1
|
Forejtnikovà H, Vieillevoye M, Zermati Y, Lambert M, Pellegrino RM, Guihard S, Gaudry M, Camaschella C, Lacombe C, Roetto A, Mayeux P, Verdier F. Transferrin receptor 2 is a component of the erythropoietin receptor complex and is required for efficient erythropoiesis. Blood 2010; 116:5357-67. [PMID: 20826723 DOI: 10.1182/blood-2010-04-281360] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Erythropoietin (Epo) is required for erythroid progenitor differentiation. Although Epo crosslinking experiments have revealed the presence of Epo receptor (EpoR)-associated proteins that could never be identified, EpoR is considered to be a paradigm for homodimeric cytokine receptors. We purified EpoR-binding partners and identified the type 2 transferrin receptor (TfR2) as a component of the EpoR complex corresponding to proteins previously detected in cross-linking experiments. TfR2 is involved in iron metabolism by regulating hepcidin production in liver cells. We show that TfR2 and EpoR are synchronously coexpressed during the differentiation of erythroid progenitors. TfR2 associates with EpoR in the endoplasmic reticulum and is required for the efficient transport of this receptor to the cell surface. Erythroid progenitors from TfR2(-/-)mice show a decreased sensitivity to Epo and increased circulating Epo levels. In human erythroid progenitors, TfR2 knockdown delays the terminal differentiation. Erythroid cells produce growth differentiation factor-15, a cytokine that suppresses hepatic hepcidin production in certain erythroid diseases such as thalassemia. We show that the production of growth differentiation factor-15 by erythroid cells is dependent on both Epo and TfR2. Taken together, our results show that TfR2 exhibits a non hepatic function as a component of the EpoR complex and is required for efficient erythropoiesis.
Collapse
Affiliation(s)
- Hana Forejtnikovà
- Institut Cochin, Université Paris Descartes, Centre National de la recherche Scientifique (Unité Mixte de Recherche 8104), Paris, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Price SA, Davies D, Rowlinson R, Copley CG, Roche A, Falkenberg FW, Riccardi D, Betton GR. Characterization of Renal Papillary Antigen 1 (RPA-1), a Biomarker of Renal Papillary Necrosis. Toxicol Pathol 2010; 38:346-58. [DOI: 10.1177/0192623310362246] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Renal papillary necrosis (RPN) is a relatively common toxicity observed in preclinical drug safety testing. It is also observed in a variety of human diseases. RPN is difficult to diagnose without expensive scanning methods or histopathology. A noninvasive biomarker that could be detected at early stages of kidney damage would be of great value both to preclinical drug safety testing and in the clinic. An antibody raised to an unknown epitope of an antigen in rat kidney papilla was found to be specific for collecting duct cells in the kidney; this was termed renal papillary antigen 1 (RPA-1). In this study, the authors show that RPA-1 is an early biomarker of RPN in two different rat models of toxicity: 2-bromoethanamine (BEA) and N-phenylanthranilic acid (NPAA). RPA-1 can be detected in urine at early stages of toxicity and correlates well with the histopathology observed. We also characterized the biochemical properties of RPA-1 and found that the antigen is a high molecular weight membrane bound glycoprotein, with the epitope likely to be carried on an N-linked carbohydrate structure. This study demonstrates that RPA-1 is an excellent marker of RPN that can be used to detect this toxicity in preclinical safety testing.
Collapse
Affiliation(s)
- Sally A. Price
- Safety Assessment, AstraZeneca UK Ltd, Macclesfield, Cheshire, UK
| | - Dai Davies
- Safety Assessment, AstraZeneca UK Ltd, Macclesfield, Cheshire, UK
| | | | | | - Andrew Roche
- Biotrin International Limited, Co. Dublin, Ireland
| | | | | | - Graham R. Betton
- Safety Assessment, AstraZeneca UK Ltd, Macclesfield, Cheshire, UK
| |
Collapse
|
3
|
Chang CW, Peng SC, Cheng WY, Liu SH, Cheng HH, Huang SY, Chang YC. Studying the protein–protein interactions in the postsynaptic density by means of immunoabsorption and chemical crosslinking. Proteomics Clin Appl 2007; 1:1499-512. [DOI: 10.1002/prca.200700327] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2007] [Indexed: 11/09/2022]
|
4
|
Nishigaki K, Hanson C, Ohashi T, Spadaccini A, Ruscetti S. Erythroblast transformation by the friend spleen focus-forming virus is associated with a block in erythropoietin-induced STAT1 phosphorylation and DNA binding and correlates with high expression of the hematopoietic phosphatase SHP-1. J Virol 2006; 80:5678-85. [PMID: 16731906 PMCID: PMC1472600 DOI: 10.1128/jvi.02651-05] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infection of mice with Friend spleen focus-forming virus (SFFV) results in a multistage erythroleukemia. In the first stage, the SFFV envelope glycoprotein interacts with the erythropoietin receptor and a short form of the receptor tyrosine kinase sf-Stk, resulting in constitutive activation of signal transducing molecules and the development of erythropoietin (Epo)-independent erythroid hyperplasia and polycythemia. The second stage results from the outgrowth of a rare virus-infected erythroid cell that expresses nonphysiological levels of the myeloid transcription factor PU.1. These cells exhibit a differentiation block and can be grown as murine erythroleukemia (MEL) cell lines. In this study, we examined SFFV MEL cells to determine whether their transformed phenotype was associated with a block in the activation of any Epo signal-transducing molecules. Our studies indicate that Epo- or SFFV-induced activation of STAT1/3 DNA binding activity is blocked in SFFV MEL cells. The block is at the level of tyrosine phosphorylation of STAT1, although Jak2 phosphorylation is not blocked in these cells. In contrast to Epo, alpha interferon can induce STAT1 phosphorylation and DNA binding in SFFV MEL cells. The SFFV-transformed cells were shown to express elevated levels of the hematopoietic phosphatase SHP-1, and treatment of the cells with a phosphatase inhibitor restored STAT1 tyrosine phosphorylation. MEL cells derived from Friend murine leukemia virus (MuLV) or ME26 MuLV-infected mice, which do not express PU.1, express lower levels of SHP-1 and are not blocked in STAT1/3 DNA-binding activity. Our studies suggest that SFFV-infected erythroid cells become transformed when differentiation signals activated by STAT1/3 are blocked due to high SHP-1 levels induced by inappropriate expression of the PU.1 protein.
