PSG9.
Collapse
Affiliation(s)
- Valerie Walker
- Department of Clinical Biochemistry, University Hospital Southampton NHS Foundation Trust, Southampton General Hospital, Southampton SO16 6YD, UK
| |
Collapse
|
6
|
Thunberg P, Wastensson G, Lidén G, Adjeiwaah M, Tellman J, Bergström B, Fornander L, Lundberg P. Welding techniques and manganese concentrations in blood and brain: Results from the WELDFUMES study. Neurotoxicology 2024; 105:121-130. [PMID: 39326638 DOI: 10.1016/j.neuro.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
This study used whole-brain mapping to investigate the effect of different welding processes on manganese (Mn) accumulation in the brain. Exposure measurements were performed at the welders' workplaces about 3 weeks before a magnetic resonance imaging (MRI) examination. The welders were categorized into three main groups based on welding method, and the T1-relaxation rate (R1) was measured using quantitative MRI (qMRI). Welders using shielded metal arc welding (SMAW) were found to have lower accumulations of total Mn in clusters encompassing white matter, thalamus, putamen, pallidum, and substantia nigra compared with welders using inert gas tungsten arc welding (GTAW) or continuous consumable electrode arc welding (CCEAW). A positive correlation was found between Mn in red blood cells (Mn-RBC) and R1 in a region encompassing pre-and post-central gyri. The results of this study show that the accumulation of free, bound, or compartmentalized Mn ions in the brain differed depending on the welding method used. These differences were predominately located in the basal ganglia but were also found in regions encompassing white matter. The level of Mn-RBC was correlated to the deposition of Mn in the left primary somatosensory and motor cortex and may therefore be linked to neurological and neurobehavioral symptoms.
Collapse
Affiliation(s)
- Per Thunberg
- Center for Experimental and Biomedical Imaging in Örebro (CEBIO), Örebro University, Örebro, Sweden; Department of Radiology and Medical Physics, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.
| | - Gunilla Wastensson
- Department of Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Göran Lidén
- Department of Environment Science, Stockholm University, Stockholm, Sweden
| | - Mary Adjeiwaah
- Center for Medical Imaging and Visualization Science (CMIV), Linköping University, Linköping, Sweden; Department of Radiation Physics and Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Jens Tellman
- Center for Medical Imaging and Visualization Science (CMIV), Linköping University, Linköping, Sweden; Department of Radiation Physics and Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Bernt Bergström
- Department of Occupational and Environmental Medicine, Örebro University Hospital, Region Örebro County, Sweden
| | - Louise Fornander
- Department of Occupational and Environmental Medicine, Faculty of Medicine and Health, Örebro University, Sweden
| | - Peter Lundberg
- Center for Medical Imaging and Visualization Science (CMIV), Linköping University, Linköping, Sweden; Department of Radiation Physics and Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
7
|
Schwartz PJ, Crotti L, Nyegaard M, Overgaard MT. Role of Calmodulin in Cardiac Disease: Insights on Genotype and Phenotype. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2024; 17:e004542. [PMID: 39247953 DOI: 10.1161/circgen.124.004542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Calmodulin, a protein critically important for the regulation of all major cardiac ion channels, is the quintessential cellular calcium sensor and plays a key role in preserving cardiac electrical stability. Its unique importance is highlighted by the presence of 3 genes in 3 different chromosomes encoding for the same protein and by their extreme conservation. Indeed, all 3 calmodulin (CALM) genes are among the most constrained genes in the human genome, that is, the observed variants are much less than expected by chance. Not surprisingly, CALM variants are poorly tolerated and accompany significant clinical phenotypes, of which the most important are those associated with increased risk for life-threatening arrhythmias. Here, we review the current knowledge about calmodulin, its specific physiological, structural, and functional characteristics, and its importance for cardiovascular disease. Given our role in the development of this knowledge, we also share some of our views about currently unanswered questions, including the rational approaches to the clinical management of the affected patients. Specifically, we present some of the most critical information emerging from the International Calmodulinopathy Registry, which we established 10 years ago. Further progress clearly requires deep phenotypic information on as many carriers as possible through international contributions to the registry, in order to expand our knowledge about Calmodulinopathies and guide clinical management.
Collapse
Affiliation(s)
- Peter J Schwartz
- Istituto Auxologico Italiano, IRCCS, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy (P.J.S., L.C.)
| | - Lia Crotti
- Istituto Auxologico Italiano, IRCCS, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy (P.J.S., L.C.)
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy (L.C.)
| | - Mette Nyegaard
- Department of Congenital Disorders, Statens Serum Institute, Copenhagen, Denmark (M.N.)
- Department of Health Science and Technology (M.N.), Aalborg University, Aalborg, Denmark
| | | |
Collapse
|
8
|
Da'as SI, Thanassoulas A, Calver BL, Saleh A, Abdelrahman D, Hasan W, Safieh-Garabedian B, Kontogianni I, Nasrallah GK, Nounesis G, Lai FA, Nomikos M. Divergent Biochemical Properties and Disparate Impact of Arrhythmogenic Calmodulin Mutations on Zebrafish Cardiac Function. J Cell Biochem 2024; 125:e30619. [PMID: 38946237 DOI: 10.1002/jcb.30619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 06/04/2024] [Accepted: 06/12/2024] [Indexed: 07/02/2024]
Abstract
Calmodulin (CaM) is a ubiquitous, small cytosolic calcium (Ca2+)-binding sensor that plays a vital role in many cellular processes by binding and regulating the activity of over 300 protein targets. In cardiac muscle, CaM modulates directly or indirectly the activity of several proteins that play a key role in excitation-contraction coupling (ECC), such as ryanodine receptor type 2 (RyR2), l-type Ca2+ (Cav1.2), sodium (NaV1.5) and potassium (KV7.1) channels. Many recent clinical and genetic studies have reported a series of CaM mutations in patients with life-threatening arrhythmogenic syndromes, such as long QT syndrome (LQTS) and catecholaminergic polymorphic ventricular tachycardia (CPVT). We recently showed that four arrhythmogenic CaM mutations (N98I, D132E, D134H, and Q136P) significantly reduce the binding of CaM to RyR2. Herein, we investigate in vivo functional effects of these CaM mutations on the normal zebrafish embryonic heart function by microinjecting complementary RNA corresponding to CaMN98I, CaMD132E, CaMD134H, and CaMQ136P mutants. Expression of CaMD132E and CaMD134H mutants results in significant reduction of the zebrafish heart rate, mimicking a severe form of human bradycardia, whereas expression of CaMQ136P results in an increased heart rate mimicking human ventricular tachycardia. Moreover, analysis of cardiac ventricular rhythm revealed that the CaMD132E and CaMN98I zebrafish groups display an irregular pattern of heart beating and increased amplitude in comparison to the control groups. Furthermore, circular dichroism spectroscopy experiments using recombinant CaM proteins reveals a decreased structural stability of the four mutants compared to the wild-type CaM protein in the presence of Ca2+. Finally, Ca2+-binding studies indicates that all CaM mutations display reduced CaM Ca2+-binding affinities, with CaMD132E exhibiting the most prominent change. Our data suggest that CaM mutations can trigger different arrhythmogenic phenotypes through multiple and complex molecular mechanisms.
Collapse
Affiliation(s)
- Sahar I Da'as
- Department of Human Genetics, Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | | | - Brian L Calver
- Sir Geraint Evans Wales Heart Research Institute, College of Biomedical and Life Science, Cardiff University, Cardiff, UK
| | - Alaaeldin Saleh
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | | | - Waseem Hasan
- Department of Human Genetics, Sidra Medicine, Doha, Qatar
| | | | - Iris Kontogianni
- National Centre for Scientific Research "Demokritos", Agia Paraskevi, Greece
- National Technical University of Athens, Athens, Greece
| | - Gheyath K Nasrallah
- Biomedical Research Center, Qatar University, Doha, Qatar
- Department of Biological Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - George Nounesis
- National Centre for Scientific Research "Demokritos", Agia Paraskevi, Greece
| | - F Anthony Lai
- College of Medicine, QU Health, Qatar University, Doha, Qatar
- Sir Geraint Evans Wales Heart Research Institute, College of Biomedical and Life Science, Cardiff University, Cardiff, UK
| | - Michail Nomikos
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
9
|
Greene D, Shiferaw Y. Identifying Key Binding Interactions Between the Cardiac L-Type Calcium Channel and Calmodulin Using Molecular Dynamics Simulations. J Phys Chem B 2024; 128:6097-6111. [PMID: 38870543 PMCID: PMC11215769 DOI: 10.1021/acs.jpcb.4c02251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/15/2024]
Abstract
Defects in the binding of the calcium sensing protein calmodulin (CaM) to the L-type calcium channel (CaV1.2) or to the ryanodine receptor type 2 (RyR2) can lead to dangerous cardiac arrhythmias with distinct phenotypes, such as long-QT syndrome (LQTS) and catecholaminergic ventricular tachycardia (CPVT). Certain CaM mutations lead to LQTS while other mutations lead to CPVT, but the mechanisms by which a specific mutation can lead to each disease phenotype are not well-understood. In this study, we use long, 2 μs molecular dynamics simulations and a multitrajectory approach to identify the key binding interactions between the IQ domain of CaV1.2 and CaM. Five key interactions are found between CaV1.2 and CaM in the C-lobe, 1 in the central linker, and 2 in the N-lobe. In addition, while 5 key interactions appear between residues 120-149 in the C-lobe of CaM when it interacts with CaV1.2, only 1 key interaction is found within this region of CaM when it interacts with the RyR2. We show that this difference in the distribution of key interactions correlates with the known distribution of CaM mutations that lead to LQTS or CPVT. This correlation suggests that a disruption of key binding interactions is a plausible mechanism that can lead to these two different disease phenotypes.
Collapse
Affiliation(s)
- D’Artagnan Greene
- Department of Physics and
Astronomy, California State University Northridge, 18111 Nordhoff Street, Northridge, California 91330-8268, United States of
America
| | - Yohannes Shiferaw
- Department of Physics and
Astronomy, California State University Northridge, 18111 Nordhoff Street, Northridge, California 91330-8268, United States of
America
| |
Collapse
|
10
|
Putkey JA, Hoffman L, Berka V, Wang X. Neurogranin modulates the rate of association between calmodulin and target peptides. Biophys J 2024; 123:1676-1689. [PMID: 38751114 PMCID: PMC11213993 DOI: 10.1016/j.bpj.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/19/2024] [Accepted: 05/10/2024] [Indexed: 05/28/2024] Open
Abstract
The best-known mode of action of calmodulin (CaM) is binding of Ca2+ to its N- and C-domains, followed by binding to target proteins. An underappreciated facet of this process is that CaM is typically bound to proteins at basal levels of free Ca2+, including the small, intrinsically disordered, neuronal IQ-motif proteins called PEP-19 and neurogranin (Ng). PEP-19 and Ng would not be effective competitive inhibitors of high-affinity Ca2+-dependent CaM targets at equilibrium because they bind to CaM with relatively low affinity, but they could influence the time course of CaM signaling by affecting the rate of association of CaM with high-affinity Ca2+-dependent targets. This mode of regulation may be domain specific because PEP-19 binds to the C-domain of CaM, whereas Ng binds to both N- and C-domains. In this report, we used a model CaM binding peptide (CKIIp) to characterize the preferred pathway of complex formation with Ca2+-CaM at low levels of free Ca2+ (0.25-1.5 μM), and how PEP-19 and Ng affect this process. We show that the dominant encounter complex involves association of CKIIp with the N-domain of CaM, even though the C-domain has a greater affinity for Ca2+. We also show that Ng greatly decreases the rate of association of Ca2+-CaM with CKIIp due to the relatively slow dissociation of Ng from CaM, and to interactions between the Gly-rich C-terminal region of Ng with the N-domain of CaM, which inhibits formation of the preferred encounter complex with CKIIp. These results provide the general mechanistic paradigms that binding CaM to targets can be driven by its N-domain, and that low-affinity regulators of CaM signaling have the potential to influence the rate of activation of high-affinity CaM targets and potentially affect the distribution of limited CaM among multiple targets during Ca2+ oscillations.
