1
|
Nayeem MA, Geldenhuys WJ, Hanif A. Role of cytochrome P450-epoxygenase and soluble epoxide hydrolase in the regulation of vascular response. ADVANCES IN PHARMACOLOGY 2023; 97:37-131. [DOI: 10.1016/bs.apha.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
2
|
Nayeem MA, Hanif A, Geldenhuys WJ, Agba S. Crosstalk between adenosine receptors and CYP450-derived oxylipins in the modulation of cardiovascular, including coronary reactive hyperemic response. Pharmacol Ther 2022; 240:108213. [PMID: 35597366 DOI: 10.1016/j.pharmthera.2022.108213] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 12/14/2022]
Abstract
Adenosine is a ubiquitous endogenous nucleoside or autacoid that affects the cardiovascular system through the activation of four G-protein coupled receptors: adenosine A1 receptor (A1AR), adenosine A2A receptor (A2AAR), adenosine A2B receptor (A2BAR), and adenosine A3 receptor (A3AR). With the rapid generation of this nucleoside from cellular metabolism and the widespread distribution of its four G-protein coupled receptors in almost all organs and tissues of the body, this autacoid induces multiple physiological as well as pathological effects, not only regulating the cardiovascular system but also the central nervous system, peripheral vascular system, and immune system. Mounting evidence shows the role of CYP450-enzymes in cardiovascular physiology and pathology, and the genetic polymorphisms in CYP450s can increase susceptibility to cardiovascular diseases (CVDs). One of the most important physiological roles of CYP450-epoxygenases (CYP450-2C & CYP2J2) is the metabolism of arachidonic acid (AA) and linoleic acid (LA) into epoxyeicosatrienoic acids (EETs) and epoxyoctadecaenoic acid (EpOMEs) which generally involve in vasodilation. Like an increase in coronary reactive hyperemia (CRH), an increase in anti-inflammation, and cardioprotective effects. Moreover, the genetic polymorphisms in CYP450-epoxygenases will change the beneficial cardiovascular effects of metabolites or oxylipins into detrimental effects. The soluble epoxide hydrolase (sEH) is another crucial enzyme ubiquitously expressed in all living organisms and almost all organs and tissues. However, in contrast to CYP450-epoxygenases, sEH converts EETs into dihydroxyeicosatrienoic acid (DHETs), EpOMEs into dihydroxyoctadecaenoic acid (DiHOMEs), and others and reverses the beneficial effects of epoxy-fatty acids leading to vasoconstriction, reducing CRH, increase in pro-inflammation, increase in pro-thrombotic and become less cardioprotective. Therefore, polymorphisms in the sEH gene (Ephx2) cause the enzyme to become overactive, making it more vulnerable to CVDs, including hypertension. Besides the sEH, ω-hydroxylases (CYP450-4A11 & CYP450-4F2) derived metabolites from AA, ω terminal-hydroxyeicosatetraenoic acids (19-, 20-HETE), lipoxygenase-derived mid-chain hydroxyeicosatetraenoic acids (5-, 11-, 12-, 15-HETEs), and the cyclooxygenase-derived prostanoids (prostaglandins: PGD2, PGF2α; thromboxane: Txs, oxylipins) are involved in vasoconstriction, hypertension, reduction in CRH, pro-inflammation and cardiac toxicity. Interestingly, the interactions of adenosine receptors (A2AAR, A1AR) with CYP450-epoxygenases, ω-hydroxylases, sEH, and their derived metabolites or oxygenated polyunsaturated fatty acids (PUFAs or oxylipins) is shown in the regulation of the cardiovascular functions. In addition, much evidence demonstrates polymorphisms in CYP450-epoxygenases, ω-hydroxylases, and sEH genes (Ephx2) and adenosine receptor genes (ADORA1 & ADORA2) in the human population with the susceptibility to CVDs, including hypertension. CVDs are the number one cause of death globally, coronary artery disease (CAD) was the leading cause of death in the US in 2019, and hypertension is one of the most potent causes of CVDs. This review summarizes the articles related to the crosstalk between adenosine receptors and CYP450-derived oxylipins in vascular, including the CRH response in regular salt-diet fed and high salt-diet fed mice with the correlation of heart perfusate/plasma oxylipins. By using A2AAR-/-, A1AR-/-, eNOS-/-, sEH-/- or Ephx2-/-, vascular sEH-overexpressed (Tie2-sEH Tr), vascular CYP2J2-overexpressed (Tie2-CYP2J2 Tr), and wild-type (WT) mice. This review article also summarizes the role of pro-and anti-inflammatory oxylipins in cardiovascular function/dysfunction in mice and humans. Therefore, more studies are needed better to understand the crosstalk between the adenosine receptors and eicosanoids to develop diagnostic and therapeutic tools by using plasma oxylipins profiles in CVDs, including hypertensive cases in the future.
