1
|
Abstract
In bacteria, transcription and translation take place in the same cellular compartment. Therefore, a messenger RNA can be translated as it is being transcribed, a process known as transcription-translation coupling. This process was already recognized at the dawn of molecular biology, yet the interplay between the two key players, the RNA polymerase and ribosome, remains elusive. Genetic data indicate that an RNA sequence can be translated shortly after it has been transcribed. The closer both processes are in time, the less accessible the RNA sequence is between the RNA polymerase and ribosome. This temporal coupling has important consequences for gene regulation. Biochemical and structural studies have detailed several complexes between the RNA polymerase and ribosome. The in vivo relevance of this physical coupling has not been formally demonstrated. We discuss how both temporal and physical coupling may mesh to produce the phenomenon we know as transcription-translation coupling.
Collapse
Affiliation(s)
- Gregor M Blaha
- Department of Biochemistry, University of California, Riverside, California, USA;
| | - Joseph T Wade
- Wadsworth Center, New York State Department of Health, Albany, New York, USA;
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, New York, USA
| |
Collapse
|
2
|
Kong G, Lee H, Vo TTT, Juang U, Kwon SH, Park J, Park J, Kim SH. Functional characteristics and research trends of PDE11A in human diseases (Review). Mol Med Rep 2022; 26:298. [PMID: 35929507 PMCID: PMC9434997 DOI: 10.3892/mmr.2022.12814] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 06/15/2022] [Indexed: 11/06/2022] Open
Abstract
cAMP and cGMP are important secondary messengers involved in cell regulation and metabolism driven by the G protein-coupled receptor. cAMP is converted via adenylyl cyclase (AC) and activates protein kinase A to phosphorylate intracellular proteins that mediate specific responses. cAMP signaling serves a role at multiple steps in tumorigenesis. The level of cAMP is increased in association with cancer cell formation through activation of AC-stimulatory G protein by mutation. Phosphodiesterases (PDEs) hydrolyze cAMP and cGMP to AMP and GMP. PDEs are composed of 11 families, and each can hydrolyze cAMP and cGMP or both cAMP and cGMP. PDEs perform various roles depending on their location and expression site, and are involved in several diseases, including male erectile dysfunction, pulmonary hypertension, Alzheimer's disease and schizophrenia. PDE11A is the 11th member of the PDE family and is characterized by four splice variants with varying tissue expression and N-terminal regulatory regions. Among tissues, the expression of PDE11A was highest in the prostate, and it was also expressed in hepatic skeletal muscle, pituitary, pancreas and kidney. PDE11A is the first PDE associated with an adrenocortical tumor associated genetic condition. In several studies, three PDE11A mutations have been reported in patients with Cushing syndrome with primary pigmented nodular adrenocortical disease or isolated micronodular adrenocortical disease without other genetic defects. It has been reported that an increase in PDE11A expression affects the proliferation of glioblastoma and worsens patient prognosis. The present mini-review summarizes the location of PDE11A expression, the impact of structural differences and disease relevance.
Collapse
Affiliation(s)
- Gyeyeong Kong
- Department of Pharmacology, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Hyunji Lee
- Department of Pharmacology, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Thuy-Trang T Vo
- Department of Pharmacology, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Uijin Juang
- Department of Pharmacology, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - So Hee Kwon
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Republic of Korea
| | - Jisoo Park
- Mitos Research Institute, Mitos Therapeutics Inc., Daejeon 34134, Republic of Korea
| | - Jongsun Park
- Department of Pharmacology, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Seon-Hwan Kim
- Department of Neurosurgery, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| |
Collapse
|
3
|
Regulation of Bacterial Gene Expression by Transcription Attenuation. Microbiol Mol Biol Rev 2019; 83:83/3/e00019-19. [PMID: 31270135 DOI: 10.1128/mmbr.00019-19] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
A wide variety of mechanisms that control gene expression in bacteria are based on conditional transcription termination. Generally, in these mechanisms, a transcription terminator is located between a promoter and a downstream gene(s), and the efficiency of the terminator is controlled by a regulatory effector that can be a metabolite, protein, or RNA. The most common type of regulation involving conditional termination is transcription attenuation, in which the primary regulatory target is an essential element of a single terminator. The terminator can be either intrinsic or Rho dependent, with each presenting unique regulatory targets. Transcription attenuation mechanisms can be divided into five classes based primarily on the manner in which transcription termination is rendered conditional. This review summarizes each class of control mechanisms from a historical perspective, describes important examples in a physiological context and the current state of knowledge, highlights major advances, and discusses expectations of future discoveries.
Collapse
|
4
|
Abstract
This review focuses on more recent studies concerning the systems biology of branched-chain amino acid biosynthesis, that is, the pathway-specific and global metabolic and genetic regulatory networks that enable the cell to adjust branched-chain amino acid synthesis rates to changing nutritional and environmental conditions. It begins with an overview of the enzymatic steps and metabolic regulatory mechanisms of the pathways and descriptions of the genetic regulatory mechanisms of the individual operons of the isoleucine-leucine-valine (ilv) regulon. This is followed by more-detailed discussions of recent evidence that global control mechanisms that coordinate the expression of the operons of this regulon with one another and the growth conditions of the cell are mediated by changes in DNA supercoiling that occur in response to changes in cellular energy charge levels that, in turn, are modulated by nutrient and environmental signals. Since the parallel pathways for isoleucine and valine biosynthesis are catalyzed by a single set of enzymes, and because the AHAS-catalyzed reaction is the first step specific for valine biosynthesis but the second step of isoleucine biosynthesis, valine inhibition of a single enzyme for this enzymatic step might compromise the cell for isoleucine or result in the accumulation of toxic intermediates. The operon-specific regulatory mechanisms of the operons of the ilv regulon are discussed in the review followed by a consideration and brief review of global regulatory proteins such as integration host factor (IHF), Lrp, and CAP (CRP) that affect the expression of these operons.
Collapse
|
5
|
Fasani RA, Savageau MA. Evolution of a genome-encoded bias in amino acid biosynthetic pathways is a potential indicator of amino acid dynamics in the environment. Mol Biol Evol 2014; 31:2865-78. [PMID: 25118252 PMCID: PMC4209129 DOI: 10.1093/molbev/msu225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Overcoming the stress of starvation is one of an organism’s most challenging phenotypic responses. Those organisms that frequently survive the challenge, by virtue of their fitness, will have evolved genomes that are shaped by their specific environments. Understanding this genotype–environment–phenotype relationship at a deep level will require quantitative predictive models of the complex molecular systems that link these aspects of an organism’s existence. Here, we treat one of the most fundamental molecular systems, protein synthesis, and the amino acid biosynthetic pathways involved in the stringent response to starvation. These systems face an inherent logical dilemma: Building an amino acid biosynthetic pathway to synthesize its product—the cognate amino acid of the pathway—may require that very amino acid when it is no longer available. To study this potential “catch-22,” we have created a generic model of amino acid biosynthesis in response to sudden starvation. Our mathematical analysis and computational results indicate that there are two distinctly different outcomes: Partial recovery to a new steady state, or full system failure. Moreover, the cell’s fate is dictated by the cognate bias, the number of cognate amino acids in the corresponding biosynthetic pathway relative to the average number of that amino acid in the proteome. We test these implications by analyzing the proteomes of over 1,800 sequenced microbes, which reveals statistically significant evidence of low cognate bias, a genetic trait that would avoid the biosynthetic quandary. Furthermore, these results suggest that the pattern of cognate bias, which is readily derived by genome sequencing, may provide evolutionary clues to an organism’s natural environment.
