1
|
Kandolf S, Grishkovskaya I, Belačić K, Bolhuis DL, Amann S, Foster B, Imre R, Mechtler K, Schleiffer A, Tagare HD, Zhong ED, Meinhart A, Brown NG, Haselbach D. Cryo-EM structure of the plant 26S proteasome. PLANT COMMUNICATIONS 2022; 3:100310. [PMID: 35576154 PMCID: PMC9251434 DOI: 10.1016/j.xplc.2022.100310] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/01/2022] [Accepted: 03/04/2022] [Indexed: 05/17/2023]
Abstract
Targeted proteolysis is a hallmark of life. It is especially important in long-lived cells that can be found in higher eukaryotes, like plants. This task is mainly fulfilled by the ubiquitin-proteasome system. Thus, proteolysis by the 26S proteasome is vital to development, immunity, and cell division. Although the yeast and animal proteasomes are well characterized, there is only limited information on the plant proteasome. We determined the first plant 26S proteasome structure from Spinacia oleracea by single-particle electron cryogenic microscopy at an overall resolution of 3.3 Å. We found an almost identical overall architecture of the spinach proteasome compared with the known structures from mammals and yeast. Nevertheless, we noticed a structural difference in the proteolytic active β1 subunit. Furthermore, we uncovered an unseen compression state by characterizing the proteasome's conformational landscape. We suspect that this new conformation of the 20S core protease, in correlation with a partial opening of the unoccupied gate, may contribute to peptide release after proteolysis. Our data provide a structural basis for the plant proteasome, which is crucial for further studies.
Collapse
Affiliation(s)
- Susanne Kandolf
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-BioCenter 1, 1030 Vienna, Austria
| | - Irina Grishkovskaya
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-BioCenter 1, 1030 Vienna, Austria
| | - Katarina Belačić
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-BioCenter 1, 1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University at Vienna and Medical University of Vienna, Vienna BioCenter (VBC), Vienna, Austria
| | - Derek L Bolhuis
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Sascha Amann
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-BioCenter 1, 1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University at Vienna and Medical University of Vienna, Vienna BioCenter (VBC), Vienna, Austria
| | - Brent Foster
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT 06510, USA
| | - Richard Imre
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-BioCenter 1, 1030 Vienna, Austria
| | - Karl Mechtler
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-BioCenter 1, 1030 Vienna, Austria
| | - Alexander Schleiffer
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-BioCenter 1, 1030 Vienna, Austria
| | - Hemant D Tagare
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT 06510, USA
| | - Ellen D Zhong
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Anton Meinhart
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-BioCenter 1, 1030 Vienna, Austria
| | - Nicholas G Brown
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - David Haselbach
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-BioCenter 1, 1030 Vienna, Austria; Institute of Physical Chemistry, University of Freiburg, Albertstraße 21, Freiburg 79104, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
2
|
Abstract
In this chapter, we provide an overview of the techniques and approaches used in the isolation of plant organelles and structures. This overview shows there is a great diversity of methods currently used for the initial physical disruption of plant tissue before the downstream isolation of a target cellular component. These include hand grinding, high-speed mechanical disruption, and enzymatic digestion of cell walls by a variety of methods. Coupled to these disruption techniques is a wide array of additives included as ingredients in extraction solutions to minimize chemical or physical damage that may occur to target components. These additives are collated into a table outlining their function. We also provide an introduction to some of the history of common approaches used for the isolation plant organelles and structures and a synopsis of the methods used by researchers for assessment of the purity of their isolated structures. This chapter therefore provides an introduction to the following chapters that document the methodology for the isolation of individual plant organelles or structures.
Collapse
Affiliation(s)
- A Harvey Millar
- The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, M316, 35 Stirling Highway, Crawley, Perth, WA, 6009, Australia
| | - Nicolas L Taylor
- The ARC Centre of Excellence in Plant Energy Biology and School of Chemistry and Biochemistry, The University of Western Australia, M316, 35 Stirling Highway, Crawley, Perth, WA, 6009, Australia.
| |
Collapse
|
3
|
Marshall RS, Gemperline DC, Vierstra RD. Purification of 26S Proteasomes and Their Subcomplexes from Plants. Methods Mol Biol 2017; 1511:301-334. [PMID: 27730621 DOI: 10.1007/978-1-4939-6533-5_24] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The 26S proteasome is a highly dynamic, multisubunit, ATP-dependent protease that plays a central role in cellular housekeeping and many aspects of plant growth and development by degrading aberrant polypeptides and key cellular regulators that are first modified by ubiquitin. Although the 26S proteasome was originally enriched from plants over 30 years ago, only recently have significant advances been made in our ability to isolate and study the plant particle. Here, we describe two robust methods for purifying the 26S proteasome and its subcomplexes from Arabidopsis thaliana; one that involves conventional chromatography techniques to isolate the complex from wild-type plants, and another that employs the genetic replacement of individual subunits with epitope-tagged variants combined with affinity purification. In addition to these purification protocols, we describe methods commonly used to analyze the activity and composition of the complex.