Collapse
Affiliation(s)
- Mohammed A Nayeem
- Faculties of the Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA.
| | - Ahmad Hanif
- Faculties of the Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA
| | - Werner J Geldenhuys
- Faculties of the Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA
| | - Stephanie Agba
- Graduate student, Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
3
|
Salt-Sensitive Hypertension in GR +/- Rats Is Accompanied with Dysregulation in Adrenal Soluble Epoxide Hydrolase and Polyunsaturated Fatty Acid Pathways. Int J Mol Sci 2021; 22:ijms222413218. [PMID: 34948014 PMCID: PMC8708190 DOI: 10.3390/ijms222413218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 01/23/2023] Open
Abstract
Mutations within the glucocorticoid receptor (GR) gene locus lead to glucocorticoid resistance which is characterized by several clinical symptoms such as adrenal gland hyperplasia and salt-sensitive hypertension, although the underlying mechanisms are still unknown. We studied GR haploinsufficient (GR+/−) Sprague Dawley rats which, on a standard diet, showed significantly increased plasma aldosterone and corticosterone levels and an adrenocortex hyperplasia accompanied by a normal systolic blood pressure. Following a high salt diet, these rats developed salt-sensitive hypertension and maintained elevated enzyme-soluble epoxide hydrolase (sEH) in adrenal glands, while sEH was significantly decreased in wild-type rats. Furthermore, GR+/− rats showed dysregulation of the equilibrated linoleic and arachidonic acid pathways, with a significant increase of less active metabolites such as 8,9-DiHETrE. In Sprague Dawley rats, GR haploinsufficiency induced steroid disturbances, which provoked hypertension only in combination with high salt intake, which was accompanied by disturbances in sEH and fatty acid metabolism. Our results suggest that sEH inhibition could be a potential target to treat hypertension in patients with GR haploinsufficiency.
Collapse
|
4
|
Liu W, Sui D, Ye H, Ouyang Z, Wei Y. CYP2C11 played a significant role in down-regulating rat blood pressure under the challenge of a high-salt diet. PeerJ 2019; 7:e6807. [PMID: 31065462 PMCID: PMC6485204 DOI: 10.7717/peerj.6807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 03/18/2019] [Indexed: 01/13/2023] Open
Abstract
Background Arachidonic acid (AA) is oxidized by cytochrome P450s (CYPs) to form epoxyeicosatrienoic acids (EETs), compounds that modulate ion transport, gene expression, and vasorelaxation. Both CYP2Cs and CYP2Js are involved in kidney EET epoxidation. Methods In this study, we used a CYP2C11-null rat model to explore the in vivo effects of CYP2C11 on vasorelaxation. For 2 months, CYP2C11-null and wild-type (WT) Sprague-Dawley rats were either fed normal lab (0.3% (w/w) sodium chloride) or high-salt (8% (w/w) sodium chloride) diets. Subsequently, an invasive method was used to determine blood pressure. Next, western blots, quantitative PCR, and immunohistochemistry were used to determine renal expression of CYPs involved in AA metabolism. Results Among CYP2C11-null rats, a high-salt diet (females: 156.79 ± 15.89 mm Hg, males: 130.25 ± 16.76 mm Hg, n = 10) resulted in significantly higher blood pressure than a normal diet (females: 118.05 ± 8.43 mm Hg, P < 0.01; males: 115.15 ± 11.45 mm Hg, P < 0.05, n = 10). Compared with WT rats under the high-salt diet, western blots showed that CYP2C11-null rats had higher renal expression of CYP2J2 and CYP4A. This was consistent with the results of immunohistochemistry and the qPCR, respectively. The two rat strains did not differ in the renal expression of CYP2C23 or CYP2C24. Conclusion Our findings suggested that CYP2C11 plays an important role in lowering blood pressure under the challenge of a high-salt diet.
Collapse
Affiliation(s)
- Wei Liu
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Danjuan Sui
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Huanying Ye
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Zhen Ouyang
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Yuan Wei
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| |
Collapse
|
5
|
Abstract
In honor of the 100th birthday of Dr. Herbert Tabor, JBC's Editor-in-Chief for 40 years, I will review here JBC's extensive coverage of the field of cytochrome P450 (P450) research. Research on the reactions catalyzed by these enzymes was published in JBC before it was even realized that they were P450s, i.e. they have a "pigment" with an absorption maximum at 450 nm. After the P450 pigment discovery, reported in JBC in 1962, the journal proceeded to publish the methods for measuring P450 activities and many seminal findings. Since then, the P450 field has grown extensively, with significant progress in characterizing these enzymes, including structural features, catalytic mechanisms, regulation, and many other aspects of P450 biochemistry. JBC has been the most influential journal in the P450 field. As with many other research areas, Dr. Tabor deserves a great deal of the credit for significantly advancing this burgeoning and important topic of research.
Collapse
Affiliation(s)
- F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146.
| |
Collapse
|
6
|
Elijovich F, Milne GL, Brown NJ, Laniado-Schwartzman M, Laffer CL. Two Pools of Epoxyeicosatrienoic Acids in Humans: Alterations in Salt-Sensitive Normotensive Subjects. Hypertension 2017; 71:346-355. [PMID: 29279315 DOI: 10.1161/hypertensionaha.117.10392] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 10/14/2017] [Accepted: 11/28/2017] [Indexed: 11/16/2022]
Abstract
We measured epoxyeicosatrienoic acids (EETs) and dihydroxyeicosatrienoic acids (DHETs) in 21 normotensive subjects classified as salt resistant (13) or salt sensitive (8) with an inpatient protocol of salt loading (460 mEq Na+/24 hours, HiNa) and depletion (10 mEq Na+/24 hours+furosemide 40 mg×3, LoNa). No urine EETs were detected; hence, enzyme linked innumosorbent assay 14,15-DHETs (dihydroxyeicosatrienoic acids) were considered the total converted 14,15-urine pool. We report ultra-performance liquid chromatography/tandem mass spectrometry plasma EETs, DHETs, and their sum (plasma total pool) for the 3 regioisomers (8,9-, 11,12-, 14,15-) and their sum (08,15-). In salt-resistant subjects, urine total pool was unchanged by HiNa, decreased by LoNa, and correlated with urine sodium excretion, fractional excretion of Na+, and Na+/K+ ratio for the 3 days of the experiment combined (P<0.03). In contrast, plasma total pool increased in LoNa and did not correlate with natriuresis or Na+/K+ ratio but showed correlations between EETs, blood pressures, and catecholamines and between DHETs and aldosterone (P<0.03). Urine total pool of salt-sensitive was lower than that of salt-resistant subjects in certain phases of the experiment, lacked responses to changes in salt balance, and exhibited limited correlations with natriuresis and Na+/K+ ratio during LoNa only. Plasma total pool of salt-sensitive was lower than in salt-resistant subjects and did not correlate with blood pressures or aldosterone but did with catecholamines. We conclude that the urine total pool reflects a renal pool involved in regulation of natriuresis, whereas the plasma total pools are of systemic origin, uninvolved in Na+ excretion, perhaps contributing to regulation of vascular tone. Data suggest that abnormalities in EETs in salt-sensitive subjects participate in their renal or vascular dysfunction, which has potential therapeutic implications.