Collapse
Affiliation(s)
- Rick A Fasani
- Department of Biomedical Engineering and Microbiology Graduate Group, University of California, Davis
| | - Michael A Savageau
- Department of Biomedical Engineering and Microbiology Graduate Group, University of California, Davis
| |
Collapse
|
6
|
A 5' leader sequence regulates expression of methanosarcinal CO dehydrogenase/acetyl coenzyme A synthase. J Bacteriol 2009; 191:7123-8. [PMID: 19767426 DOI: 10.1128/jb.00731-09] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In vivo expression of CO dehydrogenase/acetyl coenzyme A synthase in Methanosarcina spp. is coordinately regulated in response to substrate by at least two mechanisms: differential transcription initiation and early elongation termination near the 3' end of a 371-bp leader sequence. This is the first report of regulation of transcription elongation in the Archaea.
Collapse
|
7
|
Biochemical features and functional implications of the RNA-based T-box regulatory mechanism. Microbiol Mol Biol Rev 2009; 73:36-61. [PMID: 19258532 DOI: 10.1128/mmbr.00026-08] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The T-box mechanism is a common regulatory strategy used for modulating the expression of genes of amino acid metabolism-related operons in gram-positive bacteria, especially members of the Firmicutes. T-box regulation is usually based on a transcription attenuation mechanism in which an interaction between a specific uncharged tRNA and the 5' region of the transcript stabilizes an antiterminator structure in preference to a terminator structure, thereby preventing transcription termination. Although single T-box regulatory elements are common, double or triple T-box arrangements are also observed, expanding the regulatory range of these elements. In the present study, we predict the functional implications of T-box regulation in genes encoding aminoacyl-tRNA synthetases, proteins of amino acid biosynthetic pathways, transporters, and regulatory proteins. We also consider the global impact of the use of this regulatory mechanism on cell physiology. Novel biochemical relationships between regulated genes and their corresponding metabolic pathways were revealed. Some of the genes identified, such as the quorum-sensing gene luxS, in members of the Lactobacillaceae were not previously predicted to be regulated by the T-box mechanism. Our analyses also predict an imbalance in tRNA sensing during the regulation of operons containing multiple aminoacyl-tRNA synthetase genes or biosynthetic genes involved in pathways common to more than one amino acid. Based on the distribution of T-box regulatory elements, we propose that this regulatory mechanism originated in a common ancestor of members of the Firmicutes, Chloroflexi, Deinococcus-Thermus group, and Actinobacteria and was transferred into the Deltaproteobacteria by horizontal gene transfer.
Collapse
|
8
|
Krushkal J, Leang C, Barbe JF, Qu Y, Yan B, Puljic M, Adkins RM, Lovley DR. Diversity of promoter elements in a Geobacter sulfurreducens mutant adapted to disruption in electron transfer. Funct Integr Genomics 2008; 9:15-25. [DOI: 10.1007/s10142-008-0094-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 07/03/2008] [Accepted: 07/07/2008] [Indexed: 01/01/2023]
|
9
|
Vitreschak AG, Mironov AA, Lyubetsky VA, Gelfand MS. Comparative genomic analysis of T-box regulatory systems in bacteria. RNA (NEW YORK, N.Y.) 2008; 14:717-35. [PMID: 18359782 PMCID: PMC2271356 DOI: 10.1261/rna.819308] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Accepted: 12/31/2007] [Indexed: 05/26/2023]
Abstract
T-box antitermination is one of the main mechanisms of regulation of genes involved in amino acid metabolism in Gram-positive bacteria. T-box regulatory sites consist of conserved sequence and RNA secondary structure elements. Using a set of known T-box sites, we constructed the common pattern and used it to scan available bacterial genomes. New T-boxes were found in various Gram-positive bacteria, some Gram-negative bacteria (delta-proteobacteria), and some other bacterial groups (Deinococcales/Thermales, Chloroflexi, Dictyoglomi). The majority of T-box-regulated genes encode aminoacyl-tRNA synthetases. Two other groups of T-box-regulated genes are amino acid biosynthetic genes and transporters, as well as genes with unknown function. Analysis of candidate T-box sites resulted in new functional annotations. We assigned the amino acid specificity to a large number of candidate amino acid transporters and a possible function to amino acid biosynthesis genes. We then studied the evolution of the T-boxes. Analysis of the constructed phylogenetic trees demonstrated that in addition to the normal evolution consistent with the evolution of regulated genes, T-boxes may be duplicated, transferred to other genes, and change specificity. We observed several cases of recent T-box regulon expansion following the loss of a previously existing regulatory system, in particular, arginine regulon in Clostridium difficile and methionine regulon in Lactobacillaceae. Finally, we described a new structural class of T-boxes containing duplicated terminator-antiterminator elements and unusual reduced T-boxes regulating initiation of translation in the Actinobacteria.
Collapse
MESH Headings
- 5' Untranslated Regions
- Amino Acid Transport Systems/genetics
- Amino Acid Transport Systems/metabolism
- Amino Acids/metabolism
- Bacteria/genetics
- Bacteria/metabolism
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Base Sequence
- DNA, Bacterial/genetics
- Evolution, Molecular
- Gene Expression Regulation, Bacterial
- Genome, Bacterial
- Genomics
- Models, Biological
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation
- Phylogeny
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- Regulon
- Sequence Homology, Nucleic Acid
- T-Box Domain Proteins/genetics
- T-Box Domain Proteins/metabolism
Collapse
Affiliation(s)
- Alexey G Vitreschak
- Institute for Information Transmission Problems (The Kharkevich Institute), Russian Academy of Sciences, Moscow 127994, Russia.
| | | | | | | |
Collapse
|
10
|
Abstract
The macrolides have evolved through four chemical generations since erythromycin became available for clinical use in 1952. The first generation, the 14-membered ring macrolide erythromycin, induced resistance and was replaced by the second generation 16-membered ring macrolides which did not. The inability to induce came at the price of mutation, in the pathogenic target strain, to constitutive expression of resistance. A third generation of macrolides improved the acid-stability, and therefore the pharmacokinetics of erythromycin, extending the clinical use of macrolides to Helicobacter pylori and Mycobacterium tuberculosis. Improved pharmacokinetics resulted in the selection of intrinsically resistant mutant strains with rRNA structural alterations. Expression of resistance in these strains was unexpected, explainable by low rRNA gene copy number which made resistance dominant. A fourth generation of macrolides, the 14-membered ring ketolides are the most recent development. Members of this generation are reported to be effective against inducibly resistant strains, and ketolide resistant strains have not yet been reported. In this review we discuss details of the ways in which bacteria have become resistant to the first three generations of macrolides, both with respect to their biochemistry, and the genetic mechanisms by which their expression is regulated.
Collapse
Affiliation(s)
- B Weisblum
- Department of Pharmacology, University of Wisconsin Medical School, Madison, Wisconsin 53706, USA.
| |
Collapse
|
11
|
Kyzer S, Ha KS, Landick R, Palangat M. Direct versus limited-step reconstitution reveals key features of an RNA hairpin-stabilized paused transcription complex. J Biol Chem 2007; 282:19020-8. [PMID: 17502377 DOI: 10.1074/jbc.m701483200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have identified minimal nucleic acid scaffolds capable of reconstituting hairpin-stabilized paused transcription complexes when incubated with RNAP either directly or in a limited step reconstitution assay. Direct reconstitution was achieved using a 29-nucleotide (nt) RNA whose 3'-proximal 9-10 nt pair to template DNA within an 11-nt noncomplementary bubble of a 39-bp duplex DNA; the 5'-proximal 18 nt of RNA forms the his pause RNA hairpin. Limited-step reconstitution was achieved on the same DNAs using a 27-nt RNA that can be 3'-labeled during reconstitution and then extended 2 nt past the pause site to assay transcriptional pausing. Paused complexes formed by either method recapitulated key features of a promoter-initiated, hairpin-stabilized paused complex, including a slow rate of pause escape, resistance to transcript cleavage and pyrophosphorolysis, and enhancement of pausing by the elongation factor NusA. These findings establish that RNA upstream from the pause hairpin and pyrophosphate are not essential for pausing and for NusA action. Reconstitution of the his paused transcription complex provides a valuable tool for future studies of protein-nucleic interactions involved in transcriptional pausing.