Collapse
Affiliation(s)
- Richard S Marshall
- Department of Genetics, University of Wisconsin-Madison, 425-G Henry Mall, Madison, WI, USA.,Department of Biology, Washington University in St Louis, Campus Box 1137, One Brookings Drive, St. Louis, MO, 63130, USA
| | - David C Gemperline
- Department of Genetics, University of Wisconsin-Madison, 425-G Henry Mall, Madison, WI, USA
| | - Richard D Vierstra
- Department of Genetics, University of Wisconsin-Madison, 425-G Henry Mall, Madison, WI, USA. .,Department of Biology, Washington University in St Louis, Campus Box 1137, One Brookings Drive, St. Louis, MO, 63130, USA.
| |
Collapse
|
4
|
Morozov AV, Kulikova AA, Astakhova TM, Mitkevich VA, Burnysheva KM, Adzhubei AA, Erokhov PA, Evgen’ev MB, Sharova NP, Karpov VL, Makarov AA. Amyloid-β Increases Activity of Proteasomes Capped with 19S and 11S Regulators. J Alzheimers Dis 2016; 54:763-76. [DOI: 10.3233/jad-160491] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Alexey V. Morozov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexandra A. Kulikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Tatiana M. Astakhova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Vladimir A. Mitkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Ksenia M. Burnysheva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexei A. Adzhubei
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Pavel A. Erokhov
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Michail B. Evgen’ev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Natalia P. Sharova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Vadim L. Karpov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexander A. Makarov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
5
|
Printz B, Sergeant K, Guignard C, Renaut J, Hausman JF. Physiological and proteome study of sunflowers exposed to a polymetallic constraint. Proteomics 2013; 13:1993-2015. [PMID: 23595958 DOI: 10.1002/pmic.201200400] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 02/27/2013] [Accepted: 03/19/2013] [Indexed: 01/26/2023]
Abstract
The new energy requirements of the growing world population together with the actual ecological trend of phytoremediation have made challenging the cultivation of energetic crops on nonagricultural lands, such as those contaminated with trace elements. In this study, phenotypical characterization and biochemical analyses were combined to emphasize the global response of young sunflowers (Helianthus annuus L.) grown in hydroponic media contaminated with different Cd, Ni, and Zn concentrations. Leaves and roots of sunflowers reaching the stage "2-extended leaves" and exposed to different trace metal concentrations were harvested and analyzed by 2D-DIGE in order to study in depth the molecular responses of the young plants upon the polymetallic exposure. Proteomics confirmed the observed global reduction in growth and development. If photosynthetic light reactions and carbon metabolism were the most affected in leaves, in roots significant disruptions were observed in proteins involved in respiration, oxidative balance, protein and gene expression, and in the induction of programmed cell death. Elemental analyses of the plantlets indicated a profound impact of the treatment resulting in misbalance in essential micronutrients. Altogether, this study highlights the sensitivity of the sunflower to a polymetallic pollution and indicates that its use as a remediative tool of trace element polluted soils is limited.
Collapse
Affiliation(s)
- Bruno Printz
- Centre de Recherche Public-Gabriel Lippmann, Département Environnement et Agrobiotechnologies, Belvaux, Luxembourg
| | | | | | | | | |
Collapse
|
6
|
Yanagawa Y, Komatsu S. Ubiquitin/proteasome-mediated proteolysis is involved in the response to flooding stress in soybean roots, independent of oxygen limitation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 185-186:250-8. [PMID: 22325888 DOI: 10.1016/j.plantsci.2011.11.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 11/05/2011] [Accepted: 11/18/2011] [Indexed: 05/09/2023]
Abstract
Ubiquitin/proteasome-mediated proteolysis plays an important role in the response to several environmental stresses. Here, we described the relationship of the proteolysis in the flooding stress in soybean (Glycine max L. cultivar Enrei). Immunoblot analyses were performed using antibodies against two subunits of 26S proteasome, Rpt5 and Rpn10, 20S proteasome and two subunits of COP9 signalosome (CSN), CSN4 and CSN5, to compare between flooded and untreated roots. We also examined their protein amounts in the condition of low oxygen. Moreover, crude extracts from flooded or untreated roots incubated with or without a proteasome inhibitor MG132 were analyzed by proteomics technique. We revealed that the amount of ubiquitinated proteins in soybean roots decreased after flooding treatment and increased to levels similar to controls after de-submergence. Both CSN4 and CSN5 accumulated following flooding treatment, although no significant difference was observed in proteasome. Low oxygen had no effect on the amount of ubiquitinated proteins or CSN4. By 2D-PAGE, the amount of 6 proteins changed significantly following MG132 treatment in flooding stressed plants. We conclude that the accumulation of CSN proteins might enhance the degradation of ubiquitinated proteins independent of hypoxia caused by flooding, thereby lowering their abundance during flooding stress.
