1
|
Koner S, Chen JS, Hseu ZY, Chang EH, Chen KY, Asif A, Hsu BM. An inclusive study to elucidation the heavy metals-derived ecological risk nexus with antibiotic resistome functional shape of niche microbial community and their carbon substrate utilization ability in serpentine soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121688. [PMID: 38971059 DOI: 10.1016/j.jenvman.2024.121688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
Heavy metals (HMs) contained terrestrial ecosystems are often significantly display the antibiotic resistome in the pristine area due to increasing pressure from anthropogenic activity, is complex and emerging research interest. This study investigated that impact of chromium (Cr), nickel (Ni), cobalt (Co) concentrations in serpentine soil on the induction of antibiotic resistance genes and antimicrobial resistance within the native bacterial community as well as demonstrated their metabolic fingerprint. The full-length 16S-rRNA amplicon sequencing observed an increased abundance of Firmicutes, Actinobacteriota, and Acidobacteriota in serpentine soil. The microbial community in serpentine soil displayed varying preferences for different carbon sources, with some, such as carbohydrates and carboxylic acids, being consistently favored. Notably, 27 potential antibiotic resistance opportunistic bacterial genera have been identified in different serpentine soils. Among these, Lapillicoccus, Rubrobacter, Lacibacter, Chloroplast, Nitrospira, Rokubacteriales, Acinetobacter, Pseudomonas were significantly enriched in high and medium HMs concentrated serpentine soil samples. Functional profiling results illustrated that vancomycin resistance pathways were prevalent across all groups. Additionally, beta-lactamase, aminoglycoside, tetracycline, and vancomycin resistance involving specific bio-maker genes (ampC, penP, OXA, aacA, strB, hyg, aph, tet(A/B), otr(C), tet(M/O/Q), van(A/B/D), and vanJ) were the most abundant and enriched in the HMs-contaminated serpentine soil. Overall, this study highlighted that heavy-metal enriched serpentine soil is potential to support the proliferation of bacterial antibiotic resistance in native microbiome, and might able to spread antibiotic resistance to surrounding environment.
Collapse
Affiliation(s)
- Suprokash Koner
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County, Taiwan; Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan
| | - Jung-Sheng Chen
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Zeng-Yei Hseu
- Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan
| | - Ed-Haun Chang
- Department of Nursing, MacKay Junior College of Medicine, Nursing and Management, Beitou, Taipei, Taiwan
| | - Kuang-Ying Chen
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi County, Taiwan
| | - Aslia Asif
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County, Taiwan; Doctoral Program in Science, Technology, Environment, and Mathematics, National Chung Cheng University, Chiayi County, Taiwan
| | - Bing-Mu Hsu
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County, Taiwan.
| |
Collapse
|
2
|
Sajjad W, Ilahi N, Haq A, Shang Z, Nabi G, Rafiq M, Bahadur A, Banerjee A, Kang S. Bacteria populating freshly appeared supraglacial lake possess metals and antibiotic-resistant genes. ENVIRONMENTAL RESEARCH 2024; 247:118288. [PMID: 38262510 DOI: 10.1016/j.envres.2024.118288] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/28/2023] [Accepted: 01/20/2024] [Indexed: 01/25/2024]
Abstract
Antibiotic resistance (AR) has been extensively studied in natural habitats and clinical applications. AR is mainly reported with the use and misuse of antibiotics; however, little is known about its presence in antibiotic-free remote supraglacial lake environments. This study evaluated bacterial strains isolated from supraglacial lake debris and meltwater in Dook Pal Glacier, northern Pakistan, for antibiotic-resistant genes (ARGs) and metal-tolerant genes (MTGs) using conventional PCR. Several distinct ARGs were reported in the bacterial strains isolated from lake debris (92.5%) and meltwater (100%). In lake debris, 57.5% of isolates harbored the blaTEM gene, whereas 58.3% of isolates in meltwater possessed blaTEM and qnrA each. Among the ARGs, qnrA was dominant in debris isolates (19%), whereas in meltwater isolates, qnrA (15.2%) and blaTEM (15.2%) were dominant. ARGs were widely distributed among the bacterial isolates and different bacteria shared similar types of ARGs. Relatively greater number of ARGs were reported in Gram-negative bacterial strains. In addition, 92.5% of bacterial isolates from lake debris and 83.3% of isolates from meltwater harbored MTGs. Gene copA was dominant in meltwater isolates (50%), whereas czcA was greater in debris bacterial isolates (45%). Among the MTGs, czcA (18.75%) was dominant in debris strains, whereas copA (26.0%) was greater in meltwater isolates. This presents the co-occurrence and co-selection of MTGs and ARGs in a freshly appeared supraglacial lake. The same ARGs and MTGs were present in different bacteria, exhibiting horizontal gene transfer (HGT). Both positive and negative correlations were determined between ARGs and MTGs. The research provides insights into the existence of MTGs and ARGs in bacterial strains isolated from remote supraglacial lake environments, signifying the need for a more detailed study of bacteria harboring ARGs and MTGs in supraglacial lakes.
Collapse
Affiliation(s)
- Wasim Sajjad
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Nikhat Ilahi
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Abdul Haq
- Peshawar Laboratories Complex, Pakistan Council of Scientific and Industrial Research, Peshawar, 25120, Pakistan
| | - Zhanhuan Shang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Ghulam Nabi
- Institute of Nature Conservation, Polish Academy of Sciences, Krakow, Poland
| | - Muhammad Rafiq
- Department of Microbiology, Faculty of Life Sciences and Informatics, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, Pakistan
| | - Ali Bahadur
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Abhishek Banerjee
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Shichang Kang
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China.
| |
Collapse
|
3
|
Sajjad W, Ali B, Niu H, Ilahi N, Rafiq M, Bahadur A, Banerjee A, Kang S. High prevalence of antibiotic-resistant and metal-tolerant cultivable bacteria in remote glacier environment. ENVIRONMENTAL RESEARCH 2023; 239:117444. [PMID: 37858689 DOI: 10.1016/j.envres.2023.117444] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/04/2023] [Accepted: 10/17/2023] [Indexed: 10/21/2023]
Abstract
Studies of antibiotic-resistant bacteria (ARB) have mainly originated from anthropic-influenced environments, with limited information from pristine environments. Remote cold environments are major reservoirs of ARB and have been determined in polar regions; however, their abundance in non-polar cold habitats is underexplored. This study evaluated antibiotics and metals resistance profiles, prevalence of antibiotic resistance genes (ARGs) and metals tolerance genes (MTGs) in 38 ARB isolated from the glacier debris and meltwater from Baishui Glacier No 1, China. Molecular identification displayed Proteobacteria (39.3%) predominant in debris, while meltwater was dominated by Actinobacteria (30%) and Proteobacteria (30%). Bacterial isolates exhibited multiple antibiotic resistance index values > 0.2. Gram-negative bacteria displayed higher resistance to antibiotics and metals than Gram-positive. PCR amplification exhibited distinct ARGs in bacteria dominated by β-lactam genes blaCTX-M (21.1-71.1%), blaACC (21.1-60.5%), tetracycline-resistant gene tetA (21.1-60.5%), and sulfonamide-resistant gene sulI (18.4-52.6%). Moreover, different MTGs were reported in bacterial isolates, including mercury-resistant merA (21.1-63.2%), copper-resistant copB (18.4-57.9%), chromium-resistant chrA (15.8-44.7%) and arsenic-resistant arsB (10.5-44.7%). This highlights the co-selection and co-occurrence of MTGs and ARGs in remote glacier environments. Different bacteria shared same ARGs, signifying horizontal gene transfer between species. Strong positive correlation among ARGs and MTGs was reported. Metals tolerance range exhibited that Gram-negative and Gram-positive bacteria clustered distinctly. Gram-negative bacteria were significantly tolerant to metals. Amino acid sequences of blaACC,blaCTX-M,blaSHV,blaampC,qnrA, sulI, tetA and blaTEM revealed variations. This study presents promising ARB, harboring ARGs with variations in amino acid sequences, highlighting the need to assess the transcriptome study of glacier bacteria conferring ARGs and MTGs.
Collapse
Affiliation(s)
- Wasim Sajjad
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Barkat Ali
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Hewen Niu
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; National Field Science Observation and Research Station of Yulong Snow Mountain Cryosphere and Sustainable Development, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Nikhat Ilahi
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Muhammad Rafiq
- Department of Microbiology, Faculty of Life Sciences and Informatics, Engineering and Management Sciences, Balochistan University of Information Technology, Quetta, Pakistan
| | - Ali Bahadur
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Abhishek Banerjee
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Shichang Kang
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China.
| |
Collapse
|
4
|
Herbert A, Hancock CN, Cox B, Schnabel G, Moreno D, Carvalho R, Jones J, Paret M, Geng X, Wang H. Oxytetracycline and Streptomycin Resistance Genes in Xanthomonas arboricola pv. pruni, the Causal Agent of Bacterial Spot in Peach. Front Microbiol 2022; 13:821808. [PMID: 35283838 PMCID: PMC8914263 DOI: 10.3389/fmicb.2022.821808] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/19/2022] [Indexed: 01/12/2023] Open
Abstract
Xanthomonas arboricola pv. pruni (Xap) causes bacterial spot, a major worldwide disease of Prunus species. Very few chemical management options are available for this disease and frequent applications of oxytetracycline (OTC) in the United States peach orchards have raised concerns about resistance development. During 2017-2020, 430 Xap strains were collected from ten peach orchards in South Carolina. Seven OTC-resistant (OTC R ) Xap strains were found in 2017 and 2020 from four orchards about 20-270 km apart. Interestingly, the seven strains were also resistant to streptomycin (STR). Six strains grew on media amended with ≤100 μg/mL OTC, while one strain, R1, grew on ≤250 μg/mL OTC. Genome sequence analysis of four representative OTC R strains revealed a 14-20 kb plasmid carrying tetC, tetR, and strAB in each strain. These three genes were transferable to Xanthomonas perforans via conjugation, and they were PCR confirmed in all seven OTC R Xap strains. When tetC and tetR were cloned and expressed together in a sensitive strain, the transconjugants showed resistance to ≤100 μg/mL OTC. When tetC was cloned and expressed alone in a sensitive strain, the transconjugants showed resistance to ≤250 μg/mL OTC. TetC and tetR expression was inducible by OTC in all six wild-type strains resistant to ≤100 μg/mL OTC. However, in the R1 strain resistant to ≤250 μg/mL OTC, tetR was not expressed, possibly due to the presence of Tn3 in the tetR gene, and in this case tetC was constitutively expressed. These data suggest that tetC confers OTC resistance in Xap strains, and tetR regulates the level of OTC resistance conferred by tetC. To our knowledge, this is the first report of OTC resistance in plant pathogenic xanthomonads.