Collapse
Affiliation(s)
- Scotty Kyzer
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
12
|
Abstract
The apparati behind the replication, transcription, and translation of prokaryotic and eukaryotic genes are quite different. Yet in both classes of organisms, genes may be organized in their respective chromosomes in similar ways by virtue of similarly acting selective forces. In addition, some gene organizations reflect biology unique to each class of organisms. Levels of organization are more complex than those of the simple operon. Multiple transcription units may be organized into larger units, local control regions may act over large chromosomal regions in eukaryotic chromosomes, and cis-acting genes may control the expression of downstream genes in all classes of organisms. All these mechanisms lead to genomes being far more organized, in both prokaryotes and eukaryotes, than hitherto imagined.
Collapse
Affiliation(s)
- Jeffrey G Lawrence
- Pittsburgh Bacteriophage Institute, Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.
| |
Collapse
|
13
|
|
14
|
Abstract
The human genome has been called "the blueprint for life." This master plan is realized through the process of gene expression. Recent progress has revealed that many of the steps in the pathway from gene sequence to active protein are connected, suggesting a unified theory of gene expression.
Collapse
Affiliation(s)
- George Orphanides
- Syngenta Central Toxicology Laboratory, Alderley Park, Cheshire SK10 4TJ, United Kingdom
| | | |
Collapse
|
15
|
The Transcription of Genes. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50031-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Affiliation(s)
- C Yanofsky
- Department of Biological Sciences, Stanford University, Stanford, California 94305, USA.
| |
Collapse
|
17
|
Marten NW, Hsiang CH, Yu L, Stollenwerk NS, Straus DS. Functional activity of hepatocyte nuclear factor-1 is specifically decreased in amino acid-limited hepatoma cells. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1447:160-74. [PMID: 10542313 DOI: 10.1016/s0167-4781(99)00165-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Limitation of cultured rat hepatoma cells for an essential amino acid results in a specific decrease in expression of several genes that are preferentially expressed in the liver, including the serum albumin and transthyretin genes. In the work presented here, we examined whether the coordinate repression of these genes is caused by decreased activity of one or more of the liver-enriched transcription factors, hepatocyte nuclear factor-1 (HNF-1), HNF-3, HNF-4 or C/EBP. To address this question, HepG2 human hepatoma cells were transiently transfected with luciferase reporter constructs containing multiple copies of individual transcription factor binding sites. Limitation for an essential amino acid resulted in specific repression of a construct in which luciferase expression was directed by HNF-1. A single HNF-1 binding site located adjacent to the TATA box plays a major role in transcription directed by the serum albumin promoter in transient transfection assays. Amino acid limitation of cells transfected with an albumin promoter/luciferase reporter construct resulted in specific repression of promoter activity. In addition, bacterial methylation or site-directed mutagenesis of the HNF-1 binding site in the albumin proximal promoter region eliminated the regulation of an albumin promoter-luciferase reporter construct under conditions of amino acid limitation. These results demonstrated that the HNF-1 binding site played a major role in regulation of the albumin promoter by amino acid availability. Deletion analysis of the albumin promoter confirmed regulation through the HNF-1 binding site and also identified a second amino acid regulatory element in the upstream region of the albumin promoter, which has been shown previously to contain a functional binding site for HNF-3. The repression of albumin promoter and HNF-1 reporter constructs in amino acid-limited cells occurred without a change in the DNA binding activity of HNF-1. Moreover, HNF-3 DNA binding activity was also not decreased in amino acid-limited cells. These results suggest that the regulation of transcription by amino acids occurs at the level of transcriptional activation by HNF-1 and HNF-3, rather than by alteration of the DNA binding activity of either factor.
Collapse
Affiliation(s)
- N W Marten
- Biomedical Sciences Division and Biology Department, University of California, Riverside, CA 92521-0121, USA
| | | | | | | | | |
Collapse
|
18
|
Transcriptional elongation of the rat apolipoprotein A-I gene: identification and mapping of two arrest sites and their signals. J Lipid Res 1999. [DOI: 10.1016/s0022-2275(20)33485-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
19
|
Choe CY, Im HJ, Ko JL, Loh HH. Mouse mu opioid receptor gene expression. A 34-base pair cis-acting element inhibits transcription of the mu opioid receptor gene from the distal promoter. J Biol Chem 1998; 273:34926-32. [PMID: 9857022 PMCID: PMC3001105 DOI: 10.1074/jbc.273.52.34926] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 5'-flanking region of the mouse mu opioid receptor (MOR) gene has two promoters, referred to as distal and proximal, and the activities of each in the brain are quite different from each other. The 5'-distal promoter regulatory sequences (5'-DPRS), positioned between these two promoters, have strong inhibitory effects on the reporter gene expression driven by the MOR distal promoter. In our studies, detailed 3' deletion mapping of the 5'-DPRS narrowed down the negative cis-acting element to a 34-base pair (bp) segment (position -721 to -687). This 34-bp cis-acting element functions in both neuronal (NMB) and non-neuronal (CHO and RAW264.7) cultured cells. S1 nuclease protection assays indicated that this 34-bp cis-acting element suppresses distal promoter activity at the transcriptional level. Linker scanning mutagenesis demonstrated that nucleotides around position -721 and -689 in the 34-bp cis-acting element are essential for the regulation of distal promoter activity. Operational characterization of the 34-bp cis-acting element in the homologous MOR distal promoter and the heterologous SV40 promoter showed that its effects are position- and promoter-dependent while being orientation-independent in both promoters. Collectively, these data suggested that this 34-bp segment is a conditional transcriptional cis-acting element that blocks mouse MOR gene expression from the distal promoter.
Collapse
Affiliation(s)
- C y Choe
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA.
| | | | | | | |
Collapse
|
20
|
Abstract
The basic properties of prokaryotic promoters and the promotor region are described with special emphasis on promoters that are found in Escherichia coli and Bacillus subtilis. Promoters recognized by major and minor forms of RNA polymerase holoenzymes are compared for their specificities and differences. Both natural and hybrid promoters that have been constructed for purposes of efficient and regulated transcription are discussed in terms of their utility. Since promoter regions contain sequences that are recognized not only by RNA polymerase but by positive and negative regulatory factors that regulate expression from promoters, the functions and properties of these promoter regions are also described. The current utility and the future prospects of the prokaryotic promoters in expressing heterologous genes for biotechnology purposes are discussed.
Collapse
Affiliation(s)
- M A Goldstein
- Section of Plant Biology, University of California, Davis 95616, USA
| | | |
Collapse
|
21
|
Wang B, Jones DN, Kaine BP, Weiss MA. High-resolution structure of an archaeal zinc ribbon defines a general architectural motif in eukaryotic RNA polymerases. Structure 1998; 6:555-69. [PMID: 9634694 DOI: 10.1016/s0969-2126(98)00058-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Transcriptional initiation and elongation provide control points in gene expression. Eukaryotic RNA polymerase II subunit 9 (RPB9) regulates start-site selection and elongational arrest. RPB9 contains Cys4 Zn(2+)-binding motifs which are conserved in archaea and homologous to those of the general transcription factors TFIIB and TFIIS. RESULTS The structure of an RPB9 domain from the hyperthermophilic archaeon Thermococcus celer was determined at high resolution by NMR spectroscopy. The structure consists of an apical tetrahedral Zn(2+)-binding site, central beta sheet and disordered loop. Although the structure lacks a globular hydrophobic core, the two surfaces of the beta sheet each contain well ordered aromatic rings engaged in serial edge-to-face interactions. Basic sidechains are clustered near the Zn(2+)-binding site. The disordered loop contains sidechains conserved in TFIIS, including acidic residues essential for the stimulation of transcriptional elongation. CONCLUSIONS The planar architecture of the RPB9 zinc ribbon-distinct from that of a conventional globular domain-can accommodate significant differences in the alignment of polar, non-polar and charged sidechains. Such divergence is associated with local and non-local changes in structure. The RPB9 structure is distinguished by a fourth beta strand (extending the central beta sheet) in a well ordered N-terminal segment and also differs from TFIIS (but not TFIIB) in the orientation of its apical Zn(2+)-binding site. Cys4 Zn(2+)-binding sites with distinct patterns of polar, non-polar and charged residues are conserved among unrelated RNAP subunits and predicted to form variant zinc ribbons.