Collapse
Affiliation(s)
- Kazuo Nishigaki
- Laboratory of Cancer Prevention, National Cancer Institute-Frederick, Frederick, MD 21702-1201, USA
| | | | | | | | | |
Collapse
|
5
|
Nishigaki K, Hanson C, Thompson D, Yugawa T, Ruscetti S. Activation of the Jun N-terminal kinase pathway by friend spleen focus-forming virus and its role in the growth and survival of friend virus-induced erythroleukemia cells. J Virol 2005; 79:12752-62. [PMID: 16188978 PMCID: PMC1235824 DOI: 10.1128/jvi.79.20.12752-12762.2005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Members of the mitogen-activated protein kinase (MAPK) family, including Jun amino-terminal kinase (JNK) and extracellular signal-related kinase (ERK), play an important role in the proliferation of erythroid cells in response to erythropoietin (Epo). Erythroid cells infected with the Friend spleen focus-forming virus (SFFV) proliferate in the absence of Epo and show constitutive activation of Epo signal transduction pathways. We previously demonstrated that the ERK pathway was constitutively activated in Friend SFFV-infected erythroid cells, and in this study JNK is also shown to be constitutively activated. Pharmacological inhibitors of both the ERK and JNK pathways stopped the proliferation of primary erythroleukemic cells from Friend SFFV-infected mice, with little induction of apoptosis, and furthermore blocked their ability to form Epo-independent colonies. However, only the JNK inhibitor blocked the proliferation of erythroleukemia cell lines derived from these mice. The JNK inhibitor caused significant apoptosis in these cell lines as well as an increase in the fraction of cells in G(2)/M and undergoing endoreduplication. In contrast, the growth of erythroleukemia cell lines derived from Friend murine leukemia virus (MuLV)-infected mice was inhibited by both the MEK and JNK inhibitors. JNK is important for AP1 activity, and we found that JNK inhibitor treatment reduced AP1 DNA-binding activity in primary erythroleukemic splenocytes from Friend SFFV-infected mice and in erythroleukemia cell lines from Friend MuLV-infected mice but did not alter AP1 DNA binding in erythroleukemia cell lines from Friend SFFV-infected mice. These data suggest that JNK plays an important role in cell proliferation and/or the survival of erythroleukemia cells.
Collapse
Affiliation(s)
- Kazuo Nishigaki
- Laboratory of Cancer Prevention, National Cancer Institute--Frederick, MD 21702-1201, USA
| | | | | | | | | |
Collapse
|
6
|
Liu W, Crocker E, Constantinescu SN, Smith SO. Helix packing and orientation in the transmembrane dimer of gp55-P of the spleen focus forming virus. Biophys J 2005; 89:1194-202. [PMID: 15894629 PMCID: PMC1366604 DOI: 10.1529/biophysj.104.057844] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
gp55-P is a dimeric membrane protein with a single transmembrane helix that is coded by the env gene of the polycythemic strain of the spleen focus forming virus. gp55-P activates the erythropoietin (Epo) receptor through specific transmembrane helix interactions, leading to Epo-independent growth of erythroid progenitors and eventually promoting erythroleukemia. We describe the use of magic angle spinning deuterium NMR to establish the structure of the transmembrane dimer of gp55-P in model membranes. Comparison of the deuterium lineshapes of leucines in the center (Leu(396-399)) and at the ends (Leu(385), Leu(407)) of the transmembrane sequence shows that gp55-P has a right-handed crossing angle with Leu(399) packed in the dimer interface. We discuss the implications of the structure of the gp55-P transmembrane dimer for activation of the Epo receptor.
Collapse
Affiliation(s)
- Wei Liu
- Department of Biochemistry and Cell Biology, Stony Brook University, New York 11794, USA
| | | | | | | |
Collapse
|
7
|
Moucadel V, Constantinescu SN. Differential STAT5 signaling by ligand-dependent and constitutively active cytokine receptors. J Biol Chem 2005; 280:13364-73. [PMID: 15677477 DOI: 10.1074/jbc.m407326200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many leukemia and cancer cells exhibit constitutive activation of STAT5, which was suggested to provide an anti-apoptotic advantage. Transformation of cytokine-dependent hematopoietic cells, such as Ba/F3 cells to autonomous growth and tumorigenicity equally results in selection for constitutive activation of STAT5. We compared STAT5 signaling between erythropoietin(Epo)-dependent cells and cells that were transformed by oncogenic activation of the erythropoietin receptor (EpoR) by coexpression of the gp55-P envelope protein of the spleen focus forming virus or by expression of the R129C constitutively active EpoR mutant. In transformed cells it was mainly STAT5B that was constitutively activated. In contrast, Epo stimulation activated both STAT5A and STAT5B. In transformed cells, chromatin immunoprecipitation (ChIP) showed STAT5 to be physically bound to promoters of STAT5 target genes, such as Bcl(XL), and to be able to promote transactivation of the Bcl(XL) promoter in a constitutive fashion. Sequencing of native sequences after ChIP with anti-STAT5 antibodies in Epo-dependent and -transformed cells indicated that in gp55-transformed cells, STAT5B bound in the chromatin not only to N3 high affinity, but also to low affinity N4 GAS sites. Transactivation for N3 GAS sites in luciferase reporters was specific to gp55 transformation. Because we also found preferential constitutive STAT5B activation after transformation of cells by a truncated form of the G-CSF-R that produces severe neutropenia (Kostmann syndrome) and favors leukemia in humans, we discuss the potential role of STAT5B in oncogenic transformation of hematopoietic cells.
Collapse
|
8
|
Constantinescu SN, Keren T, Russ WP, Ubarretxena-Belandia I, Malka Y, Kubatzky KF, Engelman DM, Lodish HF, Henis YI. The erythropoietin receptor transmembrane domain mediates complex formation with viral anemic and polycythemic gp55 proteins. J Biol Chem 2003; 278:43755-63. [PMID: 12930840 DOI: 10.1074/jbc.m302974200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Erythropoietin receptor (EpoR) activation is crucial for mature red blood cell production. The murine EpoR can also be activated by the envelope protein of the polycythemic (P) spleen focus forming virus (SFFV), gp55-P. Due to differences in the TM sequence, gp55 of the anemic (A) strain SFFV, gp55-A, cannot efficiently activate the EpoR. Using antibody-mediated immunofluorescence co-patching, we show that the majority of EpoR forms hetero-oligomers at the cell surface with gp55-P and, surprisingly, with gp55-A. The EpoR TM domain is targeted by gp55-P and -A, as only chimeric receptors containing EpoR TM sequences oligomerized with gp55 proteins. Both gp55-P and gp55-A are homodimers on the cell surface, as shown by co-patching. However, when the homomeric interactions of the isolated TM domains were assayed by TOXCAT bacterial reporter system, only the TM sequence of gp55-P was dimerized. Thus, homo-oligomerization of gp55 proteins is insufficient for full EpoR activation, and a correct conformation of the dimer in the TM region is required. This is supported by the failure of gp55-A-->P, a mutant protein whose TM domain can homo-oligomerize, to fully activate EpoR. As unliganded EpoR forms TM-dependent but inactive homodimers, we propose that the EpoR can be activated to different extents by homodimeric gp55 proteins, depending on the conformation of the gp55 protein dimer in the TM region.