Collapse
Affiliation(s)
- Austin Herbert
- Edisto Research and Education Center, Clemson University, Blackville, SC, United States
| | - C. Nathan Hancock
- Department of Biology and Geology, University of South Carolina Aiken, Aiken, SC, United States
| | - Brodie Cox
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, United States
| | - Guido Schnabel
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, United States
| | - Daniela Moreno
- Edisto Research and Education Center, Clemson University, Blackville, SC, United States
| | - Renato Carvalho
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
- North Florida Research and Education Center, University of Florida, Quincy, FL, United States
| | - Jeffrey Jones
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
| | - Matthew Paret
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
- North Florida Research and Education Center, University of Florida, Quincy, FL, United States
| | - Xueqing Geng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Hehe Wang
- Edisto Research and Education Center, Clemson University, Blackville, SC, United States
| |
Collapse
|
5
|
Tsai MA, Chang CC, Li TH. Antimicrobial-resistance profiles of gram-negative bacteria isolated from green turtles (Chelonia mydas) in Taiwan. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 277:116870. [PMID: 33714128 DOI: 10.1016/j.envpol.2021.116870] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/25/2021] [Accepted: 02/27/2021] [Indexed: 06/12/2023]
Abstract
The green turtle (Chelonia mydas) is listed as a globally endangered species and is vulnerable to anthropogenic threats, including environmental pollution. This study investigated the antimicrobial resistance of Gram-negative bacteria isolated from wild green turtles admitted to a sea turtle rehabilitation center in Taiwan. For this investigation, cloacal and nasal swab samples were collected from 28 green turtles between 2018 and 2020, from which a total of 47 Gram-negative bacterial isolates were identified. Among these, Vibrio spp. were the most dominant isolate (31.91%), and 89.36% of the 47 isolates showed resistance to at least one of 18 antimicrobial agents tested. Isolates resistant to one (6.38%), two (8.51%), and multiple (74.47%) antimicrobials were observed. The antimicrobial agents to which isolates showed the greatest resistance were penicillin (74.47%), followed by spiramycin, amoxicillin, and cephalexin. The antimicrobial-resistance profiles identified in this study provide useful information for the clinical treatment of sea turtles in rehabilitation facilities. The results of our study also imply that wild green turtles may be exposed to polluting effluents containing antimicrobials when the turtles traverse migratory corridors or forage in feeding habitats. To benefit sea turtle conservation, future research should focus on (1) how to prevent pollution from antimicrobials in major green turtle activity areas and (2) identifying sources of antimicrobial-resistant bacterial strains in coastal waters of Taiwan.
Collapse
Affiliation(s)
- Ming-An Tsai
- Department of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan; International Degree Program of Ornamental Fish Science and Technology, International College, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan.
| | - Chao-Chin Chang
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung, 40227, Taiwan.
| | - Tsung-Hsien Li
- National Museum of Marine Biology and Aquarium, Checheng, Pingtung, 94450, Taiwan.
| |
Collapse
|
6
|
Reuter A, Virolle C, Goldlust K, Berne-Dedieu A, Nolivos S, Lesterlin C. Direct visualisation of drug-efflux in liveEscherichia colicells. FEMS Microbiol Rev 2020; 44:782-792. [DOI: 10.1093/femsre/fuaa031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 07/22/2020] [Indexed: 12/13/2022] Open
Abstract
ABSTRACTDrug-efflux by pump proteins is one of the major mechanisms of antibiotic resistance in bacteria. Here, we use quantitative fluorescence microscopy to investigate the real-time dynamics of drug accumulation and efflux in live E. coli cells. We visualize simultaneously the intrinsically fluorescent protein-synthesis inhibitor tetracycline (Tc) and the fluorescently labelled Tc-specific efflux pump, TetA. We show that Tc penetrates the cells within minutes and accumulates to stable intracellular concentration after ∼20 min. The final level of drug accumulation reflects the balance between Tc-uptake by the cells and Tc-efflux by pump proteins. In wild-type Tc-sensitive cells, drug accumulation is significantly limited by the activity of the multidrug efflux pump, AcrAB-TolC. Tc-resistance wild-type cells carrying a plasmid-borne Tn10 transposon contain variable amounts of TetA protein, produced under steady-state repression by the TetR repressor. TetA content heterogeneity determines the cells’ initial ability to efflux Tc. Yet, efflux remains partial until the synthesis of additional TetA pumps allows for Tc-efflux activity to surpass Tc-uptake. Cells overproducing TetA no longer accumulate Tc and become resistant to high concentrations of the drug. This work uncovers the dynamic balance between drug entry, protein-synthesis inhibition, efflux-pump production, drug-efflux activity and drug-resistance levels.
Collapse
Affiliation(s)
- Audrey Reuter
- Microbiologie Moléculaire et Biochimie Structurale (MMSB), Université Lyon 1, CNRS, Inserm, UMR5086, 69007, Lyon, France
| | - Chloé Virolle
- Microbiologie Moléculaire et Biochimie Structurale (MMSB), Université Lyon 1, CNRS, Inserm, UMR5086, 69007, Lyon, France
| | - Kelly Goldlust
- Microbiologie Moléculaire et Biochimie Structurale (MMSB), Université Lyon 1, CNRS, Inserm, UMR5086, 69007, Lyon, France
| | - Annick Berne-Dedieu
- Microbiologie Moléculaire et Biochimie Structurale (MMSB), Université Lyon 1, CNRS, Inserm, UMR5086, 69007, Lyon, France
| | - Sophie Nolivos
- Microbiologie Moléculaire et Biochimie Structurale (MMSB), Université Lyon 1, CNRS, Inserm, UMR5086, 69007, Lyon, France
| | - Christian Lesterlin
- Microbiologie Moléculaire et Biochimie Structurale (MMSB), Université Lyon 1, CNRS, Inserm, UMR5086, 69007, Lyon, France
| |
Collapse
|
7
|
Magnowska Z, Jana B, Brochmann RP, Hesketh A, Lametsch R, De Gobba C, Guardabassi L. Carprofen-induced depletion of proton motive force reverses TetK-mediated doxycycline resistance in methicillin-resistant Staphylococcus pseudintermedius. Sci Rep 2019; 9:17834. [PMID: 31780689 PMCID: PMC6882848 DOI: 10.1038/s41598-019-54091-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 10/31/2019] [Indexed: 11/09/2022] Open
Abstract
We previously showed that doxycycline (DOX) and carprofen (CPF), a veterinary non-steroidal anti-inflammatory drug, have synergistic antimicrobial activity against methicillin-resistant Staphylococcus pseudintermedius (MRSP) carrying the tetracycline resistance determinant TetK. To elucidate the molecular mechanism of this synergy, we investigated the effects of the two drugs, individually and in combination, using a comprehensive approach including RNA sequencing, two-dimensional differential in-gel electrophoresis, macromolecule biosynthesis assays and fluorescence spectroscopy. Exposure of TetK-positive MRSP to CPF alone resulted in upregulation of pathways that generate ATP and NADH, and promote the proton gradient. We showed that CPF is a proton carrier that dissipates the electrochemical potential of the membrane. In the presence of both CPF and DOX, the energy compensation strategy was attenuated by downregulation of all the processes involved, such as citric acid cycle, oxidative phosphorylation and ATP-providing arginine deiminase pathway. Furthermore, protein biosynthesis inhibition increased from 20% under DOX exposure alone to 75% upon simultaneous exposure to CPF. We conclude that synergistic interaction of the drugs restores DOX susceptibility in MRSP by compromising proton-motive-force-dependent TetK-mediated efflux of the antibiotic. MRSP is unable to counterbalance CPF-mediated PMF depletion by cellular metabolic adaptations, resulting in intracellular accumulation of DOX and inhibition of protein biosynthesis.
Collapse
Affiliation(s)
- Zofia Magnowska
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark.
| | - Bimal Jana
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Rikke Prejh Brochmann
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Andrew Hesketh
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom.,School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, United Kingdom
| | - Rene Lametsch
- Department of Food Science, Faculty of Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Cristian De Gobba
- Department of Food Science, Faculty of Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Luca Guardabassi
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark. .,Department of Pathobiology and Population Sciences, The Royal Veterinary College, Hatfield, United Kingdom.
| |
Collapse
|
8
|
Chen J, Li J, Zhang H, Shi W, Liu Y. Bacterial Heavy-Metal and Antibiotic Resistance Genes in a Copper Tailing Dam Area in Northern China. Front Microbiol 2019; 10:1916. [PMID: 31481945 PMCID: PMC6710345 DOI: 10.3389/fmicb.2019.01916] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 08/05/2019] [Indexed: 12/02/2022] Open
Abstract
Heavy metal resistance genes (MRGs) and antibiotic resistance genes (ARGs) in bacteria can respond to the inducement of heavy metals. However, the co-occurrence of MRGs and ARGs in the long-term heavy metal contaminated area is still poorly understood. Here, we investigated the relationship between the abundance of soil bacteria MRGs, ARGs and heavy metal pollution in a copper tailing dam area of northern China. We found that arsC and ereA genes coding for resistance mechanisms to arsenic and to macrolides, respectively, are the most abundant MRG and ARG in the study area. The abundance of MRGs is positively correlated with cadmium (Cd) concentration, and this indicates the importance of Cd in the selection of MRGs. The network analysis results show that sulII and MRGs co-occur and copB occur with ARGs, which suggests that MRGs and ARGs can be co-selected in the soil contaminated by heavy metal. The network analysis also reveals the co-occurrence of Cd and MRGs, and thus heavy metal with a high 'toxic-response' factor can be used as the indicator of MRGs. This study improves the understanding of the relationship between bacterial resistance and multi-metal contamination, and underlies the exploration of the adaptive mechanism of microbes in the multi-metal contaminated environment.
