1
|
Shen JS, Balaji U, Shigeyasu K, Okugawa Y, Jabbarzadeh-Tabrizi S, Day TS, Arning E, Marshall J, Cheng SH, Gu J, Schiffmann R, Bottiglieri T, Goel A. Dysregulated DNA methylation in the pathogenesis of Fabry disease. Mol Genet Metab Rep 2022; 33:100919. [PMID: 36186841 PMCID: PMC9519376 DOI: 10.1016/j.ymgmr.2022.100919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/21/2022] [Indexed: 12/05/2022] Open
Abstract
Fabry disease is an X-linked lysosomal storage disorder caused by a deficiency of α-galactosidase A and subsequent accumulation of glycosphingolipids with terminal α-D-galactosyl residues. The molecular process through which this abnormal metabolism of glycosphingolipids causes multisystem dysfunction in Fabry disease is not fully understood. We sought to determine whether dysregulated DNA methylation plays a role in the development of this disease. In the present study, using isogenic cellular models derived from Fabry patient endothelial cells, we tested whether manipulation of α-galactosidase A activity and glycosphingolipid metabolism affects DNA methylation. Bisulfite pyrosequencing revealed that changes in α-galactosidase A activity were associated with significantly altered DNA methylation in the androgen receptor promoter, and this effect was highly CpG loci-specific. Methylation array studies showed that α-galactosidase A activity and glycosphingolipid levels were associated with differential methylation of numerous CpG sites throughout the genome. We identified 15 signaling pathways that may be susceptible to methylation alterations in Fabry disease. By incorporating RNA sequencing data, we identified 21 genes that have both differential mRNA expression and methylation. Upregulated expression of collagen type IV alpha 1 and alpha 2 genes correlated with decreased methylation of these two genes. Methionine levels were elevated in Fabry patient cells and Fabry mouse tissues, suggesting that a perturbed methionine cycle contributes to the observed dysregulated methylation patterns. In conclusion, this study provides evidence that α-galactosidase A deficiency and glycosphingolipid storage may affect DNA methylation homeostasis and highlights the importance of epigenetics in the pathogenesis of Fabry disease and, possibly, of other lysosomal storage disorders.
Collapse
Affiliation(s)
- Jin-Song Shen
- Institute of Metabolic Disease, Baylor Scott & White Research Institute, 3434 Live Oak Street, Dallas, TX 75024, United States of America
- Corresponding author at: 4D Molecular Therapeutics, 5858 Horton St., Suite 455, Emeryville, CA 94608, United States of America.
| | - Uthra Balaji
- Baylor Scott & White Research Institute, Biostatistics, Dallas, TX, United States of America
| | - Kunitoshi Shigeyasu
- Center for Gastrointestinal Research; Center for Epigenetics, Cancer Prevention and Cancer Genomics, Baylor Research Institute, Dallas, TX, United States of America
| | - Yoshinaga Okugawa
- Center for Gastrointestinal Research; Center for Epigenetics, Cancer Prevention and Cancer Genomics, Baylor Research Institute, Dallas, TX, United States of America
| | - Siamak Jabbarzadeh-Tabrizi
- Institute of Metabolic Disease, Baylor Scott & White Research Institute, 3434 Live Oak Street, Dallas, TX 75024, United States of America
| | - Taniqua S. Day
- Institute of Metabolic Disease, Baylor Scott & White Research Institute, 3434 Live Oak Street, Dallas, TX 75024, United States of America
| | - Erland Arning
- Institute of Metabolic Disease, Baylor Scott & White Research Institute, 3434 Live Oak Street, Dallas, TX 75024, United States of America
| | - John Marshall
- Sanofi Genzyme, 49 New York Avenue, Framingham, MA 01701, United States of America
| | - Seng H. Cheng
- Sanofi Genzyme, 49 New York Avenue, Framingham, MA 01701, United States of America
| | - Jinghua Gu
- Baylor Scott & White Research Institute, Biostatistics, Dallas, TX, United States of America
| | - Raphael Schiffmann
- Institute of Metabolic Disease, Baylor Scott & White Research Institute, 3434 Live Oak Street, Dallas, TX 75024, United States of America
| | - Teodoro Bottiglieri
- Institute of Metabolic Disease, Baylor Scott & White Research Institute, 3434 Live Oak Street, Dallas, TX 75024, United States of America
| | - Ajay Goel
- Center for Gastrointestinal Research; Center for Epigenetics, Cancer Prevention and Cancer Genomics, Baylor Research Institute, Dallas, TX, United States of America
| |
Collapse
|
2
|
Chen PR, Redel BK, Kerns KC, Spate LD, Prather RS. Challenges and Considerations during In Vitro Production of Porcine Embryos. Cells 2021; 10:cells10102770. [PMID: 34685749 PMCID: PMC8535139 DOI: 10.3390/cells10102770] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 02/02/2023] Open
Abstract
Genetically modified pigs have become valuable tools for generating advances in animal agriculture and human medicine. Importantly, in vitro production and manipulation of embryos is an essential step in the process of creating porcine models. As the in vitro environment is still suboptimal, it is imperative to examine the porcine embryo culture system from several angles to identify methods for improvement. Understanding metabolic characteristics of porcine embryos and considering comparisons with other mammalian species is useful for optimizing culture media formulations. Furthermore, stressors arising from the environment and maternal or paternal factors must be taken into consideration to produce healthy embryos in vitro. In this review, we progress stepwise through in vitro oocyte maturation, fertilization, and embryo culture in pigs to assess the status of current culture systems and address points where improvements can be made.