Collapse
Affiliation(s)
- Fernando Elijovich
- From the Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN (F.E., G.L.M., N.J.B., C.L.L.); and Department of Pharmacology, New York Medical College, Valhalla (M.L.-S.).
| | - Ginger L Milne
- From the Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN (F.E., G.L.M., N.J.B., C.L.L.); and Department of Pharmacology, New York Medical College, Valhalla (M.L.-S.)
| | - Nancy J Brown
- From the Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN (F.E., G.L.M., N.J.B., C.L.L.); and Department of Pharmacology, New York Medical College, Valhalla (M.L.-S.)
| | - Michal Laniado-Schwartzman
- From the Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN (F.E., G.L.M., N.J.B., C.L.L.); and Department of Pharmacology, New York Medical College, Valhalla (M.L.-S.)
| | - Cheryl L Laffer
- From the Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN (F.E., G.L.M., N.J.B., C.L.L.); and Department of Pharmacology, New York Medical College, Valhalla (M.L.-S.)
| |
Collapse
|
7
|
EETs/sEH in diabetes and obesity-induced cardiovascular diseases. Prostaglandins Other Lipid Mediat 2016; 125:80-9. [PMID: 27184755 DOI: 10.1016/j.prostaglandins.2016.05.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 05/11/2016] [Accepted: 05/12/2016] [Indexed: 01/28/2023]
Abstract
Despite the optimization of blood glucose control and the therapeutic management of risk factors, obesity- and diabetes-induced cardiovascular diseases are still major health problems in the United States. Arachidonic acid (AA), an endogenous 20-carbon polyunsaturated fatty acid, is metabolized by cytochrome P450 (CYP) epoxygenases into epoxyeicosatrienoic acids (EETs), which are important lipid mediators with many beneficial effects in type 1 diabetes mellitus (T1DM), type 2 diabetes mellitus (T2DM), and obesity- and diabetes-induced cardiovascular diseases. EETs can be further metabolized to less active dihydroxyeicosatrienoic acids (DHETs) by soluble epoxide hydrolase (sEH). It has been demonstrated that the use of sEH blockers, which prevent EET degradation, is a promising pharmacological approach to promoting insulin secretion, preventing endothelial dysfunction, decreasing blood pressure, and protecting against target organ damage in obesity and metabolic diseases. This review will focus on biochemistry of CYP monooxygenase system as well as the pharmacology and physiological significance of EETs and sEH. We will also discuss the role of EETs/sEH in T1DM, T2DM, and obesity- and diabetes-induced cardiovascular diseases.
Collapse
|
8
|
Shao J, Wang H, Yuan G, Chen Z, Li Q. Involvement of the arachidonic acid cytochrome P450 epoxygenase pathway in the proliferation and invasion of human multiple myeloma cells. PeerJ 2016; 4:e1925. [PMID: 27077015 PMCID: PMC4830247 DOI: 10.7717/peerj.1925] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 03/22/2016] [Indexed: 11/26/2022] Open
Abstract
Cytochrome P450 (CYP) epoxygenases and the metabolites epoxyeicosatrienoic acids (EETs) exert multiple biological effects in various malignancies. We have previously found EETs to be secreted by multiple myeloma (MM) cells and to be involved in MM angiogenesis, but the role of the arachidonic acid cytochrome P450 epoxygenase pathway in the proliferation and mobility of MM cells remains unknown. In the present study, we found that MM cell lines generated detectable levels of 11,12-EET/14,15-EET and that increased levels of EETs were found in the serum of MM patients compared to healthy donors. The addition of exogenous EETs induced significantly enhanced proliferation of MM cells, whereas 17-octadecynoic acid (17-ODYA), an inhibitor of the CYP epoxygenase pathway, inhibited the viability and proliferation of MM cells. Moreover, this inhibitory effect could be successfully reversed by exogenous EETs. 17-ODYA also inhibited the motility of MM cells in a time-dependent manner, with a reduction of the gelatinolytic activity and protein expression of the matrix metalloproteinases (MMP)-2 and MMP-9. These results suggest the CYP epoxygenase pathway to be involved in the proliferation and invasion of MM cells, for which 17-ODYA could be a promising therapeutic drug.