Collapse
Affiliation(s)
- John A Putkey
- Department of Biochemistry and Molecular Biology, University of Texas McGovern Medical School, Houston, Texas.
| | - Laurel Hoffman
- Department of Biochemistry and Molecular Biology, University of Texas McGovern Medical School, Houston, Texas
| | - Vladimir Berka
- Department of Biochemistry and Molecular Biology, University of Texas McGovern Medical School, Houston, Texas
| | - Xu Wang
- Department of Biochemistry and Molecular Biology, University of Texas McGovern Medical School, Houston, Texas
| |
Collapse
|
11
|
Alasadi EA, Choi W, Chen X, Cotruvo JA, Baiz CR. Lanmodulin's EF 2-3 Domain: Insights from Infrared Spectroscopy and Simulations. ACS Chem Biol 2024; 19:1056-1065. [PMID: 38620063 DOI: 10.1021/acschembio.3c00789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Lanmodulins are small, ∼110-residue proteins with four EF-hand motifs that demonstrate a picomolar affinity for lanthanide ions, making them efficient in the recovery and separation of these technologically important metals. In this study, we examine the thermodynamic and structural complexities of lanthanide ion binding to a 41-residue domain, EF 2-3, that constitutes the two highest-affinity metal-binding sites in the lanmodulin protein from Methylorubrum extorquens. Using a combination of circular dichroism (CD) spectroscopy, isothermal titration calorimetry (ITC), two-dimensional infrared (2D IR) spectroscopy, and molecular dynamics (MD) simulations, we characterize the metal binding capabilities of EF 2-3. ITC demonstrates that binding occurs between peptide and lanthanides with conditional dissociation constants (Kd) in the range 20-30 μM, with no significant differences in the Kd values for La3+, Eu3+, and Tb3+ at pH 7.4. In addition, CD spectroscopy suggests that only one binding site of EF 2-3 undergoes a significant conformational change in the presence of lanthanides. 2D IR spectroscopy demonstrates the presence of both mono- and bidentate binding configurations in EF 2-3 with all three lanthanides. MD simulations, supported by Eu3+ luminescence measurements, explore these results, suggesting a competition between water-lanthanide and carboxylate-lanthanide interactions in the EF 2-3 domain. These results underscore the role of the core helical bundle of the protein architecture in influencing binding affinities and communication between the metal-binding sites in the full-length protein.
Collapse
Affiliation(s)
- Eman A Alasadi
- Department of Chemistry, University of Texas at Austin, 105 E 24th St. A5300, Austin, Texas 78712, United States
| | - Wonseok Choi
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Xiaobing Chen
- Department of Chemistry, University of Texas at Austin, 105 E 24th St. A5300, Austin, Texas 78712, United States
| | - Joseph A Cotruvo
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Carlos R Baiz
- Department of Chemistry, University of Texas at Austin, 105 E 24th St. A5300, Austin, Texas 78712, United States
| |
Collapse
|
12
|
Makasewicz K, Linse S, Sparr E. Interplay of α-synuclein with Lipid Membranes: Cooperative Adsorption, Membrane Remodeling and Coaggregation. JACS AU 2024; 4:1250-1262. [PMID: 38665673 PMCID: PMC11040681 DOI: 10.1021/jacsau.3c00579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 04/28/2024]
Abstract
α-Synuclein is a small neuronal protein enriched at presynaptic termini. It is hypothesized to play a role in neurotransmitter release and synaptic vesicle cycling, while the formation of α-synuclein amyloid fibrils is associated with several neurodegenerative diseases, most notably Parkinson's Disease. The molecular mechanisms of both the physiological and pathological functions of α-synuclein remain to be fully understood, but in both cases, interactions with membranes play an important role. In this Perspective, we discuss several aspects of α-synuclein interactions with lipid membranes including cooperative adsorption, membrane remodeling and α-synuclein amyloid fibril formation in the presence of lipid membranes. We highlight the coupling between the different phenomena and their interplay in the context of physiological and pathological functions of α-synuclein.
Collapse
Affiliation(s)
- Katarzyna Makasewicz
- Division
of Physical Chemistry, Center for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | - Sara Linse
- Biochemistry
and Structural Biology, Lund University, SE-22100 Lund, Sweden
| | - Emma Sparr
- Department
of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| |
Collapse
|
13
|
Breeze CW, Nakano Y, Campbell EC, Frkic RL, Lupton DW, Jackson CJ. Mononuclear binding and catalytic activity of europium(III) and gadolinium(III) at the active site of the model metalloenzyme phosphotriesterase. Acta Crystallogr D Struct Biol 2024; 80:289-298. [PMID: 38512071 PMCID: PMC10994177 DOI: 10.1107/s2059798324002316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 03/10/2024] [Indexed: 03/22/2024] Open
Abstract
Lanthanide ions have ideal chemical properties for catalysis, such as hard Lewis acidity, fast ligand-exchange kinetics, high coordination-number preferences and low geometric requirements for coordination. As a result, many small-molecule lanthanide catalysts have been described in the literature. Yet, despite the ability of enzymes to catalyse highly stereoselective reactions under gentle conditions, very few lanthanoenzymes have been investigated. In this work, the mononuclear binding of europium(III) and gadolinium(III) to the active site of a mutant of the model enzyme phosphotriesterase are described using X-ray crystallography at 1.78 and 1.61 Å resolution, respectively. It is also shown that despite coordinating a single non-natural metal cation, the PTE-R18 mutant is still able to maintain esterase activity.
Collapse
Affiliation(s)
- Callum W. Breeze
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Yuji Nakano
- School of Chemistry, Monash University, Clayton, Melbourne, VIC 3800, Australia
| | - Eleanor C. Campbell
- Australian Synchrotron, 800 Blackburn Road, Clayton, Melbourne, VIC 3168, Australia
| | - Rebecca L. Frkic
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - David W. Lupton
- School of Chemistry, Monash University, Clayton, Melbourne, VIC 3800, Australia
| | - Colin J. Jackson
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- Australian Research Council Centre of Excellence in Synthetic Biology, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
14
|
Li J, Jethva PN, Rohrs HW, Chemuru S, Miller K, Gross ML, Beckingham KM. Hydrogen/Deuterium Exchange Mass Spectrometry Provides Insights into the Role of Drosophila Testis-Specific Myosin VI Light Chain AndroCaM. Biochemistry 2024; 63:610-624. [PMID: 38357882 PMCID: PMC10932932 DOI: 10.1021/acs.biochem.3c00618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
In Drosophila testis, myosin VI plays a special role, distinct from its motor function, by anchoring components to the unusual actin-based structures (cones) that are required for spermatid individualization. For this, the two calmodulin (CaM) light-chain molecules of myosin VI are replaced by androcam (ACaM), a related protein with 67% identity to CaM. Although ACaM has a similar bi-lobed structure to CaM, with two EF hand-type Ca2+ binding sites per lobe, only one functional Ca2+ binding site operates in the amino-terminus. To understand this light chain substitution, we used hydrogen-deuterium exchange mass spectrometry (HDX-MS) to examine dynamic changes in ACaM and CaM upon Ca2+ binding and interaction with the two CaM binding motifs of myosin VI (insert2 and IQ motif). HDX-MS reveals that binding of Ca2+ to ACaM destabilizes its N-lobe but stabilizes the entire C-lobe, whereas for CaM, Ca2+ binding induces a pattern of alternating stabilization/destabilization throughout. The conformation of this stable holo-C-lobe of ACaM seems to be a "prefigured" version of the conformation adopted by the holo-C-lobe of CaM for binding to insert2 and the IQ motif of myosin VI. Strikingly, the interaction of holo-ACaM with either peptide converts the holo-N-lobe to its Ca2+-free, more stable, form. Thus, ACaM in vivo should bind the myosin VI light chain sites in an apo-N-lobe/holo-C-lobe state that cannot fulfill the Ca2+-related functions of holo-CaM required for myosin VI motor assembly and activity. These findings indicate that inhibition of myosin VI motor activity is a precondition for transition to an anchoring function.
Collapse
Affiliation(s)
- Jing Li
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130
| | - Prashant N. Jethva
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130
| | - Henry W. Rohrs
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130
| | - Saketh Chemuru
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130
| | - Kathryn Miller
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130
| | - Michael L. Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130
| | | |
Collapse
|
15
|
Halder R, Warshel A. Energetic and structural insights behind calcium induced conformational transition in calmodulin. Proteins 2024; 92:384-394. [PMID: 37915244 PMCID: PMC10872638 DOI: 10.1002/prot.26620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/01/2023] [Accepted: 10/10/2023] [Indexed: 11/03/2023]
Abstract
Calmodulin (CaM) is a key signaling protein that triggers several cellular and physiological processes inside the cell. Upon binding with calcium ion, CaM undergoes large scale conformational transition from a closed state to an open state that facilitates its interaction with various target protein and regulates their activity. This work explores the origin of the energetic and structural variation of the wild type and mutated CaM and explores the molecular origin for the structural differences between them. We first calculated the sequential calcium binding energy to CaM using the PDLD/S-LRA/β approach. This study shows a very good correlation with experimental calcium binding energies. Next we calculated the calcium binding energies to the wild type CaM and several mutated CaM systems which were reported experimentally. On the structural aspect, it has been reported experimentally that certain mutation (Q41L-K75I) in calcium bound CaM leads to complete conformational transition from an open to a closed state. By using equilibrium molecular dynamics simulation, free energy calculation and contact frequency map analysis, we have shown that the formation of a cluster of long-range hydrophobic contacts, initiated by the Q41L-K75I CaM variant is the driving force behind its closing motion. This study unravels the energetics and structural aspects behind calcium ion induced conformational changes in wild type CaM and its variant.
Collapse
Affiliation(s)
- Ritaban Halder
- Department of Chemistry, University of Southern California, Los Angeles, California, USA
| | - Arieh Warshel
- Department of Chemistry, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
16
|
Pedretti M, Favretto F, Troilo F, Giovannoni M, Conter C, Mattei B, Dominici P, Travaglini-Allocatelli C, Di Matteo A, Astegno A. Role of myristoylation in modulating PCaP1 interaction with calmodulin. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108003. [PMID: 37717348 DOI: 10.1016/j.plaphy.2023.108003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/09/2023] [Accepted: 09/04/2023] [Indexed: 09/19/2023]
Abstract
Plasma membrane-associated Cation-binding Protein 1 (PCaP1) belongs to the plant-unique DREPP protein family with largely unknown biological functions but ascertained roles in plant development and calcium (Ca2+) signaling. PCaP1 is anchored to the plasma membrane via N-myristoylation and a polybasic cluster, and its N-terminal region can bind Ca2+/calmodulin (CaM). However, the molecular determinants of PCaP1-Ca2+-CaM interaction and the functional impact of myristoylation in the complex formation and Ca2+ sensitivity of CaM remained to be elucidated. Herein, we investigated the direct interaction between Arabidopsis PCaP1 (AtPCaP1) and CaM1 (AtCaM1) using both myristoylated and non-myristoylated peptides corresponding to the N-terminal region of AtPCaP1. ITC analysis showed that AtCaM1 forms a high affinity 1:1 complex with AtPCaP1 peptides and the interaction is strictly Ca2+-dependent. Spectroscopic and kinetic Ca2+ binding studies showed that the myristoylated peptide dramatically increased the Ca2+-binding affinity of AtCaM1 and slowed the Ca2+ dissociation rates from both the C- and N-lobes, thus suggesting that the myristoylation modulates the mechanism of AtPCaP1 recognition by AtCaM1. Furthermore, NMR and CD spectroscopy revealed that the structure of both the N- and C-lobes of Ca2+-AtCaM1 changes markedly in the presence of the myristoylated AtPCaP1 peptide, which assumes a helical structure in the final complex. Overall, our results indicate that AtPCaP1 biological function is strictly related to the presence of multiple ligands, i.e., the myristoyl moiety, Ca2+ ions and AtCaM1 and only a full characterization of their equilibria will allow for a complete molecular understanding of the putative role of PCaP1 as signal protein.