Collapse
Affiliation(s)
- B Wang
- Department of Chemistry, Center for Molecular Oncology, University of Chicago, Illinois 60637-5419, USA
| | | | | | | |
Collapse
|
22
|
Abstract
Structures of phage transcriptional antitermination complexes define novel motifs for recognition of RNA hairpins by arginine-rich peptides. A bent alpha-helix in each case follows the contour of an induced GNRA-like fold. A phage-specific pattern of base pairing, base stacking and base flipping underlies biological specificity and permits engagement with RNA polymerase. The structures suggest a mechanism of RNA-mediated signaling in transcriptional regulation.
Collapse
|
23
|
Transcription—The Synthesis of RNA. Biochemistry 1998. [DOI: 10.1007/978-1-4757-9427-4_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
24
|
Su L, Radek JT, Hallenga K, Hermanto P, Chan G, Labeots LA, Weiss MA. RNA recognition by a bent alpha-helix regulates transcriptional antitermination in phage lambda. Biochemistry 1997; 36:12722-32. [PMID: 9335528 DOI: 10.1021/bi971408k] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A novel RNA recognition motif is characterized in an arginine-rich peptide. The motif, derived from lambda transcriptional antitermination protein N, regulates an RNA-directed genetic switch. Its characterization by multidimensional nuclear magnetic resonance (NMR) demonstrates specific RNA-dependent folding of N- and C-terminal recognition helices separated by a central bend. The biological importance of the bent alpha-helix is demonstrated by mutagenesis: binding is blocked by substitutions in the N peptide or its target (the boxB RNA hairpin) associated in vivo with loss of transcriptional antitermination activity. Although arginine side chains are essential, the peptide is also anchored to boxB by specific nonpolar contacts. An alanine in the N-terminal helix docks in the major groove of the RNA stem whereas a tryptophan in the C-terminal helix stacks against a purine in the RNA loop. At these positions all 19 possible amino acid substitutions have been constructed by peptide synthesis; each impairs binding to boxB. The pattern of allowed and disallowed substitutions is in accord with the results of random-cassette mutagenesis in vivo. The helix-bend-helix motif rationalizes genetic analysis of N-dependent transcriptional antitermination and extends the structural repertoire of arginine-rich domains observed among mammalian immunodeficiency viruses.
Collapse
MESH Headings
- Amino Acid Sequence
- Arginine
- Bacteriophage lambda/genetics
- Bacteriophage lambda/metabolism
- Base Sequence
- Binding Sites
- Chromatography, High Pressure Liquid
- Circular Dichroism
- Cloning, Molecular
- Escherichia coli
- Gene Products, rev/chemistry
- Gene Products, tat/chemistry
- HIV-1
- Immunodeficiency Virus, Bovine
- Models, Structural
- Molecular Sequence Data
- Nuclear Magnetic Resonance, Biomolecular
- Nucleic Acid Conformation
- Nucleocapsid Proteins/chemistry
- Nucleocapsid Proteins/metabolism
- Peptide Fragments/chemical synthesis
- Peptide Fragments/chemistry
- Peptide Fragments/metabolism
- Protein Structure, Secondary
- RNA, Viral/chemistry
- RNA, Viral/metabolism
- Sequence Alignment
- Transcription, Genetic
- rev Gene Products, Human Immunodeficiency Virus
- tat Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- L Su
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, Illinois 60637-5419, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Gast DA, Wasserfallen A, Pfister P, Ragettli S, Leisinger T. Characterization of Methanobacterium thermoautotrophicum Marburg mutants defective in regulation of L-tryptophan biosynthesis. J Bacteriol 1997; 179:3664-9. [PMID: 9171414 PMCID: PMC179162 DOI: 10.1128/jb.179.11.3664-3669.1997] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Three nitrosoguanidine-induced mutants of the archaeon Methanobacterium thermoautotrophicum Marburg resistant to 5-methyltryptophan were isolated and characterized. They were found to take up L-tryptophan, as wild-type cells, via an energy-dependent, low-affinity transport system specific for L-tryptophan, with a Km of 300 microM and a Vmax of 7 nmol/mg (dry weight)/min. Resistance to 5-methyltryptophan was not due to feedback-resistant anthranilate synthase but to constitutive expression of the trp genes, as measured by the specific activities of anthranilate synthase and tryptophan synthase, the enzymes encoded by trpEG and trpB, respectively, of the trpEGCFBAD gene cluster. Estimation of trpE mRNA obtained from mutant cells grown in minimal medium with or without L-tryptophan suggested that constitutive expression resulted from deficient transcriptional regulation. The enhanced expression of the trp genes in the mutants was found to result in intracellular L-tryptophan pools that were two- to fourfold higher than in the wild type. Sequencing of the region upstream of trpE revealed in two mutants point mutations mapping on the 5'-side of the archaeal box A, whereas in the third mutant this region did not differ from that of the wild type. These results suggest that (i) in M. thermoautotrophicum the 5-methyltryptophan-resistant phenotype arises from lesions in components of a regulatory system controlling transcription of the trp genes and (ii) cis-acting sequence elements in front of the trpE promoter may form part of this system.
Collapse
Affiliation(s)
- D A Gast
- Mikrobiologisches Institut, Swiss Federal Institute of Technology, Zürich, Switzerland
| | | | | | | | | |
Collapse
|
26
|
Lee AI, Sarsero JP, Yanofsky C. A temperature-sensitive trpS mutation interferes with trp RNA-binding attenuation protein (TRAP) regulation of trp gene expression in Bacillus subtilis. J Bacteriol 1996; 178:6518-24. [PMID: 8932308 PMCID: PMC178538 DOI: 10.1128/jb.178.22.6518-6524.1996] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In Bacillus subtilis, the tryptophan-activated trp RNA-binding attenuation protein (TRAP) regulates expression of the seven tryptophan biosynthetic genes by binding to specific repeat sequences in the transcripts of the trp operon and of the folate operon, the operon containing trpG. Steinberg observed that strains containing a temperature-sensitive mutant form of tryptophanyl-tRNA synthetase, encoded by the trpS1 allele, produced elevated levels of the tryptophan pathway enzymes, when grown at high temperatures in the presence of excess L-tryptophan (W. Steinberg, J. Bacteriol. 117:1023-1034, 1974). We have confirmed this observation and have shown that expression of two reporter gene fusions, trpE'-'lacZ and trpG'-'lacZ, is also increased under these conditions. Deletion of the terminator or antiterminator RNA secondary structure involved in TRAP regulation of trp operon expression eliminated the trpS1 effect, suggesting that temperature-sensitive expression was mediated by the TRAP protein. Analysis of expression of mtrB, the gene encoding the TRAP subunit, both by examination of a lacZ translational fusion and by measuring the intracellular levels of TRAP by immunoblotting, indicated that the trpS1-induced increase in trp gene expression was not due to inhibition of mtrB expression or to alteration of the amount of TRAP present per cell. Increasing the cellular level of TRAP by overexpressing mtrB partially counteracted the trpS1 effect, demonstrating that active TRAP was limiting in the trpS1 mutant. We also showed that elevated trp operon expression was not due to increased transcription initiation at the upstream aroF promoter, a promoter that also contributes to trp operon expression. We postulate that the increase in trp gene expression observed in the trpS1 mutant is due to the reduced availability of functional TRAP. This could result from inhibition of TRAP function by uncharged tRNA(Trp) molecules or by increased synthesis of some other transcript capable of binding and sequestering the TRAP regulatory protein.