Collapse
Affiliation(s)
- Jing Shao
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Hubei, China; Wuhan Central Hospital, Department of Hematology, Wuhan Hubei, China
| | - Hongxiang Wang
- Wuhan Central Hospital, Department of Hematology , Wuhan Hubei , China
| | - Guolin Yuan
- Xiangyang Central Hospital, the Affiliated Hospital of Hubei University of Arts and Science, Department of Hematology , Xiangyang Hubei , China
| | - Zhichao Chen
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan Hubei , China
| | - Qiubai Li
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan Hubei , China
| |
Collapse
|
9
|
Abstract
High salt (4% NaCl, HS) diet modulates adenosine-induced vascular response through adenosine A(2A) receptor (A(2A)AR). Evidence suggests that A(2A)AR stimulates cyp450-epoxygenases, leading to epoxyeicosatrienoic acids (EETs) generation. The aim of this study was to understand the vascular reactivity to HS and underlying signaling mechanism in the presence or absence of A(2A)AR. Therefore, we hypothesized that HS enhances adenosine-induced relaxation through EETs in A(2A)AR⁺/⁺, but exaggerates contraction in A(2A)AR⁻/⁻. Organ bath and Western blot experiments were conducted in HS and normal salt (NS, 0.18% NaCl)-fed A(2A)AR⁺/⁺ and A(2A)AR⁻/⁻ mice aorta. HS produced concentration-dependent relaxation to non-selective adenosine analog, NECA in A(2A)AR⁺/⁺, whereas contraction was observed in A(2A)AR⁻/⁻ mice and this was attenuated by A₁AR antagonist (DPCPX). CGS 21680 (selective A(2A)AR agonist) enhanced relaxation in HS-A(2A)AR⁺/⁺ versus NS-A(2A)AR⁺/⁺, which was blocked by EETs antagonist (14,15-EEZE). Compared with NS, HS significantly upregulated the expression of vasodilators A(2A)AR and cyp2c29, whereas vasoconstrictors A₁AR and cyp4a in A(2A)AR⁺/⁺ were downregulated. In A(2A)AR⁻/⁻ mice, however, HS significantly downregulated the expression of cyp2c29, whereas A₁AR and cyp4a were upregulated compared with A(2A)AR⁺/⁺ mice. Hence, our data suggest that in A(2A)AR⁺/⁺, HS enhances A(2A)AR-induced relaxation through increased cyp-expoxygenases-derived EETs and decreased A₁AR levels, whereas in A(2A)AR⁻/⁻, HS exaggerates contraction through decreased cyp-epoxygenases and increased A₁AR levels.
Collapse
|
10
|
Xu M, Ju W, Hao H, Wang G, Li P. Cytochrome P450 2J2: distribution, function, regulation, genetic polymorphisms and clinical significance. Drug Metab Rev 2014; 45:311-52. [PMID: 23865864 DOI: 10.3109/03602532.2013.806537] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cytochrome P450 2J2 (CYP2J2) is an enzyme mainly found in human extrahepatic tissues, with predominant expression in the cardiovascular systems and lower levels in the intestine, kidney, lung, pancreas, brain, liver, etc. During the past 15 years, CYP2J2 has attracted much attention for its epoxygenase activity in arachidonic acid (AA) metabolism. It converts AA to four epoxyeicosatrienoic acids (EETs) that have various biological effects, especially in the cardiovascular systems. In recent publications, CYP2J2 is shown highly expressed in various human tumor cells, and its EET metabolites are demonstrated to implicate in the pathologic development of human cancers. CYP2J2 is also a human CYP that involved in phase I xenobiotics metabolism. Antihistamine drugs and many other compounds were identified as the substrates of CYP2J2, and studies have demonstrated that these substrates have a broad structural diversity. CYP2J2 is found not readily induced by known P450 inducers; however, its expression could be regulated in some pathological conditions, might through the activator protein-1(AP-1), the AP-1-like element and microRNA let-7b. Several genetic mutations in the CYP2J2 gene have been identified in humans, and some of them have been shown to have potential associations with some diseases. With the increasing awareness of its roles in cancer disease and drug metabolism, studies about CYP2J2 are still going on, and various inhibitors of CYP2J2 have been determined. Further studies are needed to delineate the roles of CYP2J2 in disease pathology, drug development and clinical practice.
Collapse
Affiliation(s)
- Meijuan Xu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | | | | | | | | |
Collapse
|
11
|
Paraoxonase1 deficiency in mice is associated with hypotension and increased levels of 5,6-epoxyeicosatrienoic acid. Atherosclerosis 2012; 222:92-8. [DOI: 10.1016/j.atherosclerosis.2012.01.047] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 01/10/2012] [Accepted: 01/28/2012] [Indexed: 01/11/2023]
|
12
|
Mesaros C, Blair IA. Targeted chiral analysis of bioactive arachidonic Acid metabolites using liquid-chromatography-mass spectrometry. Metabolites 2012; 2:337-65. [PMID: 24957514 PMCID: PMC3901208 DOI: 10.3390/metabo2020337] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 04/02/2012] [Accepted: 04/09/2012] [Indexed: 02/06/2023] Open
Abstract
A complex structurally diverse series of eicosanoids arises from the metabolism of arachidonic acid. The metabolic profile is further complicated by the enantioselectivity of eicosanoid formation and the variety of regioisomers that arise. In order to investigate the metabolism of arachidonic acid in vitro or in vivo, targeted methods are advantageous in order to distinguish between the complex isomeric mixtures that can arise by different metabolic pathways. Over the last several years this targeted approach has become more popular, although there are still relatively few examples where chiral targeted approaches have been employed to directly analyze complex enantiomeric mixtures. To efficiently conduct targeted eicosanoid analyses, LC separations are coupled with collision induced dissociation (CID) and tandem mass spectrometry (MS/MS). Product ion profiles are often diagnostic for particular regioisomers. The highest sensitivity that can be achieved involves the use of selected reaction monitoring/mass spectrometry (SRM/MS); whereas the highest specificity is obtained with an SRM transitions between an intense parent ion, which contains the intact molecule (M) and a structurally significant product ion. This review article provides an overview of arachidonic acid metabolism and targeted chiral methods that have been utilized for the analysis of the structurally diverse eicosanoids that arise.