Collapse
Affiliation(s)
- Jianwen Chen
- Institute of Loess Plateau, Shanxi University, Taiyuan, China
| | - Junjian Li
- Institute of Loess Plateau, Shanxi University, Taiyuan, China
| | - Hong Zhang
- School of Environment and Resources, Shanxi University, Taiyuan, China
| | - Wei Shi
- Institute of Loess Plateau, Shanxi University, Taiyuan, China
| | - Yong Liu
- Institute of Loess Plateau, Shanxi University, Taiyuan, China
| |
Collapse
|
9
|
Hetzke T, Bowen AM, Vogel M, Gauger M, Suess B, Prisner TF. Binding of tetracycline to its aptamer determined by 2D-correlated Mn 2+ hyperfine spectroscopy. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 303:105-114. [PMID: 31039520 DOI: 10.1016/j.jmr.2019.04.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 06/09/2023]
Abstract
The tetracycline-binding RNA aptamer (TC-aptamer) binds its cognate ligand the antibiotic tetracycline (TC) via a Mg2+ or Mn2+ ion with high affinity at high divalent metal ion concentrations (KD=800pM, ⩾10 mM). These concentrations lie above the physiological divalent metal ion concentration of ca. 1 mM and it is known from literature, that the binding affinity decreases upon decreasing the divalent metal ion concentration. This work uses a Mn2+ concentration of 1 mM and 1D-hyperfine experiments reveal two pronounced 31P couplings from the RNA besides the 13C signal of 13C-labeled TC. From these 1D-hyperfine data alone, however, no conclusions can be drawn on the binding of TC. Either TC may bind via Mn2+ to the aptamer or TC may form a free Mn-TC complex and some Mn2+ also binds to the aptamer. In this work, we show using 2D-correlated hyperfine spectroscopy at Q-band frequencies (34 GHz), that the 13C and 31P signals can be correlated; thus arising from a single species. We use THYCOS (triple hyperfine correlation spectroscopy) and 2D ELDOR-detected NMR (2D electron electron double resonance detected NMR) for this purpose showing that they are suitable techniques to correlate two different nuclear spin species (13C and 31P) on two different molecules (RNA and TC) to the same electron spin (Mn2+). Out of the two observed 31P-hyperfine couplings, only one shows a clear correlation to 13C. Although THYCOS and 2D EDNMR yield identical results, 2D EDNMR is far more sensitive. THYCOS spectra needed a time factor of ×20 in comparison to 2D EDNMR to achieve a comparable signal-to-noise.
Collapse
Affiliation(s)
- Thilo Hetzke
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Alice M Bowen
- Center for Advanced Electron Spin Resonance (CAESR), Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Marc Vogel
- Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Maximilian Gauger
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Beatrix Suess
- Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Thomas F Prisner
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance, Goethe University Frankfurt, Frankfurt am Main, Germany.
| |
Collapse
|
10
|
Metatranscriptomic Analysis of Sub-Acute Ruminal Acidosis in Beef Cattle. Animals (Basel) 2019; 9:ani9050232. [PMID: 31083622 PMCID: PMC6562385 DOI: 10.3390/ani9050232] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 05/03/2019] [Accepted: 05/10/2019] [Indexed: 01/08/2023] Open
Abstract
Simple Summary This study evaluated the functional activity of rumen microbiota during sub-acute ruminal acidosis, a metabolic disease of ruminants characterized by low pH caused by feeding highly fermentable carbohydrate feeds. The abundance of rumen bacteria that degrade cellulose (Fibrobacter succinogenes, Ruminococcus albus, and R. bicirculans) were reduced by induced acidotic challenge. Genes mapped to carbohydrate, amino acid, energy, vitamin and co-factor metabolism pathways, and bacterial biofilm formation pathways were enriched in beef cattle challenged with sub-acute acidosis. This study enhances our understanding of the response of rumen microbiota to sub-acute ruminal acidosis by revealing transcriptionally active taxa and metabolic pathways of rumen microbiota. Abstract Subacute ruminal acidosis (SARA) is a metabolic disease of ruminants characterized by low pH, with significant impacts on rumen microbial activity, and animal productivity and health. Microbial changes during subacute ruminal acidosis have previously been analyzed using quantitative PCR and 16S rRNA sequencing, which do not reveal the actual activity of the rumen microbial population. Here, we report the functional activity of the rumen microbiota during subacute ruminal acidosis. Eight rumen-cannulated Holstein steers were assigned randomly to acidosis-inducing or control diet. Rumen fluid samples were taken at 0, 3, 6, and 9 h relative to feeding from both treatments on the challenge day. A metatranscriptome library was prepared from RNA extracted from the samples and the sequencing of the metatranscriptome library was performed on Illumina HiSeq4000 following a 2 × 150 bp index run. Cellulolytic ruminal bacteria including Fibrobacter succinogenes, Ruminococcus albus, and R. bicirculans were reduced by an induced acidotic challenge. Up to 68 functional genes were differentially expressed between the two treatments. Genes mapped to carbohydrate, amino acid, energy, vitamin and co-factor metabolism pathways, and bacterial biofilm formation pathways were enriched in beef cattle challenged with sub-acute acidosis. This study reveals transcriptionally active taxa and metabolic pathways of rumen microbiota during induced acidotic challenge.
Collapse
|
11
|
Pala-Ozkok I, Ubay-Cokgor E, Jonas D, Orhon D. Kinetic and microbial response of activated sludge community to acute and chronic exposure to tetracycline. JOURNAL OF HAZARDOUS MATERIALS 2019; 367:418-426. [PMID: 30611034 DOI: 10.1016/j.jhazmat.2018.12.094] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/19/2018] [Accepted: 12/24/2018] [Indexed: 06/09/2023]
Abstract
Current study aimed to discover both kinetic and microbial response of activated sludge biomass to continuous exposure to tetracycline, one of the most frequently detected antibiotics in wastewaters. Respirometric analysis and model evaluation of the oxygen utilization rate profiles generated at critical phases of the experimental period showed that, continuous exposure to tetracycline caused complete suppression of substrate storage aside from mild inhibition on the growth kinetics and it exerted a significant binding action with available organic carbon, leading to less oxygen consumption. Additionally, increase in endogenous decay rates by 1.5 fold was associated with maintenance energy dictated by the presence and production of antibiotic resistance genes, as demonstrated by resistance gene profile. High-throughput sequencing results showed that continuously exposure to tetracycline caused a significant shift in the community structure at species level so that tetracycline resistant bacteria like Arthrobacter sp and Diaphorobacter sp dominated the bacterial community.
Collapse
Affiliation(s)
- Ilke Pala-Ozkok
- Istanbul Technical University, Faculty of Civil Engineering, Environmental Engineering Department, TR-34469, Maslak, Istanbul, Turkey; University of Stavanger, Faculty of Science and Technology, Department of Chemistry, Bioscience and Environmental Engineering, 4021, Stavanger, Norway.
| | - Emine Ubay-Cokgor
- Istanbul Technical University, Faculty of Civil Engineering, Environmental Engineering Department, TR-34469, Maslak, Istanbul, Turkey
| | - Daniel Jonas
- Institute for Infection Prevention and Hospital Epidemiology, University Medical Center Freiburg, Breisacher Strasse 115B, D-79106, Freiburg i.Br, Germany
| | - Derin Orhon
- ENVIS Energy and Environmental Systems Research and Development Ltd., ITU ARI Technocity, Maslak, 34469, Istanbul, Turkey; Faculty of Civil and Environmental Engineering, Near East University, 99138 Nicosia, Northern Cyprus, Mersin 10, Turkey
| |
Collapse
|
12
|
Pulicharla R, Hegde K, Brar SK, Surampalli RY. Tetracyclines metal complexation: Significance and fate of mutual existence in the environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 221:1-14. [PMID: 28007426 DOI: 10.1016/j.envpol.2016.12.017] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 12/10/2016] [Accepted: 12/11/2016] [Indexed: 06/06/2023]
Abstract
Concern over tetracyclines (TCs) complexation with metals in the environment is growing as a new class of emerging contaminants. TCs exist as a different net charged species depending on their dissociation constants, pH and the surrounding environment. One of the key concerns about TCs is its strong tendency to interact with various metal ions and form metal complexes. Moreover, co-existence of TCs and metals in the environment and their interactions has shown increased antibiotic resistance. Despite extensive research on TCs complexation, investigations on their antibiotic efficiency and pharmacological profile in bacteria have been limited. In addition, the current knowledge on TCs metal complexation, their fate and risk assessment in the environment are inadequate to obtain a clear understanding of their consequences on living systems. This indicates that vital and comprehensive studies on TCs-metal complexation, especially towards growing antibiotic resistance trends are required. This review summarizes the role of TCs metal complexation on the development of antibiotic resistance. Furthermore, impact of metal complexation on degradation, toxicity and the fate of TCs in the environment are discussed and future recommendations have been made.
Collapse
Affiliation(s)
- Rama Pulicharla
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada
| | | | - Satinder Kaur Brar
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada.
| | - Rao Y Surampalli
- Department of Civil Engineering, University of Nebraska-Lincoln, N104 SEC PO Box 886105, Lincoln, NE 68588-6105, USA
| |
Collapse
|
13
|
Knapp CW, Callan AC, Aitken B, Shearn R, Koenders A, Hinwood A. Relationship between antibiotic resistance genes and metals in residential soil samples from Western Australia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:2484-2494. [PMID: 27822686 PMCID: PMC5340841 DOI: 10.1007/s11356-016-7997-y] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 10/25/2016] [Indexed: 05/19/2023]
Abstract
Increasing drug-resistant infections have drawn research interest towards examining environmental bacteria and the discovery that many factors, including elevated metal conditions, contribute to proliferation of antibiotic resistance (AR). This study examined 90 garden soils from Western Australia to evaluate predictions of antibiotic resistance genes from total metal conditions by comparing the concentrations of 12 metals and 13 genes related to tetracycline, beta-lactam and sulphonamide resistance. Relationships existed between metals and genes, but trends varied. All metals, except Se and Co, were related to at least one AR gene in terms of absolute gene numbers, but only Al, Mn and Pb were associated with a higher percentage of soil bacteria exhibiting resistance, which is a possible indicator of population selection. Correlations improved when multiple factors were considered simultaneously in a multiple linear regression model, suggesting the possibility of additive effects occurring. Soil-metal concentrations must be considered when determining risks of AR in the environment and the proliferation of resistance.
Collapse
Affiliation(s)
- Charles W Knapp
- Department of Civil & Environmental Engineering, University of Strathclyde, Glasgow, Scotland, G1 1XJ, UK.
| | - Anna C Callan
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, 6027, Australia
| | - Beatrice Aitken
- Department of Civil & Environmental Engineering, University of Strathclyde, Glasgow, Scotland, G1 1XJ, UK
| | - Rylan Shearn
- Centre for Ecosystem Management, Edith Cowan University, Joondalup, WA, 6027, Australia
| | - Annette Koenders
- Centre for Ecosystem Management, Edith Cowan University, Joondalup, WA, 6027, Australia
| | - Andrea Hinwood
- Centre for Ecosystem Management, Edith Cowan University, Joondalup, WA, 6027, Australia
| |
Collapse
|
14
|
Guerra W, Silva-Caldeira PP, Terenzi H, Pereira-Maia EC. Impact of metal coordination on the antibiotic and non-antibiotic activities of tetracycline-based drugs. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.04.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
rRNA Binding Sites and the Molecular Mechanism of Action of the Tetracyclines. Antimicrob Agents Chemother 2016; 60:4433-41. [PMID: 27246781 DOI: 10.1128/aac.00594-16] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The tetracycline antibiotics are known to be effective in the treatment of both infectious and noninfectious disease conditions. The 16S rRNA binding mechanism currently held for the antibacterial action of the tetracyclines does not explain their activity against viruses, protozoa that lack mitochondria, and noninfectious conditions. Also, the mechanism by which the tetracyclines selectively inhibit microbial protein synthesis against host eukaryotic protein synthesis despite conservation of ribosome structure and functions is still questionable. Many studies have investigated the binding of the tetracyclines to the 16S rRNA using the small ribosomal subunit of different bacterial species, but there seems to be no agreement between various reports on the exact binding site on the 16S rRNA. The wide range of activity of the tetracyclines against a broad spectrum of bacterial pathogens, viruses, protozoa, and helminths, as well as noninfectious conditions, indicates a more generalized effect on RNA. In the light of recent evidence that the tetracyclines bind to various synthetic double-stranded RNAs (dsRNAs) of random base sequences, suggesting that the double-stranded structures may play a more important role in the binding of the tetracyclines to RNA than the specific base pairs, as earlier speculated, it is imperative to consider possible alternative binding modes or sites that could help explain the mechanisms of action of the tetracyclines against various pathogens and disease conditions.