Collapse
Affiliation(s)
- Marco Pedretti
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Filippo Favretto
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Francesca Troilo
- CNR Institute of Molecular Biology and Pathology, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Moira Giovannoni
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Carolina Conter
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Benedetta Mattei
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Paola Dominici
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | | | - Adele Di Matteo
- CNR Institute of Molecular Biology and Pathology, P.le Aldo Moro 5, 00185, Rome, Italy.
| | - Alessandra Astegno
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| |
Collapse
|
17
|
Xiao S, Song Z, Tian H, Tao P. Assessments of Variational Autoencoder in Protein Conformation Exploration. JOURNAL OF COMPUTATIONAL BIOPHYSICS AND CHEMISTRY 2023; 22:489-501. [PMID: 38826699 PMCID: PMC11138204 DOI: 10.1142/s2737416523500217] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Molecular dynamics (MD) simulations have been extensively used to study protein dynamics and subsequently functions. However, MD simulations are often insufficient to explore adequate conformational space for protein functions within reachable timescales. Accordingly, many enhanced sampling methods, including variational autoencoder (VAE) based methods, have been developed to address this issue. The purpose of this study is to evaluate the feasibility of using VAE to assist in the exploration of protein conformational landscapes. Using three modeling systems, we showed that VAE could capture high-level hidden information which distinguishes protein conformations. These models could also be used to generate new physically plausible protein conformations for direct sampling in favorable conformational spaces. We also found that VAE worked better in interpolation than extrapolation and increasing latent space dimension could lead to a trade-off between performances and complexities.
Collapse
Affiliation(s)
- Sian Xiao
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas 75205, United States
| | - Zilin Song
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas 75205, United States
| | - Hao Tian
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas 75205, United States
| | - Peng Tao
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas 75205, United States
| |
Collapse
|
18
|
Marino V, Cortivo GD, Dell'Orco D. Ionic displacement of Ca 2+ by Pb 2+ in calmodulin is affected by arrhythmia-associated mutations. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119490. [PMID: 37201768 DOI: 10.1016/j.bbamcr.2023.119490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/14/2023] [Accepted: 05/10/2023] [Indexed: 05/20/2023]
Abstract
Lead is a highly toxic metal that severely perturbs physiological processes even at sub-micromolar levels, often by disrupting the Ca2+ signaling pathways. Recently, Pb2+-associated cardiac toxicity has emerged, with potential involvement of both the ubiquitous Ca2+ sensor protein calmodulin (CaM) and ryanodine receptors. In this work, we explored the hypothesis that Pb2+ contributes to the pathological phenotype of CaM variants associated with congenital arrhythmias. We performed a thorough spectroscopic and computational characterization of CaM conformational switches in the co-presence of Pb2+ and four missense mutations associated with congenital arrhythmias, namely N53I, N97S, E104A and F141L, and analyzed their effects on the recognition of a target peptide of RyR2. When bound to any of the CaM variants, Pb2+ is difficult to displace even under equimolar Ca2+ concentrations, thus locking all CaM variants in a specific conformation, which exhibits characteristics of coiled-coil assemblies. All arrhythmia-associated variants appear to be more susceptible to Pb2+ than WT CaM, as the conformational transition towards the coiled-coil conformation occurs at lower Pb2+, regardless of the presence of Ca2+, with altered cooperativity. The presence of arrhythmia-associated mutations specifically alters the cation coordination of CaM variants, in some cases involving allosteric communication between the EF-hands in the two domains. Finally, while wild type CaM increases the affinity for the RyR2 target in the presence of Pb2+, no specific pattern could be detected for all other variants, ruling out a synergistic effect of Pb2+ and mutations in the recognition process.
Collapse
Affiliation(s)
- Valerio Marino
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, I-37134 Verona, Italy
| | - Giuditta Dal Cortivo
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, I-37134 Verona, Italy
| | - Daniele Dell'Orco
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, I-37134 Verona, Italy.
| |
Collapse
|
19
|
Daronnat L, Holfeltz V, Boubals N, Dumas T, Guilbaud P, Martinez DM, Moisy P, Sauge-Merle S, Lemaire D, Solari PL, Berthon L, Berthomieu C. Investigation of the Plutonium(IV) Interactions with Two Variants of the EF-Hand Ca-Binding Site I of Calmodulin. Inorg Chem 2023; 62:8334-8346. [PMID: 37184364 DOI: 10.1021/acs.inorgchem.3c00845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Due to its presence in the nuclear industry and its strong radiotoxicity, plutonium is an actinide of major interest in the event of internal contamination. To improve the understanding of its mechanisms of transport and accumulation in the body, the complexation of Pu(IV) to the most common protein calcium-binding motif found in cells, the EF-hand motif of calmodulin, was investigated. Visible and X-ray absorption spectroscopies (XAS) in solution made it possible to investigate the speciation of plutonium at physiological pH (pH 7.4) and pH 6 in two variants of the calmodulin Ca-binding site I and using Pu(IV) in different media: carbonate, chloride, or nitrate solutions. Three different species of Pu were identified in the samples, with formation of 1:1 Pu(IV):calmodulin peptide complexes, Pu(IV) reduction, and formation of peptide-mediated Pu(IV) hexanuclear cluster.
Collapse
Affiliation(s)
- Loïc Daronnat
- CEA, DES, ISEC, DMRC, Univ Montpellier, Marcoule, Bagnols-sur-cèze 30200, France
| | - Vanessa Holfeltz
- CEA, DES, ISEC, DMRC, Univ Montpellier, Marcoule, Bagnols-sur-cèze 30200, France
| | - Nathalie Boubals
- CEA, DES, ISEC, DMRC, Univ Montpellier, Marcoule, Bagnols-sur-cèze 30200, France
| | - Thomas Dumas
- CEA, DES, ISEC, DMRC, Univ Montpellier, Marcoule, Bagnols-sur-cèze 30200, France
| | - Philippe Guilbaud
- CEA, DES, ISEC, DMRC, Univ Montpellier, Marcoule, Bagnols-sur-cèze 30200, France
| | | | - Philippe Moisy
- CEA, DES, ISEC, DMRC, Univ Montpellier, Marcoule, Bagnols-sur-cèze 30200, France
| | - Sandrine Sauge-Merle
- Aix Marseille Université, CEA, CNRS, BIAM, UMR7265, IPM, Saint Paul-Lez-Durance 13108, France
| | - David Lemaire
- Aix Marseille Université, CEA, CNRS, BIAM, UMR7265, IPM, Saint Paul-Lez-Durance 13108, France
| | - Pier Lorenzo Solari
- Synchrotron SOLEIL, L'Orme des Merisiers, Départementale 128, Saint Aubin 91190, France
| | - Laurence Berthon
- CEA, DES, ISEC, DMRC, Univ Montpellier, Marcoule, Bagnols-sur-cèze 30200, France
| | - Catherine Berthomieu
- Aix Marseille Université, CEA, CNRS, BIAM, UMR7265, IPM, Saint Paul-Lez-Durance 13108, France
| |
Collapse
|
20
|
Dal Cortivo G, Marino V, Bianconi S, Dell'Orco D. Calmodulin variants associated with congenital arrhythmia impair selectivity for ryanodine receptors. Front Mol Biosci 2023; 9:1100992. [PMID: 36685279 PMCID: PMC9849693 DOI: 10.3389/fmolb.2022.1100992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/12/2022] [Indexed: 01/06/2023] Open
Abstract
Among its many molecular targets, the ubiquitous calcium sensor protein calmodulin (CaM) recognizes and regulates the activity of ryanodine receptors type 1 (RyR1) and 2 (RyR2), mainly expressed in skeletal and cardiac muscle, respectively. Such regulation is essential to achieve controlled contraction of muscle cells. To unravel the molecular mechanisms underlying the target recognition process, we conducted a comprehensive biophysical investigation of the interaction between two calmodulin variants associated with congenital arrhythmia, namely N97I and Q135P, and a highly conserved calmodulin-binding region in RyR1 and RyR2. The structural, thermodynamic, and kinetic properties of protein-peptide interactions were assessed together with an in-depth structural and topological investigation based on molecular dynamics simulations. This integrated approach allowed us to identify amino acids that are crucial in mediating allosteric processes, which enable high selectivity in molecular target recognition. Our results suggest that the ability of calmodulin to discriminate between RyR1 an RyR2 targets depends on kinetic discrimination and robust allosteric communication between Ca2+-binding sites (EF1-EF3 and EF3-EF4 pairs), which is perturbed in both N97I and Q135P arrhythmia-associated variants.
Collapse
|
21
|
Walker V, Vuister GW. Biochemistry and pathophysiology of the Transient Potential Receptor Vanilloid 6 (TRPV6) calcium channel. Adv Clin Chem 2023; 113:43-100. [PMID: 36858649 DOI: 10.1016/bs.acc.2022.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
TRPV6 is a Transient Receptor Potential Vanilloid (TRPV) cation channel with high selectivity for Ca2+ ions. First identified in 1999 in a search for the gene which mediates intestinal Ca2+ absorption, its far more extensive repertoire as a guardian of intracellular Ca2+ has since become apparent. Studies on TRPV6-deficient mice demonstrated additional important roles in placental Ca2+ transport, fetal bone development and male fertility. The first reports of inherited deficiency in newborn babies appeared in 2018, revealing its physiological importance in humans. There is currently strong evidence that TRPV6 also contributes to the pathogenesis of some common cancers. The recently reported association of TRPV6 deficiency with non-alcoholic chronic pancreatitis suggests a role in normal pancreatic function. Over time and with greater awareness of TRPV6, other disease-associations are likely to emerge. Powerful analytical tools have provided invaluable insights into the structure and operation of TRPV6. Its roles in Ca2+ signaling and carcinogenesis, and the use of channel inhibitors in cancer treatment are being intensively investigated. This review first briefly describes the biochemistry and physiology of the channel, and analytical methods used to investigate these. The focus subsequently shifts to the clinical disorders associated with abnormal expression and the underlying pathophysiology. The aims of this review are to increase awareness of this channel, and to draw together findings from a wide range of sources which may help to formulate new ideas for further studies.
Collapse
Affiliation(s)
- Valerie Walker
- Department of Clinical Biochemistry, University Hospital Southampton NHS Foundation Trust, Southampton General Hospital, Southampton, United Kingdom.
| | - Geerten W Vuister
- Department of Molecular and Cell Biology, Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
22
|
Halling DB, Philpo AE, Aldrich RW. Calcium dependence of both lobes of calmodulin is involved in binding to a cytoplasmic domain of SK channels. eLife 2022; 11:e81303. [PMID: 36583726 PMCID: PMC9803350 DOI: 10.7554/elife.81303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 12/15/2022] [Indexed: 12/31/2022] Open
Abstract
KCa2.1-3 Ca2+-activated K+-channels (SK) require calmodulin to gate in response to cellular Ca2+. A model for SK gating proposes that the N-terminal domain (N-lobe) of calmodulin is required for activation, but an immobile C-terminal domain (C-lobe) has constitutive, Ca2+-independent binding. Although structures support a domain-driven hypothesis of SK gate activation by calmodulin, only a partial understanding is possible without measuring both channel activity and protein binding. We measured SK2 (KCa2.2) activity using inside-out patch recordings. Currents from calmodulin-disrupted SK2 channels can be restored with exogenously applied calmodulin. We find that SK2 activity only approaches full activation with full-length calmodulin with both an N- and a C-lobe. We measured calmodulin binding to a C-terminal SK peptide (SKp) using both composition-gradient multi-angle light-scattering and tryptophan emission spectra. Isolated lobes bind to SKp with high affinity, but isolated lobes do not rescue SK2 activity. Consistent with earlier models, N-lobe binding to SKp is stronger in Ca2+, and C-lobe-binding affinity is strong independent of Ca2+. However, a native tryptophan in SKp is sensitive to Ca2+ binding to both the N- and C-lobes of calmodulin at Ca2+ concentrations that activate SK2, demonstrating that the C-lobe interaction with SKp changes with Ca2+. Our peptide-binding data and electrophysiology show that SK gating models need deeper scrutiny. We suggest that the Ca2+-dependent associations of both lobes of calmodulin to SKp are crucial events during gating. Additional investigations are necessary to complete a mechanistic gating model consistent with binding, physiology, and structure.