Collapse
Affiliation(s)
- Yuki Yanagawa
- National Institute of Crop Science, National Agriculture and Food Research Organization, 2-1-18 Kannondai, Tsukuba, Ibaraki 305-8518, Japan.
| | | |
Collapse
|
7
|
Nakamura M, Iketani A, Shioi Y. A survey of proteases in edible mushrooms with synthetic peptides as substrates. MYCOSCIENCE 2011. [DOI: 10.1007/s10267-010-0094-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Nakamura M, Iketani A, Shioi Y. A survey of proteases in edible mushrooms with synthetic peptides as substrates. MYCOSCIENCE 2011. [DOI: 10.1007/s10267-010-0089-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Fukayama H, Abe R, Uchida N. SDS-dependent proteases induced by ABA and its relation to Rubisco and Rubisco activase contents in rice leaves. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2010; 48:808-812. [PMID: 20829052 DOI: 10.1016/j.plaphy.2010.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 06/22/2010] [Accepted: 08/13/2010] [Indexed: 05/29/2023]
Abstract
Protease activities and its relation to the contents of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and Rubisco activase were investigated in detached leaves of rice (Oryza sativa L.) floated on the solutions containing abscisic acid (ABA) or benzyladenine (BA). Rubisco and Rubisco activase contents were decreased during the time course and the decreases were enhanced by ABA and suppressed by BA. The decrease in Rubisco activase was faster than that in Rubisco. SDS-dependent protease activities at 50-70 kDa (rice SDS-dependent protease: RSP) analyzed by the gelatin containing PAGE were significantly enhanced by ABA. RSPs were also increased in attached leaves during senescence. RSPs had the pH optimum of 5.5, suggesting that RSPs are vacuolar protease. Both decrease in Rubisco and Rubisco activase contents and increase in RSPs activities were suppressed by cycloheximide. These findings indicate that the activities of RSPs are well correlated with the decrease in these protein contents. Immunoblotting analysis showed that Rubisco in the leaf extracts was completely degraded by 5h at pH 5.5 with SDS where it was optimal condition for RSPs. However, the degradation of Rubisco did not proceed at pH 7.5 without SDS where it is near physiological condition for stromal proteins. Rubisco activase was degraded at similar rate under both conditions. These results suggest that RSPs can functions in a senescence related degradation system of chloroplast protein in rice leaves. Rubisco activase would be more susceptible to proteolysis than Rubisco under physiological condition and this could affect the contents of these proteins in leaves.
Collapse
Affiliation(s)
- Hiroshi Fukayama
- Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe 657-8501, Japan.
| | | | | |
Collapse
|
10
|
Eini O, Dogra S, Selth LA, Dry IB, Randles JW, Rezaian MA. Interaction with a host ubiquitin-conjugating enzyme is required for the pathogenicity of a geminiviral DNA beta satellite. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:737-46. [PMID: 19445598 DOI: 10.1094/mpmi-22-6-0737] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
DNA beta is a single-stranded satellite DNA which encodes a single gene, betaC1. To better understand the role of betaC1 in the pathogenicity of DNA beta, a yeast two-hybrid screen of a tomato cDNA library was carried out using betaC1 from Cotton leaf curl Multan virus (CLCuMV) DNA beta as the bait. A ubiquitin-conjugating enzyme, designated SlUBC3, which functionally complemented a yeast mutant deficient in ubiquitin-conjugating enzymes was identified. The authenticity and specificity of the interaction between betaC1 and SlUBC3 was confirmed both in vivo, using a bimolecular fluorescence complementation assay, and in vitro, using a protein-binding assay. Analysis of deletion mutants of the betaC1 protein showed that a myristoylation-like motif is required both for its interaction with SlUBC3 and the induction of DNA-beta-specific symptoms in host plants. The level of polyubiquitinated proteins in transgenic tobacco plants expressing betaC1 was found to be reduced compared with wild-type plants. These results are consistent with the hypothesis that interaction of betaC1 with SlUBC3 is required for DNA-beta-specific symptom induction, and that this is possibly due to downregulation of the host ubiquitin proteasome pathway.
Collapse
Affiliation(s)
- Omid Eini
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, SA 5064, Australia.