Collapse
|
9
|
Chen J, Kremer CS, Bender TP. A Myb dependent pathway maintains Friend murine erythroleukemia cells in an immature and proliferating state. Oncogene 2002; 21:1859-69. [PMID: 11896618 DOI: 10.1038/sj.onc.1205003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2001] [Revised: 09/24/2001] [Accepted: 10/01/2001] [Indexed: 11/08/2022]
Abstract
Friend murine erythroleukemia (MEL) cells are transformed erythroid precursors that are held in an immature and proliferating state but can be induced to differentiate in vivo by treatment with a variety of chemical agents such as N, N-hexamethylene bisacetamide (HMBA). To investigate the role of Myb proteins in maintaining MEL cells in an immature and proliferating state we have produced stable transfectants in the C19 MEL cell line that contain a dominant interfering Myb allele (MEnT) under the control of an inducible mouse metallothionein I promoter. When expression of MEnT protein was induced with ZnCl2, the stable transfectants differentiated with kinetics that were similar to wild type C19 MEL cells treated with HMBA, including induction of alpha-globin mRNA expression, assembly of hemoglobin and growth arrest. Expression of endogenous c-myb and c-myc was also decreased in response to MEnT. Expression of mad-1 mRNA was rapidly increased in response to expression of MEnT resulting in a shift from predominantly c-Myc/Max complexes to predominantly Mad/Max containing complexes. These results strongly suggest that C19 MEL cells are held in an immature and proliferating state by a pathway that is dependent on Myb activity.
Collapse
MESH Headings
- Acetamides/pharmacology
- Animals
- Basic Helix-Loop-Helix Leucine Zipper Transcription Factors
- Basic-Leucine Zipper Transcription Factors
- Cell Cycle Proteins
- Cell Division
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- DNA-Binding Proteins/physiology
- Friend murine leukemia virus/physiology
- Genes, myc/physiology
- Globins/genetics
- Globins/metabolism
- Hemoglobins/biosynthesis
- Leukemia, Erythroblastic, Acute/metabolism
- Leukemia, Erythroblastic, Acute/pathology
- Leukemia, Erythroblastic, Acute/virology
- Metallothionein/genetics
- Mice
- Nuclear Proteins
- Phosphoproteins/physiology
- Plasmids
- Proto-Oncogene Proteins/physiology
- Proto-Oncogene Proteins c-myb/physiology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Repressor Proteins/physiology
- Trans-Activators/physiology
- Transcription Factors
- Tumor Cells, Cultured/metabolism
- Tumor Cells, Cultured/pathology
- Tumor Cells, Cultured/virology
- Zinc/metabolism
Collapse
Affiliation(s)
- Jing Chen
- Department of Molecular Physiology, University of Virginia Health System, PO Box 800734, Charlottesville, Virginia, VA 22908-0734, USA
| | | | | |
Collapse
|
10
|
Nishigaki K, Thompson D, Hanson C, Yugawa T, Ruscetti S. The envelope glycoprotein of friend spleen focus-forming virus covalently interacts with and constitutively activates a truncated form of the receptor tyrosine kinase Stk. J Virol 2001; 75:7893-903. [PMID: 11483734 PMCID: PMC115033 DOI: 10.1128/jvi.75.17.7893-7903.2001] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Friend spleen focus-forming virus (SFFV) encodes a unique envelope glycoprotein, gp55, which allows erythroid cells to proliferate and differentiate in the absence of erythropoietin (Epo). SFFV gp55 has been shown to interact with the Epo receptor complex, causing constitutive activation of various signal-transducing molecules. When injected into adult mice, SFFV induces a rapid erythroleukemia, with susceptibility being determined by the host gene Fv-2, which was recently shown to be identical to the gene encoding the receptor tyrosine kinase Stk/Ron. Susceptible, but not resistant, mice encode not only full-length Stk but also a truncated form of the kinase, sf-Stk, which may mediate the biological effects of SFFV infection. To determine whether expression of SFFV gp55 leads to the activation of sf-Stk, we expressed sf-Stk, with or without SFFV gp55, in hematopoietic cells expressing the Epo receptor. Our data indicate that sf-Stk interacts with SFFV gp55 as well as gp55(P), the biologically active form of the viral glycoprotein, forming disulfide-linked complexes. This covalent interaction, as well as noncovalent interactions with SFFV gp55, results in constitutive tyrosine phosphorylation of sf-Stk and its association with multiple tyrosine-phosphorylated signal-transducing molecules. In contrast, neither Epo stimulation in the absence of SFFV gp55 expression nor expression of a mutant of SFFV that cannot interact with sf-Stk was able to induce tyrosine phosphorylation of sf-Stk or its association with any signal-transducing molecules. Covalent interaction of sf-Stk with SFFV gp55 and constitutive tyrosine phosphorylation of sf-Stk can also be detected in an erythroleukemia cell line derived from an SFFV-infected mouse. Our results suggest that SFFV gp55 may mediate its biological effects in vivo by interacting with and activating a truncated form of the receptor tyrosine kinase Stk.
Collapse
Affiliation(s)
- K Nishigaki
- Basic Research Laboratory, National Cancer Institute, Frederick, Maryland 21702-1201, USA
| | | | | | | | | |
Collapse
|
11
|
|
12
|
|
13
|
Muszynski KW, Thompson D, Hanson C, Lyons R, Spadaccini A, Ruscetti SK. Growth factor-independent proliferation of erythroid cells infected with Friend spleen focus-forming virus is protein kinase C dependent but does not require Ras-GTP. J Virol 2000; 74:8444-51. [PMID: 10954544 PMCID: PMC116355 DOI: 10.1128/jvi.74.18.8444-8451.2000] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Interaction of erythropoietin (Epo) with its cell surface receptor activates signal transduction pathways which result in the proliferation and differentiation of erythroid cells. Infection of erythroid cells with the Friend spleen focus-forming virus (SFFV) leads to the interaction of the viral envelope glycoprotein with the Epo receptor and renders these cells Epo independent. We previously reported that SFFV induces Epo independence by constitutively activating components of several Epo signal transduction pathways, including the Jak-Stat and the Raf-1/mitogen-activated protein kinase (MAPK) pathways. To further evaluate the mechanism by which SFFV activates the Raf-1/MAPK pathway, we investigated the effects of SFFV on upstream components of this pathway, and our results indicate that SFFV activates Shc and Grb2 and that this leads to Ras activation. While studies with a dominant-negative Ras indicated that Ras was required for Epo-induced proliferation of normal erythroid cells, the Epo-independent growth of SFFV-infected cells can still occur in the absence of Ras, although at reduced levels. In contrast, protein kinase C (PKC) was shown to be required for the Epo-independent proliferation of SFFV-infected cells. Further studies indicated that PKC, which is thought to be involved in the activation of both Raf-1 and MAPK, was required only for the activation of MAPK, not Raf-1, in SFFV-infected cells. Our results indicate that Ras and PKC define two distinct signals converging on MAPK in both Epo-stimulated and SFFV-infected erythroid cells and that activation of only PKC is sufficient for the Epo-independent proliferation of SFFV-infected cells.