Collapse
Affiliation(s)
- David B Halling
- Department of Neuroscience, The University of Texas at AustinAustinUnited States
| | - Ashley E Philpo
- Department of Neuroscience, The University of Texas at AustinAustinUnited States
| | - Richard W Aldrich
- Department of Neuroscience, The University of Texas at AustinAustinUnited States
| |
Collapse
|
23
|
Young BD, Cook ME, Costabile BK, Samanta R, Zhuang X, Sevdalis SE, Varney KM, Mancia F, Matysiak S, Lattman E, Weber DJ. Binding and Functional Folding (BFF): A Physiological Framework for Studying Biomolecular Interactions and Allostery. J Mol Biol 2022; 434:167872. [PMID: 36354074 PMCID: PMC10871162 DOI: 10.1016/j.jmb.2022.167872] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/20/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
EF-hand Ca2+-binding proteins (CBPs), such as S100 proteins (S100s) and calmodulin (CaM), are signaling proteins that undergo conformational changes upon increasing intracellular Ca2+. Upon binding Ca2+, S100 proteins and CaM interact with protein targets and induce important biological responses. The Ca2+-binding affinity of CaM and most S100s in the absence of target is weak (CaKD > 1 μM). However, upon effector protein binding, the Ca2+ affinity of these proteins increases via heterotropic allostery (CaKD < 1 μM). Because of the high number and micromolar concentrations of EF-hand CBPs in a cell, at any given time, allostery is required physiologically, allowing for (i) proper Ca2+ homeostasis and (ii) strict maintenance of Ca2+-signaling within a narrow dynamic range of free Ca2+ ion concentrations, [Ca2+]free. In this review, mechanisms of allostery are coalesced into an empirical "binding and functional folding (BFF)" physiological framework. At the molecular level, folding (F), binding and folding (BF), and BFF events include all atoms in the biomolecular complex under study. The BFF framework is introduced with two straightforward BFF types for proteins (type 1, concerted; type 2, stepwise) and considers how homologous and nonhomologous amino acid residues of CBPs and their effector protein(s) evolved to provide allosteric tightening of Ca2+ and simultaneously determine how specific and relatively promiscuous CBP-target complexes form as both are needed for proper cellular function.
Collapse
Affiliation(s)
- Brianna D Young
- The Center for Biomolecular Therapeutics (CBT), Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Mary E Cook
- The Center for Biomolecular Therapeutics (CBT), Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Brianna K Costabile
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
| | - Riya Samanta
- Biophysics Graduate Program, University of Maryland, College Park, MD 20742, USA; Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Xinhao Zhuang
- The Center for Biomolecular Therapeutics (CBT), Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Spiridon E Sevdalis
- The Center for Biomolecular Therapeutics (CBT), Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Kristen M Varney
- The Center for Biomolecular Therapeutics (CBT), Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Filippo Mancia
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
| | - Silvina Matysiak
- Biophysics Graduate Program, University of Maryland, College Park, MD 20742, USA; Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Eaton Lattman
- The Center for Biomolecular Therapeutics (CBT), Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | - David J Weber
- The Center for Biomolecular Therapeutics (CBT), Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; The Institute of Bioscience and Biotechnology Research (IBBR), Rockville, MD 20850, USA.
| |
Collapse
|
24
|
Beccia MR, Sauge-Merle S, Brémond N, Lemaire D, Henri P, Battesti C, Guilbaud P, Crouzy S, Berthomieu C. Inter-Site Cooperativity of Calmodulin N-Terminal Domain and Phosphorylation Synergistically Improve the Affinity and Selectivity for Uranyl. Biomolecules 2022; 12:1703. [PMID: 36421716 PMCID: PMC9687771 DOI: 10.3390/biom12111703] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 09/08/2024] Open
Abstract
Uranyl-protein interactions participate in uranyl trafficking or toxicity to cells. In addition to their qualitative identification, thermodynamic data are needed to predict predominant mechanisms that they mediate in vivo. We previously showed that uranyl can substitute calcium at the canonical EF-hand binding motif of calmodulin (CaM) site I. Here, we investigate thermodynamic properties of uranyl interaction with site II and with the whole CaM N-terminal domain by spectrofluorimetry and ITC. Site II has an affinity for uranyl about 10 times lower than site I. Uranyl binding at site I is exothermic with a large enthalpic contribution, while for site II, the enthalpic contribution to the Gibbs free energy of binding is about 10 times lower than the entropic term. For the N-terminal domain, macroscopic binding constants for uranyl are two to three orders of magnitude higher than for calcium. A positive cooperative process driven by entropy increases the second uranyl-binding event as compared with the first one, with ΔΔG = -2.0 ± 0.4 kJ mol-1, vs. ΔΔG = -6.1 ± 0.1 kJ mol-1 for calcium. Site I phosphorylation largely increases both site I and site II affinity for uranyl and uranyl-binding cooperativity. Combining site I phosphorylation and site II Thr7Trp mutation leads to picomolar dissociation constants Kd1 = 1.7 ± 0.3 pM and Kd2 = 196 ± 21 pM at pH 7. A structural model obtained by MD simulations suggests a structural role of site I phosphorylation in the affinity modulation.
Collapse
Affiliation(s)
- Maria Rosa Beccia
- CEA, CNRS, UMR 7265, BIAM, Interactions Protéine Métal, Aix-Marseille University, 13108 Saint-Paul-lez-Durance, France
| | - Sandrine Sauge-Merle
- CEA, CNRS, UMR 7265, BIAM, Interactions Protéine Métal, Aix-Marseille University, 13108 Saint-Paul-lez-Durance, France
| | - Nicolas Brémond
- CEA, CNRS, UMR 7265, BIAM, Interactions Protéine Métal, Aix-Marseille University, 13108 Saint-Paul-lez-Durance, France
| | - David Lemaire
- CEA, CNRS, UMR 7265, BIAM, Interactions Protéine Métal, Aix-Marseille University, 13108 Saint-Paul-lez-Durance, France
| | - Pierre Henri
- LPC2E, CNRS, University Orléans, 45071 Orléans, France
- Laboratoire Lagrange, Observatoire Côte d’Azur, Université Côte d’Azur, CNRS, CEDEX 4, 06304 Nice, France
| | - Christine Battesti
- CEA, CNRS, UMR 7265, BIAM, Interactions Protéine Métal, Aix-Marseille University, 13108 Saint-Paul-lez-Durance, France
| | - Philippe Guilbaud
- CEA, DES, ISEC, DMRC, Département de Recherche sur les Procédés pour la Mine et le Recyclage du Combustible, University Montpellier, Marcoule, France, 30207 Bagnols-sur-Cèze, France
| | - Serge Crouzy
- Groupe de Modélisation et Chimie Théorique, IRIG, UMR CEA, CNRS, Université Joseph Fourier, CEDEX 9, 38054 Grenoble, France
| | - Catherine Berthomieu
- CEA, CNRS, UMR 7265, BIAM, Interactions Protéine Métal, Aix-Marseille University, 13108 Saint-Paul-lez-Durance, France
| |
Collapse
|
25
|
Westerlund AM, Sridhar A, Dahl L, Andersson A, Bodnar AY, Delemotte L. Markov state modelling reveals heterogeneous drug-inhibition mechanism of Calmodulin. PLoS Comput Biol 2022; 18:e1010583. [PMID: 36206305 PMCID: PMC9581412 DOI: 10.1371/journal.pcbi.1010583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/19/2022] [Accepted: 09/18/2022] [Indexed: 11/06/2022] Open
Abstract
Calmodulin (CaM) is a calcium sensor which binds and regulates a wide range of target-proteins. This implicitly enables the concentration of calcium to influence many downstream physiological responses, including muscle contraction, learning and depression. The antipsychotic drug trifluoperazine (TFP) is a known CaM inhibitor. By binding to various sites, TFP prevents CaM from associating to target-proteins. However, the molecular and state-dependent mechanisms behind CaM inhibition by drugs such as TFP are largely unknown. Here, we build a Markov state model (MSM) from adaptively sampled molecular dynamics simulations and reveal the structural and dynamical features behind the inhibitory mechanism of TFP-binding to the C-terminal domain of CaM. We specifically identify three major TFP binding-modes from the MSM macrostates, and distinguish their effect on CaM conformation by using a systematic analysis protocol based on biophysical descriptors and tools from machine learning. The results show that depending on the binding orientation, TFP effectively stabilizes features of the calcium-unbound CaM, either affecting the CaM hydrophobic binding pocket, the calcium binding sites or the secondary structure content in the bound domain. The conclusions drawn from this work may in the future serve to formulate a complete model of pharmacological modulation of CaM, which furthers our understanding of how these drugs affect signaling pathways as well as associated diseases. Calmodulin (CaM) is a calcium-sensing protein which makes other proteins dependent on the surrounding calcium concentration by binding to these proteins. Such protein-protein interactions with CaM are vital for calcium to control many physiological pathways within the cell. The antipsychotic drug trifluoperazine (TFP) inhibits CaM’s ability to bind and regulate other proteins. Here, we use molecular dynamics simulations together with Markov state modeling and machine learning to understand the structural and dynamical features by which TFP bound to the one domain of CaM prevents association to other proteins. We find that TFP encourages CaM to adopt a conformation that is like the one stabilized in absence of calcium: depending on the binding orientation of TFP, the drug indeed either affects the CaM hydrophobic binding pocket, the calcium binding sites or the secondary structure content in the domain. Understanding TFP binding is a first step towards designing better drugs targeting CaM.
Collapse
Affiliation(s)
- Annie M. Westerlund
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Solna, Sweden
| | - Akshay Sridhar
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Solna, Sweden
| | - Leo Dahl
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Solna, Sweden
| | - Alma Andersson
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Solna, Sweden
- Division of Gene Technology, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Anna-Yaroslava Bodnar
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Solna, Sweden
| | - Lucie Delemotte
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Solna, Sweden
- * E-mail:
| |
Collapse
|
26
|
Calmodulin in Paramecium: Focus on Genomic Data. Microorganisms 2022; 10:microorganisms10101915. [PMID: 36296191 PMCID: PMC9608856 DOI: 10.3390/microorganisms10101915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/14/2022] [Accepted: 09/22/2022] [Indexed: 11/26/2022] Open
Abstract
Calcium (Ca2+) is a universal second messenger that plays a key role in cellular signaling. However, Ca2+ signals are transduced with the help of Ca2+-binding proteins, which serve as sensors, transducers, and elicitors. Among the collection of these Ca2+-binding proteins, calmodulin (CaM) emerged as the prototypical model in eukaryotic cells. This is a small protein that binds four Ca2+ ions and whose functions are multiple, controlling many essential aspects of cell physiology. CaM is universally distributed in eukaryotes, from multicellular organisms, such as human and land plants, to unicellular microorganisms, such as yeasts and ciliates. Here, we review most of the information gathered on CaM in Paramecium, a group of ciliates. We condense the information here by mentioning that mature Paramecium CaM is a 148 amino acid-long protein codified by a single gene, as in other eukaryotic microorganisms. In these ciliates, the protein is notoriously localized and regulates cilia function and can stimulate the activity of some enzymes. When Paramecium CaM is mutated, cells show flawed locomotion and/or exocytosis. We further widen this and additional information in the text, focusing on genomic data.
Collapse
|
27
|
A Modeling and Analysis Study Reveals That CaMKII in Synaptic Plasticity Is a Dominant Affecter in CaM Systems in a T286 Phosphorylation-Dependent Manner. Molecules 2022; 27:molecules27185974. [PMID: 36144710 PMCID: PMC9501549 DOI: 10.3390/molecules27185974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/18/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
NMDAR-dependent synaptic plasticity in the hippocampus consists of two opposing forces: long-term potentiation (LTP), which strengthens synapses and long-term depression (LTD), which weakens synapses. LTP and LTD are associated with memory formation and loss, respectively. Synaptic plasticity is controlled at a molecular level by Ca2+-mediated protein signaling. Here, Ca2+ binds the protein, calmodulin (CaM), which modulates synaptic plasticity in both directions. This is because Ca2+-bound CaM activates both LTD-and LTP-inducing proteins. Understanding how CaM responds to Ca2+ signaling and how this translates into synaptic plasticity is therefore important to understanding synaptic plasticity induction. In this paper, CaM activation by Ca2+ and calmodulin binding to downstream proteins was mathematically modeled using differential equations. Simulations were monitored with and without theoretical knockouts and, global sensitivity analyses were performed to determine how Ca2+/CaM signaling occurred at various Ca2+ signals when CaM levels were limiting. At elevated stimulations, the total CaM pool rapidly bound to its protein binding targets which regulate both LTP and LTD. This was followed by CaM becoming redistributed from low-affinity to high-affinity binding targets. Specifically, CaM was redistributed away from LTD-inducing proteins to bind the high-affinity LTP-inducing protein, calmodulin-dependent kinase II (CaMKII). In this way, CaMKII acted as a dominant affecter and repressed activation of opposing CaM-binding protein targets. The model thereby showed a novel form of CaM signaling by which the two opposing pathways crosstalk indirectly. The model also found that CaMKII can repress cAMP production by repressing CaM-regulated proteins, which catalyze cAMP production. The model also found that at low Ca2+ stimulation levels, typical of LTD induction, CaM signaling was unstable and is therefore unlikely to alone be enough to induce synaptic depression. Overall, this paper demonstrates how limiting levels of CaM may be a fundamental aspect of Ca2+ regulated signaling which allows crosstalk among proteins without requiring directly interaction.