Collapse
Affiliation(s)
- A I Lee
- Department of Biological Sciences, Stanford University, California 94305-5020, USA
| | | | | |
Collapse
|
27
|
Abstract
Our understanding of the structural, folding and catalytic properties of RNA molecules has increased enormously in recent years. The discovery of catalytic RNA molecules by Sidney Altman and Tom Cech, the development of in vitro selection procedures, and the recent crystallizations of hammerhead ribozymes and of a large domain of an autocatalytic group 1 intron are some of the milestones that have contributed to the explosion of the RNA field. The availability of a three-dimensional model for the catalytic core of group 1 introns contributed also a heuristic drive toward the development of new techniques and approaches for unravelling RNA architecture, folding and stability. Here, we emphasize the mosaic structure of RNA and review some of the recent literature pertinent to this working framework. In the long run, RNA tectonics aims at constructing combinatorial libraries, using RNA mosaic units for creating molecules with dedicated shapes and properties.
Collapse
Affiliation(s)
- E Westhof
- Institut de Biologie Moléculaire et Cellulaire du CNRS-UPR 9002, Strasbourg, France.
| | | | | |
Collapse
|
28
|
Gish K, Yanofsky C. Evidence suggesting cis action by the TnaC leader peptide in regulating transcription attenuation in the tryptophanase operon of Escherichia coli. J Bacteriol 1995; 177:7245-54. [PMID: 8522534 PMCID: PMC177606 DOI: 10.1128/jb.177.24.7245-7254.1995] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Expression of the tryptophanase (tna) operon in Escherichia coli is regulated by catabolite repression and transcription attenuation. Elevated levels of tryptophan induce transcription antitermination at one or more Rho factor-dependent termination sites in the leader region of the operon. Induction requires translation of a 24-residue coding region, tnaC, located in the 319-nucleotide transcribed leader region preceding tnaA, the structural gene for tryptophanase. In the present paper, we show that two bacterial species that lack tryptophanase activity, Enterobacter aerogenes and Salmonella typhimurium, allow tryptophanase induction and tna operon regulation when they carry a plasmid containing the E. coli tna operon. The role of tnaC in induction was examined by introducing mutations in a 24-nucleotide segment of tnaC of E. coli surrounding and including the crucial Trp codon 12. Some mutations resulted in a noninducible phenotype; these mostly introduced nonconservative amino acid substitutions in TnaC. Other mutations had little or no effect; these generally were in third positions of codons or introduced conservative amino acid replacements. A tryptophan-inserting, UGA-reading glutamine suppressor tRNA was observed to restore partial regulation when Trp codon 12 of tnaC was changed to UGA. Stop codons introduced downstream of Trp codon 12 in all three reading frames established that induction requires translation in the natural tnaC reading frame. Our findings suggest that the TnaC leader peptide acts in cis to prevent Rho-dependent termination.
Collapse
Affiliation(s)
- K Gish
- Department of Biological Sciences, Stanford University, California 94305-5020, USA
| | | |
Collapse
|
29
|
Cantatore P, Daddabbo L, Fracasso F, Gadaleta MN. Identification by in Organello footprinting of protein contact sites and of single-stranded DNA sequences in the regulatory region of rat mitochondrial DNA. Protein binding sites and single-stranded DNA regions in isolated rat liver mitochondria. J Biol Chem 1995; 270:25020-7. [PMID: 7559632 DOI: 10.1074/jbc.270.42.25020] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Footprinting studies with the purine-modifying reagent dimethyl sulfate and with the single-stranded DNA probing reagent potassium permanganate were carried out in isolated mitochondria from rat liver. Dimethyl sulfate footprinting allowed the detection of protein-DNA interactions within the rat analogues of the human binding sites for the transcription termination factor mTERF and for the transcription activating factor mt-TFA. Although mTERF contacts were localized only at the boundary between the 16S rRNA/tRNA(Leu)UUR genes, multiple mtTFA contacts were detected. Contact sites were located in the light and the heavy strand promoters and, in agreement with in vitro footprinting data on human mitochondria, between the conserved sequence blocks (CSB) 1 and 2 and inside CSB-1. Potassium permanganate footprinting allowed detection of a 25-base pair region entirely contained in CSB-1 in which both strands were permanganate-reactive. No permanganate reactivity was associated with the other regions of the D-loop, including CSB-2 and -3, and with the mTERF contact site. We hypothesize that the single-stranded DNA at CSB-1 may be due to a profound helix distortion induced by mtTFA binding or be associated with a RNA polymerase pause site. In any case the location in CSB-1 of the 3' end of the most abundant replication primer and of the 5' end of the prominent D-loop DNA suggests that protein-induced DNA conformational changes play an important role in directing the transition from transcription to replication in mammalian mitochondria.
Collapse
Affiliation(s)
- P Cantatore
- Department of Biochemistry and Molecular Biology, University of Bari, Italy
| | | | | | | |
Collapse
|
30
|
Bremer H, Ehrenberg M. Guanosine tetraphosphate as a global regulator of bacterial RNA synthesis: a model involving RNA polymerase pausing and queuing. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1262:15-36. [PMID: 7539631 DOI: 10.1016/0167-4781(95)00042-f] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A recently reported comparison of stable RNA (rRNA, tRNA) and mRNA synthesis rates in ppGpp-synthesizing and ppGpp-deficient (delta relA delta spoT) bacteria has suggested that ppGpp inhibits transcription initiation from stable RNA promoters, as well as synthesis of (bulk) mRNA. Inhibition of stable RNA synthesis occurs mainly during slow growth of bacteria when cytoplasmic levels of ppGpp are high. In contrast, inhibition of mRNA occurs mainly during fast growth when ppGpp levels are low, and it is associated with a partial inactivation of RNA polymerase. To explain these observations it has been proposed that ppGpp causes transcriptional pausing and queuing during the synthesis of mRNA. Polymerase queuing requires high rates of transcription initiation in addition to polymerase pausing, and therefore high concentrations of free RNA polymerase. These conditions are found in fast growing bacteria. Furthermore, the RNA polymerase queues lead to a promoter blocking when RNA polymerase molecules stack up from the pause site back to the (mRNA) promoter. This occurs most frequently at pause sites close to the promoter. Blocking of mRNA promoters diverts RNA polymerase to stable RNA promoters. In this manner ppGpp could indirectly stimulate synthesis of stable RNA at high growth rates. In the present work a mathematical analysis, based on the theory of queuing, is presented and applied to the global control of transcription in bacteria. This model predicts the in vivo distribution of RNA polymerase over stable RNA and mRNA genes for both ppGpp-synthesizing and ppGpp-deficient bacteria in response to different environmental conditions. It also shows how small changes in basal ppGpp concentrations can produce large changes in the rate of stable RNA synthesis.