Collapse
Affiliation(s)
- K W Muszynski
- SAIC-Frederick, National Cancer Institute, Frederick Cancer Research and Development Center, Frederick, Maryland 21702-1201, USA
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
The proliferation and differentiation of erythroid cells is a highly regulated process that is controlled primarily at the level of interaction of erythropoietin (Epo) with its specific cell surface receptor (EpoR). However, this process is deregulated in mice infected with the Friend spleen focus-forming virus (SFFV). Unlike normal erythroid cells, erythroid cells from SFFV-infected mice are able to proliferate and differentiate in the absence of Epo, resulting in erythroid hyperplasia and leukemia. Over the past 20 years, studies have been carried out to identify the viral genes responsible for the pathogenicity of SFFV and to understand how expression of these genes leads to the deregulation of erythropoiesis in infected animals. The studies have revealed that SFFV encodes a unique envelope glycoprotein which interacts specifically with the EpoR at the cell surface, resulting in activation of the receptor and subsequent activation of erythroid signal transduction pathways. This leads to the proliferation and differentiation of erythroid precursor cells in the absence of Epo. Although the precise mechanism by which the viral protein activates the EpoR is not yet known, it has been proposed that it causes dimerization of the receptor, resulting in constitutive activation of Epo signal transduction pathways. While interaction of the SFFV envelope glycoprotein with the EpoR leads to Epo-independent erythroid hyperplasia, this is not sufficient to transform these cells. Transformation requires the viral activation of the cellular gene Sfpi-1, whose product is thought to block erythroid cell differentiation. By understanding how SFFV can deregulate erythropoiesis, we may gain insights into the causes and treatment of related diseases in man.
Collapse
Affiliation(s)
- S K Ruscetti
- National Cancer Institute, Frederick Cancer Research and Development Center, MD 21702-1201, USA.
| |
Collapse
|
15
|
Starck J, Doubeikovski A, Sarrazin S, Gonnet C, Rao G, Skoultchi A, Godet J, Dusanter-Fourt I, Morle F. Spi-1/PU.1 is a positive regulator of the Fli-1 gene involved in inhibition of erythroid differentiation in friend erythroleukemic cell lines. Mol Cell Biol 1999; 19:121-35. [PMID: 9858537 PMCID: PMC83871 DOI: 10.1128/mcb.19.1.121] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Spi-1/PU.1 and Fli-1 are two members of the ETS family of transcription factors whose expression is deregulated by proviral insertion in most erythroleukemic cell lines induced by the spleen focus-forming virus (SFFV) and Friend murine leukemia virus (F-MuLV) components of the Friend viral complex, respectively. In this study, we present evidence that transcription of the Fli-1 gene is positively regulated by Spi-1/PU.1 in SFFV-transformed cell lines: (i) all SFFV-transformed cell lines expressing Spi-1/PU.1 are characterized by a specific pattern of Fli-1 gene transcripts initiated in the -200 region instead of position -400 as reported for F-MuLV-transformed cell lines; (ii) these Fli-1 transcripts initiated in the -200 region are downregulated in parallel with that of Spi-1/PU.1 during hexamethylenebisacetamide (HMBA) induced differentiation; and (iii) Fli-1 transcription is upregulated in SFFV cells lines following stable transfection of a Spi-1/PU.1 expression vector. Furthermore, we found by transient transfection assays that the -270/-41 region of the Fli-1 gene displays promoter activity which is transactivated by Spi-1/PU.1. This promoter is strictly dependent on the integrity of two highly conserved ETS DNA binding sites that bind the Spi-1/PU.1 protein in vitro. Finally, we show that transfection of constitutive or inducible Fli-1 expression vectors in SFFV-transformed cells inhibits their erythroid differentiation induced by HMBA. Overall, these data indicate that Fli-1 is a target gene of the Spi-1/PU.1 transcription factor in SFFV-transformed cell lines. We further suggest that deregulated synthesis of Fli-1 may trigger a common mechanism contributing to erythroleukemia induced by either SFFV or F-MuLV.
Collapse
Affiliation(s)
- J Starck
- Centre de Génétique Moléculaire et Cellulaire, CNRS UMR 5534, 69622 Villeurbanne, France
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Fang C, Choi E, Nie L, Li JP. Role of the transmembrane sequence of spleen focus-forming virus gp55 in erythroleukemogenesis. Virology 1998; 252:46-53. [PMID: 9875316 DOI: 10.1006/viro.1998.9453] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The membrane glycoprotein encoded by the env gene of either the polycythemia- or anemia-inducing spleen focus-forming virus (SFFVp or SFFVa, respectively) is responsible for the induction of erythroleukemia in mice. It has been shown that the SFFVp glycoprotein, gp55, interacts with the erythropoietin receptor (EPO-R) and promotes EPO-independent proliferation of an EPO-R-expressing hematopoietic cell line, Ba/F3 (Li et al., Nature 343:762, 1990). We show here that when residues within the transmembrane (TM) sequence of an SFFVp gp55 are altered based on the sequences of the anemia-inducing gp55s by a methionine-to-isoleucine (M-I) substitution, a di-leucine deletion (dLL), or both, the resulting mutants display an attenuated phenotype that resembles an SFFVa: they induce milder erythroproliferative disease without polycythemia in vivo and are unable to promote EPO-independent cell proliferation in vitro. The dLL mutation directly interferes with EPO-R binding by decreasing the affinity of gp55 for the receptor. On the other hand, the M-I mutation hampers the full mitogenic activation of EPO-R while having no effect on receptor binding and asserts a dominant negative effect over the wild-type SFFVp gp55. Two other sequence changes within the TM sequence did not affect the biological activities of the SFFVp gp55. These results indicate that the TM sequence of the SFFV env glycoprotein plays a prominent role in SFFV-induced erythroleukemogenesis through its influence on the mitogenic activation of EPO-R.
Collapse
Affiliation(s)
- C Fang
- Department of Microbiology, New York University Medical Center, New York, USA
| | | | | | | |
Collapse
|
17
|
Abstract
Growth factor and cytokine control of hemopoiesis, the process of blood cell development, is mediated by specific interactions with cell-surface receptors. Hemopoietic growth factor receptors belong to two major families, the transmembrane protein tyrosine kinases and the hemopoietin receptors. Ligand binding stimulates receptor aggregation and activation resulting in transduction of signals that induce diverse cellular responses including proliferation, maturation, prevention of apoptosis and/or functional activation. Deregulation of hemopoiesis can result in leukemia, the malignant transformation of blood cells, or the development of other hemoproliferative disorders. As hemopoietic growth factor receptors are integral to blood cell regulation, it is feasible that receptor abnormalities may contribute to leukemia by circumventing normal growth factor control or altering the balance of proliferation and differentiation. Although considerable experimental evidence has clearly established the leukemogenic potential of mutated growth factor receptors, studies to date suggest that such abnormalities contribute only rarely to human disease.