Collapse
|
16
|
Abi-Khalil E, Segond D, Terpstra T, André-Leroux G, Kallassy M, Lereclus D, Bou-Abdallah F, Nielsen-Leroux C. Heme interplay between IlsA and IsdC: Two structurally different surface proteins from Bacillus cereus. Biochim Biophys Acta Gen Subj 2015; 1850:1930-41. [PMID: 26093289 DOI: 10.1016/j.bbagen.2015.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 06/04/2015] [Accepted: 06/16/2015] [Indexed: 12/16/2022]
Abstract
BACKGROUND Iron is an essential element for bacterial growth and virulence. Because of its limited bioavailability in the host, bacteria have adapted several strategies to acquire iron during infection. In the human opportunistic bacteria Bacillus cereus, a surface protein IlsA is shown to be involved in iron acquisition from both ferritin and hemoproteins. IlsA has a modular structure consisting of a NEAT (Near Iron transporter) domain at the N-terminus, several LRR (Leucine Rich Repeat) motifs and a SLH (Surface Layer Homology) domain likely involved in anchoring the protein to the cell surface. METHODS Isothermal titration calorimetry, UV-Vis spectrophotometry, affinity chromatography and rapid kinetics stopped-flow measurements were employed to probe the binding and transfer of hemin between two different B. cereus surface proteins (IlsA and IsdC). RESULTS IlsA binds hemin via the NEAT domain and is able to extract heme from hemoglobin whereas the LRR domain alone is not involved in these processes. A rapid hemin transfer from hemin-containing IlsA (holo-IlsA) to hemin-free IsdC (apo-IsdC) is demonstrated. CONCLUSIONS For the first time, it is shown that two different B. cereus surface proteins (IlsA and IsdC) can interact and transfer heme suggesting their involvement in B. cereus heme acquisition. GENERAL SIGNIFICANCE An important role for the complete Isd system in heme-associated bacterial growth is demonstrated and new insights into the interplay between an Isd NEAT surface protein and an IlsA-NEAT-LRR protein, both of which appear to be involved in heme-iron acquisition in B. cereus are revealed.
Collapse
Affiliation(s)
- Elise Abi-Khalil
- INRA, UMR 1319 Micalis-AgroParisTech, AgroParisTech UMR Micalis, F-78352 Jouy en Josas, France; Laboratory of Biotechnology, Saint-Joseph University, Beyrouth, Lebanon; Department of Chemistry, State University of New York at Potsdam, Potsdam, NY 13676, USA
| | - Diego Segond
- INRA, UMR 1319 Micalis-AgroParisTech, AgroParisTech UMR Micalis, F-78352 Jouy en Josas, France
| | - Tyson Terpstra
- Department of Chemistry, State University of New York at Potsdam, Potsdam, NY 13676, USA
| | | | - Mireille Kallassy
- Laboratory of Biotechnology, Saint-Joseph University, Beyrouth, Lebanon
| | - Didier Lereclus
- INRA, UMR 1319 Micalis-AgroParisTech, AgroParisTech UMR Micalis, F-78352 Jouy en Josas, France
| | - Fadi Bou-Abdallah
- Department of Chemistry, State University of New York at Potsdam, Potsdam, NY 13676, USA
| | | |
Collapse
|
17
|
Garrido-Mesa J, Algieri F, Rodriguez-Nogales A, Utrilla MP, Rodriguez-Cabezas ME, Zarzuelo A, Ocete MA, Garrido-Mesa N, Galvez J. A new therapeutic association to manage relapsing experimental colitis: Doxycycline plus Saccharomyces boulardii. Pharmacol Res 2015; 97:48-63. [PMID: 25917208 DOI: 10.1016/j.phrs.2015.04.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 04/15/2015] [Accepted: 04/15/2015] [Indexed: 01/01/2023]
Abstract
Immunomodulatory antibiotics have been proposed for the treatment of multifactorial conditions such as inflammatory bowel disease. Probiotics are able to attenuate intestinal inflammation, being considered as safe when chronically administered. The aim of the study was to evaluate the anti-inflammatory effects of doxycycline, a tetracycline with immunomodulatory properties, alone and in association with the probiotic Saccharomyces boulardii CNCMI-745. Doxycycline was assayed both in vitro (Caco-2 epithelial cells and RAW 264.7 macrophages) and in vivo, in the trinitrobenzenesulfonic acid (TNBS) model of rat colitis and the dextran sodium sulfate (DSS) model of mouse colitis. In addition, the anti-inflammatory effect of the association of doxycycline and the probiotic was evaluated in vitro and in vivo in a DSS model of reactivated colitis in mice. Doxycycline displayed immunomodulatory activity in vitro, reducing IL-8 production by intestinal epithelial cells and nitric oxide by macrophages. Doxycycline administration to TNBS-colitic rats (5, 10 and 25 mg/kg) ameliorated the intestinal inflammatory process, being its efficacy comparable to that previously showed by minocycline. Doxycycline treatment was also effective in reducing acute intestinal inflammation in the DSS model of mouse colitis. The association of doxycycline and S. boulardii helped managing colitis in a reactivated model of colitis, by reducing intestinal inflammation and accelerating the recovery and attenuating the relapse. This was evidenced by a reduced disease activity index, colonic tissue damage and expression of inflammatory mediators. This study confirms the intestinal anti-inflammatory activity of doxycycline and supports the potential use of its therapeutic association with S. boulardii for the treatment of inflammatory bowel diseases, in which doxycycline is used to induce remission and long term probiotic administration helps to prevent the relapses.
Collapse
Affiliation(s)
- José Garrido-Mesa
- CIBER-EHD, Department of Pharmacology, ibs.GRANADA, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Francesca Algieri
- CIBER-EHD, Department of Pharmacology, ibs.GRANADA, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Alba Rodriguez-Nogales
- CIBER-EHD, Department of Pharmacology, ibs.GRANADA, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Maria Pilar Utrilla
- CIBER-EHD, Department of Pharmacology, ibs.GRANADA, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Maria Elena Rodriguez-Cabezas
- CIBER-EHD, Department of Pharmacology, ibs.GRANADA, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Antonio Zarzuelo
- CIBER-EHD, Department of Pharmacology, ibs.GRANADA, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Maria Angeles Ocete
- CIBER-EHD, Department of Pharmacology, ibs.GRANADA, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Natividad Garrido-Mesa
- CIBER-EHD, Department of Pharmacology, ibs.GRANADA, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain; Department of Experimental Immunobiology, Division of Transplantation Immunology and Mucosal Biology, King's College London, London SE1 9RT, UK
| | - Julio Galvez
- CIBER-EHD, Department of Pharmacology, ibs.GRANADA, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain.
| |
Collapse
|
18
|
Li XZ, Plésiat P, Nikaido H. The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin Microbiol Rev 2015; 28:337-418. [PMID: 25788514 PMCID: PMC4402952 DOI: 10.1128/cmr.00117-14] [Citation(s) in RCA: 1016] [Impact Index Per Article: 101.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The global emergence of multidrug-resistant Gram-negative bacteria is a growing threat to antibiotic therapy. The chromosomally encoded drug efflux mechanisms that are ubiquitous in these bacteria greatly contribute to antibiotic resistance and present a major challenge for antibiotic development. Multidrug pumps, particularly those represented by the clinically relevant AcrAB-TolC and Mex pumps of the resistance-nodulation-division (RND) superfamily, not only mediate intrinsic and acquired multidrug resistance (MDR) but also are involved in other functions, including the bacterial stress response and pathogenicity. Additionally, efflux pumps interact synergistically with other resistance mechanisms (e.g., with the outer membrane permeability barrier) to increase resistance levels. Since the discovery of RND pumps in the early 1990s, remarkable scientific and technological advances have allowed for an in-depth understanding of the structural and biochemical basis, substrate profiles, molecular regulation, and inhibition of MDR pumps. However, the development of clinically useful efflux pump inhibitors and/or new antibiotics that can bypass pump effects continues to be a challenge. Plasmid-borne efflux pump genes (including those for RND pumps) have increasingly been identified. This article highlights the recent progress obtained for organisms of clinical significance, together with methodological considerations for the characterization of MDR pumps.
Collapse
Affiliation(s)
- Xian-Zhi Li
- Human Safety Division, Veterinary Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Patrick Plésiat
- Laboratoire de Bactériologie, Faculté de Médecine-Pharmacie, Centre Hospitalier Régional Universitaire, Université de Franche-Comté, Besançon, France
| | - Hiroshi Nikaido
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| |
Collapse
|
19
|
Thermodynamic Studies of Metal Complexes of Tetracycline and its Application in Drug Analysis. Pharm Chem J 2015. [DOI: 10.1007/s11094-015-1190-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Brunelle BW, Bearson BL, Bearson SMD. Chloramphenicol and tetracycline decrease motility and increase invasion and attachment gene expression in specific isolates of multidrug-resistant Salmonella enterica serovar Typhimurium. Front Microbiol 2015; 5:801. [PMID: 25688233 PMCID: PMC4311684 DOI: 10.3389/fmicb.2014.00801] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 12/28/2014] [Indexed: 01/04/2023] Open
Abstract
Salmonella enterica serovar Typhimurium is one of the most common serovars isolated from humans and livestock, and over 35% of these isolates are resistant to three or more antibiotics. Multidrug-resistant (MDR) Salmonella is a public health concern as it is associated with increased morbidity in patients compared to antibiotic sensitive strains, though it is unknown how the antibiotic resistant isolates lead to a more severe infection. Cellular invasion is temporally regulated in Salmonella and normally occurs during late-log and stationary growth. However, our previous work determined that a 30 min exposure to a sub-inhibitory concentration of tetracycline can induce the full invasion phenotype during early-log growth in certain MDR S. Typhimurium isolates. The current study examined whether sub-inhibitory concentrations of other antibiotics could also induce the invasiveness in the same set of isolates. Ampicillin and streptomycin had no effect on invasion, but certain concentrations of chloramphenicol were found to induce invasion in a subset of isolates. Two of the isolates induced by chloramphenicol were also inducible by tetracycline. RNA-seq analyses demonstrated that chloramphenicol and tetracycline both down-regulated motility gene expression, while up-regulating genes associated with attachment, invasion, and intracellular survival. Eleven fimbrial operons were up-regulated, which is notable as only three fimbrial operons were thought to be inducible in culture; six of these up-regulated operons have been reported to play a role in Salmonella persistence in mice. Overall, these data show that the normal progression of the genetic pathways that regulate invasion can be expedited to occur within 30 min due to antibiotic exposure. This altered invasion process due to antibiotics may play a role in the increased intensity and duration of infection observed in patients with MDR Salmonella.