Collapse
Affiliation(s)
- H Bremer
- Program in Molecular and Cell Biology, University of Texas at Dallas, Richardson 750831, USA
| | | |
Collapse
|
31
|
Halling SM, Bricker BJ. Characterization and occurrence of two repeated palindromic DNA elements of Brucella spp.: Bru-RS1 and Bru-RS2. Mol Microbiol 1994; 14:681-9. [PMID: 7891556 DOI: 10.1111/j.1365-2958.1994.tb01306.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Two repeated DNA elements of 103 bp and 105 bp were discovered in brucellae and designated Bru-RS1 and Bru-RS2, respectively. The two elements are palindromic, are 65% similar in sequence, form two families of elements that are slightly divergent in sequence, appear to be intergenic, and are found, collectively, in more than 35 copies in brucellae. These elements are bounded by perfect or nearly perfect inverted repeats. A third copy of the terminal repeat is found within the elements and is the terminus for several truncated copies of the Bru-RS1 family. Hybridization patterns for the elements among brucellae were unique. The elements are dispersed, highly conserved among brucellae, and hot-spots for insertion by IS711.
Collapse
Affiliation(s)
- S M Halling
- United States Department of Agriculture, National Animal Disease Center, Ames, Iowa 50010
| | | |
Collapse
|
32
|
Qian X, Jeon C, Yoon H, Agarwal K, Weiss MA. Structure of a new nucleic-acid-binding motif in eukaryotic transcriptional elongation factor TFIIS. Nature 1993; 365:277-9. [PMID: 7626141 DOI: 10.1038/365277a0] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Transcriptional elongation involves dynamic interactions among RNA polymerase and single-stranded and double-stranded nucleic acids in the ternary complex. In prokaryotes its regulation provides an important mechanism of genetic control. Analogous eukaryotic mechanisms are not well understood, but may control expression of proto-oncogenes and viruses, including the human immunodeficiency virus HIV-1 (ref. 8). The highly conserved eukaryotic transcriptional elongation factor TFIIS enables RNA polymerase II (RNAPII) to read though pause or termination sites, nucleosomes and sequence-specific DNA-binding proteins. Two distinct domains of human TFIIS, which bind RNAPII and nucleic acids, regulate read-through and possibly nascent transcript cleavage. Here we describe the three-dimensional NMR structure of a Cys4 nucleic-acid-binding domain from human TFIIS. Unlike previously characterized zinc modules, which contain an alpha-helix, this structure consists of a three-stranded beta-sheet. Analogous Cys4 structural motifs may occur in other proteins involved in DNA or RNA transactions, including RNAPII itself. This new structure, designated the Zn ribbon, extends the repertoire of Zn-mediated peptide architectures and highlights the growing recognition of the beta-sheet as a motif of nucleic-acid recognition.
Collapse
Affiliation(s)
- X Qian
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
| | | | | | | | | |
Collapse
|
33
|
Abstract
Antiterminator proteins control gene expression by recognizing control signals near the promoter and preventing transcriptional termination which would otherwise occur at sites that may be a long way downstream. The N protein of bacteriophage lambda recognizes a sequence in the nascent RNA, and modifies RNA polymerase by catalysing the formation of a stable ribonucleoprotein complex on its surface, whereas the lambda Q protein recognizes a sequence in the DNA. These mechanisms of antitermination in lambda provide models for analysing antitermination in viruses such as HIV-1 and in eukaryotic genes.
Collapse
Affiliation(s)
- J Greenblatt
- Banting and Best Department of Medical Research, University of Toronto, Ontario, Canada
| | | | | |
Collapse
|
34
|
Gish K, Yanofsky C. Inhibition of expression of the tryptophanase operon in Escherichia coli by extrachromosomal copies of the tna leader region. J Bacteriol 1993; 175:3380-7. [PMID: 8501042 PMCID: PMC204735 DOI: 10.1128/jb.175.11.3380-3387.1993] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Expression of the tryptophanase (tna) operon in Escherichia coli is regulated by catabolite repression and transcription attenuation. Expression is induced by the presence of elevated levels of tryptophan in a growth medium devoid of a catabolite-repressing carbon source. Induction requires the translation of a 24-residue coding region, tnaC, located in the 319-nucleotide transcribed leader region preceding tnaA, the structural gene for tryptophanase. Multicopy plasmids carrying the tnaC leader region were found to inhibit induction of the chromosomal tna operon. Mutational studies established that this inhibition was not due to inhibited transcription initiation, translation initiation, tryptophan transport, or enzyme activity. Rather, multicopy tnaC plasmids inhibited induction by preventing tryptophan-induced transcription antitermination in the leader region of the tna operon. Translation of the single Trp codon in tnaC of the multicopy plasmids was shown to be essential for this inhibition. We hypothesize that translation of the Trp codon of the leader peptide titrates out a trans-acting factor that is essential for tryptophan-induced antitermination in the chromosomal tna operon. We postulate that this factor is an altered form of tRNATrp.
Collapse
Affiliation(s)
- K Gish
- Department of Biological Sciences, Stanford University, California 94305-5020
| | | |
Collapse
|
35
|
Sanjanwala B, Ganesan AT. Leader region of the gene encoding DNA polymerase III of Bacillus subtilis. MOLECULAR & GENERAL GENETICS : MGG 1993; 236:374-8. [PMID: 7679775 DOI: 10.1007/bf00277136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Previously we cloned and sequenced the polC gene of Bacillus subtilis and identified regions corresponding to various catalytic domains of DNA polymerase III, the enzyme it encodes. In the present study, by using primer extension, we have identified the transcription start site and a 139 nucleotide leader region upstream of the first codon. This region contains a DnaA box in the non-transcribed DNA strand. An RNA transcript of the leader would contain a sequence that could form a 29 bp stem-loop secondary structure followed by a strong terminator sequence, rich in uracil, before the ribosome binding site. Plasmids were constructed containing either the intact leader region or deletion mutations of the leader, fused to the Escherichia coli lacZ gene in an expression vector. Single copies of the fusions were then integrated into the B. subtilis genome by transformation. Studies of the expression of beta-galactosidase by the transformed cells supported the idea that the leader region is important in regulating polC gene expression.
Collapse
Affiliation(s)
- B Sanjanwala
- Genetics Department, Stanford University, CA 94305-5120
| | | |
Collapse
|
36
|
Krumm A, Meulia T, Brunvand M, Groudine M. The block to transcriptional elongation within the human c-myc gene is determined in the promoter-proximal region. Genes Dev 1992; 6:2201-13. [PMID: 1427080 DOI: 10.1101/gad.6.11.2201] [Citation(s) in RCA: 218] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A conditional block to transcriptional elongation is an important mechanism for regulating c-myc gene expression. This elongation block within the first c-myc exon was defined originally in mammalian cells by nuclear run-on transcription analyses. Subsequent oocyte injection and in vitro transcription analyses suggested that sequences near the end of the first c-myc exon are sites of attenuation and/or premature termination. We report here that the mapping of single stranded DNA in vivo with potassium permanganate (KMnO4) and nuclear run-on transcription assays reveal that polymerase is paused near position +30 relative to the major c-myc transcription initiation site. Deletion of 350 bp, including the sites of 3'-end formation and intrinsic termination defined in oocyte injection and in vitro transcription assays does not affect-the pausing of polymerase in the promoter-proximal region. In addition, sequences upstream of +47 are sufficient to confer the promoter-proximal pausing of polymerases and to generate the polarity of transcription farther downstream. Thus, the promoter-proximal pausing of RNA polymerase II complexes accounts for the block to elongation within the c-myc gene in mammalian cells. We speculate that modification of polymerase complexes at the promoter-proximal pause site may determine whether polymerases can read through intrinsic sites of termination farther downstream.