Collapse
Affiliation(s)
- Paula R. Chen
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | | | - Karl C. Kerns
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Lee D. Spate
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
- National Swine Resource and Research Center, University of Missouri, Columbia, MO 65211, USA
| | - Randall S. Prather
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
- National Swine Resource and Research Center, University of Missouri, Columbia, MO 65211, USA
- Correspondence:
| |
Collapse
|
3
|
α-Lipoic Acid Increases Collagen Synthesis and Deposition in Nondiabetic and Diabetic Rat Kidneys. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6669352. [PMID: 33777319 PMCID: PMC7979310 DOI: 10.1155/2021/6669352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/19/2021] [Accepted: 02/27/2021] [Indexed: 12/24/2022]
Abstract
α-Lipoic acid (ALA) is widely used as a nutritional supplement and therapeutic agent in diabetes management. Well-established antioxidant and hypoglycemic effects of ALA were considered to be particularly important in combating diabetic complications including renal injury. The present study evaluated the potential of ALA to affect profibrotic events in kidney that could alter its structure and functioning. ALA was administered intraperitoneally (10 mg/kg) to nondiabetic and streptozotocin-induced diabetic male Wistar rats for 4 and 8 weeks. The effects of ALA were assessed starting from structural/morphological alterations through changes that characterize profibrotic processes, to regulation of collagen gene expression in kidney. Here, we demonstrated that ALA improved systemic glucose and urea level, reduced formation of renal advanced glycation end products (AGEs), and maintained renal structural integrity in diabetic rats. However, profibrotic events provoked in diabetes were not alleviated by ALA since collagen synthesis/deposition and expression of transforming growth factor-β1 (TGF-β1) and α-smooth muscle actin (α-SMA) remained elevated in ALA-treated diabetic rats, especially after 8 weeks of diabetes onset. Moreover, 8 weeks treatment of nondiabetic rats with ALA led to the development of profibrotic features reflected in increased collagen synthesis/deposition. Besides the TGF-β1 downstream signaling, the additional mechanism underlying the upregulation of collagen IV in nondiabetic rats treated with ALA involves decreased DNA methylation of its promoter that could arise from increased Tet1 expression. These findings emphasize the therapeutic caution in the use of ALA, especially in patients with renal diabetic complication.
Collapse
|
4
|
Kelly GM, Gatie MI. Mechanisms Regulating Stemness and Differentiation in Embryonal Carcinoma Cells. Stem Cells Int 2017; 2017:3684178. [PMID: 28373885 PMCID: PMC5360977 DOI: 10.1155/2017/3684178] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 01/10/2017] [Accepted: 02/08/2017] [Indexed: 02/06/2023] Open
Abstract
Just over ten years have passed since the seminal Takahashi-Yamanaka paper, and while most attention nowadays is on induced, embryonic, and cancer stem cells, much of the pioneering work arose from studies with embryonal carcinoma cells (ECCs) derived from teratocarcinomas. This original work was broad in scope, but eventually led the way for us to focus on the components involved in the gene regulation of stemness and differentiation. As the name implies, ECCs are malignant in nature, yet maintain the ability to differentiate into the 3 germ layers and extraembryonic tissues, as well as behave normally when reintroduced into a healthy blastocyst. Retinoic acid signaling has been thoroughly interrogated in ECCs, especially in the F9 and P19 murine cell models, and while we have touched on this aspect, this review purposely highlights how some key transcription factors regulate pluripotency and cell stemness prior to this signaling. Another major focus is on the epigenetic regulation of ECCs and stem cells, and, towards that end, this review closes on what we see as a new frontier in combating aging and human disease, namely, how cellular metabolism shapes the epigenetic landscape and hence the pluripotency of all stem cells.
Collapse
Affiliation(s)
- Gregory M. Kelly
- Department of Biology, Molecular Genetics Unit, Western University, London, ON, Canada
- Collaborative Program in Developmental Biology, Western University, London, ON, Canada
- Department of Paediatrics and Department of Physiology and Pharmacology, Western University, London, ON, Canada
- Child Health Research Institute, London, ON, Canada
- Ontario Institute for Regenerative Medicine, Toronto, ON, Canada
- The Hospital for Sick Children, Toronto, ON, Canada
| | - Mohamed I. Gatie
- Department of Biology, Molecular Genetics Unit, Western University, London, ON, Canada
- Collaborative Program in Developmental Biology, Western University, London, ON, Canada
| |
Collapse
|
5
|
Ikeda K, Iyama KI, Ishikawa N, Egami H, Nakao M, Sado Y, Ninomiya Y, Baba H. Loss of expression of type IV collagen alpha5 and alpha6 chains in colorectal cancer associated with the hypermethylation of their promoter region. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 168:856-65. [PMID: 16507901 PMCID: PMC1606532 DOI: 10.2353/ajpath.2006.050384] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Type IV collagen, a major component of the basement membrane (BM), is composed of six genetically distinct alpha(IV) chains, alpha1(IV) to alpha6(IV). Their genes are paired on three different chromosomes in a head-to-head arrangement. The alpha5(IV) gene (COL4A5) and the alpha6(IV) gene (COL4A6) are on chromosome Xq22 and are regulated by a bidirectional promoter. Loss of the alpha5(IV)/alpha6(IV) chains in epithelial BM occur in the early stage of cancer invasion. However, the regulatory mechanism of the specific loss of the alpha5(IV)/alpha6(IV) chains during cancer cell invasion is still undetermined. In the present study, we examined the expression of the alpha5(IV)/alpha6(IV) chains and the methylation profiles of the bidirectional promoter region of COL4A5/COL4A6 in colon cancer cell lines and colorectal tumor tissues. The expression of the alpha5(IV)/alpha6(IV) chains was down-regulated in colorectal cancer, and the loss of expression of the alpha5(IV)/alpha6(IV) chains was associated with the hypermethylation of their promoter region. In conclusion, the hypermethylation of the bidirectional promoter region of COL4A5/COL4A6 is one of the events that is responsible for the loss of expression of the alpha5(IV)/alpha6(IV) chains and the remodeling of the epithelial BM during cancer cell invasion.