Collapse
Affiliation(s)
- Brian W Brunelle
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture Ames, IA, USA
| | - Bradley L Bearson
- Agroecosystems Management Research Unit, National Laboratory for Agriculture and the Environment, Agricultural Research Service, United States Department of Agriculture Ames, IA, USA
| | - Shawn M D Bearson
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture Ames, IA, USA
| |
Collapse
|
21
|
Thermodynamic Studies of Metal Complexes of Tetracycline and their Application in Drug Analysis. Pharm Chem J 2014. [DOI: 10.1007/s11094-014-1136-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
22
|
Herzberg M, Bauer L, Nies DH. Deletion of the zupT gene for a zinc importer influences zinc pools in Cupriavidus metallidurans CH34. Metallomics 2014; 6:421-36. [DOI: 10.1039/c3mt00267e] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Physico-chemical factors affect chloramphenicol efflux and EmhABC efflux pump expression in Pseudomonas fluorescens cLP6a. Res Microbiol 2012; 164:172-80. [PMID: 23142491 DOI: 10.1016/j.resmic.2012.10.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 10/18/2012] [Indexed: 11/20/2022]
Abstract
Protein synthesis inhibitors such as chloramphenicol and tetracycline may be inducers of efflux pumps such as MexY in Pseudomonas aeruginosa, complicating their use for the treatment of bacterial infections. We previously determined that chloramphenicol, a substrate of the EmhABC efflux pump in Pseudomonas fluorescens cLP6a, did not induce emhABC expression. In this study, we determined the effect of physico-chemical factors on chloramphenicol efflux by EmhABC, and the expression of emhABC. Efflux assays measuring accumulation of (14)C-chloramphenicol in cell pellets showed that chloramphenicol efflux is dependent on growth temperature, pH and concentration of Mg(2+). These physico-chemical factors modulated the efflux of chloramphenicol by 26 to >50%. All conditions tested that decreased the efflux of chloramphenicol unexpectedly induced transcription of emhABC efflux genes. EmhABC activity also effectively suppressed the deleterious effect of chloramphenicol on the cell membrane of strain cLP6a, which may explain why chloramphenicol is not an inducer of emhABC. Our results suggest that the detrimental effect of an antibiotic on cell membrane integrity and fatty acid composition may be the signal that induces emhABC expression, and that inducers of other bacterial efflux pumps may include environmental factors rather than their substrates per se.
Collapse
|
24
|
Volkers G, Petruschka L, Hinrichs W. Recognition of drug degradation products by target proteins: isotetracycline binding to Tet repressor. J Med Chem 2011; 54:5108-15. [PMID: 21699184 DOI: 10.1021/jm200332e] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tetracycline antibiotics and their degradation products appear in medically treated tissues, food, soil, and manure sludge in the environment. In the context of protein interactions with various tetracyclines we performed crystal structure analyses of the tetracycline repressor in complex with weak or noninducing tetracycline derivatives. Isotetracyclines are degradation products of tetracyclines, which occur under physiological conditions. The typical framework of the antibiotic is irreversibly broken at the BC-ring connection, leading to a modified orientation of the AB to the new C*D ring fragments. The shape of the zwitterionic AB-ring fragment is unchanged and still binds to the TetR recognition site in a manner comparable to the intact antibiotic but without typical Mg(2+) chelation. This work is an example that drug degradation products can still bind to specific targets and should be discussed in light of potential and critical side effects.
Collapse
Affiliation(s)
- Gesa Volkers
- Department of Molecular Structural Biology, Institute for Biochemistry, University of Greifswald, Felix-Hausdorff-Strasse 4, D-17489 Greifswald, Germany
| | | | | |
Collapse
|
25
|
Biliouris K, Daoutidis P, Kaznessis YN. Stochastic simulations of the tetracycline operon. BMC SYSTEMS BIOLOGY 2011; 5:9. [PMID: 21247421 PMCID: PMC3037858 DOI: 10.1186/1752-0509-5-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 01/19/2011] [Indexed: 11/30/2022]
Abstract
Background The tetracycline operon is a self-regulated system. It is found naturally in bacteria where it confers resistance to antibiotic tetracycline. Because of the performance of the molecular elements of the tetracycline operon, these elements are widely used as parts of synthetic gene networks where the protein production can be efficiently turned on and off in response to the presence or the absence of tetracycline. In this paper, we investigate the dynamics of the tetracycline operon. To this end, we develop a mathematical model guided by experimental findings. Our model consists of biochemical reactions that capture the biomolecular interactions of this intriguing system. Having in mind that small biological systems are subjects to stochasticity, we use a stochastic algorithm to simulate the tetracycline operon behavior. A sensitivity analysis of two critical parameters embodied this system is also performed providing a useful understanding of the function of this system. Results Simulations generate a timeline of biomolecular events that confer resistance to bacteria against tetracycline. We monitor the amounts of intracellular TetR2 and TetA proteins, the two important regulatory and resistance molecules, as a function of intrecellular tetracycline. We find that lack of one of the promoters of the tetracycline operon has no influence on the total behavior of this system inferring that this promoter is not essential for Escherichia coli. Sensitivity analysis with respect to the binding strength of tetracycline to repressor and of repressor to operators suggests that these two parameters play a predominant role in the behavior of the system. The results of the simulations agree well with experimental observations such as tight repression, fast gene expression, induction with tetracycline, and small intracellular TetR2 amounts. Conclusions Computer simulations of the tetracycline operon afford augmented insight into the interplay between its molecular components. They provide useful explanations of how the components and their interactions have evolved to best serve bacteria carrying this operon. Therefore, simulations may assist in designing novel gene network architectures consisting of tetracycline operon components.
Collapse
Affiliation(s)
- Konstantinos Biliouris
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave SE, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
26
|
Liu MY, Kjelleberg S, Thomas T. Functional genomic analysis of an uncultured δ-proteobacterium in the sponge Cymbastela concentrica. ISME JOURNAL 2010; 5:427-35. [PMID: 20811472 DOI: 10.1038/ismej.2010.139] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Marine sponges are ancient, sessile, filter-feeding metazoans, which represent a significant component of the benthic communities throughout the world. Sponges harbor a remarkable diversity of bacteria, however, little is known about the functional properties of such bacterial symbionts. In this study, we present the genomic and functional characterization of an uncultured δ-proteobacterium associated with the sponge Cymbastela concentrica. We show that this organism represents a novel phylogenetic clade and propose that it lives in association with a cyanobacterium. We also provide an overview of the predicted functional and ecological properties of this δ-proteobacterium, and discuss its complex interactions with surrounding cells and milieu, including traits of cell attachment, nutrient transport and protein-protein interactions.
Collapse
Affiliation(s)
- Michael Yizhe Liu
- Centre for Marine Bio-Innovation and School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | | | | |
Collapse
|
27
|
Griffin MO, Fricovsky E, Ceballos G, Villarreal F. Tetracyclines: a pleitropic family of compounds with promising therapeutic properties. Review of the literature. Am J Physiol Cell Physiol 2010; 299:C539-48. [PMID: 20592239 PMCID: PMC2944325 DOI: 10.1152/ajpcell.00047.2010] [Citation(s) in RCA: 288] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 06/27/2010] [Indexed: 02/07/2023]
Abstract
There must be something unique about a class of drugs (discovered and developed in the mid-1940s) where there are more than 130 ongoing clinical trials currently listed. Tetracyclines were developed as a result of the screening of soil samples for antibiotic organisms. The first of these compounds chlortetracycline was introduced in 1948. Soon after their development tetracyclines were found to be highly effective against various pathogens including rickettsiae, Gram-positive, and Gram-negative bacteria, thus, becoming a class of broad-spectrum antibiotics. The mechanism of action of tetracyclines is thought to be related to the inhibition of protein synthesis by binding to the 30S bacterial ribosome. Tetracyclines are also an effective anti-malarial drug. Over time, many other "protective" actions have been described for tetracyclines. Minocycline, which can readily cross cell membranes, is known to be a potent anti-apoptotic agent. Its mechanism of action appears to relate to specific effects exerted on apoptosis signaling pathways. Another tetracycline, doxycycline is known to exert antiprotease activities. Doxycycline can inhibit matrix metalloproteinases, which contribute to tissue destruction activities in diseases such as gingivitis. A large body of literature has provided additional evidence for the "beneficial" actions of tetracyclines, including their ability to act as oxygen radical scavengers and anti-inflammatory agents. This increasing volume of published work and ongoing clinical trials supports the notion that a more systematic examination of their possible therapeutic uses is warranted. This review provides a summary of tetracycline's multiple mechanisms of action and while using the effects on the heart as an example, this review also notes their potential to benefit patients suffering from various pathologies such as cancer, Rosacea, and Parkinson's disease.
Collapse
Affiliation(s)
- Michael O Griffin
- 1Transitional Year Residency Program, Wheaton Franciscan Healthcare-St. Joseph, Milwaukee, Wisconsin, USA
| | | | | | | |
Collapse
|
28
|
Itou H, Watanabe N, Yao M, Shirakihara Y, Tanaka I. Crystal structures of the multidrug binding repressor Corynebacteriumglutamicum CgmR in complex with inducers and with an operator. J Mol Biol 2010; 403:174-84. [PMID: 20691702 DOI: 10.1016/j.jmb.2010.07.042] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 07/20/2010] [Accepted: 07/22/2010] [Indexed: 10/19/2022]
Abstract
CgmR (CGL2612) from Corynebacterium glutamicum is a multidrug-resistance-related transcription factor belonging to the TetR family, which is a protein family of widespread bacterial transcription factors typically involved in environmental response. Here, we report the crystal structures of CgmR homodimeric repressor in complex with two distinct inducers (1.95 and 1.4 Å resolution) and with an operator (2.5 Å resolution). The CgmR-operator complex showed that two CgmR dimers bound to the operator, and each half-site of the palindromic operator was asymmetrically recognized by two DNA-binding domains from different dimers on the opposite sides of the DNA. The inducer complexes demonstrated that both bound inducers act as a wedge to alter the operator-binding conformation of the repressor by steric inhibition. As steric hindrance is used, various drugs should act as inducers if they have sufficient volume for the conformation change and if their bindings sufficiently reduce free energy. The comparative structural study of CgmR free protein, in complex with operator, and with inducers, implies the other mechanism that might contribute to multidrug response of the repressor.