Collapse
Affiliation(s)
- W S Alexander
- The Walter and Eliza Hall Institute for Medical Research and the Cooperative Research Centre for Cellular Growth Factors, PO Royal Melbourne Hospital, Victoria, Australia
| | | |
Collapse
|
18
|
Hoatlin ME, Gomez-Lucia E, Lilly F, Beckstead JH, Kabat D. Origin and rapid evolution of a novel murine erythroleukemia virus of the spleen focus-forming virus family. J Virol 1998; 72:3602-9. [PMID: 9557641 PMCID: PMC109581 DOI: 10.1128/jvi.72.5.3602-3609.1998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The Friend spleen focus-forming virus (SFFV) env gene encodes a glycoprotein with apparent Mr of 55,000 that binds to erythropoietin receptors (EpoR) to stimulate erythroblastosis. A retroviral vector that does not encode any Env glycoprotein was packaged into retroviral particles and was coinjected into mice in the presence of a nonpathogenic helper virus. Although most mice remained healthy, one mouse developed splenomegaly and polycythemia at 67 days; the virus from this mouse reproducibly caused the same symptoms in secondary recipients by 2 to 3 weeks postinfection. This disease, which was characterized by extramedullary erythropoietin-independent erythropoiesis in the spleens and livers, was also reproduced in long-term bone marrow cultures. Viruses from the diseased primary mouse and from secondary recipients converted an erythropoietin-dependent cell line (BaF3/EpoR) into factor-independent derivatives but had no effect on the interleukin-3-dependent parental BaF3 cells. Most of these factor-independent cell clones contained a major Env-related glycoprotein with an Mr of 60,000. During further in vivo passaging, a virus that encodes an Mr-55,000 glycoprotein became predominant. Sequence analysis indicated that the ultimate virus is a new SFFV that encodes a glycoprotein of 410 amino acids with the hallmark features of classical gp55s. Our results suggest that SFFV-related viruses can form in mice by recombination of retroviruses with genomic and helper virus sequences and that these novel viruses then evolve to become increasingly pathogenic.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Biological Evolution
- Bone Marrow Cells/metabolism
- Cell Line
- Cells, Cultured
- DNA, Viral
- Female
- Leukemia, Erythroblastic, Acute/veterinary
- Leukemia, Erythroblastic, Acute/virology
- Mice
- Mice, Inbred DBA
- Molecular Sequence Data
- Polycythemia/virology
- Receptors, Erythropoietin/metabolism
- Retroviridae Infections/veterinary
- Retroviridae Infections/virology
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Spleen Focus-Forming Viruses/genetics
- Spleen Focus-Forming Viruses/metabolism
- Spleen Focus-Forming Viruses/pathogenicity
- Splenomegaly/virology
- Tumor Virus Infections/veterinary
- Tumor Virus Infections/virology
Collapse
Affiliation(s)
- M E Hoatlin
- Department of Biochemistry and Molecular Biology, School of Medicine, Oregon Health Sciences University, Portland 97201-3098, USA
| | | | | | | | | |
Collapse
|
19
|
Gomez-Lucia E, Zhi Y, Nabavi M, Zhang W, Kabat D, Hoatlin ME. An array of novel murine spleen focus-forming viruses that activate the erythropoietin receptor. J Virol 1998; 72:3742-50. [PMID: 9557656 PMCID: PMC109596 DOI: 10.1128/jvi.72.5.3742-3750.1998] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The Friend spleen focus-forming virus (SFFV) env gene encodes a 409-amino-acid glycoprotein with an apparent Mr of 55,000 (gp55) that binds to erythropoietin receptors (EpoR) to stimulate erythroblastosis. We reported previously the in vivo selection during serial passages in mice of several evolutionary intermediates that culminated in the formation of a novel SFFV (M. E. Hoatlin, E. Gomez-Lucia, F. Lilly, J. H. Beckstead, and D. Kabat, J. Virol. 72:3602-3609, 1998). A mouse injected with a retroviral vector in the presence of a nonpathogenic helper virus developed long-latency erythroblastosis, and subsequent viral passages resulted in more pathogenic isolates. The viruses taken from these mice converted an erythropoietin-dependent cell line (BaF3/EpoR) into factor-independent derivatives. Western blot analysis of cell extracts with an antiserum that broadly reacts with murine retroviral envelope glycoproteins suggested that the spleen from the initial mouse with mild erythoblastosis contained an array of viral components that were capable of activating EpoR. DNA sequence analysis of the viral genomes cloned from different factor-independent cell clones revealed env genes with open reading frames encoding 644, 449, and 187 amino acids. All three env genes contained 3' regions identical to that of SFFV, including a 6-bp duplication and a single-base insertion that have been shown previously to be critical for pathogenesis. However, the three env gene sequences did not contain any polytropic sequences and were divergent in their 5' regions, suggesting that they had originated by recombination and partial deletions of endogenously inherited MuLV env sequences. These results suggest that the requirements for EpoR activation by SFFV-related viruses are dependent on sequences at the 3' end of the env gene and not on the polytropic regions or on the 585-base deletions that are common among the classical strains of SFFV. Moreover, sequence analysis of the different recombinants and deletion mutants revealed that short direct and indirect repeat sequences frequently flanked the deletions that had occurred, suggesting a reverse transcriptase template jumping mechanism for this rapid retroviral diversification.
Collapse
Affiliation(s)
- E Gomez-Lucia
- Department of Biochemistry, Oregon Health Sciences University, Portland 97201-3098, USA
| | | | | | | | | | | |
Collapse
|
20
|
Muszynski KW, Ohashi T, Hanson C, Ruscetti SK. Both the polycythemia- and anemia-inducing strains of Friend spleen focus-forming virus induce constitutive activation of the Raf-1/mitogen-activated protein kinase signal transduction pathway. J Virol 1998; 72:919-25. [PMID: 9444983 PMCID: PMC124561 DOI: 10.1128/jvi.72.2.919-925.1998] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The erythroleukemia-inducing Friend spleen focus-forming virus (SFFV) encodes a unique envelope glycoprotein which allows erythroid cells to proliferate and differentiate in the absence of erythropoietin (Epo). In an attempt to understand how the virus causes Epo independence, we have been studying signal transduction pathways activated by Epo to determine if SFFV exerts its biological effects by constitutively activating any of these pathways in the absence of Epo. We previously demonstrated that Stat proteins, the downstream components of the Epo-induced Jak-Stat pathway, are constitutively activated in SFFV-infected cells. In this study, we demonstrate that SFFV also activates Raf-1, MEK and mitogen-activated protein (MAP) kinase, the downstream components of the Raf-1/MAP kinase pathway. This pathway was activated in cells infected with the polycythemia-inducing strain of SFFV, which induces both proliferation and differentiation of erythroid cells in the absence of Epo, as well as in cells infected with the anemia-inducing strain of the virus, which still require Epo for differentiation. Inhibition of Raf-1 by using antisense oligonucleotides led to a partial inhibition of the Epo-independent proliferation of SFFV-infected cells. Expression of the transcription factors c-Jun and JunB, but not c-Fos, was induced in SFFV-infected cells in the absence of Epo, suggesting that constitutive activation of the Raf-1/MAP kinase pathway by the virus may result in deregulation of AP-1 activity. We conclude from our studies that infection of erythroid cells with SFFV leads to the constitutive activation of signal transduction molecules in both the Jak-Stat and Raf-1/MAP kinase pathways and that both of these pathways must be activated to achieve maximum proliferation and differentiation of erythroid cells in the absence of Epo.