Collapse
Affiliation(s)
- Koei Ikeda
- Department of Surgical Pathology, Kumamoto University School of Medicine, Japan
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Nojima H, Nagaoka K, Christenson RK, Shiota K, Imakawa K. Increase in DNA methylation downregulates conceptus interferon-tau gene expression. Mol Reprod Dev 2004; 67:396-405. [PMID: 14991730 DOI: 10.1002/mrd.20002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Expression of ovine interferon-tau (oIFNtau) genes, essential for the maternal recognition of pregnancy in ruminant ungulates, is restricted to the trophoblast and is not detected in any other cell types or tissues. Substantial secretion of oIFNtau starts on day 12-13 of pregnancy (day 0 = day of estrus), reaches the highest on day 16-17, and then declines rapidly. Ovine IFNtau mRNA, on the other hand, reaches the highest level on day 14 of pregnancy, 2-3 days before peak production of the protein. In this study, day 14 and 17 conceptuses treated with 5-aza-2'-deoxycytidine, an inhibitor of DNA methylation, were cultured in vitro and only day 17, not day 14, conceptuses resulted in upregulation of oIFNtau gene expression. To gain insight into the molecular mechanism of oIFNtau gene downregulation, the methylation status within 1 kb of the 5'-flanking region of oIFNtau-o10 gene was investigated: CpG dinucleotides of this gene in day 14 ovine conceptuses were hypomethylated compared to day 20 conceptuses or other tissues. In vitro methylation of oIFNtau-o10-reporter constructs caused suppression of reporter activity in transient transfections. Cotransfection of methyl-CpG-binding protein (MeCP2) with the reporter construct elicited further suppression of the reporter activity. In electrophoretic mobility shift assay (EMSA), patterns of shifted bands did not show much difference between methylated and unmethylated probes in distal regions, but exhibited differences in the proximal region of upstream sequences of the oIFNtau gene. These results provide evidence that changes in the degree of DNA methylation could be one of the major mechanisms leading to downregulation of the oIFNtau-o10 gene during early gestation, and possibly its silencing in nonconceptus tissues.
Collapse
Affiliation(s)
- Hisashi Nojima
- Laboratory of Animal Breeding, Faculty of Agriculture, The University of Tokyo, Tokyo, Japan
| | | | | | | | | |
Collapse
|
7
|
Fujita H, Fujii R, Aratani S, Amano T, Fukamizu A, Nakajima T. Antithetic effects of MBD2a on gene regulation. Mol Cell Biol 2003; 23:2645-57. [PMID: 12665568 PMCID: PMC152551 DOI: 10.1128/mcb.23.8.2645-2657.2003] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DNA methylation is essential for epigenetic gene regulation during development. The cyclic AMP (cAMP)-responsive element (CRE) is found in the promoter of many cAMP-regulated genes and plays important roles in their gene expression. Methylation occurs on the CRE site and results in transcriptional repression via a direct mechanism, that is, prevention by the methyl group of binding of the cAMP-responsive factor CREB to this site. A recent study indicated that the nucleosome is also important in repressing transcription. In this study, we investigated the regulation of transcriptional repression on methylated CRE. We focused on methyl-CpG binding domain protein 2 (MBD2). MBD2 consists of two forms, MBD2a and MBD2b, the latter lacking the N-terminal extension of MBD2a. Unexpectedly, we found that MBD2a, but not MBD2b, promoted activation of the unmethylated cAMP-responsive genes. An in vivo binding assay revealed that MBD2a selectively interacted with RNA helicase A (RHA), a component of CREB transcriptional coactivator complexes. MBD2a and RHA cooperatively enhanced CREB-dependent gene expression. Interestingly, coimmunoprecipitation assays demonstrated that MBD2a binding to RHA was not associated with histone deacetylase 1. Our results indicate a novel role for MBD2a in gene regulation.
Collapse
Affiliation(s)
- Hidetoshi Fujita
- Institute of Medical Science, St. Marianna University School of Medicine, Miyamae-ku, Kawasaki, Kanagawa 216-8512, Japan
| | | | | | | | | | | |
Collapse
|
8
|
Cho JH, Kimura H, Minami T, Ohgane J, Hattori N, Tanaka S, Shiota K. DNA methylation regulates placental lactogen I gene expression. Endocrinology 2001; 142:3389-96. [PMID: 11459782 DOI: 10.1210/endo.142.8.8347] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Expression of rat placental lactogen I is specific to the placenta and never expressed in other tissues. To obtain insight into the mechanism of tissue-specific gene expression, we investigated the methylation status in 3.4 kb of the 5'-flanking region of the rat placental lactogen I gene. We found that the distal promoter region of the rat placental lactogen I gene had more potent promoter activity than that of the proximal area alone, which contains several possible cis-elements. Although there are only 17 CpGs in the promoter region, in vitro methylation of the reporter constructs caused severe suppression of reporter activity, and CpG sites in the placenta were more hypomethylated than other tissues. Coexpression of methyl-CpG-binding protein with reporter constructs elicited further suppression of the reporter activity, whereas treatment with trichostatin A, an inhibitor of histone deacetylase, reversed the suppression caused by methylation. Furthermore, treatment of rat placental lactogen I nonexpressing BRL cells with 5-aza-2'-deoxycytidine, an inhibitor of DNA methylation, or trichostatin A resulted in the de novo expression of rat placental lactogen I. These results provide evidence that change in DNA methylation is the fundamental mechanism regulating the tissue-specific expression of the rat placental lactogen I gene.