| | | | | | | | | | | |
Collapse
|
11
|
Hardin SC, Huber SC. Proteasome activity and the post-translational control of sucrose synthase stability in maize leaves. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2004; 42:197-208. [PMID: 15051043 DOI: 10.1016/j.plaphy.2003.12.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2003] [Accepted: 12/15/2003] [Indexed: 05/09/2023]
Abstract
The serine-170 (S170) calcium-dependent protein kinase phosphorylation site of maize (Zea mays L.) sucrose synthase (SUS) (EC 2.4.1.13) has been implicated in the post-translational regulation of SUS protein stability. To clarify the proteolytic process and the role of phosphorylation, SUS degradation and proteasome activities were studied in the maize leaf elongation zone. Size-exclusion chromatography resolved two peaks of proteasome-like proteolytic activity. The large molecular mass ( approximately 1350 kDa) peak required Mg(2+) and ATP for maximal activity and was inhibited by the proteasome inhibitors MG132 and NLVS. Anion-exchange chromatography resolved a similar proteolytic activity that was activated by ATP, characteristics that are consistent with those of a 26S-proteasome. Appropriately, immunoblotting revealed the presence of a 26S-proteasome subunit and highly ubiquitinated proteins within the active fractions eluted from both columns. The smaller molecular mass ( approximately 600 kDa) peak represented only 40% of the total proteasome-like activity and is likely a maize 20S-proteasome as it was activated in vitro by low levels of sodium dodecyl sulfate (SDS). S170 phosphorylated SUS (pS170-SUS) was detected as both high molecular mass (HMM) forms and proteolytic fragments that co-eluted with 26S-proteasome activities on both size-exclusion and anion-exchange columns. Conditions that maintained maximal 26S-proteasome activity reduced the amounts of pS170-SUS recovered. In vitro, the 26S-proteasome degraded SUS and proteasome-specific inhibitors reduced SUS proteolysis. HMM-SUS conjugates were produced in vitro and immunoprecipitations suggested that some SUS might be ubiquitinated in vivo. The results suggest that S170 phosphorylation promotes the formation of HMM, ubiquitin-SUS conjugates that can be targeted for 26S-proteasome-dependent degradation.
Collapse
Affiliation(s)
- Shane C Hardin
- United States Department of Agriculture-Agricultural Research Service, Photosynthesis Research Unit and Departments of Plant Biology and Crop Sciences, University of Illinois, Urbana, IL 61801, USA
| | | |
Collapse
|
12
|
Kim M, Ahn JW, Jin UH, Choi D, Paek KH, Pai HS. Activation of the programmed cell death pathway by inhibition of proteasome function in plants. J Biol Chem 2003; 278:19406-15. [PMID: 12637532 DOI: 10.1074/jbc.m210539200] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Proteasomes constitute the major machinery to degrade or process proteins by ATP/ubiquitin-mediated proteolysis. Recent findings suggest a pivotal role of the ubiquitin/proteasome pathway in the regulation of apoptosis in animal cells. Here we show that virus-induced gene silencing of two different subunits of the 26 S proteasome, the alpha 6 subunit of the 20 S proteasome and RPN9 subunit of 19 S regulatory complex, both activated the programmed cell death (PCD) program, accompanied by reduced proteasome activity and accumulation of polyubiquitinated proteins. These results demonstrate that disruption of proteasome function leads to PCD in plant cells. The affected cells showed morphological markers of PCD, including nuclear condensation and DNA fragmentation, accompanied by the 10-fold higher production of reactive oxygen species and increased ion leakage for 3-fold. Similar to apoptosis in animal system, mitochondrial membrane potential was decreased, cytochrome c released from mitochondria to cytosol, and caspase 9- and caspase 3-like proteolytic activities detected in the cells. Interestingly, this proteasome-mediated PCD stimulated the expression of only a subset of transcripts that are highly induced during pathogen-mediated hypersensitive response cell death, indicating that the two PCD pathways are differentially regulated. Taken together, these results provide the first direct evidence that proteasomes play a role in the regulatory program of PCD in plants. Controlled inhibition of proteasome activities may be involved in developmentally or environmentally activated plant cell death programs.
Collapse
Affiliation(s)
- Moonil Kim
- Laboratory of Plant Genomics, Korea Research Institute of Bioscience and Biotechnology, P. O. Box 115, Yusong, Taejon 305-600, Korea
| | | | | | | | | | | |
Collapse
|
13
|
Ballut L, Petit F, Mouzeyar S, Le Gall O, Candresse T, Schmid P, Nicolas P, Badaoui S. Biochemical identification of proteasome-associated endonuclease activity in sunflower. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1645:30-9. [PMID: 12535608 DOI: 10.1016/s1570-9639(02)00500-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Proteasomes have been purified from sunflower hypocotyles. They elute with a molecular mass of 600 kDa from gel filtration columns and two-dimensional gel electrophoresis indicates that the complex contains at least 20 different protein subunits. Peptide microsequencing revealed the presence of four subunits homologous to subunits Beta2, Beta6, Alpha5 and Alpha6 of plant proteasomes. These proteasomes have chymotrypsin-like activity and the highly purified fraction of this complex is associated with an endonuclease activity hydrolyzing Tobacco mosaic virus RNA and Lettuce mosaic virus RNA with a cleavage pattern showing fragments of well-defined size. This is the first evidence of a RNA endonuclease activity associated with plant proteasomes.