Collapse
|
28
|
Karschin N, Becker S, Griesinger C. Interdomain Dynamics via Paramagnetic NMR on the Highly Flexible Complex Calmodulin/Munc13-1. J Am Chem Soc 2022; 144:17041-17053. [PMID: 36082939 PMCID: PMC9501808 DOI: 10.1021/jacs.2c06611] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Paramagnetic NMR constraints are very useful to study protein interdomain motion, but their interpretation is not always straightforward. On the example of the particularly flexible complex Calmodulin/Munc13-1, we present a new approach to characterize this motion with pseudocontact shifts and residual dipolar couplings. Using molecular mechanics, we sampled the conformational space of the complex and used a genetic algorithm to find ensembles that are in agreement with the data. We used the Bayesian information criterion to determine the ideal ensemble size. This way, we were able to make an accurate, unambiguous, reproducible model of the interdomain motion of Calmodulin/Munc13-1 without prior knowledge about the domain orientation from crystallography.
Collapse
Affiliation(s)
- Niels Karschin
- Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen, Niedersachsen D-37077, Germany
| | - Stefan Becker
- Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen, Niedersachsen D-37077, Germany
| | - Christian Griesinger
- Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen, Niedersachsen D-37077, Germany.,Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen D-37075, Germany
| |
Collapse
|
29
|
Jeon J, Blake Wilson C, Yau WM, Thurber KR, Tycko R. Time-resolved solid state NMR of biomolecular processes with millisecond time resolution. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 342:107285. [PMID: 35998398 PMCID: PMC9463123 DOI: 10.1016/j.jmr.2022.107285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 05/21/2023]
Abstract
We review recent efforts to develop and apply an experimental approach to the structural characterization of transient intermediate states in biomolecular processes that involve large changes in molecular conformation or assembly state. This approach depends on solid state nuclear magnetic resonance (ssNMR) measurements that are performed at very low temperatures, typically 25-30 K, with signal enhancements from dynamic nuclear polarization (DNP). This approach also involves novel technology for initiating the process of interest, either by rapid mixing of two solutions or by a rapid inverse temperature jump, and for rapid freezing to trap intermediate states. Initiation by rapid mixing or an inverse temperature jump can be accomplished in approximately-one millisecond. Freezing can be accomplished in approximately 100 microseconds. Thus, millisecond time resolution can be achieved. Recent applications to the process by which the biologically essential calcium sensor protein calmodulin forms a complex with one of its target proteins and the process by which the bee venom peptide melittin converts from an unstructured monomeric state to a helical, tetrameric state after a rapid change in pH or temperature are described briefly. Future applications of millisecond time-resolved ssNMR are also discussed briefly.
Collapse
Affiliation(s)
- Jaekyun Jeon
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA
| | - C Blake Wilson
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA
| | - Wai-Ming Yau
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA
| | - Kent R Thurber
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA
| | - Robert Tycko
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA.
| |
Collapse
|
30
|
Feliziani C, Fernandez M, Quasollo G, Holstein D, Bairo SM, Paton JC, Paton AW, de Batista J, Lechleiter JD, Bollo M. Ca 2+ signalling system initiated by endoplasmic reticulum stress stimulates PERK activation. Cell Calcium 2022; 106:102622. [PMID: 35908318 PMCID: PMC9982837 DOI: 10.1016/j.ceca.2022.102622] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/11/2022] [Accepted: 07/05/2022] [Indexed: 01/25/2023]
Abstract
The accumulation of unfolded proteins within the Endoplasmic Reticulum (ER) activates a signal transduction pathway termed the unfolded protein response (UPR), which attempts to restore ER homoeostasis. If this cannot be done, UPR signalling ultimately induces apoptosis. Ca2+ depletion in the ER is a potent inducer of ER stress. Despite the ubiquity of Ca2+ as an intracellular messenger, the precise mechanism(s) by which Ca2+ release affects the UPR remains unknown. Tethering a genetically encoded Ca2+ indicator (GCamP6) to the ER membrane revealed novel Ca2+ signalling events initiated by Ca2+ microdomains in human astrocytes under ER stress, induced by tunicamycin (Tm), an N-glycosylation inhibitor, as well as in a cell model deficient in all three inositol triphosphate receptor isoforms. Pharmacological and molecular studies indicate that these local events are mediated by translocons and that the Ca2+ microdomains impact (PKR)-like-ER kinase (PERK), an UPR sensor, activation. These findings reveal the existence of a Ca2+ signal mechanism by which stressor-mediated Ca2+ release regulates ER stress.
Collapse
Affiliation(s)
- Constanza Feliziani
- Instituto de Investigación Médica M y M
Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, 2434 Friuli,
Córdoba 5016, Argentina
| | - Macarena Fernandez
- Instituto de Investigación Médica M y M
Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, 2434 Friuli,
Córdoba 5016, Argentina
| | - Gonzalo Quasollo
- Instituto de Investigación Médica M y M
Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, 2434 Friuli,
Córdoba 5016, Argentina
| | - Deborah Holstein
- Department of Cell Systems and Anatomy, UT Health San
Antonio, 8403 Floyd Curl Dr., San Antonio, TX 78229-3904, USA
| | - Sebastián M Bairo
- Instituto de Investigación Médica M y M
Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, 2434 Friuli,
Córdoba 5016, Argentina
| | - James C Paton
- Research Centre for Infectious Diseases, School of
Molecular and Biomedical Science, University of Adelaide, South Australia 5005,
Australia
| | - Adrienne W Paton
- Research Centre for Infectious Diseases, School of
Molecular and Biomedical Science, University of Adelaide, South Australia 5005,
Australia
| | - Juan de Batista
- Instituto Universitario de Ciencias Biomédicas de
Córdoba (IUCBC), Hospital Privado Universitario de Córdoba, 420
Naciones Unidas, Córdoba 5016, Argentina
| | - James D Lechleiter
- Department of Cell Systems and Anatomy, UT Health San
Antonio, 8403 Floyd Curl Dr., San Antonio, TX 78229-3904, USA
| | - Mariana Bollo
- Instituto de Investigación Médica M y M Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, 2434 Friuli, Córdoba 5016, Argentina.
| |
Collapse
|
31
|
Guan X, Tan C, Li W, Wang W, Thirumalai D. Role of water-bridged interactions in metal ion coupled protein allostery. PLoS Comput Biol 2022; 18:e1010195. [PMID: 35653400 PMCID: PMC9197054 DOI: 10.1371/journal.pcbi.1010195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 06/14/2022] [Accepted: 05/10/2022] [Indexed: 11/18/2022] Open
Abstract
Allosteric communication between distant parts of proteins controls many cellular functions, in which metal ions are widely utilized as effectors to trigger the allosteric cascade. Due to the involvement of strong coordination interactions, the energy landscape dictating the metal ion binding is intrinsically rugged. How metal ions achieve fast binding by overcoming the landscape ruggedness and thereby efficiently mediate protein allostery is elusive. By performing molecular dynamics simulations for the Ca2+ binding mediated allostery of the calmodulin (CaM) domains, each containing two Ca2+ binding helix-loop-helix motifs (EF-hands), we revealed the key role of water-bridged interactions in Ca2+ binding and protein allostery. The bridging water molecules between Ca2+ and binding residue reduces the ruggedness of ligand exchange landscape by acting as a lubricant, facilitating the Ca2+ coupled protein allostery. Calcium-induced rotation of the helices in the EF-hands, with the hydrophobic core serving as the pivot, leads to exposure of hydrophobic sites for target binding. Intriguingly, despite being structurally similar, the response of the two symmetrically arranged EF-hands upon Ca2+ binding is asymmetric. Breakage of symmetry is needed for efficient allosteric communication between the EF-hands. The key roles that water molecules play in driving allosteric transitions are likely to be general in other metal ion mediated protein allostery. Natural proteins often utilize allostery in executing a variety of functions. Metal ions are typical cofactors to trigger the allosteric cascade. In this work, using the Ca2+ sensor protein calmodulin as the model system, we revealed crucial roles of water-bridged interactions in the metal ion coupled protein allostery. The coordination of the Ca2+ to the binding site involves an intermediate in which the water molecule bridges the Ca2+ and the liganding residue. The bridging water reduces the free energy barrier height of ligand exchange, therefore facilitating the ligand exchange and allosteric coupling by acting as a lubricant. We also showed that the response of the two symmetrically arranged EF-hand motifs of CaM domains upon Ca2+ binding is asymmetric, which is directly attributed to the differing dehydration process of the Ca2+ ions and is needed for efficient allosteric communication.
Collapse
Affiliation(s)
- Xingyue Guan
- Department of Physics, National Laboratory of Solid State Microstructure, Nanjing University, Nanjing, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China
| | - Cheng Tan
- Department of Physics, National Laboratory of Solid State Microstructure, Nanjing University, Nanjing, China
| | - Wenfei Li
- Department of Physics, National Laboratory of Solid State Microstructure, Nanjing University, Nanjing, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China
- * E-mail: (WL); (WW); (DT)
| | - Wei Wang
- Department of Physics, National Laboratory of Solid State Microstructure, Nanjing University, Nanjing, China
- * E-mail: (WL); (WW); (DT)
| | - D. Thirumalai
- Department of Chemistry, University of Texas, Texas, United States of America
- * E-mail: (WL); (WW); (DT)
| |
Collapse
|
32
|
Dal Cortivo G, Dell’Orco D. Calcium- and Integrin-Binding Protein 2 (CIB2) in Physiology and Disease: Bright and Dark Sides. Int J Mol Sci 2022; 23:ijms23073552. [PMID: 35408910 PMCID: PMC8999013 DOI: 10.3390/ijms23073552] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/19/2022] [Accepted: 03/22/2022] [Indexed: 12/04/2022] Open
Abstract
Calcium- and integrin-binding protein 2 (CIB2) is a small EF-hand protein capable of binding Mg2+ and Ca2+ ions. While its biological function remains largely unclear, an increasing number of studies have shown that CIB2 is an essential component of the mechano-transduction machinery that operates in cochlear hair cells. Mutations in the gene encoding CIB2 have been associated with non-syndromic deafness. In addition to playing an important role in the physiology of hearing, CIB2 has been implicated in a multitude of very different processes, ranging from integrin signaling in platelets and skeletal muscle to autophagy, suggesting extensive functional plasticity. In this review, we summarize the current understanding of biochemical and biophysical properties of CIB2 and the biological roles that have been proposed for the protein in a variety of processes. We also highlight the many molecular aspects that remain unclarified and deserve further investigation.
Collapse
|
33
|
Kantakevičius P, Mathiah C, Johannissen LO, Hay S. Chelator-Based Parameterization of the 12-6-4 Lennard-Jones Molecular Mechanics Potential for More Realistic Metal Ion-Protein Interactions. J Chem Theory Comput 2022; 18:2367-2374. [PMID: 35319190 PMCID: PMC9171819 DOI: 10.1021/acs.jctc.1c00898] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Metal ions are associated with a
variety of proteins and play critical
roles in a wide range of biochemical processes. There are multiple
ways to study and quantify protein–metal ion interactions,
including molecular dynamics simulations. Recently, the AMBER molecular
mechanics forcefield was modified to include a 12-6-4 Lennard-Jones
potential, which allows for a better description of nonbonded terms
through the additional pairwise Cij coefficients.
Here, we demonstrate a method of generating Cij parameters that allows parametrization of specific metal
ion-ligating groups in order to tune binding energies computed by
thermodynamic integration. The new Cij coefficients were tested on a series of chelators: ethylenediaminetetraacetic
acid, nitrilotriacetic acid, egtazic acid, and the EF1 loop peptides
from the proteins lanmodulin and calmodulin. The new parameters show
significant improvements in computed binding energies relative to
existing force fields and produce coordination numbers and ion-oxygen
distances that are in good agreement with experimental values. This
parametrization method should be extensible to a range of other systems
and could be readily adapted to tune properties other than binding
energies.