Collapse
Affiliation(s)
- J H Cho
- Laboratory of Cellular Biochemistry, Animal Resource Sciences/Veterinary Medical Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | | | | | | | | | | | | |
Collapse
|
9
|
Zhu B, Benjamin D, Zheng Y, Angliker H, Thiry S, Siegmann M, Jost JP. Overexpression of 5-methylcytosine DNA glycosylase in human embryonic kidney cells EcR293 demethylates the promoter of a hormone-regulated reporter gene. Proc Natl Acad Sci U S A 2001; 98:5031-6. [PMID: 11296268 PMCID: PMC33158 DOI: 10.1073/pnas.091097298] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have shown that the DNA demethylation complex isolated from chicken embryos has a G(.)T mismatch DNA glycosylase that also possesses 5-methylcytosine DNA glycosylase (5-MCDG) activity. Herein we show that human embryonic kidney cells stably transfected with 5-MCDG cDNA linked to a cytomegalovirus promoter overexpress 5-MCDG. A 15- to 20-fold overexpression of 5-MCDG results in the specific demethylation of a stably integrated ecdysone-retinoic acid responsive enhancer-promoter linked to a beta-galactosidase reporter gene. Demethylation occurs in the absence of the ligand ponasterone A (an analogue of ecdysone). The state of methylation of the transgene was investigated by Southern blot analysis and by the bisulfite genomic sequencing reaction. Demethylation occurs downstream of the hormone response elements. No genome-wide demethylation was observed. The expression of an inactive mutant of 5-MCDG or the empty vector does not elicit any demethylation of the promoter-enhancer of the reporter gene. An increase in 5-MCDG activity does not influence the activity of DNA methyltransferase(s) when tested in vitro with a hemimethylated substrate. There is no change in the transgene copy number during selection of the clones with antibiotics. Immunoprecipitation combined with Western blot analysis showed that an antibody directed against 5-MCDG precipitates a complex containing the retinoid X receptor alpha. The association between retinoid receptor and 5-MCDG is not ligand dependent. These results suggest that a complex of the hormone receptor with 5-MCDG may target demethylation of the transgene in this system.
Collapse
Affiliation(s)
- B Zhu
- Friedrich Miescher-Institut, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
10
|
MacPhee DG. Epigenetics and epimutagens: some new perspectives on cancer, germ line effects and endocrine disrupters. Mutat Res 1998; 400:369-79. [PMID: 9685697 DOI: 10.1016/s0027-5107(98)00046-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
It is known that a variety of chemicals, including certain base analogues and reactive oxygen species, can alter the phenotypes of mammalian cells epigenetically, i.e., without changing their DNA sequence information in any way. The implications of such findings are not trivial, but do not seem to have been the focus of a great deal of attention amongst mutation researchers to date. In part this may be a reflection of the confused state of terminology in the chemical carcinogenesis research area and in part may signal a reluctance on the part of many of us to come to terms with the idea of heritable non-sequence changes to DNA molecules. In this review, some of the most obvious outcomes of spontaneous and induced epimutagenic change for human carcinogenesis and germ line inheritance are discussed, and an attempt is made to place the so-called endocrine disrupters in a context in which their modes of action may be more readily analysed and integrated into the broader chemical hazard framework.
Collapse
Affiliation(s)
- D G MacPhee
- School of Microbiology, La Trobe University, Bundoora, Victoria 3083, Australia.
| |
Collapse
|
11
|
Abstract
The biological importance of complex interactions between cells and extracellular matrix has become widely recognized. For normal epithelial cells, contact with the matrix is limited to the basement membrane. Our understanding of the composition and assembly of basement membranes is increasing, as is our understanding of the mechanisms by which synthesis and degradation of basement membranes are controlled. Basement membrane abnormalities may result from disease and may cause disease. Papers in this edition of the Journal of Pathology discuss changes in basement membrane composition in disease, and add yet another link to the many connections between basement membranes, fibrosis and the control of cell proliferation.
Collapse
|
12
|
Schmitz A, Short M, Ammerpohl O, Asbrand C, Nickel J, Renkawitz R. Cis-elements required for the demethylation of the mouse M-lysozyme downstream enhancer. J Biol Chem 1997; 272:20850-6. [PMID: 9252411 DOI: 10.1074/jbc.272.33.20850] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The mouse lysozyme downstream enhancer was previously colocalized with the DNase I-hypersensitive site in the chromatin of mature macrophages. This hypersensitive site was shown to be macrophage differentiation-dependent. Demethylation of CpG sequences within the enhancer is correlated with lysozyme expression in mature macrophages. Binding of the GABP heterotetrameric transcription factor to the enhancer core element (MLDE), only seen in vivo on the demethylated MLDE element in macrophages, is inhibited by DNA methylation. Here, we analyzed the DNA sequences required for demethylation. In electrophoretic mobility shift experiments we found that in addition to the complete methylated MLDE the hemimethylated form of the lower strand inhibits GABP binding as well. Therefore, GABP is unlikely to be the mediator of demethylation. In addition, we show by stable DNA transfections of methylated mouse lysozyme enhancer sequences that MLDE-flanking sequences are required for demethylation. We narrowed down these DNA elements to two short regions of 163 and 79 base pairs on either side of the MLDE, each of which is sufficient to mediate demethylation of the GABP site.
Collapse
Affiliation(s)
- A Schmitz
- Genetisches Institut, Justus-Liebig-Universität, Heinrich-Buff-Ring 58-62, D35392 Giessen, Germany
| | | | | | | | | | | |
Collapse
|
13
|
Okuse K, Matsuoka I, Kurihara K. Tissue-specific methylation occurs in the essential promoter element of the tyrosine hydroxylase gene. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1997; 46:197-207. [PMID: 9191094 DOI: 10.1016/s0169-328x(96)00302-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Expression of tyrosine hydroxylase (TH) is regulated in a tissue-specific manner by multiple mechanisms. In catecholaminergic cells, the expression of TH-mRNA is up-regulated by forskolin (FK) and is suppressed by retinoic acid (RA). We have previously provided evidence that, in N-18 cells, the expression of TH-mRNA is suppressed by DNA methylation of the TH gene itself. In the present study, using a catecholaminergic cell line, N1E-115, we performed deletional and mutational analyses on the 5'-flanking region of the mouse TH gene. The results indicate that a cAMP response element (CRE) mediates constitutive transcription of the TH gene, as well as responsiveness to FK and RA. Using bisulfite sequencing methods, we analyzed the methylation status of the TH gene 5'-flanking region in various cell lines and rat tissues. We found that three cytosine residues in the domain surrounding the CRE of the TH gene promoter were specifically methylated in N-18 cells and TH non-expressing rat tissues. In contrast, these cytosines were undermethylated in TH expressing cell lines and tissues. The inverse correlation between the frequency of cytosine methylation at these specific sites and the levels of TH expression supports a role for DNA methylation in the regulation of tissue-specific gene expression.
