1
|
Gallo R, Rai AK, McIntyre ABR, Meyer K, Pelkmans L. DYRK3 enables secretory trafficking by maintaining the liquid-like state of ER exit sites. Dev Cell 2023; 58:1880-1897.e11. [PMID: 37643612 DOI: 10.1016/j.devcel.2023.08.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 02/16/2023] [Accepted: 08/01/2023] [Indexed: 08/31/2023]
Abstract
The dual-specificity kinase DYRK3 controls the formation and dissolution of multiple biomolecular condensates, regulating processes including stress recovery and mitotic progression. Here, we report that DYRK3 functionally interacts with proteins associated with endoplasmic reticulum (ER) exit sites (ERESs) and that inhibition of DYRK3 perturbs the organization of the ERES-Golgi interface and secretory trafficking. DYRK3-mediated regulation of ERES depends on the N-terminal intrinsically disordered region (IDR) of the peripheral membrane protein SEC16A, which co-phase separates with ERES components to form liquid-like condensates on the surface of the ER. By modulating the liquid-like properties of ERES, we show that their physical state is essential for functional cargo trafficking through the early secretory pathway. Our findings support a mechanism whereby phosphorylation by DYRK3 and its reversal by serine-threonine phosphatases regulate the material properties of ERES to create a favorable physicochemical environment for directional membrane traffic in eukaryotic cells.
Collapse
Affiliation(s)
- Raffaella Gallo
- Department of Molecular Life Sciences, University of Zurich, 8046 Zurich, Switzerland
| | - Arpan Kumar Rai
- Department of Molecular Life Sciences, University of Zurich, 8046 Zurich, Switzerland.
| | - Alexa B R McIntyre
- Department of Molecular Life Sciences, University of Zurich, 8046 Zurich, Switzerland
| | - Katrina Meyer
- Department of Molecular Life Sciences, University of Zurich, 8046 Zurich, Switzerland
| | - Lucas Pelkmans
- Department of Molecular Life Sciences, University of Zurich, 8046 Zurich, Switzerland.
| |
Collapse
|
2
|
Elgner F, Hildt E, Bender D. Relevance of Rab Proteins for the Life Cycle of Hepatitis C Virus. Front Cell Dev Biol 2018; 6:166. [PMID: 30564577 PMCID: PMC6288913 DOI: 10.3389/fcell.2018.00166] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/20/2018] [Indexed: 12/18/2022] Open
Abstract
Although potent direct-acting antiviral drugs for the treatment of chronic hepatitis C virus (HCV) infection are licensed, there are more than 70 million individuals suffering from chronic HCV infection. In light of the limited access to these drugs, high costs, and a lot of undiagnosed cases, it is expected that the number of HCV cases will not decrease worldwide in the next years. Therefore, and due to the paradigmatic character of HCV for deciphering the crosstalk between viral pathogens and the host cell, characterization of HCV life cycle remains a challenge. HCV belongs to the family of Flaviviridae. As an enveloped virus HCV life cycle depends in many steps on intracellular trafficking. Rab GTPases, a large family of small GTPases, play a central role in intracellular trafficking processes controlling fusion, uncoating, vesicle budding, motility by recruiting specific effector proteins. This review describes the relevance of various Rab proteins for the different steps of the HCV life cycle.
Collapse
Affiliation(s)
- Fabian Elgner
- Department of Virology, Paul-Ehrlich-Institut, Langen, Germany
| | - Eberhard Hildt
- Department of Virology, Paul-Ehrlich-Institut, Langen, Germany
| | - Daniela Bender
- Department of Virology, Paul-Ehrlich-Institut, Langen, Germany
| |
Collapse
|
3
|
Takacs CN, Andreo U, Dao Thi VL, Wu X, Gleason CE, Itano MS, Spitz-Becker GS, Belote RL, Hedin BR, Scull MA, Rice CM, Simon SM. Differential Regulation of Lipoprotein and Hepatitis C Virus Secretion by Rab1b. Cell Rep 2018; 21:431-441. [PMID: 29020629 DOI: 10.1016/j.celrep.2017.09.053] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 08/07/2017] [Accepted: 09/15/2017] [Indexed: 12/11/2022] Open
Abstract
Secretory cells produce diverse cargoes, yet how they regulate concomitant secretory traffic remains insufficiently explored. Rab GTPases control intracellular vesicular transport. To map secretion pathways, we generated a library of lentivirus-expressed dominant-negative Rab mutants and used it in a large-scale screen to identify regulators of hepatic lipoprotein secretion. We identified several candidate pathways, including those mediated by Rab11 and Rab8. Surprisingly, inhibition of Rab1b, the major regulator of transport from the endoplasmic reticulum to the Golgi, differently affected the secretion of the very-low-density lipoprotein components ApoE and ApoB100, despite their final association on mature secreted lipoprotein particles. Since hepatitis C virus (HCV) incorporates ApoE and ApoB100 into its virus particle, we also investigated infectious HCV secretion and show that its regulation by Rab1b mirrors that of ApoB100. These observations reveal differential regulation of hepatocyte secretion by Rab1b and advance our understanding of lipoprotein assembly and lipoprotein and HCV secretion.