Collapse
Affiliation(s)
- Lionel Ballut
- UMR 1095, INRA Amélioration et Santé des Plantes, Université Blaise Pascal, Campus des Cézeaux, 24 Avenue des Landais, 63177 Aubière Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Yanagawa Y, Hasezawa S, Kumagai F, Oka M, Fujimuro M, Naito T, Makino T, Yokosawa H, Tanaka K, Komamine A, Hashimoto J, Sato T, Nakagawa H. Cell-cycle dependent dynamic change of 26S proteasome distribution in tobacco BY-2 cells. PLANT & CELL PHYSIOLOGY 2002; 43:604-13. [PMID: 12091713 DOI: 10.1093/pcp/pcf072] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The 26S proteasome is known to play pivotal roles in cell-cycle progression in various eukaryotic cells; however, little is known about its role in higher plants. Here we report that the subcellular distribution of the 26S proteasome is dynamically changed in a cell-cycle dependent manner in tobacco BY-2 cells as determined by immunostaining with anti-Rpn10 (a regulatory PA700 subunit) and anti-20S catalytic proteasome antibodies. The 26S proteasome was found to localize not only in nuclear envelopes and mitotic spindles but also in preprophase bands (PPBs) and phragmoplasts appearing in G(2) and M phases, respectively. MG132, a proteasome inhibitor, exclusively caused cell-cycle arrest not only at the metaphase but also the early stage of PPB formation at the G(2) phase and the collapse of the phragmoplast, which seems to be closely related to proteasome distribution in the cells.
Collapse
Affiliation(s)
- Yuki Yanagawa
- Department of Bioproduction Science, Faculty of Horticulture, Chiba University, Matsudo, Matsudo, Chiba, 271-8510 Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Basset G, Raymond P, Malek L, Brouquisse R. Changes in the expression and the enzymic properties of the 20S proteasome in sugar-starved maize roots. evidence for an in vivo oxidation of the proteasome. PLANT PHYSIOLOGY 2002; 128:1149-62. [PMID: 11891269 PMCID: PMC152226 DOI: 10.1104/pp.010612] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2001] [Revised: 10/24/2001] [Accepted: 11/27/2001] [Indexed: 05/21/2023]
Abstract
The 20S proteasome (multicatalytic proteinase) was purified from maize (Zea mays L. cv DEA 1992) roots through a five-step procedure. After biochemical characterization, it was shown to be similar to most eukaryotic proteasomes. We investigated the involvement of the 20S proteasome in the response to carbon starvation in excised maize root tips. Using polyclonal antibodies, we showed that the amount of proteasome increased in 24-h-carbon-starved root tips compared with freshly excised tips, whereas the mRNA levels of alpha 3 and beta 6 subunits of 20S proteasome decreased. Moreover, in carbon-starved tissues, chymotrypsin-like and caseinolytic activities of the 20S proteasome were found to increase, whereas trypsin-like activities decreased. The measurement of specific activities and kinetic parameters of 20S proteasome purified from 24-h-starved root tips suggested that it was subjected to posttranslational modifications. Using dinitrophenylhydrazine, a carbonyl-specific reagent, we observed an increase in carbonyl residues in 20S proteasome purified from starved root tips. This means that 20S proteasome was oxidized during starvation treatment. Moreover, an in vitro mild oxidative treatment of 20S proteasome from non-starved material resulted in the activation of chymotrypsin-like, peptidyl-glutamyl-peptide hydrolase and caseinolytic-specific activities and in the inhibition of trypsin-like specific activities, similar to that observed for proteasome from starved root tips. Our results provide the first evidence, to our knowledge, for an in vivo carbonylation of the 20S proteasome. They suggest that sugar deprivation induces an oxidative stress, and that oxidized 20S proteasome could be associated to the degradation of oxidatively damaged proteins in carbon starvation situations.
Collapse
Affiliation(s)
- Gilles Basset
- Unité de Physiologie Végétale, Institut National de la Recherche Agronomique, Centre de Recherche de Bordeaux, Boîte Postale 81, 33883 Villenave d'Ornon cedex, France
| | | | | | | |
Collapse
|
16
|
Endo S, Demura T, Fukuda H. Inhibition of proteasome activity by the TED4 protein in extracellular space: a novel mechanism for protection of living cells from injury caused by dying cells. PLANT & CELL PHYSIOLOGY 2001; 42:9-19. [PMID: 11158439 DOI: 10.1093/pcp/pce002] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In maturation process of tracheary element (TE) differentiation, many hydrolases are activated to execute programmed cell death of TEs. Such hydrolases are released from maturing TEs into extracellular space. The release of hydrolases should be harmful to surrounding cells. The TED4 protein, a tentative plant non-specific lipid transfer protein that is expressed preferentially in TE-induced culture of zinnia (Zinnia elegans L.), is secreted into the apoplastic space prior to and associated with morphological changes of TEs. Our studies on the interrelationship between the TED4 protein and proteolytic activities using an in vitro TE differentiation system of zinnia revealed the following facts. (1) Active proteasome is released into medium at maturation stage of TE differentiation. (2) The TED4 protein forms a complex with proteasome in culture medium. (3) The TED4 protein inhibits proteasome activity in the medium and crude extracts of zinnia cells. (4) The depletion of the TED4 protein from culture medium results in an increase in mortality of other living cells. These results strongly suggest that the secreted TED4 protein acts as an inhibitor of proteasome to protect other cells from undesirable injury due to proteolytic activities exudated from dying TEs.