Collapse
Affiliation(s)
- K Okuse
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | | | | |
Collapse
|
14
|
Thorner PS, Zheng K, Kalluri R, Jacobs R, Hudson BG. Coordinate gene expression of the alpha3, alpha4, and alpha5 chains of collagen type IV. Evidence from a canine model of X-linked nephritis with a COL4A5 gene mutation. J Biol Chem 1996; 271:13821-8. [PMID: 8662866 DOI: 10.1074/jbc.271.23.13821] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Canine X-linked hereditary nephritis is an animal model for human X-linked hereditary nephritis with a premature stop codon in the alpha5(IV) gene of collagen type IV. We used this model to examine the other alpha(IV) chains at the mRNA and protein level in the kidney, since in human X-linked hereditary nephritis, the alpha3(IV) and alpha4(IV) chains are often absent from the glomerular basement membrane, although both are encoded by autosomal genes. cDNA probes for the alpha1(IV)-alpha6(IV) chains were generated from normal dog kidney using the polymerase chain reaction. Sequences were >/=88% identical at the DNA level and >/=92% identical at the protein level to the respective human alpha(IV) chains. By Northern analysis, transcripts for the alpha1(IV), alpha2(IV), and alpha6(IV) chains were detected at comparable levels in both normal and affected male dog kidney RNA. As previously shown, the transcript for the alpha5(IV) chain was reduced to approximately 10% of normal. Unexpectedly, the alpha3(IV) and alpha4(IV) transcripts were both decreased >/=77% in affected male dog kidney, suggesting a mechanism coordinating the expression of these three basement membrane components. The NC1 domain of collagen type IV isolated from normal dog glomeruli was positive for the alpha3(IV), alpha4(IV), and alpha5(IV) chains by Western blotting. In contrast, in the NC1 domain isolated from affected dog glomeruli, these three chains were not detectable, except for a trace of alpha3(IV) dimer. In X-linked hereditary nephritis, the absence of the alpha3(IV) and alpha4(IV) chains from glomerular basement membrane may reflect factors acting at the transcriptional and/or translational level in addition to the protein assembly level.
Collapse
Affiliation(s)
- P S Thorner
- Department of Pathology, The Hospital for Sick Children and the University of Toronto, Toronto, Ontario M5G 1X8, Canada
| | | | | | | | | |
Collapse
|
15
|
Iehara N, Takeoka H, Tsuji H, Imabayashi T, Foster DN, Strauch AR, Yamada Y, Kita T, Doi T. Differentiation of smooth muscle phenotypes in mouse mesangial cells. Kidney Int 1996; 49:1330-41. [PMID: 8731098 DOI: 10.1038/ki.1996.189] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Smooth muscle alpha-actin (SMA) mRNA, a marker of vascular smooth muscle cells, was identified in the normal glomerular mesangium both in vivo and in vitro. Several populations of mesangial cells were studied to determine if SMA and basement membrane collagen were regulated together. The levels of SMA expression, which could be linked to the stage of differentiation, were different for the differing cell populations. One cell population had high SMA and type IV collagen levels at its early passages. The others expressed both interstitial and basement membrane collagens. The first population developed these phenotypic features at later passages. The levels of SMA and alpha 1(IV) collagen expression were regulated together in concert, whereas the alpha 2(I) collagen levels were expressed inversely to SMA and alpha 1(IV) collagen. Both SMA and type IV collagen were controlled by the methylation states of the cis-regulators; however, type I collagen was mainly regulated by the trans-acting regulators. Treatment with 5-azacytidine converted the cells of a fibroblast-phenotype to a smooth muscle cell-like phenotype. These cell lines may be useful for studying the differentiation process in vitro.
Collapse
Affiliation(s)
- N Iehara
- Department of Clinical Bio-Regulatory Science, Faculty of Medicine, Kyoto University, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Chang HS, Kim NB, Phillips SL. Positive elements in the laminin gamma 1 gene synergize to activate high level transcription during cellular differentiation. Nucleic Acids Res 1996; 24:1360-8. [PMID: 8614642 PMCID: PMC145770 DOI: 10.1093/nar/24.7.1360] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Transcription of the murine laminin gamma 1 gene is activated during retinoic acid/cAMP induced differentiation of F9 embryonal carcinoma cells. Positive transcription control elements associated with two DNase I hypersensitive regions in the large first intron of the gene have been identified which confer a differentiation response on the laminin gamma 1 promoter. However, the kinetics of transcriptional activation suggest each DNA region interacts with transcription factors appearing at different times during differentiation. Synergy between the two regions in cis causes high level activation.
Collapse
Affiliation(s)
- H S Chang
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, PA 15261, USA
| | | | | |
Collapse
|
17
|
Hick CA, Field LM, Devonshire AL. Changes in the methylation of amplified esterase DNA during loss and reselection of insecticide resistance in peach-potato aphids, Myzus persicae. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 1996; 26:41-47. [PMID: 8673078 DOI: 10.1016/0965-1748(95)00059-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Insecticide resistance in peach-potato aphids, Myzus persicae, results from the amplification of genes encoding an esterase that hydrolyses and sequesters insecticides. Resistance is normally stable, but highly resistant aphid clones sometimes lose resistance when insecticidal selection pressure is removed. This loss of resistance, termed reversion, arises from a loss of elevated esterase enzyme through transcriptional control, i.e. without loss of the amplified esterase DNA sequences. We have shown that loss of the elevated enzyme occurred simultaneously with loss of methylation at CCGG sites in the amplified DNA sequences. During reselection of resistance in these revertant clones, enzyme levels increased, but there was no corresponding return of methylation to DNA sequences. Thus, although DNA methylation is closely correlated with expression of the amplified esterase genes during reversion, it may not be a factor in the reverse process.