Collapse
Affiliation(s)
- Constantin N Takacs
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, NY 10065, USA; Laboratory of Virology and Infectious Disease and Center for the Study of Hepatitis C, The Rockefeller University, New York, NY 10065, USA
| | - Ursula Andreo
- Laboratory of Virology and Infectious Disease and Center for the Study of Hepatitis C, The Rockefeller University, New York, NY 10065, USA
| | - Viet Loan Dao Thi
- Laboratory of Virology and Infectious Disease and Center for the Study of Hepatitis C, The Rockefeller University, New York, NY 10065, USA
| | - Xianfang Wu
- Laboratory of Virology and Infectious Disease and Center for the Study of Hepatitis C, The Rockefeller University, New York, NY 10065, USA
| | - Caroline E Gleason
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Michelle S Itano
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, NY 10065, USA
| | | | - Rachel L Belote
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Brenna R Hedin
- Laboratory of Virology and Infectious Disease and Center for the Study of Hepatitis C, The Rockefeller University, New York, NY 10065, USA
| | - Margaret A Scull
- Laboratory of Virology and Infectious Disease and Center for the Study of Hepatitis C, The Rockefeller University, New York, NY 10065, USA
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease and Center for the Study of Hepatitis C, The Rockefeller University, New York, NY 10065, USA
| | - Sanford M Simon
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
4
|
Wang T, Grabski R, Sztul E, Hay JC. p115-SNARE interactions: a dynamic cycle of p115 binding monomeric SNARE motifs and releasing assembled bundles. Traffic 2015; 16:148-71. [PMID: 25406594 DOI: 10.1111/tra.12242] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 11/17/2014] [Accepted: 11/17/2014] [Indexed: 11/30/2022]
Abstract
Tethering factors regulate the targeting of membrane-enclosed vesicles under the control of Rab GTPases. p115, a golgin family tether, has been shown to participate in multiple stages of ER/Golgi transport. Despite extensive study, the mechanism of action of p115 is poorly understood. SNARE proteins make up the machinery for membrane fusion, and strong evidence shows that function of p115 is directly linked to its interaction with SNAREs. Using a gel filtration binding assay, we have demonstrated that in solution p115 stably interacts with ER/Golgi SNAREs rbet1 and sec22b, but not membrin and syntaxin 5. These binding preferences stemmed from selectivity of p115 for monomeric SNARE motifs as opposed to SNARE oligomers. Soluble monomeric rbet1 can compete off p115 from coat protein II (COPII) vesicles. Furthermore, excess p115 inhibits p115 function in trafficking. We conclude that monomeric SNAREs are a major binding site for p115 on COPII vesicles, and that p115 dissociates from its SNARE partners upon SNAREpin assembly. Our results suggest a model in which p115 forms a mixed p115/SNARE helix bundle with a monomeric SNARE, facilitates the binding activity and/or concentration of the SNARE at prefusion sites and is subsequently ejected as SNARE complex formation and fusion proceed.
Collapse
Affiliation(s)
- Ting Wang
- Division of Biological Sciences and Center for Structural & Functional Neuroscience, The University of Montana, Missoula, MT, USA
| | | | | | | |
Collapse
|
5
|
Shibata H, Kanadome T, Sugiura H, Yokoyama T, Yamamuro M, Moss SE, Maki M. A new role for annexin A11 in the early secretory pathway via stabilizing Sec31A protein at the endoplasmic reticulum exit sites (ERES). J Biol Chem 2014; 290:4981-4993. [PMID: 25540196 DOI: 10.1074/jbc.m114.592089] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Exit of cargo molecules from the endoplasmic reticulum (ER) for transport to the Golgi is the initial step in intracellular vesicular trafficking. The coat protein complex II (COPII) machinery is recruited to specialized regions of the ER, called ER exit sites (ERES), where it plays a central role in the early secretory pathway. It has been known for more than two decades that calcium is an essential factor in vesicle trafficking from the ER to Golgi apparatus. However, the role of calcium in the early secretory pathway is complicated and poorly understood. We and others previously identified Sec31A, an outer cage component of COPII, as an interacting protein for the penta-EF-hand calcium-binding protein ALG-2. In this study, we show that another calcium-binding protein, annexin A11 (AnxA11), physically associates with Sec31A by the adaptor function of ALG-2. Depletion of AnxA11 or ALG-2 decreases the population of Sec31A that is stably associated with the ERES and causes scattering of juxtanuclear ERES to the cell periphery. The synchronous ER-to-Golgi transport of transmembrane cargoes is accelerated in AnxA11- or ALG-2-knockdown cells. These findings suggest that AnxA11 maintains architectural and functional features of the ERES by coordinating with ALG-2 to stabilize Sec31A at the ERES.
Collapse
Affiliation(s)
- Hideki Shibata
- From the Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan and.
| | - Takashi Kanadome
- From the Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan and
| | - Hirofumi Sugiura
- From the Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan and
| | - Takeru Yokoyama
- From the Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan and
| | - Minami Yamamuro
- From the Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan and
| | - Stephen E Moss
- the Department of Cell Biology, UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, United Kingdom
| | - Masatoshi Maki
- From the Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan and
| |
Collapse
|
6
|
SAP97 blocks the RXR ER retention signal of NMDA receptor subunit GluN1-3 through its SH3 domain. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:489-99. [PMID: 25499266 DOI: 10.1016/j.bbamcr.2014.11.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 11/14/2014] [Accepted: 11/30/2014] [Indexed: 11/21/2022]
Abstract
SAP97 is directly involved in exporting NMDA receptors with a specific subunit composition from the endoplasmic reticulum (ER). Characterization of the interactions between SAP97 and an NMDA receptor splice variant, GluN1-3, and of the effects on forward trafficking revealed that an ER-level interaction blocked the RXR ER-retention motif in the GluN1-3 cytoplasmic C-terminus in the context of both reporter molecules and full-length receptors. Binding of SAP97 to the PDZ-binding domain of GluN1-3 was required, but the blockade of ER-retention was mediated by the SH3-GuK domains coupled with the action of the N-terminus of SAP97. While other domains of SAP97 were involved in forward trafficking of GluN1-3 out of the ER, the SH3 domain was necessary and sufficient to block the ER retention. This is the first direct evidence for the masking of ER-retention signals by PDZ domain-containing proteins, and provides detailed underlying mechanistic requirements. Such a mechanism could be central to modulating the ER exit of receptors into local, non-conventional or conventional, secretory pathways in neurons.
Collapse
|
7
|
Singan VR, Jones TR, Curran KM, Simpson JC. Dual channel rank-based intensity weighting for quantitative co-localization of microscopy images. BMC Bioinformatics 2011; 12:407. [PMID: 22017789 PMCID: PMC3207948 DOI: 10.1186/1471-2105-12-407] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 10/21/2011] [Indexed: 11/17/2022] Open
Abstract
Background Accurate quantitative co-localization is a key parameter in the context of understanding the spatial co-ordination of molecules and therefore their function in cells. Existing co-localization algorithms consider either the presence of co-occurring pixels or correlations of intensity in regions of interest. Depending on the image source, and the algorithm selected, the co-localization coefficients determined can be highly variable, and often inaccurate. Furthermore, this choice of whether co-occurrence or correlation is the best approach for quantifying co-localization remains controversial. Results We have developed a novel algorithm to quantify co-localization that improves on and addresses the major shortcomings of existing co-localization measures. This algorithm uses a non-parametric ranking of pixel intensities in each channel, and the difference in ranks of co-localizing pixel positions in the two channels is used to weight the coefficient. This weighting is applied to co-occurring pixels thereby efficiently combining both co-occurrence and correlation. Tests with synthetic data sets show that the algorithm is sensitive to both co-occurrence and correlation at varying levels of intensity. Analysis of biological data sets demonstrate that this new algorithm offers high sensitivity, and that it is capable of detecting subtle changes in co-localization, exemplified by studies on a well characterized cargo protein that moves through the secretory pathway of cells. Conclusions This algorithm provides a novel way to efficiently combine co-occurrence and correlation components in biological images, thereby generating an accurate measure of co-localization. This approach of rank weighting of intensities also eliminates the need for manual thresholding of the image, which is often a cause of error in co-localization quantification. We envisage that this tool will facilitate the quantitative analysis of a wide range of biological data sets, including high resolution confocal images, live cell time-lapse recordings, and high-throughput screening data sets.