Collapse
Affiliation(s)
- Hiroshi Itou
- Structural Biology Center, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan.
| | | | | | | | | |
Collapse
|
29
|
Abstract
Autoregulatory gene circuits can be physically encoded within the genome in a number of different configurations. By physical encoding, we mean the orientation and relative proximity of the genes within the circuit. In this work, we quantified the behaviour of an inducible, negatively autoregulated gene circuit arranged in different transcriptional configurations using the tetRA circuit from Tn10 as our basis. Mathematical modelling predicted that circuits arranged in configurations where the expression of the transcription factor is decoupled from its target genes afforded more flexibility relative to configurations where expression is coupled. We found that these decoupled configurations reduced the concentration of transcription factor needed to regulate inducible expression from the circuit. As lower concentrations of transcription factor were required, these decoupled configurations could also be activated at much lower concentrations of the inducer. We experimentally validated these predictions in Escherichia coli by comparing the response of synthetic circuits based on the tetRA circuit arranged in different configurations. Collectively, these results provide one example of how the arrangement of a gene circuit within the genome can affect its behaviour.
Collapse
Affiliation(s)
- Kang Wu
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | |
Collapse
|
30
|
Kiefer P, Buchhaupt M, Christen P, Kaup B, Schrader J, Vorholt JA. Metabolite profiling uncovers plasmid-induced cobalt limitation under methylotrophic growth conditions. PLoS One 2009; 4:e7831. [PMID: 19915676 PMCID: PMC2773004 DOI: 10.1371/journal.pone.0007831] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Accepted: 10/10/2009] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The introduction and maintenance of plasmids in cells is often associated with a reduction of growth rate. The reason for this growth reduction is unclear in many cases. METHODOLOGY/PRINCIPAL FINDINGS We observed a surprisingly large reduction in growth rate of about 50% of Methylobacterium extorquens AM1 during methylotrophic growth in the presence of a plasmid, pCM80 expressing the tetA gene, relative to the wild-type. A less pronounced growth delay during growth under non-methylotrophic growth conditions was observed; this suggested an inhibition of one-carbon metabolism rather than a general growth inhibition or metabolic burden. Metabolome analyses revealed an increase in pool sizes of ethylmalonyl-CoA and methylmalonyl-CoA of more than 6- and 35-fold, respectively, relative to wild type, suggesting a strongly reduced conversion of these central intermediates, which are essential for glyoxylate regeneration in this model methylotroph. Similar results were found for M. extorquens AM1 pCM160 which confers kanamycin resistance. These intermediates of the ethylmalonyl-CoA pathway have in common their conversion by coenzyme B(12)-dependent mutases, which have cobalt as a central ligand. The one-carbon metabolism-related growth delay was restored by providing higher cobalt concentrations, by heterologous expression of isocitrate lyase as an alternative path for glyoxylate regeneration, or by identification and overproduction of proteins involved in cobalt import. CONCLUSIONS/SIGNIFICANCE This study demonstrates that the introduction of the plasmids leads to an apparent inhibition of the cobalt-dependent enzymes of the ethylmalonyl-CoA pathway. Possible explanations are presented and point to a limited cobalt concentration in the cell as a consequence of the antibiotic stress.
Collapse
Affiliation(s)
- Patrick Kiefer
- Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - Markus Buchhaupt
- Karl-Winnacker-Institut, Dechema e.V., Biochemical Engineering, Frankfurt am Main, Germany
| | | | - Björn Kaup
- Karl-Winnacker-Institut, Dechema e.V., Biochemical Engineering, Frankfurt am Main, Germany
| | - Jens Schrader
- Karl-Winnacker-Institut, Dechema e.V., Biochemical Engineering, Frankfurt am Main, Germany
| | - Julia A. Vorholt
- Institute of Microbiology, ETH Zürich, Zürich, Switzerland
- * E-mail:
| |
Collapse
|
31
|
Yamaguchi A. [Studies on the structure, function and expression regulation of bacterial xenobiotic exporters]. Nihon Saikingaku Zasshi 2009; 63:437-46. [PMID: 19317233 DOI: 10.3412/jsb.63.437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Akihito Yamaguchi
- Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| |
Collapse
|
32
|
Palm GJ, Lederer T, Orth P, Saenger W, Takahashi M, Hillen W, Hinrichs W. Specific binding of divalent metal ions to tetracycline and to the Tet repressor/tetracycline complex. J Biol Inorg Chem 2008; 13:1097-110. [DOI: 10.1007/s00775-008-0395-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Accepted: 05/28/2008] [Indexed: 11/29/2022]
|
33
|
Effect of subtherapeutic administration of antibiotics on the prevalence of antibiotic-resistant Escherichia coli bacteria in feedlot cattle. Appl Environ Microbiol 2008; 74:4405-16. [PMID: 18502931 DOI: 10.1128/aem.00489-08] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antibiotic-resistant Escherichia coli in 300 feedlot steers receiving subtherapeutic levels of antibiotics was investigated through the collection of 3,300 fecal samples over a 314-day period. Antibiotics were selected based on the commonality of use in the industry and included chlortetracycline plus sulfamethazine (TET-SUL), chlortetracycline (TET), virginiamycin, monensin, tylosin, or no antibiotic supplementation (control). Steers were initially fed a barley silage-based diet, followed by transition to a barley grain-based diet. Despite not being administered antibiotics prior to arrival at the feedlot, the prevalences of steers shedding TET- and ampicillin (AMP)-resistant E. coli were >40 and <30%, respectively. Inclusion of TET-SUL in the diet increased the prevalence of steers shedding TET- and AMP-resistant E. coli and the percentage of TET- and AMP-resistant E. coli in the total generic E. coli population. Irrespective of treatment, the prevalence of steers shedding TET-resistant E. coli was higher in animals fed grain-based compared to silage-based diets. All steers shed TET-resistant E. coli at least once during the experiment. A total of 7,184 isolates were analyzed for MIC of antibiotics. Across antibiotic treatments, 1,009 (13.9%), 7 (0.1%), and 3,413 (47.1%) E. coli isolates were resistant to AMP, gentamicin, or TET, respectively. In addition, 131 (1.8%) and 143 (2.0%) isolates exhibited potential resistance to extended-spectrum beta-lactamases, as indicated by either ceftazidime or cefpodoxime resistance. No isolates were resistant to ciprofloxacin. The findings of the present study indicated that subtherapeutic administration of tetracycline in combination with sulfamethazine increased the prevalence of tetracycline- and AMP-resistant E. coli in cattle. However, resistance to antibiotics may be related to additional environmental factors such as diet.
Collapse
|
34
|
Gomes P, Santos J, Fernandes M. Cell-induced response by tetracyclines on human bone marrow colonized hydroxyapatite and Bonelike. Acta Biomater 2008; 4:630-7. [PMID: 18291737 DOI: 10.1016/j.actbio.2007.12.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Revised: 11/21/2007] [Accepted: 12/18/2007] [Indexed: 10/22/2022]
Abstract
Semi-synthetic tetracyclines are commonly used antibiotics that also seem to play an important role in the modulation of the immuno-inflammatory imbalance, verified in several bone diseases. The association of a therapeutic agent (that prevents bacterial infection and induces tissue formation) to a biomaterial aiming to repair/regenerate bone defects could contribute to a more predictable clinical outcome. The present study intends to evaluate the proliferation and functional activity of osteoblast-induced human bone marrow cells, cultured on the surface of hydroxyapatite (HA) and Bonelike, in the presence of therapeutic concentrations of doxycycline and minocycline. First passage bone marrow cells were cultured for 35 days on the surface of HA and Bonelike discs, in the absence or presence of 1 microg ml(-1) doxycycline and minocycline. Cultures performed in standard tissue culture plates were used as control. Doxycycline or minocycline induced cell proliferation and increased the extent of matrix mineralization in osteoblastic cell cultures established in the three substrates. Also, an improved biological behavior was verified in seeded Bonelike compared with HA. The results suggest that the local delivery of tetracyclines might associate the antimicrobial activity in implant-related bone infection with an eventual induction of osteoblastic proliferation and maintenance of the characteristic biological activity of these cells.
Collapse
|
35
|
Ahn SK, Tahlan K, Yu Z, Nodwell J. Investigation of transcription repression and small-molecule responsiveness by TetR-like transcription factors using a heterologous Escherichia coli-based assay. J Bacteriol 2007; 189:6655-64. [PMID: 17644591 PMCID: PMC2045172 DOI: 10.1128/jb.00717-07] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The SCO7222 protein and ActR are two of approximately 150 TetR-like transcription factors encoded in the Streptomyces coelicolor genome. Using bioluminescence as a readout, we have developed Escherichia coli-based biosensors that accurately report the regulatory activity of these proteins and used it to investigate their interactions with DNA and small-molecule ligands. We found that the SCO7222 protein and ActR repress the expression of their putative target genes, SCO7223 and actII-ORF2 (actA), respectively, by interacting with operator sequence in the promoters. The operators recognized by the two proteins are related such that O(7223) (an operator for SCO7223) could be bound by both the SCO7222 protein and ActR with similar affinities. In contrast, O(act) (an operator for actII-ORF2) was bound tightly by ActR and more weakly by the SCO7222 protein. We demonstrated ligand specificity of these proteins by showing that while TetR (but not ActR or the SCO7222 protein) interacts with tetracyclines, ActR (but not TetR or the SCO7222 protein) interacts with actinorhodin and related molecules. Through operator-targeted mutagenesis, we found that at least two nucleotide changes in O(7223) were required to disrupt its interaction with SCO7222 protein, while ActR was more sensitive to changes on O(act). Most importantly, we found that the interaction of each protein with wild-type and mutant operator sequences in vivo and in vitro correlated perfectly. Our data suggest that E. coli-based biosensors of this type should be broadly applicable to TetR-like transcription factors.
Collapse
Affiliation(s)
- Sang Kyun Ahn
- Department of Biochemistry and Biomedical Sciences, HSC 4H21, McMaster University, 1200 Main Street West, Hamilton, Ontario, Canada
| | | | | | | |
Collapse
|
36
|
Loh E, Ellis-Grosse E, Petersen PJ, Sum PE, Projan S. Tigecycline: a case study. Expert Opin Drug Discov 2007; 2:403-18. [DOI: 10.1517/17460441.2.3.403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
37
|
Abstract
The use of the recombination system from bacteriophage lambda, lambda-Red, allows for PCR-generated fragments to be targeted to specific chromosomal locations in sequenced genomes. A minimal region of homology of 30 to 50 bases flanking the fragment to be inserted is all that is required for targeted mutagenesis. Procedures for creating specific insertions, deletions, and site-directed changes are described.