Collapse
Affiliation(s)
- S Endo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, Japan.
| | | | | |
Collapse
|
17
|
Smýkal P, Hrdý I, Pechan PM. High-molecular-mass complexes formed in vivo contain smHSPs and HSP70 and display chaperone-like activity. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:2195-207. [PMID: 10759842 DOI: 10.1046/j.1432-1327.2000.01223.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Stress can have profound effects on the cell. The elicitation of the stress response in the cell is often accompanied by the synthesis of high-molecular-mass complexes, sometimes termed heat shock granules (HSGs). The presence of the complexes has been shown to be important for the survival of cells subjected to stress. We purified these complexes from heat-stressed BY-2 tobacco cells. HSG complexes formed in vivo contain predominantly smHSPs, HSP40 and HSP70 and display chaperone-like activity. Tubulins as well as other proteins may be part of the complex or its substrate. The proteins, except smHSPs and to some extent HSP70, were hypersensitive to proteolysis, suggesting that they were partially denatured and not an integral part of the HSG complexes. When citrate synthase was used as the substrate, in vivo generated HSG complexes exhibited strong nucleotide-dependent in vitro chaperone activity. Measurable ATP-mediated hydrolytic activity was detected. Isolated HSG complexes are stable until ATP is added, which leads to rapid dissociation of the complex into subunits. It is proposed that smHSPs form the core of the complex in association with ATP-dependent HSP70 and HSP40 cochaperones. Implications of these findings are discussed.
Collapse
Affiliation(s)
- P Smýkal
- Department of Plant Physiology, Charles University, Prague, Czech Republic
| | | | | |
Collapse
|
18
|
Usha R, Singh M. Purification of a multicatalytic protease complex from developing winged bean seeds by indirect immunoaffinity chromatography. Protein Expr Purif 1999; 15:48-56. [PMID: 10024469 DOI: 10.1006/prep.1998.0982] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Many protease inhibitors have been characterized from leguminous seeds but very little is known about seed proteases which are supposedly regulated by these inhibitors. We have developed an indirect immunoaffinity chromatography system for the purification of cognate proteases from the same source, based on preferential high salt elution of the enzyme from a ternary complex of the protease, the inhibitor, and the anti-inhibitor IgG. Using anti-winged bean chymotrypsin inhibitor (WbCI) IgG as an affinity ligand, a multicatalytic protease complex has been purified from developing winged bean (Psophocarpus tetragonolobus) seeds. The purified preparation resolves into two large proteolytically active components when subjected to gel permeation chromatography under nondenaturing conditions, while SDS/PAGE analysis shows the presence of approximately 15 polypeptide chains in the 20- to 115-kDa range. The preparation cleaves known synthetic peptide substrates of trypsin, chymotrypsin, and V8 protease and it is only partially inhibited by a number of class-specific protease inhibitors. Western blot analysis shows the presence of WbCI in the purified preparation even after its extensive removal by the IgG-Sepharose column. The versatility of the indirect immunoaffinity chromatography system is attested by its extension to the soybean seeds.
Collapse
Affiliation(s)
- R Usha
- Biochemical Engineering Division, Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Calcutta-, 700032, India
| | | |
Collapse
|
19
|
Tokumoto T. Nature and role of proteasomes in maturation of fish oocytes. INTERNATIONAL REVIEW OF CYTOLOGY 1998; 186:261-94. [PMID: 9770302 DOI: 10.1016/s0074-7696(08)61056-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The proteasome is an essential component of the proteolytic pathway in eukaryotic cells and is responsible for the degradation of most cellular proteins. Proteasomes are sorted into two types, 20S and 26S. The 20S proteasome forms the catalytic core of the 26S proteasome. The 26S proteasome is involved in the ubiquitin-dependent protein degradation pathway. Cyclins and cdk inhibitors or c-mos products, proteins critical to the regulation of the cell cycle, are known to be degraded by the ubiquitin pathway. Thus the 26S proteasome is thought to be involved in the regulation of cell cycle events. This review focuses on advances in the study of the biochemical properties and functions of the 20S and 26S proteasomes in the fish meiotic cell cycle.