Collapse
Affiliation(s)
- A Krumm
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98104
| | | | | | | |
Collapse
|
37
|
Krummel B, Chamberlin MJ. Structural analysis of ternary complexes of Escherichia coli RNA polymerase. Deoxyribonuclease I footprinting of defined complexes. J Mol Biol 1992; 225:239-50. [PMID: 1593619 DOI: 10.1016/0022-2836(92)90918-a] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The structure and properties of ternary complexes of RNA polymerase are of central importance in understanding the mechanisms of transcriptional elongation and termination, and the regulation of these primary steps in gene expression. However, there has been no systematic study of the structure and properties of such complexes along a single transcription unit. Recently, we have described the isolation of a collection of halted ternary complexes of Escherichia coli RNA polymerase bearing transcripts from 11 to 35 nucleotides in length along two different transcription units (accompanying paper). Here, we report structural studies of these complexes using DNase I footprinting. Surprisingly, nearly all of the different ternary complexes have distinctly different footprints along the two DNA strands, and the position of the footprint relative to the 3' end of the transcript also varies for most complexes. Halted complexes bearing transcripts of comparable size do not have identical footprints; hence, DNA sequence as well as transcript length plays a role in determining the size and position of the footprint. These differences in structure are consistent with our earlier findings that ternary complexes can differ considerably in stability and gel mobility. The downstream boundary of the RNA polymerase in ternary complexes does not move forward regularly as successive nucleotide residues are added to the RNA chain. In contrast, the upstream boundary moves forward more or less in concert with the movement of the 3' terminus of the transcript. These factors lead to a general compression of the overall footprint as transcription proceeds, together with a steady movement of the 3' terminus of the RNA toward the downstream boundary of the polymerase. Ultimately, after the length of the RNA transcript has increased from eight to ten nucleotides, the downstream boundary of the complex is found to move downstream along the DNA, suggesting a translocation event. We suggest that RNA chain elongation, like RNA chain initiation, may involve a saltatory process in which net translocation of the complex along the DNA occurs only after addition of a number of ribonucleotides to the RNA chain.
Collapse
Affiliation(s)
- B Krummel
- Division of Biochemistry and Molecular Biology, University of California, Berkeley 94720
| | | |
Collapse
|
38
|
Reynolds R, Chamberlin MJ. Parameters affecting transcription termination by Escherichia coli RNA. II. Construction and analysis of hybrid terminators. J Mol Biol 1992; 224:53-63. [PMID: 1372366 DOI: 10.1016/0022-2836(92)90575-5] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rho-independent terminators are characterized by two major functional regions, one upstream from the termination site having a sequence capable of forming an RNA hairpin in the nascent transcript, the second extending, from the base of this hairpin, seven to nine nucleotides along the transcript to the actual sites of termination (3'-tail region). This latter region of the transcript is often rich in uridine residues. Both regions are postulated to play central roles in the termination process. We have constructed a series of hybrid rho-independent, transcription terminators in which sequences upstream and downstream from the RNA hairpin for the Escherichia coli trp attenuator (trpatt+) are interchanged with sequences from trpatt mutant (1419) or from the phage T7 early terminator (T7Te). Similar hybrids have been constructed for T7Te, replacing flanking sequences with trpatt regions. The effects of such changes on transcription termination have been tested in vitro with purified E. coli RNA polymerase to determine the intrinsic termination efficiency (%T) of each hybrid terminator. Both the trpatt+ terminator and T7Te are highly efficient rho-independent terminators in vitro. However, replacement of trpatt+ sequences upstream and downstream from the RNA-terminator hairpin with the comparable T7Te sequences reduces %T dramatically, suggesting that the RNA-terminator hairpin does not function independently from its flanking regions. Regions downstream from the actual termination/release site are shown to be of considerable importance in determining %T for terminators bearing the T7Te or trpatt1419 3'-tail region, but have little effect on terminators with the trpatt+ 3'-tail region. For terminators bearing the T7Te or trpatt1419 3'-tail region that are inefficient, efficient termination is restored by elevated concentrations of KCl in the reaction. The results do not fit well with models for termination in which %T is determined by a two-step process in which the terminator-RNA hairpin, and a seven to 12 base-pair DNA-RNA hybrid structure rich in uridine residues, act independently to cause the polymerase to pause, and to release the transcript, respectively. DNA sequences both upstream and downstream from these regions, as well as DNA sequences downstream from the transcript termination site, can significantly affect the termination process. Conversely, terminators lacking a 3'-tail region rich in uridine residues can be highly efficient, but only when joined with appropriate sequence immediately downstream from the termination site. This suggests that the 3'-tail region acts in some manner other than the formation of an unstable DNA-RNA hybrid that facilitates termination.
Collapse
Affiliation(s)
- R Reynolds
- Division of Biochemistry and Molecular Biology, University of California, Berkeley 94720
| | | |
Collapse
|
39
|
Alifano P, Piscitelli C, Blasi V, Rivellini F, Nappo AG, Bruni CB, Carlomagno MS. Processing of a polycistronic mRNA requires a 5' cis element and active translation. Mol Microbiol 1992; 6:787-98. [PMID: 1374148 DOI: 10.1111/j.1365-2958.1992.tb01529.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We have characterized a major processed species of mRNA in the his operon of Salmonella typhimurium. In vivo and in vitro analyses of the his transcripts from wild-type and mutant strains using S1 nuclease protection assays, measurements of RNA stability, deletion mapping, gel retardation, and in vitro translation assays demonstrate that the distal portion of the polycistronic his mRNA is processed, resulting in increased stability. The processing event requires an upstream cis-acting element and translation of the cistron immediately downstream of the 5' end of the processed species. The cistrons contained in this segment are also independently transcribed from an internal promoter which is maximally active in the absence of readthrough transcription from the primary promoter.
Collapse
Affiliation(s)
- P Alifano
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Centro di Endocrinologia ed Oncologia Sperimentale del Consiglio Nazionale delle Richerche, Università di Napoli, Italy
| | | | | | | | | | | | | |
Collapse
|
40
|
Ramamoorthy R, Schmidt FJ. Transcript hairpin structures are not required for RNA polymerase pausing in the gene encoding the E. coli RNase P RNA, M1 RNA. FEBS Lett 1991; 295:227-9. [PMID: 1722464 DOI: 10.1016/0014-5793(91)81424-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Strong pauses at nucleotides +118 and +121 relative to the transcriptional start occur during in vitro transcription of the E. coli rnpB gene encoding the catalytic M1 RNA subunit of Ribonuclease P. These pauses are immediately downstream of 2 phylogenetically conserved stem-loop structures in the RNA. In the present work, single-base changes which disrupted Watson-Crick base-pairing in the hairpins were introduced into rnpB. Transcription studies in vitro with these modified templates revealed that none of the nucleotide changes predicted to increase or decrease the stability of the first hairpin significantly affected the pause half-lives. A mutation which disrupted the second hairpin increased the pause half-life 2-fold. The data suggest that the upstream stem and loop structures in the transcript are not involved in the pausing event.
Collapse
Affiliation(s)
- R Ramamoorthy
- Department of Biochemistry, University of Missouri, Columbia 65212
| | | |
Collapse
|
41
|
Armengod M, García-Sogo M, Pérez-Roger I, Macián F, Navarro-Aviñó J. Tandem transcription termination sites in the dnaN gene of Escherichia coli. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)55052-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
42
|
Bengal E, Aloni Y. Transcriptional elongation by purified RNA polymerase II is blocked at the trans-activation-responsive region of human immunodeficiency virus type 1 in vitro. J Virol 1991; 65:4910-8. [PMID: 1870206 PMCID: PMC248952 DOI: 10.1128/jvi.65.9.4910-4918.1991] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
It has previously been shown that the human immunodeficiency virus type 1 (HIV-1) trans-activation-responsive region (TAR) is contained in a stem-loop RNA structure. Moreover, the interaction of the RNA secondary structure with Tat, the trans-activator protein, seems to play a role in activation of transcription initiation and in preventing transcription attenuation. In this work, we have studied the ability of the HIV-1 TAR stem-loop to act as a specific attenuation signal for highly purified RNA polymerase II. We developed an in vitro system using dC-tailed DNA fragments of HIV-1 to study transcriptional control in the HIV-1 LTR. We have found that transcription in this system yields an attenuator RNA whose 3' end maps to the end of the TAR stem-loop, approximately 60 to 65 nucleotides downstream of the in vivo initiation site. Furthermore, transcription attenuation occurs only under conditions which cause displacement of the nascent transcript from the template DNA strand, thus allowing the RNA to fold into secondary structure. Evidence is provided that the purified polymerase II indeed recognizes stable RNA secondary structure as an intrinsic attenuation signal. The existence of this signal in the TAR stem-loop suggests that in vivo an antiattenuation factor, probably Tat, alone or in combination with other factors, acts to relieve the elongation block at the HIV-1 attenuation site.