Collapse
Affiliation(s)
- Clementina Mesaros
- Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Ian A Blair
- Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
13
|
Imig JD. Epoxides and soluble epoxide hydrolase in cardiovascular physiology. Physiol Rev 2012; 92:101-30. [PMID: 22298653 DOI: 10.1152/physrev.00021.2011] [Citation(s) in RCA: 285] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Epoxyeicosatrienoic acids (EETs) are arachidonic acid metabolites that importantly contribute to vascular and cardiac physiology. The contribution of EETs to vascular and cardiac function is further influenced by soluble epoxide hydrolase (sEH) that degrades EETs to diols. Vascular actions of EETs include dilation and angiogenesis. EETs also decrease inflammation and platelet aggregation and in general act to maintain vascular homeostasis. Myocyte contraction and increased coronary blood flow are the two primary EET actions in the heart. EET cell signaling mechanisms are tissue and organ specific and provide significant evidence for the existence of EET receptors. Additionally, pharmacological and genetic manipulations of EETs and sEH have demonstrated a contribution for this metabolic pathway to cardiovascular diseases. Given the impact of EETs to cardiovascular physiology, there is emerging evidence that development of EET-based therapeutics will be beneficial for cardiovascular diseases.
Collapse
Affiliation(s)
- John D Imig
- Department of Pharmacology and Toxicology, Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| |
Collapse
|
14
|
Carroll MA. Role of the adenosine(2A) receptor-epoxyeicosatrienoic acid pathway in the development of salt-sensitive hypertension. Prostaglandins Other Lipid Mediat 2011; 98:39-47. [PMID: 22227265 DOI: 10.1016/j.prostaglandins.2011.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 11/29/2011] [Accepted: 12/09/2011] [Indexed: 01/07/2023]
Abstract
Activation of rat adenosine(2A) receptors (A(2A) R) dilates preglomerular microvessels, an effect mediated by epoxyeicosatrienoic acids (EETs). High salt (HS) intake increases epoxygenase activity and adenosine levels. A greater vasodilator response to a stable adenosine analog, 2-chloroadenosine (2-CA), was seen in kidneys obtained from HS-fed rats which was mediated by increased EET release. Because this pathway is antipressor, we examined the role of the A(2A) R-EET pathway in a genetic model of salt-sensitive hypertension, the Dahl salt-sensitive (SS) rats. Dahl salt resistant (SR) rats fed a HS diet demonstrated a greater renal vasodilator response to 2-CA. In contrast, Dahl SS rats did not exhibit a difference in the vasodilator response to 2-CA whether fed normal salt (NS) or HS diet. In Dahl SR but not Dahl SS rats, HS intake significantly increased purine flux, augmented the protein expression of A(2A) R and cytochrome P450 2C23 and 2C11 epoxygenases, and elevated the renal efflux of EETs. Thus the Dahl SR rat is able to respond to HS intake by recruiting EET formation, whereas the Dahl SS rat appears to have exhausted its ability to increase EET synthesis above the levels observed on NS intake. In vivo inhibition of the A(2A) R-EET pathway in Dahl SR rats fed a HS diet results in reduced renal EETs levels, diminished natriuretic capacity and hypertension, thus supporting a role for the A(2A) R-EET pathway in the adaptive natriuretic response to modulate blood pressure during salt loading. An inability of Dahl SS rats to upregulate the A(2A) R-EET pathway in response to salt loading may contribute to the development of salt-sensitive hypertension.
Collapse
Affiliation(s)
- Mairéad A Carroll
- Department of Pharmacology, New York Medical College, Valhalla, NY, USA. mairead
| |
Collapse
|
15
|
Mal M, Koh PK, Cheah PY, Chan ECY. Ultra-pressure liquid chromatography/tandem mass spectrometry targeted profiling of arachidonic acid and eicosanoids in human colorectal cancer. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2011; 25:755-764. [PMID: 21337637 DOI: 10.1002/rcm.4926] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Cumulative evidence shows that eicosanoids such as prostaglandins, leukotrienes, thromboxanes and hydroxy eicosatetraenoic acids play an important role in associating inflammation with human colorectal cancer (CRC). In this study an ultra-pressure liquid chromatography/tandem mass spectrometry (UPLC/MS/MS) method was developed and validated for the targeted profiling of eight relevant eicosanoids and the major metabolic precursor, arachidonic acid (AA), in human colon. Multiple reaction monitoring (MRM) experiments were performed in negative electrospray ionization mode. The metabolites were separated using a C(18) column consisting of 1.7 µm ethylene-bridged hybrid particles (100 × 2.1 mm i.d.) and gradient elution (50 to 95% of solvent B) with a mobile phase comprising water (0.1% formic acid) [solvent A] and acetonitrile (0.1% formic acid) [solvent B] at a flow rate of 0.4 mL/min. The analysis time for each sample was 5.5 min. Our UPLC/MS/MS method demonstrated satisfactory validation results in terms of selectivity, sensitivity, matrix effect, linearity, extraction efficiency, intra- and inter-day precision, accuracy and autosampler stability. The method was applied for the clinical profiling of matched pairs of cancerous and normal colon mucosae obtained from eight colorectal cancer patients. Endogenous levels of AA and selected eicosanoids such as prostaglandin E(2) (PGE(2)), prostacyclin (PGI(2)) [assayed as its stable hydrolytic product 6-keto-prostaglandin(1α) (6-k PGF(1α))] and 12-hydroxy-5Z,8Z,10E,14Z-eicosatetraenoic acid (12-HETE) were found to be significantly different (p <0.05; paired t-test) between cancerous and normal mucosae.