Collapse
Affiliation(s)
- C A Hick
- IACR-Rothamsted, Harpenden, Hertfordshire, U.K
| | | | | |
Collapse
|
18
|
Haniel A, Welge-Lüssen U, Kühn K, Pöschl E. Identification and characterization of a novel transcriptional silencer in the human collagen type IV gene COL4A2. J Biol Chem 1995; 270:11209-15. [PMID: 7744753 DOI: 10.1074/jbc.270.19.11209] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Collagen type IV [alpha 1(IV)2 alpha 2(IV)] is the basic structural component of all basement membranes. The two subunit genes COL4A1 and COL4A2 are found closely linked in the human and murine genomes and are transcribed divergently from a common promoter. Previously, activating elements had been detected within both genes which are indispensable for efficient transcription. An additional negative regulatory element has now been identified within the third intron of the COL4A2 gene which is able to inhibit transcription of both COL4 genes from their shared promoter, as well as the nonrelated herpes simplex virus thymidine kinase promoter. The element exerts its inhibitory effect largely independently from its relative orientation and distance from the initiation site of transcription. Therefore, the element represents a silencer which is named the "COL4 silencer." The minimal functional silencer could be narrowed down by deletion mapping to a sequence element located within intron 3 of the COL4A2 gene. This motif is specifically recognized by a nuclear protein, named "SILBF," and the binding site of which was determined by footprinting assays. Mutation studies and deletion analysis proved that the presence of this sequence element and its interaction with SILBF is not only essential but also sufficient for the silencing function. We assume that the COL4 silencer plays an important role in the control of overall expression and the balance of divergent transcription of both COL4 genes.
Collapse
Affiliation(s)
- A Haniel
- Max-Planck-Institut für Biochemie, Abteilung für Bindegewebsforschung, Martinsried, Federal Republic of Germany
| | | | | | | |
Collapse
|
19
|
Haaf T. The effects of 5-azacytidine and 5-azadeoxycytidine on chromosome structure and function: implications for methylation-associated cellular processes. Pharmacol Ther 1995; 65:19-46. [PMID: 7536332 DOI: 10.1016/0163-7258(94)00053-6] [Citation(s) in RCA: 134] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
5-Azacytidine (5-aza-C) analogs demonstrate a remarkable ability to induce heritable changes in gene and phenotypic expression. These cellular processes are associated with the demethylation of specific DNA sequences. On the other hand, 5-aza-C analogs have dramatic effects on chromosomes, leading to decondensation of chromatin structure, chromosomal instability and an advance in replication timing. Condensation inhibition of genetically inactive chromatin occurs when the DNA is still hemimethylated or fully methylated. In cell cultures prolonged for several replication cycles, chromosomal rearrangements and instability affect the 5-aza-C-sensitive regions. Moreover, the normally late-replicating inactive chromatin undergoes a transient temporal shift to an earlier DNA replication, characteristic of activatable chromatin. zThe induced alterations of chromosome structure and behavior may trigger the 5-aza-C-dependent process of cellular reprogramming. Apart from their differentiating and gene-modifying effects, 5-aza-C analogs can tumorigenically transform cells and modulate their metastatic potential. High doses of 5-aza-C analogs have cytotoxic and antineoplastic activities.
Collapse
Affiliation(s)
- T Haaf
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520-80050
| |
Collapse
|
20
|
Okuse K, Mizuno N, Matsuoka I, Kurihara K. Induction of cholinergic and adrenergic differentiation in N-18 cells by differentiation agents and DNA demethylating agents. Brain Res 1993; 626:225-33. [PMID: 7506629 DOI: 10.1016/0006-8993(93)90583-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Effects of various differentiating agents and DNA demethylating agents on the expression of choline acetyltransferase (ChAT) and tyrosine hydroxylase (TH), marker enzymes for cholinergic and adrenergic differentiation, respectively, were examined in N-18 neuroblastoma cells. Retinoic acid (RA) and a medium conditioned over C6-glioma cells (GCM), which have been shown to enhance the ChAT activity of PC12 cells, NG108-15 cells and fetal rat brain cells, did not induce ChAT activity of N-18 cells. Treatment of the cells with the DNA demethylating agents alone also did not affect ChAT activity. But after pretreatment of the cells with the DNA demethylating agents, ChAT activity of N-18 cells was greatly increased by either RA or GCM. TH activity of N-18 cells was enhanced by forskolin, an activator of adenylate cyclase. The pretreatment of the cells with the DNA demethylating agents greatly enhanced the induction of TH activity by forskolin. Levels of ChAT and TH messenger RNA were altered in accordance with changes in ChAT and TH activities. Possible mechanisms of the actions of the demethylating agents on cholinergic and adrenergic differentiation are discussed.
Collapse
Affiliation(s)
- K Okuse
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | | | | | | |
Collapse
|
21
|
Chakravarti S, Hassell JR, Phillips SL. Perlecan gene expression precedes laminin gene expression during differentiation of F9 embryonal carcinoma cells. Dev Dyn 1993; 197:107-14. [PMID: 8219353 DOI: 10.1002/aja.1001970204] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
F9 embryonal cells can be induced to differentiate and synthesize basement membrane proteins. Perlecan and laminin are two basement membrane constituents that have extensive regions of homology. Expression of perlecan and laminin B1 genes was followed during differentiation of F9 cells by measurements of transcription rate and mRNA abundance using nuclear run on assays and Northern hybridizations, respectively. The rate of precursor protein synthesis was determined by immunoprecipitation from lysates of pulse-labeled F9 cells. The results showed that perlecan gene expression responds more rapidly after induction than does laminin B1 gene expression but is ultimately expressed at a substantially lower level than laminin. Thus, the perlecan and laminin genes appear to be regulated by different mechanisms and their gene products are not made in stoichiometric amounts.