Collapse
Affiliation(s)
- Paulius Kantakevičius
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, Manchester M13 9PL, U.K
| | - Calvin Mathiah
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, Manchester M13 9PL, U.K
| | - Linus O Johannissen
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, Manchester M13 9PL, U.K
| | - Sam Hay
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, Manchester M13 9PL, U.K
| |
Collapse
|
34
|
Dal Cortivo G, Barracchia CG, Marino V, D'Onofrio M, Dell'Orco D. Alterations in calmodulin-cardiac ryanodine receptor molecular recognition in congenital arrhythmias. Cell Mol Life Sci 2022; 79:127. [PMID: 35133504 PMCID: PMC8825638 DOI: 10.1007/s00018-022-04165-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/27/2021] [Accepted: 01/23/2022] [Indexed: 12/03/2022]
Abstract
Calmodulin (CaM), a ubiquitous and highly conserved Ca2+-sensor protein involved in the regulation of over 300 molecular targets, has been recently associated with severe forms of lethal arrhythmia. Here, we investigated how arrhythmia-associated mutations in CaM localized at the C-terminal lobe alter the molecular recognition with Ryanodine receptor 2 (RyR2), specifically expressed in cardiomyocytes. We performed an extensive structural, thermodynamic, and kinetic characterization of the variants D95V/H in the EF3 Ca2+-binding motif and of the D129V and D131H/E variants in the EF4 motif, and probed their interaction with RyR2. Our results show that the specific structural changes observed for individual CaM variants do not extend to the complex with the RyR2 target. Indeed, some common alterations emerge at the protein–protein interaction level, suggesting the existence of general features shared by the arrhythmia-associated variants. All mutants showed a faster rate of dissociation from the target peptide than wild-type CaM. Integration of spectroscopic data with exhaustive molecular dynamics simulations suggests that, in the presence of Ca2+, functional recognition involves allosteric interactions initiated by the N-terminal lobe of CaM, which shows a lower affinity for Ca2+ compared to the C-terminal lobe in the isolated protein.
Collapse
Affiliation(s)
- Giuditta Dal Cortivo
- Department of Neurosciences Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Strada le Grazie 8, 37134, Verona, Italy
| | | | - Valerio Marino
- Department of Neurosciences Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Strada le Grazie 8, 37134, Verona, Italy
| | - Mariapina D'Onofrio
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134, Verona, Italy.
| | - Daniele Dell'Orco
- Department of Neurosciences Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Strada le Grazie 8, 37134, Verona, Italy.
| |
Collapse
|
35
|
Troilo F, Pedretti M, Travaglini-Allocatelli C, Astegno A, Di Matteo A. Rapid kinetics of calcium dissociation from plant calmodulin and calmodulin-like proteins and effect of target peptides. Biochem Biophys Res Commun 2022; 590:103-108. [PMID: 34974297 DOI: 10.1016/j.bbrc.2021.12.077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 11/02/2022]
Abstract
Calcium (Ca2+) signaling represents a universal information code in plants, playing crucial roles spanning developmental processes to stress responses. Ca2+ signals are decoded into defined plant adaptive responses by different Ca2+ sensing proteins, including calmodulin (CaM) and calmodulin-like (CML) proteins. Although major advances have been achieved in describing how these Ca2+ decoding proteins interact and regulate downstream target effectors, the molecular details of these processes remain largely unknown. Herein, the kinetics of Ca2+ dissociation from a conserved CaM and two CML isoforms from A. thaliana has been studied by fluorescence stopped-flow spectroscopy. Kinetic data were obtained for the isolated Ca2+-bound proteins as well as for the proteins complexed with different target peptides. Moreover, the lobe specific interactions between the Ca2+ sensing proteins and their targets were characterized by using a panel of protein mutants deficient in Ca2+ binding at the N-lobe or C-lobe. Results were analyzed and discussed in the context of the Ca2+-decoding and Ca2+-controlled target binding mechanisms in plants.
Collapse
Affiliation(s)
- Francesca Troilo
- CNR Institute of Molecular Biology and Pathology, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Marco Pedretti
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | | | - Alessandra Astegno
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy.
| | - Adele Di Matteo
- CNR Institute of Molecular Biology and Pathology, P.le Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|
36
|
Prakash O, Held M, McCormick LF, Gupta N, Lian LY, Antonyuk S, Haynes LP, Thomas NL, Helassa N. CPVT-associated calmodulin variants N53I and A102V dysregulate Ca2+ signalling via different mechanisms. J Cell Sci 2022; 135:274029. [PMID: 34888671 PMCID: PMC8917356 DOI: 10.1242/jcs.258796] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 11/29/2021] [Indexed: 12/26/2022] Open
Abstract
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an inherited condition that can cause fatal cardiac arrhythmia. Human mutations in the Ca2+ sensor calmodulin (CaM) have been associated with CPVT susceptibility, suggesting that CaM dysfunction is a key driver of the disease. However, the detailed molecular mechanism remains unclear. Focusing on the interaction with the cardiac ryanodine receptor (RyR2), we determined the effect of CPVT-associated variants N53I and A102V on the structural characteristics of CaM and on Ca2+ fluxes in live cells. We provide novel data showing that interaction of both Ca2+/CaM-N53I and Ca2+/CaM-A102V with the RyR2 binding domain is decreased. Ca2+/CaM-RyR23583-3603 high-resolution crystal structures highlight subtle conformational changes for the N53I variant, with A102V being similar to wild type (WT). We show that co-expression of CaM-N53I or CaM-A102V with RyR2 in HEK293 cells significantly increased the duration of Ca2+ events; CaM-A102V exhibited a lower frequency of Ca2+ oscillations. In addition, we show that CaMKIIδ (also known as CAMK2D) phosphorylation activity is increased for A102V, compared to CaM-WT. This paper provides novel insight into the molecular mechanisms of CPVT-associated CaM variants and will facilitate the development of strategies for future therapies.
Collapse
Affiliation(s)
- Ohm Prakash
- Liverpool Centre for Cardiovascular Science, Department of Cardiovascular Science and Metabolic Medicine, Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 3BX, UK
| | - Marie Held
- Liverpool Centre for Cardiovascular Science, Department of Cardiovascular Science and Metabolic Medicine, Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 3BX, UK
| | - Liam F. McCormick
- Liverpool Centre for Cardiovascular Science, Department of Cardiovascular Science and Metabolic Medicine, Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 3BX, UK
| | - Nitika Gupta
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 3BX, UK
| | - Lu-Yun Lian
- Nuclear Magnetic Resonance Centre for Structural Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, UK
| | - Svetlana Antonyuk
- Molecular Biophysics Group, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, UK
| | - Lee P. Haynes
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 3BX, UK
| | - N. Lowri Thomas
- School of Pharmacy & Pharmaceutical Sciences, Cardiff University, Cardiff, Redwood Building, CF10 3NB, UK
| | - Nordine Helassa
- Liverpool Centre for Cardiovascular Science, Department of Cardiovascular Science and Metabolic Medicine, Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 3BX, UK,Author for correspondence ()
| |
Collapse
|
37
|
Lin Y, Gross ML. Mass Spectrometry-Based Structural Proteomics for Metal Ion/Protein Binding Studies. Biomolecules 2022; 12:135. [PMID: 35053283 PMCID: PMC8773722 DOI: 10.3390/biom12010135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 01/01/2023] Open
Abstract
Metal ions are critical for the biological and physiological functions of many proteins. Mass spectrometry (MS)-based structural proteomics is an ever-growing field that has been adopted to study protein and metal ion interactions. Native MS offers information on metal binding and its stoichiometry. Footprinting approaches coupled with MS, including hydrogen/deuterium exchange (HDX), "fast photochemical oxidation of proteins" (FPOP) and targeted amino-acid labeling, identify binding sites and regions undergoing conformational changes. MS-based titration methods, including "protein-ligand interactions by mass spectrometry, titration and HD exchange" (PLIMSTEX) and "ligand titration, fast photochemical oxidation of proteins and mass spectrometry" (LITPOMS), afford binding stoichiometry, binding affinity, and binding order. These MS-based structural proteomics approaches, their applications to answer questions regarding metal ion protein interactions, their limitations, and recent and potential improvements are discussed here. This review serves as a demonstration of the capabilities of these tools and as an introduction to wider applications to solve other questions.
Collapse
Affiliation(s)
- Yanchun Lin
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Michael L Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
38
|
Xiao Y, Huang Y, Zeng Z, Luo X, Qian X, Yang Y. Harnessing Thorpe-Ingold Dialkylation to Access High-Hill-Percentage pH Probes. J Org Chem 2021; 87:85-93. [PMID: 34958219 DOI: 10.1021/acs.joc.1c01887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Sensitivity is an important parameter for a molecular probe. Hill-type pH probes exhibit improved detection sensitivity compared to the traditional pH probes following the Henderson-Hasselbalch equation. Exploiting positive cooperativity, we recently devised a novel molecular scaffold (PHX) to offer such an unconventional Hill-type pH titration profile. We previously confirmed that PHX is not a pure Hill-type probe yet. Only 64% of its absorbance/fluorescence turn-on is the result of a Hill-type pathway. The remaining 36% is from an undesired Henderson-Hasselbalch-type pathway (HH pathway). In this work, the Thorpe-Ingold dialkylation was harnessed to further suppress the percent contribution of the HH pathway down to 16%. We also propose that PHX is a viable molecular model for assessing the efficacy of the steric compressing effect induced by different Thorpe-Ingold dialkylations.
Collapse
Affiliation(s)
- Yansheng Xiao
- State Key Laboratory of Bioreactor Engineering. Shanghai Key Laboratory of Chemical Biology, School of Pharmacy. East China University of Science and Technology, Meilong Road 130, Shanghai 200237, China
| | - Yunxia Huang
- State Key Laboratory of Bioreactor Engineering. Shanghai Key Laboratory of Chemical Biology, School of Pharmacy. East China University of Science and Technology, Meilong Road 130, Shanghai 200237, China
| | - Zhenhua Zeng
- State Key Laboratory of Bioreactor Engineering. Shanghai Key Laboratory of Chemical Biology, School of Pharmacy. East China University of Science and Technology, Meilong Road 130, Shanghai 200237, China
| | - Xiao Luo
- School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Xuhong Qian
- State Key Laboratory of Bioreactor Engineering. Shanghai Key Laboratory of Chemical Biology, School of Pharmacy. East China University of Science and Technology, Meilong Road 130, Shanghai 200237, China
| | - Youjun Yang
- State Key Laboratory of Bioreactor Engineering. Shanghai Key Laboratory of Chemical Biology, School of Pharmacy. East China University of Science and Technology, Meilong Road 130, Shanghai 200237, China
| |
Collapse
|
39
|
Björklund E, du Rietz A, Lundström P. Analysis of protein-ligand interactions from titrations and nuclear magnetic resonance relaxation dispersions. Protein Sci 2021; 31:301-307. [PMID: 34791737 PMCID: PMC8740844 DOI: 10.1002/pro.4240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/22/2022]
Abstract
We present PLIS, a publicly available, open‐source software for the determination of protein–ligand dissociation constants that can be used to characterize biological processes or to shed light on biophysical aspects of interactions. PLIS can analyze data from titration experiments monitored by for instance fluorescence spectroscopy or from nuclear magnetic resonance relaxation dispersion experiments. In addition to analysis of experimental data, PLIS includes functionality for generation of synthetic data, useful for understanding how different parameters effect the data in order to better analyze experiments.