Collapse
Affiliation(s)
- T Tokumoto
- Department of Biology and Geosciences, Faculty of Science, Shizuoka University, Japan
| |
Collapse
|
20
|
Fu H, Doelling JH, Arendt CS, Hochstrasser M, Vierstra RD. Molecular organization of the 20S proteasome gene family from Arabidopsis thaliana. Genetics 1998; 149:677-92. [PMID: 9611183 PMCID: PMC1460176 DOI: 10.1093/genetics/149.2.677] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The 20S proteasome is the proteolytic complex in eukaryotes responsible for degrading short-lived and abnormal intracellular proteins, especially those targeted by ubiquitin conjugation. The 700-kD complex exists as a hollow cylinder comprising four stacked rings with the catalytic sites located in the lumen. The two outer rings and the two inner rings are composed of seven different alpha and beta polypeptides, respectively, giving an alpha7/beta7/beta7/alpha7 symmetric organization. Here we describe the molecular organization of the 20S proteasome from the plant Arabidopsis thaliana. From an analysis of a collection of cDNA and genomic clones, we identified a superfamily of 23 genes encoding all 14 of the Arabidopsis proteasome subunits, designated PAA-PAG and PBA-PBG for Proteasome Alpha and Beta subunits A-G, respectively. Four of the subunits likely are encoded by single genes, and the remaining subunits are encoded by families of at least 2 genes. Expression of the alpha and beta subunit genes appears to be coordinately regulated. Three of the nine Arabidopsis proteasome subunit genes tested, PAC1 (alpha3), PAE1 (alpha5) and PBC2 (beta3), could functionally replace their yeast orthologs, providing the first evidence for cross-species complementation of 20S subunit genes. Taken together, these results demonstrate that the 20S proteasome is structurally and functionally conserved among eukaryotes and suggest that the subunit arrangement of the Arabidopsis 20S proteasome is similar if not identical to that recently determined for the yeast complex.
Collapse
Affiliation(s)
- H Fu
- Cellular and Molecular Biology Program and the Department of Horticulture, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
21
|
Abstract
The complexity of the proteasome gene family in higher plants was investigated by identification and sequencing cDNA clones from the Arabidopsis thaliana database showing homologies to 20S proteasome subunits. We identified plant counterparts for each of the 14 proteasomal subunit subfamilies. Moreover, several of them were highly related isoforms. Mapping data indicate a random distribution of the proteasome genes over the Arabidopsis genome.
Collapse
Affiliation(s)
- Y Parmentier
- Institut de Biologie Moléculaire des Plantes du C.N.R.S., Université Louis Pasteur, Strasbourg, France
| | | | | | | |
Collapse
|
22
|
Abstract
Proteolysis is essential for many aspects of plant physiology and development. It is responsible for cellular housekeeping and the stress response by removing abnormal/misfolded proteins, for supplying amino acids needed to make new proteins, for assisting in the maturation of zymogens and peptide hormones by limited cleavages, for controlling metabolism, homeosis, and development by reducing the abundance of key enzymes and regulatory proteins, and for the programmed cell death of specific plant organs or cells. It also has potential biotechnological ramifications in attempts to improve crop plants by modifying protein levels. Accumulating evidence indicates that protein degradation in plants is a complex process involving a multitude of proteolytic pathways with each cellular compartment likely to have one or more. Many of these have homologous pathways in bacteria and animals. Examples include the chloroplast ClpAP protease, vacuolar cathepsins, the KEX2-like proteases of the secretory system, and the ubiquitin/26S proteasome system in the nucleus and cytoplasm. The ubiquitin-dependent pathway requires that proteins targeted for degradation become conjugated with chains of multiple ubiquitins; these chains then serve as recognition signals for selective degradation by the 26S proteasome, a 1.5 MDa multisubunit protease complex. The ubiquitin pathway is particularly important for developmental regulation by selectively removing various cell-cycle effectors, transcription factors, and cell receptors such as phytochrome A. From insights into this and other proteolytic pathways, the use of phosphorylation/dephosphorylation and/or the addition of amino acid tags to selectively mark proteins for degradation have become recurring themes.
Collapse
Affiliation(s)
- R D Vierstra
- Department of Horticulture, University of Wisconsin-Madison 53706, USA
| |
Collapse
|
23
|
Hua S, To WY, Nguyen TT, Wong ML, Wang CC. Purification and characterization of proteasomes from Trypanosoma brucei. Mol Biochem Parasitol 1996; 78:33-46. [PMID: 8813675 DOI: 10.1016/s0166-6851(96)02599-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Proteasomes are multisubunit proteases that exist universally among eukaryotes. They have multiple proteolytic activities, and are believed to have important roles in regulating cell cycle, selective intracellular proteolysis, and antigen presentation. To determine the possible role that proteasomes may play in controlling the life cycle of African trypanosomes, we have isolated proteasomes from the bloodstream and the insect (procyclic) forms of Trypanosoma brucei by DEAE-cellulose chromatography and glycerol gradient fractionation in the presence of ATP. No 26 S proteasome homologs was identified in T. brucei under these experimental conditions. The proteasomes isolated from these two forms of T. brucei are very similar to the rat blood cell 20 S proteasome in their general appearance under the electron microscope. The profile of trypanosome proteasome subunits in sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) has eight visible protein bands with molecular weights ranging from 23 to 34 kDa, and cross-reacted very poorly with the anti-human 20 S proteasome antibodies on immunoblots. Two-dimensional gel electrophoresis of the parasite proteasomes shows a similar number of major subunits with pI's ranging from 4.5 to 7. Using a variety of fluorogenic peptides as substrates, the trypanosome proteasomes exhibited unusually high trypsin-like, but somewhat lower chymotrypsin-like activities, as compared to the rat 20 S proteasome. These proteolytic activities were, however, insensitive to phenylmethylsulfonyl fluoride (PMSF), tosyl-phenylalanine chloromethylketone (TPCK), tosyl-lysine chloromethylketone (TLCK) and trans-epoxy succinyl-L-leucylamido-(4 guanidino) butane (E-64), but the trypsin-like activity of trypanosome proteasomes was inhibited by leupeptin, an aldehyde known to inhibit the trypsin-like activity of mammalian proteasomes, thus ruling out possible contamination by other serine or cysteine proteases. Some quantitative differences in the substrate specificities between the proteasomes from bloodstream and procyclic forms were indicated, which may play a role in determining the differential protein turnovers at two different stages of development of T. brucei.