Collapse
Affiliation(s)
- Mainak Mal
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore
| | | | | | | |
Collapse
|
16
|
Zhang R, Lu J, Hu C, Wang C, Yu W, Ma X, Bao Y, Xiang K, Guan Y, Jia W. A common polymorphism of CYP4A11 is associated with blood pressure in a Chinese population. Hypertens Res 2011; 34:645-8. [DOI: 10.1038/hr.2011.8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
17
|
Role of CYP2C9 genetic variants for salt sensitivity and the regulation of the renin–angiotensin–aldosterone system in normotensive men. J Hypertens 2011; 29:56-61. [DOI: 10.1097/hjh.0b013e32833f5de5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Nayeem MA, Zeldin DC, Boegehold MA, Falck JR. Salt modulates vascular response through adenosine A(2A) receptor in eNOS-null mice: role of CYP450 epoxygenase and soluble epoxide hydrolase. Mol Cell Biochem 2010; 350:101-11. [PMID: 21161333 DOI: 10.1007/s11010-010-0686-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 12/02/2010] [Indexed: 11/30/2022]
Abstract
High salt (HS) intake can change the arterial tone in mice, and the nitric oxide (NO) acts as a mediator to some of the receptors mediated vascular response. The main aim of this study was to explore the mechanism behind adenosine-induced vascular response in HS-fed eNOS(+/+) and eNOS(-/-) mice The modulation of vascular response by HS was examined using aortas from mice (eNOS(+/+) and eNOS(-/-)) fed 4% (HS) or 0.45% (NS) NaCl-diet through acetylcholine (ACh), NECA (adenosine-analog), CGS 21680 (A(2A) AR-agonist), MS-PPOH (CYP epoxygenase-blocker; 10(-5) M), AUDA (sEH-blocker; 10(-5) M), and DDMS (CYP4A-blocker; 10(-5) M). ACh-response was greater in HS-eNOS(+/+) (+59.3 ± 6.3%) versus NS-eNOS(+/+) (+33.3 ± 8.0%; P < 0.05). However, there was no response in both HS-eNOS(-/-) and NS-eNOS(-/-). NECA-response was greater in HS-eNOS(-/-) (+37.4 ± 3.2%) versus NS-eNOS(-/-) (+7.4.0 ± 3.8%; P < 0.05). CGS 21680-response was also greater in HS-eNOS(-/-) (+45.4 ± 5.2%) versus NS-eNOS(-/-)(+5.1 ± 5.0%; P < 0.05). In HS-eNOS(-/-), the CGS 21680-response was reduced by MS-PPOH (+7.3 ± 3.2%; P < 0.05). In NS-eNOS(-/-), the CGS 21680-response was increased by AUDA (+38.2 ± 3.3%; P < 0.05) and DDMS (+30.1 ± 4.1%; P < 0.05). Compared to NS, HS increased CYP2J2 in eNOS(+/+) (35%; P < 0.05) and eNOS(-/-) (61%; P < 0.05), but decreased sEH in eNOS(+/+) (74%; P < 0.05) and eNOS(-/-) (40%; P < 0.05). Similarly, CYP4A decreased in HS-eNOS(+/+) (35%; P < 0.05) and HS-eNOS(-/-) (34%; P < 0.05). These data suggest that NS causes reduced-vasodilation in both eNOS(+/+) and eNOS(-/-) via sEH and CYP4A. However, HS triggers possible A(2A)AR-induced relaxation through CYP epoxygenase in both eNOS(+/+) and eNOS(-/-).
Collapse
Affiliation(s)
- Mohammed A Nayeem
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV 26506, USA.
| | | | | | | |
Collapse
|
19
|
Mesaros C, Lee SH, Blair IA. Analysis of epoxyeicosatrienoic acids by chiral liquid chromatography/electron capture atmospheric pressure chemical ionization mass spectrometry using [13C]-analog internal standards. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2010; 24:3237-47. [PMID: 20972997 PMCID: PMC3348553 DOI: 10.1002/rcm.4760] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The metabolism of arachidonic acid (AA) to epoxyeicosatrienoic acids (EETs) is thought to be mediated primarily by the cytochromes P450 (P450s) from the 2 family (2C9, 2C19, 2D6, and 2J2). In contrast, P450s of the 4 family are primarily involved in omega oxidation of AA (4A11 and 4A22). The ability to determine enantioselective formation of the regioisomeric EETs is important in order to establish their potential biological activities and to asses which P450 isoforms are involved in their formation. It has been extremely difficult to analyze individual EET enantiomers in biological fluids because they are present in only trace amounts and they are extremely difficult to separate from each other. In addition, the deuterium-labeled internal standards that are commonly used for stable isotope dilution liquid chromatography/mass spectrometry (LC/MS) analyses have different LC retention times when compared with the corresponding protium forms. Therefore, quantification by LC/MS-based methodology can be compromised by differential suppression of ionization of the closely eluting isomers. We report the preparation of [(13)C(20)]-EET analog internal standards and the use of a validated high-sensitivity chiral LC/electron capture atmospheric pressure chemical ionization (ECAPCI)-MS method for the trace analysis of endogenous EETs as their pentafluorobenzyl (PFB) ester derivatives. The assay was then used to show the exquisite enantioselectivity of P4502C19-, P4502D6-, P4501A1-, and P4501B1-mediated conversion of AA into EETs and to quantify the enantioselective formation of EETs produced by AA metabolism in a mouse epithelial hepatoma (Hepa) cell line.