Collapse
MESH Headings
- Animals
- Blotting, Northern
- Bucladesine/pharmacology
- Carcinoma, Embryonal/chemistry
- Carcinoma, Embryonal/genetics
- Carcinoma, Embryonal/pathology
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/pathology
- Gene Expression/drug effects
- Gene Expression/genetics
- Heparan Sulfate Proteoglycans
- Heparitin Sulfate/analysis
- Heparitin Sulfate/genetics
- Heparitin Sulfate/metabolism
- Laminin/analysis
- Laminin/genetics
- Laminin/metabolism
- Mice
- Proteoglycans/analysis
- Proteoglycans/genetics
- Proteoglycans/metabolism
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- Transcription, Genetic/genetics
- Tretinoin/pharmacology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- S Chakravarti
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pennsylvania
| | | | | |
Collapse
|
22
|
Cooper GE, Bishop PL, Turker MS. Hemidemethylation is sufficient for chromatin relaxation and transcriptional activation of methylated aprt gene in mouse P19 embryonal carcinoma cell line. SOMATIC CELL AND MOLECULAR GENETICS 1993; 19:221-9. [PMID: 7687384 DOI: 10.1007/bf01233070] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A series of clones displaying a high-frequency "switching" phenotype for expression of the adenine phosphoribosyltransferase (aprt) gene was previously isolated from the P19 mouse embryonal carcinoma stem cell line. In a subset of these clones, loss of aprt expression was correlated with increased DNA methylation, a nuclease-resistant chromatin conformation, and loss of RNA transcription; reactivation was associated with a reversal of these parameters. In this report, the role of DNA methylation in transcriptional inactivation was studied in the H22D3 clone. The cells of this clone contain a single inactive aprt allele that is methylated. Mass cultures of H22D3 were treated with 2-deoxy-5'-azacytidine (5aCdr) and found to reactivate aprt at frequencies ranging from 60 to 90%. Treated cultures were then assayed over time for aprt mRNA, chromatin conformation, and DNA methylation of the aprt gene. These studies demonstrated that 5aCdr treatment resulted in promoter region-specific hemidemethylation and chromatin relaxation starting at 12 h. This was followed by the appearance of RNA transcripts at 18 h and increasing levels of APRT enzymatic activity at 36 h after treatment. Complete demethylation occurred significantly later. Experiments in which cells were treated with 5aCdr for varying periods of time demonstrated that a single round of analog incorporation was sufficient for transcriptional reactivation of aprt in H22D3.
Collapse
Affiliation(s)
- G E Cooper
- Department of Microbiology & Immunology, University of Kentucky College of Medicine, Lexington 40536
| | | | | |
Collapse
|
23
|
|
24
|
Ehrlich M, Ehrlich KC. Effect of DNA methylation on the binding of vertebrate and plant proteins to DNA. EXS 1993; 64:145-68. [PMID: 8418948 DOI: 10.1007/978-3-0348-9118-9_7] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- M Ehrlich
- Department of Biochemistry, Tulane Medical School, New Orleans, LA 70112
| | | |
Collapse
|
25
|
Abstract
5-Methylcytosine (5mC) in DNA is produced by post-synthetic modification of cytosine residues, and it occurs primarily in CpG doublets in the mammalian genome. 5mC is a mutable site, because it can undergo spontaneous deamination to thymine. There is a repair mechanism which specifically recognises G.T mispairs, and replaces thymine with cytosine. However, this repair is not fully efficient, because the 5mC-->T transition mutation occurs about 10 times as frequently as other transitions. Such mutations are frequently seen in inherited diseases, and mutations in the p53 gene in tumours are also very commonly in 5mCpG doublets. As well as mutations, there can also be heritable changes in DNA methylation, known as epimutations, which may be of particular significance in somatic cells. Whereas the pattern of DNA methylation is very constant for any one cell type, the pattern becomes very variable in tumour cells. The breakdown of the normal controls of DNA methylation in tumorigenesis can lead to increased gene expression or to gene silencing. DNA damage increases not only mutation, but also heritable changes in methylation. At present, little is known about the ability of DNA repair to preserve the normal pattern of methylation in somatic cells.
Collapse
Affiliation(s)
- R Holliday
- CSIRO Laboratory for Molecular Biology, Division of Biomolecular Engineering, Sydney, N.S.W., Australia
| | | |
Collapse
|
26
|
|
27
|
Hasse A, Schulz WA, Sies H. De novo methylation of transfected CAT gene plasmid constructs in F9 mouse embryonal carcinoma cells. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1131:16-22. [PMID: 1581356 DOI: 10.1016/0167-4781(92)90092-e] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
To study the formation of DNA methylation patterns, plasmids containing promoters of different strengths in front of the bacterial chloramphenicol acetyltransferase reporter gene were transfected into F9 mouse embryonal carcinoma cells. Methylation of the integrated plasmids as well as copy numbers and activities of the reporter gene were determined for individual cell clones. The methylation pattern of the integrated plasmids was found to be determined by properties of the DNA sequence itself. In contrast, the specific methylation patterns were invariant with respect to integration site, copy number and arrangement of the integrates; methylation did also not correlate with transcriptional activity of the different promoters. Certain promoter regions may therefore contain signals recognized by the de novo methylation activity in embryonal carcinoma cells.