Collapse
Affiliation(s)
- S Hua
- Department of Pharmaceutical Chemistry, University of California at San Francisco 94143-0446, USA.
| | | | | | | | | |
Collapse
|
24
|
Hoffman L, Rechsteiner M. Regulatory features of multicatalytic and 26S proteases. CURRENT TOPICS IN CELLULAR REGULATION 1996; 34:1-32. [PMID: 8646844 DOI: 10.1016/s0070-2137(96)80001-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
It should be clear from the foregoing accounts that our understanding of MCP and 26S regulation is still rudimentary. Moreover, we have only recently identified about a dozen natural substrates of these two proteases. Those outside the field may view the situation with some dismay. Those who study the MCP and 26S enzymes are provided with rich opportunities to address fundamental questions of protein catabolism and metabolic regulation.
Collapse
Affiliation(s)
- L Hoffman
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City 84132, USA
| | | |
Collapse
|
25
|
Vaithilingam IS, McDonald W, Malott DW, Del Maestro RF. An extracellular proteasome-like structure from C6 astrocytoma cells with serine collagenase IV activity and metallo-dependent activity on alpha-casein and beta-insulin. J Biol Chem 1995; 270:4588-93. [PMID: 7876229 DOI: 10.1074/jbc.270.9.4588] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
An extracellular proteasome-like (EP) structure has been isolated from serum-free media conditioned by C6 astrocytoma cells. EP has a native molecular mass of 1000 kDa and is composed of three subunits, two isoelectric variants at 70 kDa and one at 65 kDa. The extracellular proteasome degraded collagen IV, alpha-casein, beta-insulin, and certain synthetic peptide substrates. A 68-kDa type IV collagenase, identified as the activated form of gelatinase A, was also isolated from this medium. The type IV collagenase activity of the proteasome was sensitive to serine protease inhibitors, while the 68-kDa collagenase IV represented the matrix metalloprotease gelatinase A. The general protease activity of the proteasome was sensitive to metalloprotease inhibitors. Western blot analysis indicates a sequence relationship between the 68-kDa type IV collagenase and either one or both of the 70-kDa isoelectric variants of the proteasome; however, the two enzymes appear to be distinct functionally. Comparison with known proteasomes indicates that EP represents a novel proteasome. The complexity of degradative enzymes in the extracellular microenvironment implies that complete inhibition of tumor growth requires at least a combination of serine and metalloprotease inhibitors.
Collapse
Affiliation(s)
- I S Vaithilingam
- Department of Clinical Neurological Sciences, University of Western Ontario, Victoria Hospital, London, Canada
| | | | | | | |
Collapse
|
26
|
Fujinami K, Tanahashi N, Tanaka K, Ichihara A, Cejka Z, Baumeister W, Miyawaki M, Sato T, Nakagawa H. Purification and characterization of the 26 S proteasome from spinach leaves. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)47331-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
27
|
Yu M, Chakraborty G, Grabow M, Ingoglia NA. Serine protease inhibitors block N-terminal arginylation of proteins by inhibiting the arginylation of tRNA in rat brains. Neurochem Res 1994; 19:105-10. [PMID: 8139756 DOI: 10.1007/bf00966736] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The tRNA mediated, posttranslational, N-terminal arginylation of proteins occurs in all eukaryotic cells. In nervous tissue, these reactions can be inhibited by endogenous molecules with a molecular weight of between one thousand and five thousand. In the present experiments, exogenous serine protease inhibitors (10(-5) M or less) but not other types of protease inhibitors, were found to be able to block the arginylation of protein in extracts of rat brain homogenates. Inhibition was not by the usual mode of action of protease inhibitors, but by interfering (non-competitively) with the charging of tRNA. Since arginylated proteins are rapidly ubiquitinated and degraded by cytosolic proteases, serine protease inhibitors may act to stabilize proteins by a dual mechanism of inhibiting arginylation as well as inhibiting serine proteases.
Collapse
Affiliation(s)
- M Yu
- Department of Physiology, New Jersey Medical School, Newark 07103-2757
| | | | | | | |
Collapse
|
28
|
Figueiredo-Pereira M, Yu B, Wilk S. Dissociation and reassociation of the bovine pituitary multicatalytic proteinase complex. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)42394-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
29
|
|