Collapse
Affiliation(s)
- E Bengal
- Department of Molecular Genetics and Virology, Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
43
|
Abstract
Synonymous and nonsynonymous substitution rates at the loci encoding glyceraldehyde-3-phosphate dehydrogenase (gap) and outer membrane protein 3A (ompA) were examined in 12 species of enteric bacteria. By examining homologous sequences in species of varying degrees of relatedness and of known phylogenetic relationships, we analyzed the patterns of synonymous and nonsynonymous substitutions within and among these genes. Although both loci accumulate synonymous substitutions at reduced rates due to codon usage bias, portions of the gap and ompA reading frames show significant deviation in synonymous substitution rates not attributable to local codon bias. A paucity of synonymous substitutions in portions of the ompA gene may reflect selection for a novel mRNA secondary structure. In addition, these studies allow comparisons of homologous protein-coding sequences (gap) in plants, animals, and bacteria, revealing differences in evolutionary constraints on this glycolytic enzyme in these lineages.
Collapse
Affiliation(s)
- J G Lawrence
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110
| | | | | |
Collapse
|
44
|
Gavini N, Pulakat L. Role of translation of the pheA leader peptide coding region in attenuation regulation of the Escherichia coli pheA gene. J Bacteriol 1991; 173:4904-7. [PMID: 1856183 PMCID: PMC208172 DOI: 10.1128/jb.173.15.4904-4907.1991] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In Escherichia coli, the expression of the pheA gene is regulated by attenuation of transcription. To study the molecular details of pheA attenuation, we introduced mutations in the pheA leader peptide coding region and analyzed their effects by using pheA promoter-lacZ gene transcription fusions (pheAp-lacZ). Mutations in the ribosome-binding site (pheAe1213) or in the translation initiation codon (pheAe24) of the pheA leader peptide coding region resulted in superattenuation of pheA expression. However, the presence of a stop codon upstream to the tandem phenylalanine codons (pheAe3334) led to an increase in the basal-level expression of pheA. This increase was further enhanced in the presence of prfA release factor mutant. The level of pheA expression in all three mutants was the same when cells were starved for phenylalanine. These results demonstrate that efficient translation of the pheA leader peptide coding region and the position of the ribosome on the leader transcript play decisive roles in the attenuation regulation of pheA.
Collapse
Affiliation(s)
- N Gavini
- Russell Grimwade School of Biochemistry, University of Melbourne, Parkville, Victoria, Australia
| | | |
Collapse
|
45
|
Abstract
It was previously reported that transcription of the Rhizobium meliloti trpE(G) gene starts at the adenine residue of the AUG codon of the leader peptide coding sequence (trpL), suggesting that translation of the trpL sequence starts without the Shine-Dalgarno sequence. We constructed mutations replacing the AUG codon of the trpL sequence with AAG or ACG. These mutations reduced the expression of a trpL'-'lacZ fusion gene to 0.1 and 0.2% of the wild-type level, respectively, indicating that the AUG codon is the translation initiation codon for the trpL coding sequence. In addition, these mutations, as well as a mutation converting the eighth codon (UCG) of the trpL sequence to UGA, abolished regulation by attenuation when introduced upstream of the tandem tryptophan codons in a trpE'-'lacZ fusion. Mutations affecting the stability of the probable antiterminator and terminator secondary structures in trpL mRNA were also constructed. Studies using these mutations indicate that the attenuator of R. meliloti functions in a way analogous to that of the Escherichia coli trp attenuator.
Collapse
Affiliation(s)
- Y M Bae
- Department of Microbiology, University of Iowa, Iowa City 52242
| | | |
Collapse
|
46
|
Xiao H, Kalman M, Ikehara K, Zemel S, Glaser G, Cashel M. Residual guanosine 3‘,5‘-bispyrophosphate synthetic activity of relA null mutants can be eliminated by spoT null mutations. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(19)67694-5] [Citation(s) in RCA: 154] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
47
|
Karn J, Dingwall C, Gait MJ, Heaphy S, Skinner MA. Regulation of HIV-1 Gene Expression by the RNA-Binding Proteins tat and rev. NUCLEIC ACIDS AND MOLECULAR BIOLOGY 1991. [DOI: 10.1007/978-3-642-84292-4_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
48
|
DePinho RA, Schreiber-Agus N, Alt FW. myc family oncogenes in the development of normal and neoplastic cells. Adv Cancer Res 1991; 57:1-46. [PMID: 1950701 DOI: 10.1016/s0065-230x(08)60994-x] [Citation(s) in RCA: 180] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- R A DePinho
- Department of Microbiology, Albert Einstein College of Medicine, Bronx, New York 10461
| | | | | |
Collapse
|
49
|
Nassal M, Junker-Niepmann M, Schaller H. Translational inactivation of RNA function: discrimination against a subset of genomic transcripts during HBV nucleocapsid assembly. Cell 1990; 63:1357-63. [PMID: 2261646 DOI: 10.1016/0092-8674(90)90431-d] [Citation(s) in RCA: 107] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Hepatitis B virus (HVB) is the prototype member of the hepadnaviridae, a family of small enveloped DNA viruses that replicate by reverse transcription. Assembly of replication-competent HBV nucleocapsids is based on specific interactions between the core protein, the product(s) of the P gene, and the RNA pregenome, which is marked for encapsidation by containing a sequence near its 5' end that acts in cis as an encapsidation signal. However, HBV produces several additional, almost identical, genomic transcripts that also bear the encapsidation sequence, but that are not encapsidated. The mechanism underlying this selection process has remained mysterious. Here we demonstrate that translating 80S ribosomes (but not scanning 40S ribosomal subunits) advancing into the encapsidation signal prevent its functioning. This finding reveals translational modulation of RNA function as a further regulatory mechanism employed by hepadnaviruses to utilize efficiently the restricted coding capacity of their extremely compact genome.
Collapse
Affiliation(s)
- M Nassal
- Zentrum für Molekulare Biologie, Universität Heidelberg, Germany
| | | | | |
Collapse
|
50
|
Alford RL, Belmont JW. Stable RNA secondary structure in a retroviral vector insert terminates reverse transcriptase elongation in vitro but not in cultured cells. Hum Gene Ther 1990; 1:269-76. [PMID: 1706943 DOI: 10.1089/hum.1990.1.3-269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We wished to test whether an RNA signal that causes termination of elongation by reverse transcriptase in vitro would affect retroviral vector function. A synthetic oligonucleotide containing a sequence capable of forming a very stable RNA secondary structure was subcloned into the retrovirus vector N2. The integration of this sequence into N2 causes termination of elongation by reverse transcriptase in vitro at the precise positions previously reported in a different sequence context. However, no premature termination of DNA synthesis was observed in the unintegrated DNA of vector transduced cells. Likewise, there was no deleterious effect of the sequence insert on vector titer. These results indicate that termination signals defined in in vitro systems cannot be used as predictors of in vivo function and suggest that viral proteins in addition to reverse transcriptase play an important role in transcript initiation and elongation.
Collapse
Affiliation(s)
- R L Alford
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030
| | | |
Collapse
|