Collapse
Affiliation(s)
- K W Muszynski
- Intramural Research Support Program, SAIC Frederick, National Cancer Institute-Frederick Cancer Research and Development Center, Maryland 21702-1201, USA
| | | | | | | |
Collapse
|
21
|
Tarr K, Watowich SS, Longmore GD. Cell surface organization of the erythropoietin receptor complex differs depending on its mode of activation. J Biol Chem 1997; 272:9099-107. [PMID: 9083037 DOI: 10.1074/jbc.272.14.9099] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
During erythroid development erythropoietin (EPO) binds specifically to a receptor primarily present on committed erythroid progenitors, stimulating mitogenic, survival, and differentiative growth response pathways. Other modes of erythropoietin receptor (EPO-R) activation, such as interaction with the env gene Friend virus envelope glycoprotein (F-gp55) of spleen focus-forming virus or specific mutations in the extracellular domain of the EPO-R, give rise to pathological consequences, in vivo and EPO-independent proliferation and differentiation of cultured cells. Activating extracellular receptor mutations result in covalently linked receptor homodimers. These observations and others have led to the proposal that EPO activates the EPO-R by inducing dimer formation on the cell surface. It has been assumed that F-gp55 also induces dimer formation of the EPO-R; however, clear evidence of this is lacking. In addition, EPO and F-gp55 stimulation of the EPO-R elicit different biological responses. To probe whether the cell surface EPO-R is structurally different with these activators, we contrasted the cell surface EPO-R complex formed following receptor activation by EPO, F-gp55, and mutations in the extracellular domain of the receptor. Our results indicate that cell surface forms of activated EPO-R differ, as judged by their differential association with F-gp55 and pattern of associated cell surface proteins. Interestingly, we find that the env gene of an anemic strain of Friend virus, Rauscher virus envelope glycoprotein, does not interact with the EPO-R at the cell surface. Thus, the mode of Rauscher virus envelope glycoprotein-induced erythroblastosis may be distinct from F-gp55-induced erythroblastosis and possibly not involve the EPO-R.
Collapse
Affiliation(s)
- K Tarr
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
22
|
Activating Mutations in Cytokine Receptors: Implications for Receptor Function and Role in Disease. Blood 1997. [DOI: 10.1182/blood.v89.2.355] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
23
|
Ectopic Expression of the Erythropoietin Receptor in a Murine Interleukin-6–Dependent Plasmacytoma Cell Line (TEPC-2027) Confers Proliferative Responsiveness to Erythropoietin. Blood 1997. [DOI: 10.1182/blood.v89.2.435] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractTo compare the signal transduction pathways used by erythropoietin (Epo) and interleukin-6 (IL-6), the cDNA for the murine Epo receptor (Epo-R) was introduced into an IL-6–responsive plasmacytoma cell line (TEPC-2027) by retrovirally mediated gene transfer. G418-resistant clones were amplified in IL-6 and studied for their ability to grow and differentiate in response to Epo. Epo-R synthesized from the viral gene showed the same affinity for Epo as did the receptor on erythroid cells; however, the numbers of Epo receptors expressed on the cell membrane varied among clones. After a delay of 3 to 5 days in the presence of Epo, all the clones studied proliferated as well in response to Epo as in response to IL-6. In response to IL-6, Stat3 was activated and JunB mRNA was accumulated, whereas in response to Epo, Jak2 and Stat5 were activated and JunB mRNA was not accumulated in Epo-R–expressing TEPC (Epo-R/TEPC) cells. These results suggest that Epo and IL-6 transduced their proliferative signals through different pathways. Further studies showed that, in Epo-R/TEPC cells, Epo neither induces the synthesis of erythroid-specific mRNA nor modifies the synthesis of γ1 Ig heavy chain, suggesting that ectopic expression of the Epo-R in plasmacytoma cells does not modify their differentiative potential. The data show that Epo induces a proliferative response without differentiation providing a new cellular model for evaluating molecular events specific for proliferation.
Collapse
|
24
|
Jonkers J, Berns A. Retroviral insertional mutagenesis as a strategy to identify cancer genes. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1287:29-57. [PMID: 8639705 DOI: 10.1016/0304-419x(95)00020-g] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- J Jonkers
- The Netherlands Cancer Institute, Division of Molecular Genetics, Amsterdam, Netherlands
| | | |
Collapse
|
25
|
Bittorf T, Busfield SJ, Klinken SP, Tilbrook PA. Truncated erythropoietin receptor in a murine erythroleukemia cell line. Int J Biochem Cell Biol 1996; 28:175-81. [PMID: 8729004 DOI: 10.1016/1357-2725(95)00128-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The Friend spleen focus forming virus produces a 55 kDa envelope glycoprotein which associates with the erythropoietin receptor. We compared the erythropoietin receptor in Friend virus transformed murine erythroleukemic F4N and 707 cell lines with the J2E erythroid line generated by the J2 retrovirus. Reverse transcriptase PCR was used to determine transcript size. Erythropoietin receptor cDNAs were then sequenced and protein products analysed by Western blotting and immunoprecipitation. We show here that the F4N murine erythroleukemic cell line had an enlarged erythropoietin receptor mRNA. In contrast, the 707 and J2E cell line had normal sized transcripts for the receptor. Sequence analysis of the receptor in F4N cells revealed that introns which separate the exons coding for the cytoplasmic domain of the receptor were retained in these transcripts. As a consequence, a premature stop codon had been introduced, leaving only four amino acids in the intracellular portion of the receptor molecule. The normal erythropoietin receptor is approx. 66-70 kDa, but immunoprecipitation of [35S]methionine/cysteine labelled cell lysates with an antibody to the amino-terminus of the erythropoietin receptor identified a truncated 37 kDa protein in F4N cells. Despite the severe carboxy-terminal truncation of the erythropoietin receptor, F4N cells continued to proliferate like the other murine erythroleukemia cell lines. This study shows that failure to remove introns from the erythropoietin receptor mRNA in F4N cells has resulted in the production of a smaller protein with virtually no cytoplasmic domain.