Collapse
MESH Headings
- 8,11,14-Eicosatrienoic Acid/analogs & derivatives
- 8,11,14-Eicosatrienoic Acid/chemistry
- 8,11,14-Eicosatrienoic Acid/metabolism
- Animals
- Arachidonic Acid/chemistry
- Arachidonic Acid/metabolism
- Aryl Hydrocarbon Hydroxylases/metabolism
- Carbon Isotopes/chemistry
- Cell Line, Tumor
- Chromatography, Liquid/methods
- Humans
- Linear Models
- Mice
- Protein Isoforms/chemistry
- Protein Isoforms/metabolism
- Rats
- Reference Standards
- Reproducibility of Results
- Sensitivity and Specificity
- Spectrometry, Mass, Electrospray Ionization/methods
- Spectrometry, Mass, Electrospray Ionization/standards
- Stereoisomerism
Collapse
Affiliation(s)
- Clementina Mesaros
- Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6160, USA
| | - Seon Hwa Lee
- Department of Bio-analytical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Aobaku, Sendai 980-8578, Japan
| | - Ian A. Blair
- Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6160, USA
| |
Collapse
|
20
|
Jiang H, Anderson GD, McGiff JC. Red blood cells (RBCs), epoxyeicosatrienoic acids (EETs) and adenosine triphosphate (ATP). Pharmacol Rep 2010; 62:468-74. [PMID: 20631410 DOI: 10.1016/s1734-1140(10)70302-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 04/22/2010] [Indexed: 02/05/2023]
Abstract
In addition to serving as carriers of O(2), red blood cells (RBCs) regulate vascular resistance and the distribution of microvascular perfusion by liberating adenosine triphosphate (ATP) and epoxyeicosatrienoic acids (EETs) upon exposure to a low O(2) environment. Therefore, RBCs act as sensors that respond to low pO(2) by releasing millimolar amounts of ATP, a signaling molecule, and lipid mediators (EETs). The release of EETs occurs by a mechanism that is activated by ATP stimulation of P2X(7) receptors coupled to ATP transporters, which should greatly amplify the circulatory response to ATP. RBCs are reservoirs of EETs and the primary sources of plasma EETs, which are esterified to the phospholipids of lipoproteins. Levels of free EETs in plasma are low, about 3% of circulating EETs. RBC EETs are produced by direct oxidation of arachidonic acid (AA) esterified to glycerophospholipids and the monooxygenase-like activity of hemoglobin. On release, EETs affect vascular tone, produce profibrinolysis and dampen inflammation. A soluble epoxide hydrolase (sEH) regulates the concentrations of RBC and vascular EETs by metabolizing both cis- and trans-EETs to form dihydroxyeicosatrienoic acids (DHETs). The function and pathophysiological roles of trans-EETs and erythro-DHETs has yet to be integrated into a physiological and pathophysiological context.
Collapse
Affiliation(s)
- Houli Jiang
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | | | | |
Collapse
|
21
|
Nayeem MA, Zeldin DC, Boegehold MA, Morisseau C, Marowsky A, Ponnoth DS, Roush KP, Falck JR. Modulation by salt intake of the vascular response mediated through adenosine A(2A) receptor: role of CYP epoxygenase and soluble epoxide hydrolase. Am J Physiol Regul Integr Comp Physiol 2010; 299:R325-33. [PMID: 20427718 DOI: 10.1152/ajpregu.00823.2009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
High-salt intake can change the effect of adenosine on arterial tone in mice. The aim of this study was to clarify the mechanism by which this occurs. Using aortas from mice fed a 4% NaCl (HS) or 0.45% NaCl (NS) diet for 4-5 wks, concentration-response curves for ACh, 5'-N-ethylcarboxamidoadenosine (NECA; adenosine analog) and 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamidoadenosine hydrochloride hydrate [CGS-21680; A(2A) adenosine receptor (A(2A) AR) agonist] were obtained with N(omega)-nitro-L-arginine methyl ester (L-NAME; nitric oxide inhibitor, 10(-4) M), methylsulfonyl-propargyloxyphenylhexanamide [MS-PPOH; a CYP (cytochrome P-450) epoxygenase blocker, 10(-5) M including CYP2J2], 12-(3-adamantan-1-yl-ureido)dodecanoic acid [AUDA; soluble epoxide hydrolase (sEH) blocker, 10(-5) M], dibromo-dodecenyl-methylsulfimide [DDMS; CYP omega-hydroxylase (CYP4A blocker), 10(-5) M], glibenclamide (K(ATP) channel blocker; 10(-5) M) and 5-hydroxydecanoate (5-HD; mitochondrial-K(ATP) channel blocker, 10(-4) M). HS dose response to ACh (10(-7) - 10(-5) M) was not different from NS (P > 0.05). Relaxation to 10(-6) M NECA was greater in the HS group (28.4 +/- 3.9%) than in the NS group (4.1 +/- 2.3%). Relaxation to 10(-6) M CGS-21680 was also greater in HS (27.9 +/- 4.5%) than in NS (4.9 +/- 2.2%). L-NAME was able to block the dose response of ACh (10(-7) - 10(-5) M) equally in both HS and NS (P > 0.05), whereas L-NAME did not block CGS-21680-induced response in HS. In HS the CGS-21680 response was greatly reduced by MS-PPOH (to 4.7 +/- 2.0%) and 5-HD (to 8.9 +/- 2.2%), and also abolished by glibenclamide (-1.0 +/- 5.9%). In NS, the CGS-21680 response was increased by AUDA (to 26.3 +/- 3.4%) and DDMS (to 27.2 +/- 3.0%). Compared with NS, HS vessels showed increased CYP2J2 and A(2A) AR expression (46 and 74% higher, respectively) but decreased sEH, CYP4A, and A(1) AR expression (75, 30, and 55% lower, respectively). These data suggest that in mice fed NS-containing diet, upregulation of arterial A(1) receptor causes vasoconstriction via increased sEH and CYP4A proteins. However, in mice fed HS-containing diet, upregulation of A(2A) receptor protein triggers vascular relaxation through ATP-sensitive (K(+)) channels via upregulation of CYP2J2 enzyme.