Collapse
Affiliation(s)
- Emil Björklund
- Division of Chemistry, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Anna du Rietz
- Division of Molecular Surface Physics and Nanoscience, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Patrik Lundström
- Division of Chemistry, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| |
Collapse
|
40
|
Structural Basis for the Functional Diversity of Centrins: A Focus on Calcium Sensing Properties and Target Recognition. Int J Mol Sci 2021; 22:ijms222212173. [PMID: 34830049 PMCID: PMC8622359 DOI: 10.3390/ijms222212173] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 11/23/2022] Open
Abstract
Centrins are a family of small, EF hand-containing proteins that are found in all eukaryotes and are often complexed with centrosome-related structures. Since their discovery, centrins have attracted increasing interest due to their multiple, diverse cellular functions. Centrins are similar to calmodulin (CaM) in size, structure and domain organization, although in contrast to CaM, the majority of centrins possess at least one calcium (Ca2+) binding site that is non-functional, thus displaying large variance in Ca2+ sensing abilities that could support their functional versatility. In this review, we summarize current knowledge on centrins from both biophysical and structural perspectives with an emphasis on centrin-target interactions. In-depth analysis of the Ca2+ sensing properties of centrins and structures of centrins complexed with target proteins can provide useful insight into the mechanisms of the different functions of centrins and how these proteins contribute to the complexity of the Ca2+ signaling cascade. Moreover, it can help to better understand the functional redundancy of centrin isoforms and centrin-binding proteins.
Collapse
|
41
|
Young BD, Varney KM, Wilder PT, Costabile BK, Pozharski E, Cook ME, Godoy-Ruiz R, Clarke OB, Mancia F, Weber DJ. Physiologically Relevant Free Ca 2+ Ion Concentrations Regulate STRA6-Calmodulin Complex Formation via the BP2 Region of STRA6. J Mol Biol 2021; 433:167272. [PMID: 34592217 PMCID: PMC8568335 DOI: 10.1016/j.jmb.2021.167272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/13/2021] [Accepted: 09/21/2021] [Indexed: 11/28/2022]
Abstract
The interaction of calmodulin (CaM) with the receptor for retinol uptake, STRA6, involves an α-helix termed BP2 that is located on the intracellular side of this homodimeric transporter (Chen et al., 2016 [1]). In the absence of Ca2+, NMR data showed that a peptide derived from BP2 bound to the C-terminal lobe (C-lobe) of Mg2+-bound CaM (MgCaM). Upon titration of Ca2+ into MgCaM-BP2, NMR chemical shift perturbations (CSPs) were observed for residues in the C-lobe, including those in the EF-hand Ca2+-binding domains, EF3 and EF4 (CaKD = 60 ± 7 nM). As higher concentrations of free Ca2+ were achieved, CSPs occurred for residues in the N-terminal lobe (N-lobe) including those in EF1 and EF2 (CaKD = 1000 ± 160 nM). Thermodynamic and kinetic Ca2+ binding studies showed that BP2 addition increased the Ca2+-binding affinity of CaM and slowed its Ca2+ dissociation rates (koff) in both the C- and N-lobe EF-hand domains, respectively. These data are consistent with BP2 binding to the C-lobe of CaM at low free Ca2+ concentrations (<100 nM) like those found at resting intracellular levels. As free Ca2+ levels approach 1000 nM, which is typical inside a cell upon an intracellular Ca2+-signaling event, BP2 is shown here to interact with both the N- and C-lobes of Ca2+-loaded CaM (CaCaM-BP2). Because this structural rearrangement observed for the CaCaM-BP2 complex occurs as intracellular free Ca2+ concentrations approach those typical of a Ca2+-signaling event (CaKD = 1000 ± 160 nM), this conformational change could be relevant to vitamin A transport by full-length CaCaM-STRA6.
Collapse
Affiliation(s)
- Brianna D Young
- The Center for Biomolecular Therapeutics (CBT), Department of Biochemistry and Molecular Biology University of Maryland School of Medicine, 108 N. Greene St, Baltimore, MD 21201, USA
| | - Kristen M Varney
- The Center for Biomolecular Therapeutics (CBT), Department of Biochemistry and Molecular Biology University of Maryland School of Medicine, 108 N. Greene St, Baltimore, MD 21201, USA; The Institute of Bioscience and Biotechnology Research (IBBR), 9600 Gudelsky Dr., Rockville, MD 20850, USA
| | - Paul T Wilder
- The Center for Biomolecular Therapeutics (CBT), Department of Biochemistry and Molecular Biology University of Maryland School of Medicine, 108 N. Greene St, Baltimore, MD 21201, USA; The Institute of Bioscience and Biotechnology Research (IBBR), 9600 Gudelsky Dr., Rockville, MD 20850, USA
| | - Brianna K Costabile
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
| | - Edwin Pozharski
- The Center for Biomolecular Therapeutics (CBT), Department of Biochemistry and Molecular Biology University of Maryland School of Medicine, 108 N. Greene St, Baltimore, MD 21201, USA; The Institute of Bioscience and Biotechnology Research (IBBR), 9600 Gudelsky Dr., Rockville, MD 20850, USA
| | - Mary E Cook
- The Center for Biomolecular Therapeutics (CBT), Department of Biochemistry and Molecular Biology University of Maryland School of Medicine, 108 N. Greene St, Baltimore, MD 21201, USA
| | - Raquel Godoy-Ruiz
- The Center for Biomolecular Therapeutics (CBT), Department of Biochemistry and Molecular Biology University of Maryland School of Medicine, 108 N. Greene St, Baltimore, MD 21201, USA; The Institute of Bioscience and Biotechnology Research (IBBR), 9600 Gudelsky Dr., Rockville, MD 20850, USA
| | - Oliver B Clarke
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
| | - Filippo Mancia
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
| | - David J Weber
- The Center for Biomolecular Therapeutics (CBT), Department of Biochemistry and Molecular Biology University of Maryland School of Medicine, 108 N. Greene St, Baltimore, MD 21201, USA; The Institute of Bioscience and Biotechnology Research (IBBR), 9600 Gudelsky Dr., Rockville, MD 20850, USA.
| |
Collapse
|
42
|
Tsai WC, Chen PS, Rubart M. Calmodulinopathy in inherited arrhythmia syndromes. Tzu Chi Med J 2021; 33:339-344. [PMID: 34760628 PMCID: PMC8532581 DOI: 10.4103/tcmj.tcmj_182_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/02/2020] [Accepted: 10/07/2020] [Indexed: 11/04/2022] Open
Abstract
Calmodulin (CaM) is a ubiquitous intracellular calcium sensor that controls and regulates key cellular functions. In all vertebrates, three CaM genes located on separate chromosomes encode an identical 149 amino acid protein, implying an extraordinarily high level of evolutionary importance and suggesting that CaM mutations would be possibly fatal. Inherited arrhythmia syndromes comprise a spectrum of primary electrical disorders caused by mutations in genes encoding ion channels or associated proteins leading to various cardiac arrhythmias, unexplained syncope, and sudden cardiac death. CaM mutations have emerged as an independent entity among inherited arrhythmia syndromes, referred to as calmodulinopathies. The most common clinical presentation associated with calmodulinopathy is congenital long QT syndrome, followed by catecholaminergic polymorphic ventricular tachycardia, both of which significantly increase the possibility of repeated syncope, lethal arrhythmic events, and sudden cardiac death, especially in young individuals. Here, we aim to give an overview of biochemical and structural characteristics of CaM and progress toward updating current known CaM mutations and associated clinical phenotypes. We also review the possible mechanisms underlying calmodulinopathy, based on several key in vitro studies. We expect that further experimental studies are needed to explore the complexity of calmodulinopathy.
Collapse
Affiliation(s)
- Wen-Chin Tsai
- Department of Cardiology, Cardiovascular Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, and Tzu Chi University, Hualien, Taiwan
| | - Peng-Sheng Chen
- Department of Cardiology, Cedar-Sinai Medical Center, Los Angeles, CA, USA
- Krannert Institute of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Michael Rubart
- Krannert Institute of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pediatrics, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
43
|
Milanesi L, Trevitt C, Whitehead B, Hounslow A, Tomas S, Hosszu L, Hunter C, Waltho J. High-affinity tamoxifen analogues retain extensive positional disorder when bound to calmodulin. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2021; 2:629-642. [PMID: 37905217 PMCID: PMC10539762 DOI: 10.5194/mr-2-629-2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/03/2021] [Indexed: 11/02/2023]
Abstract
Using a combination of NMR and fluorescence measurements, we have investigated the structure and dynamics of the complexes formed between calcium-loaded calmodulin (CaM) and the potent breast cancer inhibitor idoxifene, a derivative of tamoxifen. High-affinity binding (K d ∼ 300 nM) saturates with a 2 : 1 idoxifene : CaM complex. The complex is an ensemble where each idoxifene molecule is predominantly in the vicinity of one of the two hydrophobic patches of CaM but, in contrast with the lower-affinity antagonists TFP, J-8, and W-7, does not substantially occupy the hydrophobic pocket. At least four idoxifene orientations per domain of CaM are necessary to satisfy the intermolecular nuclear Overhauser effect (NOE) restraints, and this requires that the idoxifene molecules switch rapidly between positions. The CaM molecule is predominantly in the form where the N and C-terminal domains are in close proximity, allowing for the idoxifene molecules to contact both domains simultaneously. Hence, the 2 : 1 idoxifene : CaM complex illustrates how high-affinity binding occurs without the loss of extensive positional dynamics.
Collapse
Affiliation(s)
- Lilia Milanesi
- Department of Molecular Biology and Biotechnology, University of
Sheffield, Sheffield S10 2TN, UK
- Department of Biological Sciences, School of Science, Birkbeck
University of London, London WC1E 7HX, UK
| | - Clare R. Trevitt
- Department of Molecular Biology and Biotechnology, University of
Sheffield, Sheffield S10 2TN, UK
| | - Brian Whitehead
- Department of Molecular Biology and Biotechnology, University of
Sheffield, Sheffield S10 2TN, UK
| | - Andrea M. Hounslow
- Department of Molecular Biology and Biotechnology, University of
Sheffield, Sheffield S10 2TN, UK
| | - Salvador Tomas
- Department of Biological Sciences, School of Science, Birkbeck
University of London, London WC1E 7HX, UK
- Departament de Química, Universitat de les Illes Balears, Cra. de Valldemossa, km 7.5. 07122 Palma de Mallorca, Spain
| | - Laszlo L. P. Hosszu
- Department of Molecular Biology and Biotechnology, University of
Sheffield, Sheffield S10 2TN, UK
- Medical Research Council Prion Unit, University College of London
Institute of Neurology, Queen Square, London WCN1 3BG, UK
| | - Christopher A. Hunter
- Department of Chemistry, University of Cambridge, Lensfield Road,
Cambridge CB2 1EW, UK
| | - Jonathan P. Waltho
- Department of Molecular Biology and Biotechnology, University of
Sheffield, Sheffield S10 2TN, UK
- Manchester Institute of Biotechnology, University of Manchester, 131
Princess Street, Manchester M1 7DN, UK
| |
Collapse
|
44
|
Zybura A, Hudmon A, Cummins TR. Distinctive Properties and Powerful Neuromodulation of Na v1.6 Sodium Channels Regulates Neuronal Excitability. Cells 2021; 10:1595. [PMID: 34202119 PMCID: PMC8307729 DOI: 10.3390/cells10071595] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 12/19/2022] Open
Abstract
Voltage-gated sodium channels (Navs) are critical determinants of cellular excitability. These ion channels exist as large heteromultimeric structures and their activity is tightly controlled. In neurons, the isoform Nav1.6 is highly enriched at the axon initial segment and nodes, making it critical for the initiation and propagation of neuronal impulses. Changes in Nav1.6 expression and function profoundly impact the input-output properties of neurons in normal and pathological conditions. While mutations in Nav1.6 may cause channel dysfunction, aberrant changes may also be the result of complex modes of regulation, including various protein-protein interactions and post-translational modifications, which can alter membrane excitability and neuronal firing properties. Despite decades of research, the complexities of Nav1.6 modulation in health and disease are still being determined. While some modulatory mechanisms have similar effects on other Nav isoforms, others are isoform-specific. Additionally, considerable progress has been made toward understanding how individual protein interactions and/or modifications affect Nav1.6 function. However, there is still more to be learned about how these different modes of modulation interact. Here, we examine the role of Nav1.6 in neuronal function and provide a thorough review of this channel's complex regulatory mechanisms and how they may contribute to neuromodulation.