Collapse
Affiliation(s)
- T Bittorf
- Department of Biochemistry, University of Western Australia, Nedlands
| | | | | | | |
Collapse
|
26
|
Ohashi T, Masuda M, Ruscetti SK. Activation of stat-related DNA-binding factors by erythropoietin and the spleen focus-forming virus. Curr Top Microbiol Immunol 1996; 211:223-31. [PMID: 8585953 DOI: 10.1007/978-3-642-85232-9_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- T Ohashi
- Laboratory of Molecular Oncology, National Cancer Institute, Frederick, MD 21702-1201, USA
| | | | | |
Collapse
|
27
|
Ruscetti SK. Erythroleukaemia induction by the Friend spleen focus-forming virus. BAILLIERE'S CLINICAL HAEMATOLOGY 1995; 8:225-47. [PMID: 7663048 DOI: 10.1016/s0950-3536(05)80239-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The Friend spleen focus-forming virus has been a valuable tool for understanding the molecular events involved in the multiple stages of leukaemia. As summarized in Figure 3, the primary effect of SFFV, which occurs within days, is to cause a polyclonal proliferation of erythroid precursor cells that can proliferate in the absence of their normal regulator erythropoietin. This is the direct result of the unique envelope glycoprotein encoded by SFFV, which is transported to the cell surface and apparently interacts with the EpoR or another component of the multimeric EpoR complex, resulting in the constitutive activation of the Epo signal transduction pathway. Within this proliferating population of erythroid cells is a rare cell that has undergone several genetic changes due to the integration of the viral genome in specific sites in the mouse DNA. This leads to the activation of a gene encoding the PU.1 transcription factor, whose high expression in erythroid cells may be the cause of the block in differentiation that is characteristic of SFFV-transformed erythroid cells. SFFV integration can also lead to the inactivation of the p53 tumour supressor gene, giving these cells a growth advantage in the mouse. The disease induced by SFFV in mice is very similar to polycythaemia vera in humans (Golde et al, 1981). The major clinical feature of polycythaemia vera is the continuous expansion of the number of mature red blood cells in the presence of low serum Epo levels. Also, BFU-E and CFU-E from these patients can form in the absence of Epo like the analogous cells from SFFV-infected mice (Casadevall et al, 1982). It is possible that haematopoietic cells from individuals suffering from this disease express a protein similar to the envelope glycoprotein of SFFV that can interact with the EpoR and lead to its constitutive activation. Alternatively, these patients may contain a mutant EpoR gene that is constitutively activated like the mutant EpoR described earlier. As we understand more fully how the SFFV envelope protein constitutively activates te EpoR complex, we can begin to design therapies to counteract its action that can then be applied to treating patients with polycythaemia vera or other human diseases associated with uncontrolled erythropoiesis.
Collapse
MESH Headings
- Animals
- Cell Transformation, Neoplastic
- Cell Transformation, Viral
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/physiology
- Defective Viruses/genetics
- Defective Viruses/pathogenicity
- Defective Viruses/physiology
- Erythroid Precursor Cells/pathology
- Erythroid Precursor Cells/virology
- Erythropoiesis
- Erythropoietin/physiology
- Friend murine leukemia virus/genetics
- Friend murine leukemia virus/physiology
- Genes, env
- Genome, Viral
- Helper Viruses/genetics
- Helper Viruses/physiology
- Hyperplasia
- Leukemia, Erythroblastic, Acute/virology
- Leukemia, Experimental/virology
- Mice
- Mutagenesis, Insertional
- Receptors, Erythropoietin/physiology
- Retroviridae Infections/virology
- Retroviridae Proteins, Oncogenic
- Signal Transduction
- Spleen Focus-Forming Viruses/genetics
- Spleen Focus-Forming Viruses/pathogenicity
- Spleen Focus-Forming Viruses/physiology
- Tumor Virus Infections/virology
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/physiology
- Virus Replication
Collapse
Affiliation(s)
- S K Ruscetti
- Laboratory of Molecular Oncology, National Cancer Institute, Frederick Cancer Research and Development Center MD 21702-1201, USA
| |
Collapse
|
28
|
Abstract
Since its discovery in 1957, Friend viral erythroleukemia has been the major model for understanding host genetic barriers to retroviral diseases and has facilitated the discovery of many polymorphic leukemia-control genes of mice. Some of these genes limit helper-virus replication, target-cell (erythroblast) pools or immune responses. At least one host gene appears to block the viral oncoprotein.
Collapse
Affiliation(s)
- M E Hoatlin
- Divn of Hematology and Medical Oncology, Oregon Health Sciences University, Portland 97201-3098, USA
| | | |
Collapse
|
29
|
Hoatlin ME, Ferro FE, Kozak SL, Kabat D. A Friend virus mutant encodes a small glycoprotein that causes erythroleukemia. J Virol 1994; 68:4053-6. [PMID: 8189542 PMCID: PMC236916 DOI: 10.1128/jvi.68.6.4053-4056.1994] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The Pvu delta mutant of Friend spleen focus-forming virus encodes the smallest env glycoprotein (apparent M(r), 41,000) known to activate erythropoietin receptors. In vivo, Pvu delta causes erythroblastosis and the development of erythroleukemia. We isolated two leukemic cell lines that contain Pvu delta; both synthesize hemoglobin in response to dimethyl sulfoxide. The Pvu delta env gene contains a 204-base deletion in the ecotropic-specific region, suggesting that this domain of the glycoprotein is not essential for viral pathogenesis.
Collapse
Affiliation(s)
- M E Hoatlin
- Department of Biochemistry and Molecular Biology, School of Medicine, Oregon Health Sciences University, Portland 97201-3098
| | | | | | | |
Collapse
|
30
|
Völker J, Geyer H, Geyer R. Glycosylation of glycoprotein 55 encoded by the anaemia-inducing strain of Friend spleen focus-forming virus. Glycoconj J 1994; 11:133-9. [PMID: 7804003 DOI: 10.1007/bf00731153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Normal rat kidney cells, non-productively infected with the anaemia-inducing variant of Friend spleen focus-forming virus (F-SFFVA), were metabolically labelled with [2-3H]mannose. The primary translation product of the viral envelope gene (env), representing a glycoprotein with an apparent molecular M(r) of 55,000 (gp55), was isolated from cell lysates by immunoaffinity chromatography and purified by preparative SDS/PAGE. Radiolabelled oligosaccharides, released from tryptic glycopeptides by treatment with endo-beta-N-acetylglucosaminidase H, were characterized chromatographically, by enzymic digestion and by acetolysis. The results revealed that F-SFFVA gp55 obtained from this source carried predominantly oligomannose type sugar chains with five to nine mannoses. As a characteristic feature, glycans with seven to nine mannoses contained, in part, an additional glucose residue. Although the amount of glucosylated species found was higher in F-SFFVA gp55 (about 25% of total endo-H-sensitive oligosaccharides) than in gp55 of the corresponding polycythaemia-inducing variant (F-SFFVP, 16.3%), the overall glycosylation pattern of the F-SFFVA env product closely resembled that of F-SFFVP gp55 [Strube et al. (1988) J Biol Chem 263:3762-71]. Hence, our results demonstrate that the different intracellular processing and transport of the primary F-SFFVA env product cannot be attributed to aberrant trimming of its oligomannose type glycans.