Collapse
Affiliation(s)
- Joyce E Karlinsey
- Department of Microbiology, University of Washington, Seattle, WA, USA
| |
Collapse
|
38
|
Abstract
Unlike recombinase-mediated gene manipulations, tetracycline (Tet)-controlled genetic switches permit reversible control of gene expression in the mouse. Trancriptional activation can be induced by activators termed tTA (Tet-Off) or rtTA (Tet-On) in the absence and presence of Tet, respectively. The Tet-Off and Tet-On systems are complementary, and the decision to choose one over the other depends on the particular experimental strategy. Both systems were optimized over the years and can now be used to develop mouse models.
Collapse
Affiliation(s)
- R Sprengel
- Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | | |
Collapse
|
39
|
Wei Y, Deikus G, Powers B, Shelden V, Krulwich TA, Bechhofer DH. Adaptive gene expression in Bacillus subtilis strains deleted for tetL. J Bacteriol 2006; 188:7090-100. [PMID: 17015648 PMCID: PMC1636236 DOI: 10.1128/jb.00885-06] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Accepted: 07/25/2006] [Indexed: 11/20/2022] Open
Abstract
The growth properties of a new panel of Bacillus subtilis tetL deletion strains and of a derivative set of strains in which tetL is restored to the chromosome support earlier indications that deletion of tetL results in a range of phenotypes that are unrelated to tetracycline resistance. These phenotypes were not reversed by restoration of a tetL gene to its native locus and were hypothesized to result from secondary mutations that arise when multifunctional tetL is deleted. Such genetic changes would temper the alkali sensitivity and Na(+) sensitivity that accompany loss of the monovalent cation/proton activity of TetL. Microarray comparisons of the transcriptomes of wild-type B. subtilis, a tetL deletion strain, and its tetL-restored derivative showed that 37 up-regulated genes and 13 down-regulated genes in the deletion strain did not change back to wild-type expression patterns after tetL was returned to the chromosome. Up-regulation of the citM gene, which encodes a divalent metal ion-coupled citrate transporter, was shown to account for the Co(2+)-sensitive phenotype of tetL mutants. The changes in expression of citM and genes encoding other ion-coupled solute transporters appear to be adaptive to loss of TetL functions in alkali and Na(+) tolerance, because they reduce Na(+)-coupled solute uptake and enhance solute uptake that is coupled to H(+) entry.
Collapse
Affiliation(s)
- Yi Wei
- Department of Pharmacology and Biological Chemistry, Box 1603, Mount Sinai School of Medicine of New York University, New York, NY 10029, USA
| | | | | | | | | | | |
Collapse
|
40
|
Lanig H, Othersen OG, Beierlein FR, Seidel U, Clark T. Molecular Dynamics Simulations of the Tetracycline-repressor Protein: The Mechanism of Induction. J Mol Biol 2006; 359:1125-36. [PMID: 16690082 DOI: 10.1016/j.jmb.2006.04.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2006] [Revised: 03/27/2006] [Accepted: 04/05/2006] [Indexed: 12/01/2022]
Abstract
Molecular dynamics simulations on the tetracycline-repressor (TetR) protein, both in the absence of an inducer and complexed with the inducers tetracycline and 5a,6-anhydrotetracycline, show significant differences in the structures and dynamics of the induced and non-induced forms of the protein. Calpha-density-difference plots, low-frequency normal vibrations and inter-residue interaction energies all point to a common mechanism of induction. The inducer displaces Asp156 from the magnesium ion in the binding pocket, leading to a short cascade of rearrangements of salt bridges that results in the allosteric change. The increased flexibility of the induced form of the protein is suggested to contribute to the decrease in binding affinity to DNA on induction.
Collapse
Affiliation(s)
- Harald Lanig
- Computer-Chemie-Centrum der Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstrasse 25, 91052 Erlangen, Germany
| | | | | | | | | |
Collapse
|
41
|
Padan E, Bibi E, Ito M, Krulwich TA. Alkaline pH homeostasis in bacteria: new insights. BIOCHIMICA ET BIOPHYSICA ACTA 2005; 1717:67-88. [PMID: 16277975 PMCID: PMC3072713 DOI: 10.1016/j.bbamem.2005.09.010] [Citation(s) in RCA: 501] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/03/2005] [Revised: 08/19/2005] [Accepted: 09/07/2005] [Indexed: 10/25/2022]
Abstract
The capacity of bacteria to survive and grow at alkaline pH values is of widespread importance in the epidemiology of pathogenic bacteria, in remediation and industrial settings, as well as in marine, plant-associated and extremely alkaline ecological niches. Alkali-tolerance and alkaliphily, in turn, strongly depend upon mechanisms for alkaline pH homeostasis, as shown in pH shift experiments and growth experiments in chemostats at different external pH values. Transcriptome and proteome analyses have recently complemented physiological and genetic studies, revealing numerous adaptations that contribute to alkaline pH homeostasis. These include elevated levels of transporters and enzymes that promote proton capture and retention (e.g., the ATP synthase and monovalent cation/proton antiporters), metabolic changes that lead to increased acid production, and changes in the cell surface layers that contribute to cytoplasmic proton retention. Targeted studies over the past decade have followed up the long-recognized importance of monovalent cations in active pH homeostasis. These studies show the centrality of monovalent cation/proton antiporters in this process while microbial genomics provides information about the constellation of such antiporters in individual strains. A comprehensive phylogenetic analysis of both eukaryotic and prokaryotic genome databases has identified orthologs from bacteria to humans that allow better understanding of the specific functions and physiological roles of the antiporters. Detailed information about the properties of multiple antiporters in individual strains is starting to explain how specific monovalent cation/proton antiporters play dominant roles in alkaline pH homeostasis in cells that have several additional antiporters catalyzing ostensibly similar reactions. New insights into the pH-dependent Na(+)/H(+) antiporter NhaA that plays an important role in Escherichia coli have recently emerged from the determination of the structure of NhaA. This review highlights the approaches, major findings and unresolved problems in alkaline pH homeostasis, focusing on the small number of well-characterized alkali-tolerant and extremely alkaliphilic bacteria.
Collapse
Affiliation(s)
- Etana Padan
- Alexander Silberman Institute of Life Sciences, Hebrew University, Jerusalem 91904, Israel.
| | | | | | | |
Collapse
|
42
|
Fujita M, Shiota S, Kuroda T, Hatano T, Yoshida T, Mizushima T, Tsuchiya T. Remarkable synergies between baicalein and tetracycline, and baicalein and beta-lactams against methicillin-resistant Staphylococcus aureus. Microbiol Immunol 2005; 49:391-6. [PMID: 15840965 DOI: 10.1111/j.1348-0421.2005.tb03732.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
During the screening of compounds that potentiate the effect of antimicrobial agents against methicillin-resistant Staphylococcus aureus(MRSA), we found that an extract of thyme (Thymus vulgaris L) leaves greatly reduced the minimum inhibitory concentration (MIC) of tetracycline against MRSA. We isolated the effective compound and identified it as baicalein (5, 6, 7-trihydroxyflavone). One of the clinically isolated MRSA strains possessed tetK, a gene encoding active efflux pump for tetracycline. We examined the effect of baicalein on the efflux of tetracycline, using Escherichia coli KAM32/pTZ1252 carrying the tetK. The E. coli KAM32/pTZ1252 showed 8 to 16 times higher MIC than E. coli KAM32. We observed strong inhibition of transport of tetracycline by baicalein with membrane vesicles prepared from E. coli KAM32/pTZ1252. Baicalein also showed synergy with tetracycline in a MRSA strain that doesn't possess tetK, or with beta-lactams. Thus, mechanisms of the synergies seem to be versatile.
Collapse
Affiliation(s)
- Mai Fujita
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | | | | | | | | | | | | |
Collapse
|
43
|
Guerra W, de Andrade Azevedo E, de Souza Monteiro AR, Bucciarelli-Rodriguez M, Chartone-Souza E, Nascimento AMA, Fontes APS, Le Moyec L, Pereira-Maia EC. Synthesis, characterization, and antibacterial activity of three palladium(II) complexes of tetracyclines. J Inorg Biochem 2005; 99:2348-54. [PMID: 16226807 DOI: 10.1016/j.jinorgbio.2005.09.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Revised: 09/01/2005] [Accepted: 09/02/2005] [Indexed: 11/25/2022]
Abstract
Pd(II) complexes with three antibiotics of the tetracycline family (tetracycline, doxycycline and chlortetracycline) were synthesized and characterized by elemental, thermogravimetric, and conductivity analyses, and infrared spectroscopy. The interactions between Pd(II) ions and tetracycline were investigated in aqueous solution by (1)H NMR. All the tetracyclines studied form 1:1 complexes with Pd(II) via the oxygen of the hydroxyl group at ring A and that of the amide group. The effect of the three complexes on the growth of bacterial strains sensitive and resistant to tetracycline was studied. The Pd(II) complex of tetracycline is practically as efficient as tetracycline in inhibiting the growth of two Escherichia coli (E. coli) sensitive bacterial strains and 16 times more potent against E. coli HB101/pBR322, a bacterial strain resistant to tetracycline. Pd(II) coordination to doxycycline also increased its activity in the resistant strain by a factor of 2.
Collapse
Affiliation(s)
- Wendell Guerra
- Departamento de Química - ICEx, Universidade Federal de Minas Gerais, Avenida Antonio Carlos, 6627, 31.270-901 Belo Horizonte MG, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Shayeghi M, Latunde-Dada GO, Oakhill JS, Laftah AH, Takeuchi K, Halliday N, Khan Y, Warley A, McCann FE, Hider RC, Frazer DM, Anderson GJ, Vulpe CD, Simpson RJ, McKie AT. Identification of an intestinal heme transporter. Cell 2005; 122:789-801. [PMID: 16143108 DOI: 10.1016/j.cell.2005.06.025] [Citation(s) in RCA: 487] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2004] [Revised: 05/20/2005] [Accepted: 06/17/2005] [Indexed: 12/14/2022]
Abstract
Dietary heme iron is an important nutritional source of iron in carnivores and omnivores that is more readily absorbed than non-heme iron derived from vegetables and grain. Most heme is absorbed in the proximal intestine, with absorptive capacity decreasing distally. We utilized a subtractive hybridization approach to isolate a heme transporter from duodenum by taking advantage of the intestinal gradient for heme absorption. Here we show a membrane protein named HCP 1 (heme carrier protein 1), with homology to bacterial metal-tetracycline transporters, mediates heme uptake by cells in a temperature-dependent and saturable manner. HCP 1 mRNA was highly expressed in duodenum and regulated by hypoxia. HCP 1 protein was iron regulated and localized to the brush-border membrane of duodenal enterocytes in iron deficiency. Our data indicate that HCP 1 is the long-sought intestinal heme transporter.