Collapse
Affiliation(s)
- Vasanth R Singan
- 1School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | |
Collapse
|
8
|
Allan BB, Balch WE. In vitro analysis of endoplasmic-reticulum-to-golgi transport in mammalian cells. ACTA ACUST UNITED AC 2008; Chapter 11:Unit11.3. [PMID: 18228308 DOI: 10.1002/0471143030.cb1103s00] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A temperature-sensitive mutant of vesicular stomatitis G protein is used to follow the movement of that protein from the endoplasmic reticulum to transport vesicles to cis-Golgi and finally medial/trans-Golgi by assessing the maturation of two asparagine-linked oligosaccharides. These assays can be used to identify the factors that are required for and regulate protein trafficking through these compartments.
Collapse
Affiliation(s)
- B B Allan
- The Scripps Research Institute, La Jolla, California, USA
| | | |
Collapse
|
9
|
Hirosawa N, Yano K, Suzuki Y, Sakamoto Y. Endocrine disrupting effect of di-(2-ethylhexyl)phthalate on female rats and proteome analyses of their pituitaries. Proteomics 2006; 6:958-71. [PMID: 16400681 DOI: 10.1002/pmic.200401344] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Di-(2-ethylhexyl)phthalate (DEHP) is a plasticizer and a ubiquitous environmental contaminant that may have adverse effects on human reproductive health. We examined the long-term exposure effects of DEHP on female rats and observed a strong effect on estrous cyclicity that produced a continuous diestrous stage. We found that the serum estradiol, follicle-stimulating hormone (FSH), pituitary FSH and luteinizing hormone levels were significantly reduced in the treated rats. To examine on the endocrine disrupting effects, we performed proteome-based analyses of their pituitaries, and found two proteins with remarkably reduced their levels. They were identified as the valosin-containing peptide/p97 (VCP/p97) and UMP-CMP kinase and their average protein spot intensities on statistical analysis of the spots differences of the treated/control rats were 0.13 and 0.21, respectively. Furthermore, there were 14 other proteins that had significantly changed levels, and their average protein spot intensities were in a range of 0.26 to 0.50 in 13 proteins and 2.74 in one. The reduction of in level of 7 proteins seems to be related to the intracellular protein transporting pathway, and it appears to suggest a slow down of gonadotrophin-releasing capability. Reduction of gonadotrophin release in the pituitary seems to lead to a decrease of serum estradiol level and continuous diestrous stage in estrous cyclicity.
Collapse
Affiliation(s)
- Narumi Hirosawa
- Department of Biomedical Research Center, Division of Analytical Science, Saitama Medical School, Saitama, Japan
| | | | | | | |
Collapse
|
10
|
Le-Niculescu H, Niesman I, Fischer T, DeVries L, Farquhar MG. Identification and Characterization of GIV, a Novel Gαi/s -interacting Protein Found on COPI, Endoplasmic Reticulum-Golgi Transport Vesicles. J Biol Chem 2005; 280:22012-20. [PMID: 15749703 DOI: 10.1074/jbc.m501833200] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this report, we characterize GIV (Galpha-interacting vesicle-associated protein), a novel protein that binds members of the Galpha(i) and Galpha subfamilies of heterotrimeric G proteins. The Galpha(s) interaction site was mapped to an 83-amino acid region of GIV that is enriched in highly charged amino acids. BLAST searches revealed two additional mammalian family members, Daple and an uncharacterized protein, FLJ00354. These family members share the highest homology at the Galpha binding domain, are homologous at the N terminus and central coiled coil domain but diverge at the C terminus. Using affinity-purified IgG made against two different regions of the protein, we localized GIV to COPI, endoplasmic reticulum (ER)-Golgi transport vesicles concentrated in the Golgi region in GH3 pituitary cells and COS7 cells. Identification as COPI vesicles was based on colocalization with beta-COP, a marker for these vesicles. GIV also codistributes in the Golgi region with endogenous calnuc and the KDEL receptor, which are cis Golgi markers and with Galpha(i3)-yellow fluorescent protein expressed in COS7 cells. By immunoelectron microscopy, GIV colocalizes with beta-COP and Galpha(i3) on vesicles found in close proximity to ER exit sites and to cis Golgi cisternae. In cell fractions prepared from rat liver, GIV is concentrated in a carrier vesicle fraction (CV2) enriched in ER-Golgi transport vesicles. beta-COP and several Galpha subunits (Galpha(i1-3), Galpha(s)) are also most enriched in CV2. Our results demonstrate the existence of a novel Galpha-interacting protein associated with COPI transport vesicles that may play a role in Galpha-mediated effects on vesicle trafficking within the Golgi and/or between the ER and the Golgi.
Collapse
Affiliation(s)
- Helen Le-Niculescu
- Department of Cellular and Molecular Medicine, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | | | | | | |
Collapse
|
11
|
Chen JL, Ahluwalia JP, Stamnes M. Selective effects of calcium chelators on anterograde and retrograde protein transport in the cell. J Biol Chem 2002; 277:35682-7. [PMID: 12114519 DOI: 10.1074/jbc.m204157200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Calcium plays a regulatory role in several aspects of protein trafficking in the cell. Both vesicle fusion and vesicle formation can be inhibited by the addition of calcium chelators. Because the effects of calcium chelators have been studied predominantly in cell-free systems, it is not clear exactly which transport steps in the secretory pathway are sensitive to calcium levels. In this regard, we have studied the effects of calcium chelators on both anterograde and retrograde protein transport in whole cells. Using both cytochemical and biochemical analyses, we find that the anterograde-directed exit of vesicular stomatitis virus G protein and the retrograde-directed exit of Shiga toxin from the Golgi apparatus are both inhibited by calcium chelation. The exit of vesicular stomatitis virus G from a pre-Golgi compartment and the exit of Shiga toxin from an endosomal compartment are sensitive to the membrane-permeant calcium chelator 1,2-bis(2-amino phenoxy)ethane-N,N,N',N'-tetraacetic acid-tetrakis (acetoxymethyl ester) (BAPTA-AM). By contrast, endoplasmic reticulum exit and endocytic internalization from the plasma membrane are not affected by BAPTA. Together, our data show that some, but not all, trafficking steps in the cell may be regulated by calcium. These studies provide a framework for a more detailed analysis of the role of calcium as a regulatory agent during protein transport.