Collapse
Affiliation(s)
- Agnes Zybura
- Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Biology Department, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Andy Hudmon
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA;
| | - Theodore R. Cummins
- Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Biology Department, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| |
Collapse
|
45
|
Simultaneous detection of reciprocal interactions between calmodulin, Ca2+ and molecular targets: a focus on the calmodulin-RyR2 complex. Biochem J 2021; 478:487-491. [PMID: 33544125 DOI: 10.1042/bcj20200818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 01/22/2023]
Abstract
In a recent issue of Biochemical Journal, Brohus et al. (Biochem. J.476, 193-209) investigated the interaction between the ubiquitous intracellular Ca2+-sensor calmodulin (CaM) and peptides that mimic different structural regions of the cardiac ryanodine receptor (RyR2) at different Ca2+ concentrations. For the purpose, a novel bidimensional titration assay based on changes in fluorescence anisotropy was designed. The study identified the CaM domains that selectively bind to a specific CaM-binding domain in RyR2 and demonstrated that the interaction occurs essentially under Ca2+-saturating conditions. This study provides an elegant and experimentally accessible framework for detailed molecular investigations of the emerging life-threatening arrhythmia diseases associated with mutations in the genes encoding CaM. Furthermore, by allowing the measurement of the equilibrium dissociation constant in a protein-protein complex as a function of [Ca2+], the methodology presented by Brohus et al. may have broad applicability to the study of Ca2+ signalling.
Collapse
|
46
|
Lin QT, Lee R, Feng AL, Kim MS, Stathopulos PB. The leucine zipper EF-hand containing transmembrane protein-1 EF-hand is a tripartite calcium, temperature, and pH sensor. Protein Sci 2021; 30:855-872. [PMID: 33576522 DOI: 10.1002/pro.4042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/09/2021] [Accepted: 02/09/2021] [Indexed: 12/15/2022]
Abstract
Leucine Zipper EF-hand containing transmembrane protein-1 (LETM1) is an inner mitochondrial membrane protein that mediates mitochondrial calcium (Ca2+ )/proton exchange. The matrix residing carboxyl (C)-terminal domain contains a sequence identifiable EF-hand motif (EF1) that is highly conserved among orthologues. Deletion of EF1 abrogates LETM1 mediated mitochondrial Ca2+ flux, highlighting the requirement of EF1 for LETM1 function. To understand the mechanistic role of this EF-hand in LETM1 function, we characterized the biophysical properties of EF1 in isolation. Our data show that EF1 exhibits α-helical secondary structure that is augmented in the presence of Ca2+ . Unexpectedly, EF1 features a weak (~mM), but specific, apparent Ca2+ -binding affinity, consistent with the canonical Ca2+ coordination geometry, suggested by our solution NMR. The low affinity is, at least in part, due to an Asp at position 12 of the binding loop, where mutation to Glu increases the affinity by ~4-fold. Further, the binding affinity is sensitive to pH changes within the physiological range experienced by mitochondria. Remarkably, EF1 unfolds at high and low temperatures. Despite these unique EF-hand properties, Ca2+ binding increases the exposure of hydrophobic regions, typical of EF-hands; however, this Ca2+ -induced conformational change shifts EF1 from a monomer to higher order oligomers. Finally, we showed that a second, putative EF-hand within LETM1 is unreactive to Ca2+ either in isolation or tandem with EF1. Collectively, our data reveal that EF1 is structurally and biophysically responsive to pH, Ca2+ and temperature, suggesting a role as a multipartite environmental sensor within LETM1.
Collapse
Affiliation(s)
- Qi-Tong Lin
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Rachel Lee
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada.,Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Allen L Feng
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada.,Faculty of Dentistry, University of Toronto, Toronto, Canada
| | - Michael S Kim
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada.,Department of Radiation Oncology, Dalhousie University, Halifax, Canada
| | - Peter B Stathopulos
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
47
|
Zhuang W, Yan Z. The S2-S3 Loop of Kv7.4 Channels Is Essential for Calmodulin Regulation of Channel Activation. Front Physiol 2021; 11:604134. [PMID: 33551832 PMCID: PMC7854705 DOI: 10.3389/fphys.2020.604134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/23/2020] [Indexed: 11/16/2022] Open
Abstract
Kv7.4 (KCNQ4) voltage-gated potassium channels control excitability in the inner ear and the central auditory pathway. Mutations in Kv7.4 channels result in inherited progressive deafness in humans. Calmodulin (CaM) is crucial for regulating Kv7 channels, but how CaM affects Kv7 activity has remained unclear. Here, based on electrophysiological recordings, we report that the third EF hand (EF3) of CaM controls the calcium-dependent regulation of Kv7.4 activation and that the S2–S3 loop of Kv7.4 is essential for the regulation mediated by CaM. Overexpression of the mutant CaM1234, which loses the calcium binding ability of all four EF hands, facilitates Kv7.4 activation by accelerating activation kinetics and shifting the voltage dependence of activation leftwards. The single mutant CaM3, which loses the calcium binding ability of the EF3, phenocopies facilitating effects of CaM1234 on Kv7.4 activation. Kv7.4 channels co-expressed with wild-type (WT) CaM show inhibited activation when intracellular calcium levels increase, while Kv7.4 channels co-expressed with CaM1234 or CaM3 are insensitive to calcium. Mutations C156A, C157A, C158V, R159, and R161A, which are located within the Kv7.4 S2–S3 loop, dramatically facilitate activation of Kv7.4 channels co-expressed with WT CaM but have no effect on activation of Kv7.4 channels co-expressed with CaM3, indicating that these five mutations decrease the inhibitory effect of Ca2+/CaM. The double mutation C156A/R159A decreases Ca2+/CaM binding and completely abolishes CaM-mediated calcium-dependent regulation of Kv7.4 activation. Taken together, our results provide mechanistic insights into CaM regulation of Kv7.4 activation and highlight the crucial role of the Kv7.4 S2–S3 loop in CaM regulation.
Collapse
Affiliation(s)
- Wenhui Zhuang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Physiology and Biophysics, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Zhiqiang Yan
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Physiology and Biophysics, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China.,Shenzhen Bay Laboratory, Institute of Molecular Physiology, Shenzhen, China
| |
Collapse
|
48
|
Berlansky S, Humer C, Sallinger M, Frischauf I. More Than Just Simple Interaction between STIM and Orai Proteins: CRAC Channel Function Enabled by a Network of Interactions with Regulatory Proteins. Int J Mol Sci 2021; 22:E471. [PMID: 33466526 PMCID: PMC7796502 DOI: 10.3390/ijms22010471] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/29/2020] [Accepted: 12/29/2020] [Indexed: 12/27/2022] Open
Abstract
The calcium-release-activated calcium (CRAC) channel, activated by the release of Ca2+ from the endoplasmic reticulum (ER), is critical for Ca2+ homeostasis and active signal transduction in a plethora of cell types. Spurred by the long-sought decryption of the molecular nature of the CRAC channel, considerable scientific effort has been devoted to gaining insights into functional and structural mechanisms underlying this signalling cascade. Key players in CRAC channel function are the Stromal interaction molecule 1 (STIM1) and Orai1. STIM1 proteins span through the membrane of the ER, are competent in sensing luminal Ca2+ concentration, and in turn, are responsible for relaying the signal of Ca2+ store-depletion to pore-forming Orai1 proteins in the plasma membrane. A direct interaction of STIM1 and Orai1 allows for the re-entry of Ca2+ from the extracellular space. Although much is already known about the structure, function, and interaction of STIM1 and Orai1, there is growing evidence that CRAC under physiological conditions is dependent on additional proteins to function properly. Several auxiliary proteins have been shown to regulate CRAC channel activity by means of direct interactions with STIM1 and/or Orai1, promoting or hindering Ca2+ influx in a mechanistically diverse manner. Various proteins have also been identified to exert a modulatory role on the CRAC signalling cascade although inherently lacking an affinity for both STIM1 and Orai1. Apart from ubiquitously expressed representatives, a subset of such regulatory mechanisms seems to allow for a cell-type-specific control of CRAC channel function, considering the rather restricted expression patterns of the specific proteins. Given the high functional and clinical relevance of both generic and cell-type-specific interacting networks, the following review shall provide a comprehensive summary of regulators of the multilayered CRAC channel signalling cascade. It also includes proteins expressed in a narrow spectrum of cells and tissues that are often disregarded in other reviews of similar topics.
Collapse
Affiliation(s)
| | | | | | - Irene Frischauf
- Institute of Biophysics, Johannes Kepler University, 4020 Linz, Austria; (S.B.); (C.H.); (M.S.)
| |
Collapse
|
49
|
Jeon J, Yau WM, Tycko R. Millisecond Time-Resolved Solid-State NMR Reveals a Two-Stage Molecular Mechanism for Formation of Complexes between Calmodulin and a Target Peptide from Myosin Light Chain Kinase. J Am Chem Soc 2020; 142:21220-21232. [PMID: 33280387 DOI: 10.1021/jacs.0c11156] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Calmodulin (CaM) mediates a wide range of biological responses to changes in intracellular Ca2+ concentrations through its calcium-dependent binding affinities to numerous target proteins. Binding of two Ca2+ ions to each of the two four-helix-bundle domains of CaM results in major conformational changes that create a potential binding site for the CaM binding domain of a target protein, which also undergoes major conformational changes to form the complex with CaM. Details of the molecular mechanism of complex formation are not well established, despite numerous structural, spectroscopic, thermodynamic, and kinetic studies. Here, we report a study of the process by which the 26-residue peptide M13, which represents the CaM binding domain of skeletal muscle myosin light chain kinase, forms a complex with CaM in the presence of excess Ca2+ on the millisecond time scale. Our experiments use a combination of selective 13C labeling of CaM and M13, rapid mixing of CaM solutions with M13/Ca2+ solutions, rapid freeze-quenching of the mixed solutions, and low-temperature solid state nuclear magnetic resonance (ssNMR) enhanced by dynamic nuclear polarization. From measurements of the dependence of 2D 13C-13C ssNMR spectra on the time between mixing and freezing, we find that the N-terminal portion of M13 converts from a conformationally disordered state to an α-helix and develops contacts with the C-terminal domain of CaM in about 2 ms. The C-terminal portion of M13 becomes α-helical and develops contacts with the N-terminal domain of CaM more slowly, in about 8 ms. The level of structural order in the CaM/M13/Ca2+ complexes, indicated by 13C ssNMR line widths, continues to increase beyond 27 ms.
Collapse
Affiliation(s)
- Jaekyun Jeon
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
| | - Wai-Ming Yau
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
| | - Robert Tycko
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
| |
Collapse
|
50
|
Linse S, Thulin E, Nilsson H, Stigler J. Benefits and constrains of covalency: the role of loop length in protein stability and ligand binding. Sci Rep 2020; 10:20108. [PMID: 33208843 PMCID: PMC7674454 DOI: 10.1038/s41598-020-76598-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 10/26/2020] [Indexed: 11/12/2022] Open
Abstract
Protein folding is governed by non-covalent interactions under the benefits and constraints of the covalent linkage of the backbone chain. In the current work we investigate the influence of loop length variation on the free energies of folding and ligand binding in a small globular single-domain protein containing two EF-hand subdomains—calbindin D9k. We introduce a linker extension between the subdomains and vary its length between 1 to 16 glycine residues. We find a close to linear relationship between the linker length and the free energy of folding of the Ca2+-free protein. In contrast, the linker length has only a marginal effect on the Ca2+ affinity and cooperativity. The variant with a single-glycine extension displays slightly increased Ca2+ affinity, suggesting that the slightly extended linker allows optimized packing of the Ca2+-bound state. For the extreme case of disconnected subdomains, Ca2+ binding becomes coupled to folding and assembly. Still, a high affinity between the EF-hands causes the non-covalent pair to retain a relatively high apparent Ca2+ affinity. Our results imply that loop length variation could be an evolutionary option for modulating properties such as protein stability and turnover without compromising the energetics of the specific function of the protein.
Collapse
Affiliation(s)
- Sara Linse
- Departments of Biophysical Chemistry, Biochemistry and Structural Biology, Lund University, Lund, Sweden.
| | - Eva Thulin
- Departments of Biophysical Chemistry, Biochemistry and Structural Biology, Lund University, Lund, Sweden
| | - Hanna Nilsson
- Departments of Biophysical Chemistry, Biochemistry and Structural Biology, Lund University, Lund, Sweden
| | - Johannes Stigler
- Departments of Biophysical Chemistry, Biochemistry and Structural Biology, Lund University, Lund, Sweden. .,Gene Center, Ludwig-Maximilians-University, 81377, Munich, Germany.
| |
Collapse
|