Collapse
Affiliation(s)
- J Völker
- Biochemisches Institut am Klinikum der Universität, Giessen, Germany
| | | | | |
Collapse
|
31
|
Mayeux P, Dusanter-Fourt I, Muller O, Mauduit P, Sabbah M, Druker B, Vainchenker W, Fischer S, Lacombe C, Gisselbrecht S. Erythropoietin induces the association of phosphatidylinositol 3'-kinase with a tyrosine-phosphorylated protein complex containing the erythropoietin receptor. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 216:821-8. [PMID: 8404901 DOI: 10.1111/j.1432-1033.1993.tb18203.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Stimulation of sensitive cells with erythropoietin results in rapid induction of protein tyrosine phosphorylation. Other than tyrosine phosphorylation of one chain of the erythropoietin receptor, the identities of the remaining tyrosine-phosphorylated proteins are undefined. In this report, we demonstrate that the stimulation of the erythropoietin-sensitive human UT7 cells by erythropoietin rapidly resulted in the appearance of phosphatidylinositol 3-kinase activity in anti-phosphotyrosine immunoprecipitates. Erythropoietin action was rapid, detectable after as early as 1 min stimulation, transient, returning to control level after 30 min stimulation and was observed using the erythropoietin concentrations able to stimulate the cell proliferation. Anti-(phosphatidylinositol 3-kinase) antibodies specifically immunoprecipitated 125I-erythropoietin bound to its receptor, strongly suggesting that phosphatidylinositol 3-kinase associated with a protein complex containing the activated erythropoietin receptor. To confirm this result, phosphatidylinositol 3-kinase was immunoprecipitated from erythropoietin-stimulated cells using mild conditions followed by Western analysis using anti-phosphotyrosine antibodies. Five tyrosine phosphorylated proteins were revealed: the cloned chain of the erythropoietin receptor, the regulatory subunit of phosphatidylinositol 3-kinase and three unidentified proteins of 111, 97 and 64 kDa. None of these tyrosine phosphorylated proteins was detected in anti-(phosphatidylinositol 3-kinase) immunoprecipitates from unstimulated cells. Thus, our results show that phosphatidylinositol 3-kinase associates with a tyrosine-phosphorylated protein complex containing the activated erythropoietin receptor.
Collapse
Affiliation(s)
- P Mayeux
- Unité 363, ICGM, Institut National de la Santé et de la Recherche Médicale, Hopital Cochin, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
|
33
|
Cell surface site for mitogenic interaction of erythropoietin receptors with the membrane glycoprotein encoded by Friend erythroleukemia virus. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53381-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
34
|
Koury MJ, Bondurant MC. The molecular mechanism of erythropoietin action. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 210:649-63. [PMID: 1483451 DOI: 10.1111/j.1432-1033.1992.tb17466.x] [Citation(s) in RCA: 195] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- M J Koury
- Division of Hematology, Vanderbilt University School of Medicine, Nashville, TN 37232-2287
| | | |
Collapse
|
35
|
D'Andrea AD, Moreau JF, Showers MO. Molecular mimicry of erythropoietin by the spleen focus-forming virus gp55 glycoprotein: the first stage of Friend virus-induced erythroleukemia. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1114:31-41. [PMID: 1390869 DOI: 10.1016/0304-419x(92)90004-i] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- A D D'Andrea
- Dana-Farber Cancer Institute, Children's Hospital, Harvard Medical School, Boston, MA 02115
| | | | | |
Collapse
|
36
|
Abstract
Technological advances in the isolation and characterization of novel receptors have led to a significant increase in our understanding of protein-ligand binding to receptors and the means by which responses are triggered. Hormones and their receptors are composed of structurally conserved domains, and several ligands appear to use similar surface regions for receptor binding. A key event in signal transduction is the aggregation by the ligand of one or more receptor subunits, and this can include the sharing of subunits between different ligands. These findings have allowed the design of ligands with receptor-antagonist properties.
Collapse
Affiliation(s)
- P R Young
- Department of Molecular Genetics/L-48, SmithKline Beecham Pharmaceuticals, King of Prussia, PA 19406-0939
| |
Collapse
|
37
|
Majumdar MK, Cho CL, Fox MT, Eckner KL, Kozak S, Kabat D, Geib RW. Mutations in the env gene of friend spleen focus-forming virus overcome Fv-2r-mediated resistance to Friend virus-induced erythroleukemia. J Virol 1992; 66:3652-60. [PMID: 1583724 PMCID: PMC241148 DOI: 10.1128/jvi.66.6.3652-3660.1992] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Although Fv-2r homozygous mice are resistant to leukemias induced either by an erythropoietin-encoding virus or by wild-type Friend virus (FV) (M. E. Hoatlin, S. L. Kozak, F. Lilly, A. Chakraborti, C. A. Kozak, and D. Kabat, Proc. Natl. Acad. Sci. USA 87:9985-9989, 1990), they are susceptible to some variants of FV (R. A. Steeves, E. A. Mirand, A. Bulba, and P. J. Trudel, Int. J. Cancer 5:349-356, 1970; R. W. Geib, M. B. Seaward, M. L. Stevens, C.-L. Cho, and M. Majumdar, Virus Res. 14:161-174, 1989). To localize the virus gene involved in influencing the host range, we cloned and sequenced the env gene of the BB6 variant of FV (Steeves et al., Int. J. Cancer 5:349-356, 1970). In comparison with the wild-type env gene, the BB6 variant contains a 159-bp deletion that eliminates the membrane-proximal portion of the extracellular domain and 58 point mutations resulting in 13 amino acid changes. Substitution of the variant env gene for the wild-type env gene resulted in a recombinant virus that produced a Friend virus-like disease in Fv-2r homozygotes. Our results identify the spleen focus-forming virus env gene as the viral gene involved in this virus-host interaction. Additionally, they suggest that the product of the Fv-2r gene modifies the interaction between the spleen focus-forming virus envelope protein and the erythropoietin receptor.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Cell Transformation, Neoplastic
- Cloning, Molecular
- Friend murine leukemia virus/genetics
- Friend murine leukemia virus/pathogenicity
- Gene Amplification
- Genes, env/genetics
- Host-Parasite Interactions/genetics
- Immunity, Innate/genetics
- Leukemia, Erythroblastic, Acute/genetics
- Leukemia, Erythroblastic, Acute/pathology
- Leukemia, Experimental/genetics
- Leukemia, Experimental/pathology
- Mice
- Mice, Inbred Strains
- Molecular Sequence Data
- Mutation
- Sequence Homology, Nucleic Acid
- Spleen/microbiology
- Spleen Focus-Forming Viruses/genetics
- Spleen Focus-Forming Viruses/pathogenicity
- Virus Activation
Collapse
Affiliation(s)
- M K Majumdar
- Department of Life Sciences, Indiana State University, Terre Haute
| | | | | | | | | | | | | |
Collapse
|