Collapse
Affiliation(s)
- Ji-Long Chen
- Department of Physiology & Biophysics, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa 52242, USA
| | | | | |
Collapse
|
12
|
Lauvrak SU, Llorente A, Iversen TG, Sandvig K. Selective regulation of the Rab9-independent transport of ricin to the Golgi apparatus by calcium. J Cell Sci 2002; 115:3449-56. [PMID: 12154075 DOI: 10.1242/jcs.115.17.3449] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Transport of ricin from endosomes to the Golgi apparatus occurs, in contrast to the transport of the mannose 6-phosphate receptor, by a Rab9-independent process. To characterize the pathway of ricin transport to the Golgi apparatus, we investigated whether it was regulated by calcium. As shown here, our data indicate that calcium is selectively involved in the regulation of ricin transport to the Golgi apparatus. Thapsigargin, which inhibits calcium transport into the ER, and the calcium ionophore A23187 both increased the transport of ricin to the Golgi apparatus by a factor of 20. By contrast, transport of the mannose 6-phosphate receptor to the Golgi apparatus was unaffected. Ricin and mannose 6-phosphate receptor transport were measured by quantifying the sulfation of modified forms of ricin and the mannose 6-phosphate receptor. The increased transport of ricin was reduced by wortmannin and LY294002, suggesting that phosphoinositide 3-kinase might be involved in transport of ricin to the Golgi apparatus. Together, these findings indicate that the different pathways to the Golgi apparatus utilized by ricin and the mannose 6-phosphate receptor are regulated by different mechanisms.
Collapse
Affiliation(s)
- Silje U Lauvrak
- Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway
| | | | | | | |
Collapse
|
13
|
Ahluwalia JP, Topp JD, Weirather K, Zimmerman M, Stamnes M. A role for calcium in stabilizing transport vesicle coats. J Biol Chem 2001; 276:34148-55. [PMID: 11435443 DOI: 10.1074/jbc.m105398200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Calcium has been implicated in regulating vesicle fusion reactions, but its potential role in regulating other aspects of protein transport, such as vesicle assembly, is largely unexplored. We find that treating cells with the membrane-permeable calcium chelator, 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis(acetoxymethyl ester) (BAPTA-AM), leads to a dramatic redistribution of the vesicle coat protein, coatomer, in the cell. We have used the cell-free reconstitution of coat-protomer I (COPI) vesicle assembly to characterize the mechanisms of this redistribution. We find that the recovery of COPI-coated Golgi vesicles is inhibited by the addition of BAPTA to the cell-free vesicle budding assay. When coatomer-coated membranes are incubated in the presence of calcium chelators, the membranes "uncoat," indicating that calcium is necessary for maintaining the integrity of the coat. This uncoating is reversed by the addition of calcium. Interestingly, BAPTA, a calcium chelator with fast binding kinetics, is more potent at uncoating the coatomer-coated membrane than EGTA, suggesting that a calcium transient or a calcium gradient is important for stabilizing COPI vesicle coat. The primary target for the effects of calcium on coatomer recruitment is a step that occurs after ADP-ribosylation factor binding to the membrane. We suggest that a calcium gradient may serve to regulate the timing of vesicle uncoating.
Collapse
Affiliation(s)
- J P Ahluwalia
- Department of Internal Medicine, University of Iowa College of Medicine, Iowa City, Iowa 52242, USA
| | | | | | | | | |
Collapse
|
14
|
Maroto R, Hamill OP. Brefeldin A block of integrin-dependent mechanosensitive ATP release from Xenopus oocytes reveals a novel mechanism of mechanotransduction. J Biol Chem 2001; 276:23867-72. [PMID: 11320093 DOI: 10.1074/jbc.m101500200] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many animal cells release ATP into the extracellular medium, and often this release is mechanosensitive. However, the mechanisms underlying this release are not well understood. Using the luciferin-luciferase bioluminescent assay we demonstrate that a Xenopus oocyte releases ATP at a basal rate approximately 0.01 fmol/s, and gentle mechanical stimulation can increase this to 50 fmol/s. Brefeldin A, nocodazole, and progesterone-induced- maturation block basal and mechanosensitive ATP release. These treatments share the common feature of disrupting the Golgi complex and vesicle trafficking to the cell surface and thereby block protein secretion and membrane protein insertion. We propose that ATP release occurs when protein transport vesicles enriched in ATP fuse with the plasma membrane. Collagenase, integrin-binding peptides, and cytochalasin D also block ATP release, indicating that extracellular, membrane and cytoskeletal elements are involved in the release process. Elevation of intracellular Ca(2+) does not evoke ATP release but potentiates mechanosensitive ATP release. Our study indicates a novel mechanism of mechanotransduction that would allow cells to regulate membrane trafficking and protein transport/secretion in response to mechanical loading.
Collapse
Affiliation(s)
- R Maroto
- Physiology and Biophysics, University of Texas Medical Branch, Galveston, Texas 77550-0641, USA
| | | |
Collapse
|
15
|
Abstract
Cytosolic calcium has long been known as a second messenger of major significance. Recently it has become apparent that calcium stored in cellular organelles can also be an important regulator of cellular functions. The endoplasmic reticulum (ER) is usually the largest store of releasable calcium in the cell. The diverse signalling functions of calcium populating the endoplasmic reticulum and its interactions with other organelles are illustrated in Figure ?? and described in this paper.