Collapse
Affiliation(s)
- Majid Shayeghi
- Department of Life Sciences, Nutritional Sciences Research Division, Franklin-Wilkins Building, Kings College London, 150 Stamford Street, London SE1 9NN, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Chartone-Souza E, Loyola TL, Bucciarelli-Rodriguez M, Menezes MADBC, Rey NA, Pereira-Maia EC. Synthesis and characterization of a tetracycline-platinum (II) complex active against resistant bacteria. J Inorg Biochem 2005; 99:1001-8. [PMID: 15833322 DOI: 10.1016/j.jinorgbio.2005.01.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2004] [Revised: 01/13/2005] [Accepted: 01/14/2005] [Indexed: 10/25/2022]
Abstract
A tetracycline-platinum(II) complex, [PtCl2(C22H24N2O8)], was synthesized and characterized by elemental analysis, conductivity and thermogravimetric analyses, and infrared spectroscopy. The interaction of tetracycline (Tc) with platinum(II) ions was also studied in aqueous solution by 1H NMR and circular dichroism spectroscopies. Tetracycline forms a 1:1 complex with platinum via the oxygen of the hydroxyl group at the A ring and that of the amide group. The complex is as efficient as tetracycline in inhibiting the growth of two Escherichia coli sensitive bacterial strains and six times more potent against E. coli HB101/pBR322, a bacterial strain resistant to tetracycline. This finding is very important because the use of tetracycline to treat bacterial infections has declined due to the emergence of resistant organisms.
Collapse
Affiliation(s)
- Edmar Chartone-Souza
- Departamento de Biologia Geral-ICB, Universidade Federal de Minas Gerais 31.270-901, Belo Horizonte MG, Brazil
| | | | | | | | | | | |
Collapse
|
46
|
Gambinossi F, Mecheri B, Nocentini M, Puggelli M, Caminati G. Effect of the phospholipid head group in antibiotic-phospholipid association at water-air interface. Biophys Chem 2005; 110:101-17. [PMID: 15223148 DOI: 10.1016/j.bpc.2004.01.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2003] [Revised: 01/22/2004] [Accepted: 01/23/2004] [Indexed: 10/26/2022]
Abstract
We studied the interactions of tetracycline antibiotics, TCs, with phospholipid monolayers with the two-fold aim of elucidating the mechanism of action of TCs and to provide a first step for the realization of bio-mimetic sensor for such drugs by means of the Langmuir-Blodgett technique. Preliminary surface tension studies demonstrated that surface activity of tetracycline is moderate and dependent on the pH of the subphase. We selected three phospholipids having hydrophobic chains of the same length but differing in the polar head structures, i.e. dipalmitoylphosphatidylcholine, dipalmitoylphosphatidylethanolamine, and dipalmitoylphosphatidic acid. Surface pressure- and surface potential- area isotherms were employed to investigate the behavior of the phospholipid monolayers at the water-air interface when tetracycline was added to the aqueous subphase. Analysis of the results indicated that the electrostatic interaction is the driving force for migration of tetracycline towards the interface where localized adsorption to the head groups occurs. Nevertheless, such interactions appear to be insufficient to promote penetration of tetracycline through the hydrophobic layer.
Collapse
Affiliation(s)
- F Gambinossi
- Dipartimento di Chimica, Polo Scientifico, Università di Firenze, Via della Lastruccia, 3, 50019 Sesto Fiorentino, Florence, Italy.
| | | | | | | | | |
Collapse
|
47
|
Sapunaric FM, Levy SB. Substitutions in the interdomain loop of the Tn10 TetA efflux transporter alter tetracycline resistance and substrate specificity. Microbiology (Reading) 2005; 151:2315-2322. [PMID: 16000721 DOI: 10.1099/mic.0.27997-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cysteine replacement of Asp190, Glu192 and Ser201 residues in the cytoplasmic interdomain loop of the TetA(B) tetracycline efflux antiporter from Tn10 reduces tetracycline resistance [Tamura, N., Konishi, S., Iwaki, S., Kimura-Someya, T., Nada, S. & Yamaguchi, A. (2001). J Biol Chem 276, 20330-20339]. It was found that these Cys substitutions altered the substrate specificity of TetA(B), increasing the relative resistance to doxycycline and minocycline over that to tetracycline by three- to sixfold. Substitutions of Asp190 and Glu192 by Ala, Asn and Gln also impaired the ability of TetA(B) to mediate tetracycline resistance while Ser201Ala and Ser201Thr substitutions did not. A Leu9Phe substitution in the first transmembrane helix of TetA(B) suppressed the Ser201Cys mutation, undoing the alterations in resistance and specificity. That the interdomain loop might contact substrate during transport, as is suggested from its role in substrate specificity, is unexpected considering that the primary sequence in the loop is not conserved among a group of otherwise homologous TetA proteins. However, in the interdomain loop of 11 of 14 homologous TetA efflux proteins, computational analysis revealed a short alpha-helix, which includes some residues affecting activity and substrate specificity. Perhaps this conserved secondary structure accounts for the role of the non-conserved interdomain loop in TetA function.
Collapse
Affiliation(s)
- Frédéric M Sapunaric
- The Center for Adaptation Genetics and Drug Resistance and Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA 02111, USA
| | - Stuart B Levy
- The Center for Adaptation Genetics and Drug Resistance and Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA 02111, USA
| |
Collapse
|
48
|
Abstract
Drug resistance in bacteria, and especially resistance to multiple antibacterials, has attracted much attention in recent years. In addition to the well known mechanisms, such as inactivation of drugs and alteration of targets, active efflux is now known to play a major role in the resistance of many species to antibacterials. Drug-specific efflux (e.g. that of tetracycline) has been recognised as the major mechanism of resistance to this drug in Gram-negative bacteria. In addition, we now recognise that multidrug efflux pumps are becoming increasingly important. Such pumps play major roles in the antiseptic resistance of Staphylococcus aureus, and fluoroquinolone resistance of S. aureus and Streptococcus pneumoniae. Multidrug pumps, often with very wide substrate specificity, are not only essential for the intrinsic resistance of many Gram-negative bacteria but also produce elevated levels of resistance when overexpressed. Paradoxically, 'advanced' agents for which resistance is unlikely to be caused by traditional mechanisms, such as fluoroquinolones and beta-lactams of the latest generations, are likely to select for overproduction mutants of these pumps and make the bacteria resistant in one step to practically all classes of antibacterial agents. Such overproduction mutants are also selected for by the use of antiseptics and biocides, increasingly incorporated into consumer products, and this is also of major concern. We can consider efflux pumps as potentially effective antibacterial targets. Inhibition of efflux pumps by an efflux pump inhibitor would restore the activity of an agent subject to efflux. An alternative approach is to develop antibacterials that would bypass the action of efflux pumps.
Collapse
Affiliation(s)
- Xian-Zhi Li
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202, USA
| | | |
Collapse
|
49
|
Bannam TL, Johanesen PA, Salvado CL, Pidot SJA, Farrow KA, Rood JI. The Clostridium perfringens TetA(P) efflux protein contains a functional variant of the Motif A region found in major facilitator superfamily transport proteins. Microbiology (Reading) 2004; 150:127-134. [PMID: 14702405 DOI: 10.1099/mic.0.26614-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Clostridium perfringens tetracycline resistance protein, TetA(P), is an inner-membrane protein that mediates the active efflux of tetracycline from the bacterial cell. This protein comprises 420 aa and is predicted to have 12 transmembrane domains (TMDs). Comparison of the TetA(P) amino acid sequence to that of several members of the major facilitator superfamily (MFS) identified a variant copy of the conserved Motif A. This region consists of the sequence E59xPxxxxxDxxxRK72 and is located within the putative loop joining TMDs 2 and 3 in the predicted structural model of the TetA(P) protein. To study the functional importance of the conserved residues, site-directed mutagenesis was used to construct 17 point mutations that were then analysed for their effect on tetracycline resistance and their ability to produce an immunoreactive TetA(P) protein. Changes to the conserved Phe-58 residue were tolerated, whereas three independent substitutions of Pro-61 abolished tetracycline resistance. Examination of the basic residues showed that Arg-71 is required for function, whereas tetracycline resistance was retained when Lys-72 was substituted with arginine. These results confirm that the region encoding this motif is important for tetracycline resistance and represents a distant version of the Motif A region found in other efflux proteins and members of the MFS family. In addition, it was shown that Glu-117 of the TetA(P) protein, which is predicted to be located in TMD4, is important for resistance although a derivative with an aspartate residue at this position is also functional.
Collapse
Affiliation(s)
- Trudi L Bannam
- ARC Centre for Structural and Functional Microbial Genomics, Department of Microbiology, Monash University, Victoria 3800, Australia
| | - Priscilla A Johanesen
- ARC Centre for Structural and Functional Microbial Genomics, Department of Microbiology, Monash University, Victoria 3800, Australia
| | - Chelsea L Salvado
- ARC Centre for Structural and Functional Microbial Genomics, Department of Microbiology, Monash University, Victoria 3800, Australia
| | - Sacha J A Pidot
- ARC Centre for Structural and Functional Microbial Genomics, Department of Microbiology, Monash University, Victoria 3800, Australia
| | - Kylie A Farrow
- ARC Centre for Structural and Functional Microbial Genomics, Department of Microbiology, Monash University, Victoria 3800, Australia
| | - Julian I Rood
- ARC Centre for Structural and Functional Microbial Genomics, Department of Microbiology, Monash University, Victoria 3800, Australia
| |
Collapse
|
50
|
Abstract
Gene regulation by tetracyclines has become a widely-used tool to study gene functions in pro- and eukaryotes. This regulatory system originates from Gram-negative bacteria, in which it fine-tunes expression of a tetracycline-specific export protein mediating resistance against this antibiotic. This review attempts to describe briefly the selective pressures governing the evolution of tetracycline regulation, which have led to the unique regulatory properties underlying its success in manifold applications. After discussing the basic mechanisms we will present the large variety of designed alterations of activities which have contributed to the still growing tool-box of components available for adjusting the regulatory properties to study gene functions in different organisms or tissues. Finally, we provide an overview of the various experimental setups available for pro- and eukaryotes, and touch upon some highlights discovered by the use of tetracycline-dependent gene regulation.
Collapse
Affiliation(s)
- Christian Berens
- Lehrstuhl für Mikrobiologie, Friedrich-Alexander Universität Erlangen-Nürnberg, Staudtstr. 5, D-91058, Erlangen, Germany
| | | |
Collapse
|