Collapse
Affiliation(s)
- A Hasse
- Institut für Physiologische Chemie I, Heinrich-Heine-Universität, Düsseldorf, Germany
| | | | | |
Collapse
|
28
|
Chiang P, Burbelo P, Brugh S, Gordon R, Fukuda K, Yamada Y. Activation of collagen IV gene expression in F9 teratocarcinoma cells by 3-deazaadenosine analogs. Indirect inhibitors of methylation. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42928-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
29
|
Chida Y, Ishizaki M, Nakazawa M, Kao WW. Expression and methylation of the beta-subunit gene of prolyl 4-hydroxylase: in erythrocytes, tendon and cornea of chick embryos. Connect Tissue Res 1992; 28:191-204. [PMID: 1334815 DOI: 10.3109/03008209209015036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
It has recently been demonstrated that the beta-subunit of prolyl 4-hydroxylase (E.C. 1.14.11.2) is the same gene product as protein disulfide isomerase (PDI) and cellular thyroid hormone binding protein (THP). Therefore, it is very likely that the beta-subunit of the prolyl 4-hydroxylase gene serves as a house keeping gene in most cell types. In the present study, we examined the distribution of the chicken beta-subunit of prolyl 4-hydroxylase/protein disulfide isomerase (CPH beta/PDI) in erythrocytes, corneas and tendons of 13-, 17-, and 19-day-old chick embryos by immunohistochemistry using antibodies against CPH beta/PDI. Our data indicate that erythrocytes do not express the CPH beta/PDI gene whereas tendon cells express CPH beta/PDI at all developmental stages examined. The basal cells of corneal epithelium express CPH beta/PDI, but the superficial cell layers of stratified corneas of 19-day-old chick embryos do not. The expression of the CPH beta/PDI gene is also confirmed by in situ hybridization with cDNA encoding CPH beta/PDI. The results indicate that the expression of CPH beta/PDI in cornea is probably developmentally regulated. It has been suggested that methylation of genomic DNA is one of many possible regulatory mechanisms for gene expression. In order to examine whether methylation of genomic DNA may play any role in the expression of the beta-subunit gene, genomic DNA was isolated from corneas, tendons, and erythrocytes of individual 13-, 17-, and 19-day-old chick embryos. DNA samples were digested with Sma I and Eco RI, or Pst I and Sma I and followed by either Msp I, Hpa II, or Hha I and were then subjected to Southern hybridization with 32P-labeled genomic DNA fragments of CPH beta/PDI. Our results indicate that the CPH beta/PDI gene is methylated at the Hha I site in the 4th exon in erythrocytes whereas the same sites in tendon and cornea are hypomethylated. Examination of 5'-end flanking sequences of exon 1 of the CPH beta/PDI gene with the methylation sensitive endonucleases, Hha I and Hpa II did not reveal any difference in erythrocyte, cornea and tendon cells. Thus, our results indicated that DNA methylation may not play an important role in the expression of CPH beta/PDI.
Collapse
Affiliation(s)
- Y Chida
- Department of Ophthalmology, University of Cincinnati College of Medicine, Ohio 45267-0527
| | | | | | | |
Collapse
|
30
|
Hergersberg M. Biological aspects of cytosine methylation in eukaryotic cells. EXPERIENTIA 1991; 47:1171-85. [PMID: 1765128 DOI: 10.1007/bf01918381] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The existence in eukaryotes of a fifth base, 5-methylcytosine, and of tissue-specific methylation patterns have been known for many years, but except for a general association with inactive genes and chromatin the exact function of this DNA modification has remained elusive. The different hypotheses regarding the role of DNA methylation in regulation of gene expression, chromatin structure, development, and diseases, including cancer are summarized, and the experimental evidence for them is discussed. Structural and functional properties of the eukaryotic DNA cytosine methyltransferase are also reviewed.
Collapse
Affiliation(s)
- M Hergersberg
- Institut für Molekularbiologie II, Universität Zürich, Switzerland
| |
Collapse
|
31
|
Burbelo P, Bruggeman L, Gabriel G, Klotman P, Yamada Y. Characterization of a cis-acting element required for efficient transcriptional activation of the collagen IV enhancer. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54569-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
32
|
Abstract
Early studies on heritable variation in cultured mammalian cells suggested that both mutation and epigenetic events might be involved. The importance of mutations has subsequently been fully documented, but only recently has an alternative form of inheritance been uncovered. This is based on the post-synthetic methylation of cytosine in regulatory regions of genes. The pattern of methylation is heritable, and in almost all cases studied, methylation of a region is associated with lack of gene expression. Such silent genes can be reactivated by the powerful demethylating agent 5-azacytidine (5-aza-CR). Changes in heritable DNA methylation which alter phenotype are referred to as epimutations. It now seems very likely that the well known 'functional hemizygosity' in CHO cells and other near diploid cell lines is due to the existence of one active and one silent gene at many autosomal loci. It is clear that permanent cell lines inactivate genes by de novo methylation, whereas normal diploid cells do not have this activity. This has important implications for our understanding of cellular transformation, tumor progression, and the increase in chromosome number frequently associated with these cellular changes. It is likely that both mutations and epimutations are important in the emergence of fully transformed tumorigenic cells. Agents which increase or reduce DNA methylation in cells can be regarded as epimutagens, although in many cases the mechanisms of inducing hypo- or hyper-methylation are not understood. Two exceptions are 5-aza-CR which inhibits the normal DNA maintenance methylase activity, and 5-methyldeoxycytidine triphosphate which is incorporated into cellular DNA following electroporation and has been shown to silence genes.
Collapse
Affiliation(s)
- R Holliday
- CSIRO Division of Biomolecular Engineering, Laboratory for Molecular Biology, North Ryde, NSW, Australia
| |
Collapse
|
33
|
Bruggeman LA, Horikoshi S, Burbelo PD, Yamada Y, Klotman PE. Physiology and cell biology update: mechanisms of type IV collagen gene regulation. Am J Kidney Dis 1991; 18:134-9. [PMID: 2063849 DOI: 10.1016/s0272-6386(12)80305-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|