Collapse
Affiliation(s)
- M C Ashby
- Medical Research Council Secretory Control Research Group, The Physiological Laboratory, The University of Liverpool, Crown Street, Liverpool, L69 3BX, P.O. Box 147, UK
| | | |
Collapse
|
16
|
Aridor M, Fish KN, Bannykh S, Weissman J, Roberts TH, Lippincott-Schwartz J, Balch WE. The Sar1 GTPase coordinates biosynthetic cargo selection with endoplasmic reticulum export site assembly. J Cell Biol 2001; 152:213-29. [PMID: 11149932 PMCID: PMC2193666 DOI: 10.1083/jcb.152.1.213] [Citation(s) in RCA: 198] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2000] [Accepted: 11/03/2000] [Indexed: 11/30/2022] Open
Abstract
Cargo selection and export from the endoplasmic reticulum is mediated by the COPII coat machinery that includes the small GTPase Sar1 and the Sec23/24 and Sec13/31 complexes. We have analyzed the sequential events regulated by purified Sar1 and COPII coat complexes during synchronized export of cargo from the ER in vitro. We find that activation of Sar1 alone, in the absence of other cytosolic components, leads to the formation of ER-derived tubular domains that resemble ER transitional elements that initiate cargo selection. These Sar1-generated tubular domains were shown to be transient, functional intermediates in ER to Golgi transport in vitro. By following cargo export in live cells, we show that ER export in vivo is also characterized by the formation of dynamic tubular structures. Our results demonstrate an unanticipated and novel role for Sar1 in linking cargo selection with ER morphogenesis through the generation of transitional tubular ER export sites.
Collapse
Affiliation(s)
- Meir Aridor
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California 92037
| | - Kenneth N. Fish
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California 92037
- The Harold L. Dorris Neurological Research Center, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Sergei Bannykh
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California 92037
| | - Jacques Weissman
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California 92037
| | - Theresa H. Roberts
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Jennifer Lippincott-Schwartz
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - William E. Balch
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California 92037
- The Institute of Childhood and Neglected Diseases, The Scripps Research Institute, La Jolla, California 92037
| |
Collapse
|
17
|
Abstract
Calcium cations play a critical role in regulating vesicular transport between different intracellular membrane-bound compartments. The role of calcium in transport between the Golgi cisternae, however, remains unclear. Using a well characterized cell-free intra-Golgi transport assay, we now show that changes in free Ca(2+) concentration in the physiological range regulate this transport process. The calcium-chelating agent 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid blocked transport with an IC(50) of approximately 0.8 mm. The effect of 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid was reversible by addition of fresh cytosol and was irreversible when performed in the presence of a Ca(2+) ionophore that depletes calcium from lumenal stores. We demonstrate here that intra-Golgi transport is stimulated by low Ca(2+) concentrations (20-100 nm) but is inhibited by higher concentrations (above 100 nm). Further, we show that calmodulin antagonists specifically block intra-Golgi transport, implying a role for calmodulin in mediating the effect of calcium. Our results suggest that Ca(2+) efflux from intracellular pools may play an essential role in regulating intra-Golgi transport.
Collapse
Affiliation(s)
- A Porat
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
18
|
Paulik MA, Widnell CC, Whitaker-Dowling PA, Minnifield N, Morré DM, Morré DJ. Cell-free transfer of the vesicular stomatitis virus G protein from an endoplasmic reticulum compartment of baby hamster kidney cells to a rat liver Golgi apparatus compartment for Man8-9 to Man5 processing. Arch Biochem Biophys 1999; 367:265-73. [PMID: 10395743 DOI: 10.1006/abbi.1999.1276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We report the reconstitution of the transfer of a membrane glycoprotein (vesicular stomatitis virus glycoprotein, VSV-G protein) from endoplasmic reticulum to Golgi apparatus and its subsequent Man8-9GlcNAc2 to Man5GlcNAc2 processing in a completely cell-free system. The acceptor was Golgi apparatus from rat liver immobilized on nitrocellulose. The endoplasmic reticulum donor was from homogenates of VSV-G-infected BHK cells. Nucleoside triphosphate plus cytosol-dependent transfer and processing of radiolabeled VSV-G protein was observed with donor from BHK cells infected at 37 degrees C with wild-type VSV or at the permissive temperature of 34 degrees C with the ts045 mutant. With Golgi apparatus as acceptor, specific transfer at 37 degrees C in the presence of nucleoside triphosphate was eightfold that at 4 degrees C or in the absence of ATP. About 40% of the VSV-G protein transferred was processed to the Man5GlcNAc2 form. Processing was specific for cis Golgi apparatus fractions purified by preparative free-flow electrophoresis. Fractions derived from the trans Golgi apparatus were inactive in processing. With the ts045 temperature-sensitive mutant, transfer and processing were much reduced even in the complete system when microsomes were from cells infected with mutant virus and incubated at the restrictive temperature of 39.5 degrees C but were able to proceed at the permissive temperature of 34 degrees C. Thus, Man8-9GlcNAc2 to Man5GlcNAc2 processing of VSV-G protein occurs following transfer in a completely cell-free system using immobilized intact Golgi apparatus or cis Golgi apparatus cisternae as the acceptor and shows temperature sensitivity, donor specificity, requirement for ATP, and response to inhibitors similar to those exhibited by transfer and processing of VSV-G protein in vivo.
Collapse
Affiliation(s)
- M A Paulik
- Department of Medicinal Chemistry, Purdue University, West Lafayette, Indiana, 47907, USA
| | | | | | | | | | | |
Collapse
|
19
|
Nishimura N, Bannykh S, Slabough S, Matteson J, Altschuler Y, Hahn K, Balch WE. A di-acidic (DXE) code directs concentration of cargo during export from the endoplasmic reticulum. J Biol Chem 1999; 274:15937-46. [PMID: 10336500 DOI: 10.1074/jbc.274.22.15937] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Efficient export of vesicular stomatitis virus glycoprotein (VSV-G), a type I transmembrane protein, from the endoplasmic reticulum requires a di-acidic code (DXE) located in the cytosolic carboxyl-terminal tail (Nishimura, N., and Balch, W. E. (1997) Science 277, 556-558). Mutation of the DXE code by mutation to AXA did not prevent VSV-G recruitment to pre-budding complexes formed in the presence of the activated form of the Sar1 and the Sec23/24 complex, components of the COPII budding machinery. However, the signal was required at a subsequent concentration step preceding vesicle fission. By using green fluorescence protein-tagged VSV-G to image movement in a single cell, we found that VSV-G lacking the DXE code fails to be concentrated into COPII vesicles. As a result, the normal 5-10-fold increase in the steady-state concentration of VSV-G in downstream pre-Golgi intermediates and Golgi compartments was lost. These results demonstrate for the first time that inactivation of the DXE signal uncouples early cargo selection steps from concentration into COPII vesicles. We propose that two sequential steps are required for efficient export from the endoplasmic reticulum.
Collapse
Affiliation(s)
- N Nishimura
- Department of Cell, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Wylie F, Heimann K, Le TL, Brown D, Rabnott G, Stow JL. GAIP, a Galphai-3-binding protein, is associated with Golgi-derived vesicles and protein trafficking. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:C497-506. [PMID: 9950778 DOI: 10.1152/ajpcell.1999.276.2.c497] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Proteins of the regulators of G protein signaling (RGS) family bind to Galpha subunits to downregulate their signaling in a variety of systems. Galpha-interacting protein (GAIP) is a mammalian RGS protein that shows high affinity for the activated state of Galphai-3, a protein known to regulate post-Golgi trafficking of secreted proteins in kidney epithelial cells. This study aimed to localize GAIP in epithelial cells and to investigate its potential role in the regulation of membrane trafficking. LLC-PK1 cells were stably transfected with a c-myc-tagged GAIP cDNA. In the transfected and untransfected cells, GAIP was found in the cytosol and on cell membranes. Immunogold labeling showed that membrane-bound GAIP was localized on budding vesicles around Golgi stacks. When an in vitro assay was used to generate vesicles from isolated rat liver and Madin-Darby canine kidney cell Golgi membranes, GAIP was found to be concentrated in fractions of newly budded Golgi vesicles. Finally, the constitutive trafficking and secretion of sulfated proteoglycans was measured in cell lines overexpressing GAIP. We show evidence for GAIP regulation of secretory trafficking before the level of the trans-Golgi network but not in post-Golgi secretion. The location and functional effects of GAIP overlap only partially with those of Galphai-3 and suggest multiple roles for GAIP in epithelial cells.
Collapse
Affiliation(s)
- F Wylie
- Centre for Molecular and Cellular Biology, University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | | | | | | | |
Collapse
|
21
|
Peter F, Wong SH, Subramaniam VN, Tang BL, Hong W. Alpha-SNAP but not gamma-SNAP is required for ER-Golgi transport after vesicle budding and the Rab1-requiring step but before the EGTA-sensitive step. J Cell Sci 1998; 111 ( Pt 17):2625-33. [PMID: 9701561 DOI: 10.1242/jcs.111.17.2625] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
N-ethylmaleimide-sensitive factor (NSF) and soluble NSF attachment proteins (SNAPs) have been implicated in diverse vesicular transport events; yet their exact role and site of action remain to be established. Using an established in vitro system, we show that antibodies against alpha-SNAP inhibit vesicle transport from the ER to the cis-Golgi and that recombinant alpha-SNAP enhances/stimulates the process. Cytosol immunodepleted of alpha-SNAP does not support normal transport unless supplemented with recombinant alpha-SNAP but not gamma-SNAP. In marked contrast, cytosol immunodepleted of gamma-SNAP supports ER-Golgi transport to the normal level. Neither antibodies against gamma-SNAP nor recombinant gamma-SNAP have any effect on ER-Golgi transport. These results clearly establish an essential role for alpha-SNAP but not gamma-SNAP in ER-Golgi transport. When the transport assay is performed with cytosol immunodepleted of alpha-SNAP, followed by incubation with cytosol immunodepleted of a COPII subunit, normal transport is achieved. In marked contrast, no transport is detected when the assay is first performed with cytosol depleted of the COPII subunit followed by alpha-SNAP-depleted cytosol, suggesting that alpha-SNAP is required after a step that requires COPII (the budding step). In combination with cytosol immunodepleted of Rab1, it is seen that alpha-SNAP is required after a Rab1-requiring step. It has been shown previously that EGTA blocks ER-Golgi transport at a step after vesicle docking but before fusion and we show here that alpha-SNAP acts before the step that is blocked by EGTA. Our results suggest that alpha-SNAP may be involved in the pre-docking or docking but not the fusion process.
Collapse
Affiliation(s)
- F Peter
- Membrane Biology Laboratory, Institute of Molecular and Cell Biology, Singapore 117609, Singapore
| | | | | | | | | |
Collapse
|
22
|
Fernández CJ, Warren G. In vitro synthesis of sulfated glycosaminoglycans coupled to inter-compartmental Golgi transport. J Biol Chem 1998; 273:19030-9. [PMID: 9668084 DOI: 10.1074/jbc.273.30.19030] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have used isolated rat liver Golgi membranes to reconstitute the synthesis of sulfated glycosaminoglycans (GAGs) onto the membrane-permeable, external acceptor xyloside. Biosynthetic labeling of GAGs with [35S]sulfate in vitro is shown to have an absolute requirement for ATP and cytosolic proteins and is inhibited by dismantling the Golgi apparatus with okadaic acid or under mitotic conditions suggesting that inter-compartmental transport between Golgi cisternae is a prerequisite for the successful completion of the initiation, polymerization, and sulfation of GAGs. Accordingly, we show that in vitro synthesis of 35S-GAGs utilizes the same machinery employed in Golgi transport events in terms of vesicle budding (ADP-ribosylation factor and coatomer), docking (Rabs), targeting (SNAREs), and fusion (N-ethylmaleimide-sensitive factor). This provides compelling evidence that GAGs synthesis is linked to Golgi membrane traffic and suggests that it can be used as a complementation-independent method to study membrane transport in Golgi preparations from any source. We have applied this system to show that intra-Golgi traffic requires the function of the Golgi target-SNARE, syntaxin 5.
Collapse
Affiliation(s)
- C J Fernández
- Imperial Cancer Research Fund, Cell Biology Laboratory, 44 Lincoln's Inn Fields, London WC2A 3PX, United Kingdom
| | | |
Collapse
|
23
|
Happe S, Weidman P. Cell-free transport to distinct Golgi cisternae is compartment specific and ARF independent. J Biophys Biochem Cytol 1998; 140:511-23. [PMID: 9456313 PMCID: PMC2140162 DOI: 10.1083/jcb.140.3.511] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The small GTPase ADP-ribosylation factor (ARF) is absolutely required for coatomer vesicle formation on Golgi membranes but not for anterograde transport to the medial-Golgi in a mammalian in vitro transport system. This might indicate that the in vivo mechanism of intra-Golgi transport is not faithfully reproduced in vitro, or that intra-Golgi transport occurs by a nonvesicular mechanism. As one approach to distinguishing between these possibilities, we have characterized two additional cell-free systems that reconstitute transport to the trans-Golgi (trans assay) and trans-Golgi network (TGN assay). Like in vitro transport to the medial-Golgi (medial assay), transport to the trans-Golgi and TGN requires cytosol, ATP, and N-ethylmaleimide-sensitive fusion protein (NSF). However, each assay has its own distinct characteristics of transport. The kinetics of transport to late compartments are slower, and less cytosol is needed for guanosine-5'-O-(3-thiotriphosphate) (GTPgammaS) to inhibit transport, suggesting that each assay reconstitutes a distinct transport event. Depletion of ARF from cytosol abolishes vesicle formation and inhibition by GTPgammaS, but transport in all assays is otherwise unaffected. Purified recombinant myristoylated ARF1 restores inhibition by GTPgammaS, indicating that the GTP-sensitive component in all assays is ARF. We also show that asymmetry in donor and acceptor membrane properties in the medial assay is a unique feature of this assay that is unrelated to the production of vesicles. These findings demonstrate that characteristics specific to transport between different Golgi compartments are reconstituted in the cell-free system and that vesicle formation is not required for in vitro transport at any level of the stack.
Collapse
Affiliation(s)
- S Happe
- Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, Missouri 63104, USA
| | | |
Collapse
|
24
|
Tisdale EJ, Plutner H, Matteson J, Balch WE. p53/58 binds COPI and is required for selective transport through the early secretory pathway. J Cell Biol 1997; 137:581-93. [PMID: 9151666 PMCID: PMC2139878 DOI: 10.1083/jcb.137.3.581] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/1996] [Revised: 03/15/1997] [Indexed: 02/04/2023] Open
Abstract
p53/58 is a transmembrane protein that continuously recycles between the ER and pre-Golgi intermediates composed of vesicular-tubular clusters (VTCs) found in the cell periphery and at the cis face of the Golgi complex. We have generated an antibody that uniquely recognizes the p53/58 cytoplasmic tail. Here we present evidence that this antibody arrests the anterograde transport of vesicular stomatitis virus glycoprotein and leads to the accumulation of p58 in pre-Golgi intermediates. Consistent with a role for the KKXX retrieval motif found at the cytoplasmic carboxyl terminus of p53/58 in retrograde traffic, inhibition of transport through VTCs correlates with the ability of the antibody to block recruitment of COPI coats to the p53/58 cytoplasmic tail and to p53/58-containing membranes. We suggest that p53/58 function may be required for the coupled exchange of COPII for COPI coats during segregation of anterograde and retrograde transported proteins.
Collapse
Affiliation(s)
- E J Tisdale
- The Scripps Research Institute, Department of Cell Biology, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
25
|
Abstract
The small GTPase Rab2 is a resident of pre-Golgi intermediates and required for protein transport from the endoplasmic reticulum (ER) to the Golgi complex (Tisdale, E. J., Bourne, J. R., Khosravi-Far, R. , Der, C. J., and Balch, W. E. (1992) J. Cell Biol. 119, 749-761). The Rab2 protein, like all small GTPases, contains conserved GTP-binding domains as well as hypervariable carboxyl-terminal and amino-terminal domains. While the role of the carboxyl terminus in specific membrane localization is well recognized, the potential role of the variable NH2 terminus remains to be clarified. To determine whether the NH2 terminus of Rab2 was required for its activity in vivo, a trans dominant mutant of Rab2 that inhibits ER to Golgi transport was progressively truncated and analyzed for its effect on vesicular stomatitis virus glycoprotein transport in a vaccinia-based transient expression system. Deletion of the first 14 amino-terminal residues resulted in the loss of the inhibitory properties of the mutant without affecting its post-translational processing or membrane association. To assess the potential role of the NH2 terminus in Rab2 function, a peptide corresponding to the first 13 amino acids following the initiator methionine was introduced into an in vitro assay that efficiently reconstitutes transport of vesicular stomatitis virus glycoprotein from the ER to the Golgi stack. This peptide was a potent inhibitor of transport. Biochemical and morphological studies revealed that the peptide strongly interfered with assembly of pre-Golgi intermediates which mediate segregation of anterograde and retrograde transported proteins en route to the Golgi. The combined results suggest that the NH2 terminus of Rab2 is required for its function and for direct interaction with components of the transport machinery involved in the maturation of pre-Golgi intermediates.
Collapse
Affiliation(s)
- E J Tisdale
- Departments of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
26
|
Ogier-Denis E, Couvineau A, Maoret JJ, Houri JJ, Bauvy C, De Stefanis D, Isidoro C, Laburthe M, Codogno P. A heterotrimeric Gi3-protein controls autophagic sequestration in the human colon cancer cell line HT-29. J Biol Chem 1995; 270:13-16. [PMID: 7814364 DOI: 10.1074/jbc.270.1.13] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Human colon cancer HT-29 cells exhibit a differentiation-dependent autophagic-lysosomal pathway that is responsible for the degradation of a pool of newly synthesized N-linked glycoproteins in undifferentiated cells. In the present study, we have investigated the molecular control of this degradative pathway in undifferentiated HT-29 cells. For this purpose, we have modulated the function and expression of the heterotrimeric G-proteins (Gs and Gi) in these cells. After pertussis toxin treatment which ADP-ribosylates heterotrimeric Gi-proteins, we observed an inhibition of autophagic sequestration and the complete restoration of the passage of N-linked glycoproteins through the Golgi complex. In contrast, autophagic sequestration was not reduced by cholera toxin, which acts on heterotrimeric Gs-proteins. Further insights on the nature of the pertussis toxin-sensitive alpha subunit controlling autophagic sequestration were obtained by cDNA transfections of alpha i subunits. Overexpression of the alpha i3 subunit increased autophagic sequestration and degradation in undifferentiated cells, whereas overexpression of the alpha i2 subunit, the only other pertussis toxin-sensitive alpha subunit expressed in HT-29 cells, did not alter the rate of autophagy.
Collapse
Affiliation(s)
- E Ogier-Denis
- INSERM U410, Faculté de Médecine Xavier Bichat, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Lapidot SA, Phair RD. Platelet-derived growth factor causes sustained depletion of both inositol trisphosphate-sensitive and caffeine-sensitive intracellular calcium stores in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 1995; 15:44-51. [PMID: 7749815 DOI: 10.1161/01.atv.15.1.44] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Since the platelet-derived growth factor (PDGF)-induced increase in cellular inositol 1,4,5-trisphosphate (InsP3) has been found to decay to basal levels soon after the onset of PDGF exposure, it has been argued that activation of Ca2+ release from intracellular stores must be similarly transient. The possibility remains, however, that PDGF-induced release of stored Ca2+ is initiated and sustained by other second-messenger systems. To test the hypothesis that PDGF-BB initiates sustained Ca2+ release from cellular stores, we performed 4-hour 45Ca effluxes on monolayers of A7r5 vascular smooth muscle cells in small, continuously perfused chambers. Isoform PDGF-BB (5 ng/mL for 30 minutes or 30 ng/mL for 15 minutes) was added to the perfusate beginning at 30 minutes of efflux. A dose-related increase in 45Ca release was sustained as long as PDGF-BB was present. Detailed kinetic analysis and nonlinear least-squares fitting of the experimental data revealed that (1) PDGF-BB induced sustained increases of 2.86-fold (5 ng/mL) and 6.50-fold (30 ng/mL) in the rate constant governing Ca2+ release from intracellular stores, (2) the apparent Km for this effect was 13.4 +/- 1.31 ng PDGF-BB/mL, and (3) the entire agonist-releasable Ca2+ store (presumably sarcoplasmic reticulum) is sensitive to PDGF-BB. These data indicate that PDGF-BB causes a sustained depletion of intracellular Ca2+ stores by means of sustained activation of Ca2+ release and suggest that intraorganellar Ca2+ may be one of the signals that mediates long-term smooth muscle responses to PDGF.
Collapse
Affiliation(s)
- S A Lapidot
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
28
|
Dascher C, Matteson J, Balch WE. Syntaxin 5 regulates endoplasmic reticulum to Golgi transport. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)43884-7] [Citation(s) in RCA: 115] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
29
|
Export of protein from the endoplasmic reticulum is regulated by a diacylglycerol/phorbol ester binding protein. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)47097-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
30
|
Isolation of three classes of conditional lethal Chinese hamster ovary cell mutants with temperature-dependent defects in low density lipoprotein receptor stability and intracellular membrane transport. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)31915-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
31
|
Balch WE, McCaffery JM, Plutner H, Farquhar MG. Vesicular stomatitis virus glycoprotein is sorted and concentrated during export from the endoplasmic reticulum. Cell 1994; 76:841-52. [PMID: 8124720 DOI: 10.1016/0092-8674(94)90359-x] [Citation(s) in RCA: 298] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Newly synthesized proteins are believed to move from the endoplasmic reticulum (ER) to the Golgi by bulk flow, and sorting is assumed to occur exclusively in the trans-Golgi network (TGN). Using quantitative immunoelectron microscopy, we demonstrate that vesicular stomatitis virus glycoprotein (VSV-G) is sorted from resident ER proteins and concentrated 5- to 10-fold in 40-80 nm vesicles during vesicle budding from the ER. Accumulation of VSV-G in pre-Golgi vesicular carriers is the only detectable concentration step in its transport to the TGN. From these results, it is apparent that export from the ER is not exclusively mediated by bulk flow. The ER exerts an unanticipated level of control to insure selective and efficient entry of mature protein into the secretory pathway.
Collapse
Affiliation(s)
- W E Balch
- Department of Cell Biology, Scripps Research Institute, La Jolla, California 92037
| | | | | | | |
Collapse
|
32
|
Dominant inhibitory mutants of ARF1 block endoplasmic reticulum to Golgi transport and trigger disassembly of the Golgi apparatus. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)42277-0] [Citation(s) in RCA: 312] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
33
|
Differential inhibition of multiple vesicular transport steps between the endoplasmic reticulum and trans Golgi network. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53599-7] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
34
|
An N-terminal glycosylation signal on cytochrome P450 is restricted to the endoplasmic reticulum in a luminal orientation. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53917-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
35
|
Kagiwada S, Murata M, Hishida R, Tagaya M, Yamashina S, Ohnishi S. In vitro fusion of rabbit liver Golgi membranes with liposomes. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)54093-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
36
|
Identification of a Mg(2+)- and guanyl nucleotide-dependent glucagon receptor cycle by use of permeabilized canine hepatocytes. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)35677-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
37
|
Abstract
Common themes are emerging from the study of viral, cell-cell, intracellular, and liposome fusion. Viral and cellular membrane fusion events are mediated by fusion proteins or fusion machines. Viral fusion proteins share important characteristics, notably a fusion peptide within a transmembrane-anchored polypeptide chain. At least one protein involved in a cell-cell fusion reaction resembles viral fusion proteins. Components of intracellular fusion machines are utilized in multiple membrane trafficking events and are conserved through evolution. Fusion pores develop during and intracellular fusion events suggesting similar mechanisms for many, if not all, fusion events.
Collapse
Affiliation(s)
- J M White
- Department of Pharmacology, University of California, San Francisco 94143-0450
| |
Collapse
|
38
|
ADP-ribosylation factor is required for vesicular trafficking between the endoplasmic reticulum and the cis-Golgi compartment. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42380-0] [Citation(s) in RCA: 166] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
39
|
Davidson HW, Balch WE. Use of two-stage incubations to define sequential intermediates in endoplasmic reticulum to Golgi transport. Methods Enzymol 1992; 219:261-7. [PMID: 1487999 DOI: 10.1016/0076-6879(92)19027-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Identification of the temporal requirement for components through the use of two-stage incubations is valuable in dissecting the overall transport reaction into steps relevant to vesicle fission and those related to vesicle fusion. In the context of semiintact mammalian cells in which a functional vesicle intermediate has not been detected, components playing a role in targeting are presently difficult to identify. However, the two-stage incubations are particularly powerful when either the donor or acceptor compartments can be manipulated independently, as is the case for intra-Golgi transport using enriched Golgi fractions or in the case of ER-to-Golgi transport in perforated yeast, in which a vesicle intermediate can be physically isolated.
Collapse
Affiliation(s)
- H W Davidson
- Department of Cell and Molecular Biology, Scripps Research Institute, La Jolla, California 92037
| | | |
Collapse
|
40
|
Schwaninger R, Plutner H, Davidson HW, Pind S, Balch WE. Transport of protein between endoplasmic reticulum and Golgi compartments in semiintact cells. Methods Enzymol 1992; 219:110-24. [PMID: 1336806 DOI: 10.1016/0076-6879(92)19014-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- R Schwaninger
- Department of Cell and Molecular Biology, Scripps Research Institute, La Jolla, California 92037
| | | | | | | | | |
Collapse
|