Collapse
Affiliation(s)
- Mohammed A Nayeem
- Department of Physiology and Pharmacology, Center for Cardiovascular and Respiratory Sciences, West Virginia University, Morgantown, West Virginia 26506, USA.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Nayeem MA, Ponnoth DS, Boegehold MA, Zeldin DC, Falck JR, Mustafa SJ. High-salt diet enhances mouse aortic relaxation through adenosine A2A receptor via CYP epoxygenases. Am J Physiol Regul Integr Comp Physiol 2008; 296:R567-74. [PMID: 19109366 DOI: 10.1152/ajpregu.90798.2008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We hypothesize that A(2A) adenosine receptors (A(2A) AR) promote aortic relaxation in mice through cytochrome P450 (CYP)-epoxygenases and help to avoid salt sensitivity. Aortas from male mice maintained on a high-salt (HS; 7% NaCl) or normal-salt (NS; 0.45% NaCl) diet for 4-5 wks were used. Concentration-response curves (10(-11)-10(-5) M) for 5'-N-ethylcarboxamidoadenosine (NECA; a nonselective adenosine analog) and CGS 21680 (A(2A) AR agonist) were obtained with different antagonists including ZM 241385 (A(2A) AR antagonist; 10(-6) M), SCH 58261 (A(2A) AR antagonist; 10(-6) M), N(omega)-nitro-l-arginine methyl ester (l-NAME; endothelial nitric oxide synthase inhibitor; 10(-4) M) and inhibitors including methylsulfonyl-propargyloxyphenylhexanamide (MS-PPOH; CYP epoxygenases inhibitor; 10(-5)M), 14,15-epoxyeicosa-5(z)-enoic acid (14,15-EEZE; EET antagonist; 10(-5)M), dibromo-dodecenyl-methylsulfimide (DDMS; CYP4A inhibitor; 10(-5)M), and HET0016 (20-HETE inhibitor; 10(-5)M). At 10(-7) M of NECA, significant relaxation in HS (+22.58 +/- 3.12%) was observed compared with contraction in NS (-10.62 +/- 6.27%, P < 0.05). ZM 241385 changed the NECA response to contraction (P < 0.05) in HS. At 10(-7) M of CGS 21680, significant relaxation in HS (+32.04 +/- 3.08%) was observed compared with NS (+10.45 +/- 1.34%, P < 0.05). SCH 58261, l-NAME, MS-PPOH, and 14,15-EEZE changed the CGS 21680-induced relaxation to contraction (P < 0.05) in HS. Interestingly, DDMS and HET0016 changed CGS 21680 response to relaxation (P < 0.05) in NS; however, there was no significant difference found between DDMS, HET0016-treated HS and NS vs. nontreated HS group (P > 0.05). CYP2C29 protein was 55% and 74% upregulated in HS vs. NS (P < 0.05) mice aorta and kidney, respectively. CYP4A protein was 30.30% and 35.70% upregulated in NS vs. HS (P < 0.05) mice aorta and kidneys, respectively. A(1) AR was downregulated, whereas A(2A) AR was upregulated in HS compared with NS. These data suggest that HS may activate CYP2C29 via A(2A) AR, causing relaxation, whereas NS may contribute to the upregulation of CYP4A causing contraction.
Collapse
Affiliation(s)
- Mohammed A Nayeem
- Dept. of Physiology and Pharmacology, Center for Interdisciplinary Research in Cardiovascular Sciences, Health Science Center-North, 1 Morgantown, WV 26506, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Sugimoto K, Akasaka H, Katsuya T, Node K, Fujisawa T, Shimaoka I, Yasuda O, Ohishi M, Ogihara T, Shimamoto K, Rakugi H. A Polymorphism Regulates CYP4A11 Transcriptional Activity and Is Associated With Hypertension in a Japanese Population. Hypertension 2008; 52:1142-8. [DOI: 10.1161/hypertensionaha.108.114082] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
CYP4A11 oxidizes arachidonic acid to 20-hydroxyeicosatetraenoic acid, a metabolite with renovascular and tubular function in humans. A previous study demonstrated a significant association between the CYP4A11 gene polymorphism and hypertension; however, the precise mechanism of the association has not been clarified. To assess the involvement of
CYP4A11
in the pathogenesis of hypertension, we sought to identify a functional polymorphism of
CYP4A11
and examined its impact on predisposition to hypertension in the Tanno-Sobetsu Study. The −845A/G polymorphism was identified in the promoter region of
CYP4A11
by direct sequencing. Luciferase expression driven by the promoter of
CYP4A11
containing the wild-type −845GG genotype was 30% lower than expression with the variant −845AA genotype. Gel mobility shift assays with nuclear protein extracts showed specific binding to probes containing the variant −845GG. To assess the effect of
CYP4A11
polymorphisms on hypertension, we also carried out a case-control study using 4 single nucleotide polymorphisms (−845A/G, −366C/T, 7119C/T, and 8590T/C) in the Tanno-Sobetsu Study. The odds ratio for hypertension in participants with the AG+GG genotype of −845A/G was 1.42 (
P
=0.008), and the odds ratio for hypertension of the TT genotype of 7119C/T was 1.37 (
P
=0.037) after adjusting for confounding factors. The haplotype-based case-control analysis using 4 single nucleotide polymorphisms revealed a significant haplotype (G-C-T-T) that was significantly associated with hypertension, with an odds ratio of 1.44 (
P
=0.006) after adjusting for confounding factors. We have identified a functional variant (−845A/G) of
CYP4A11
that is significantly associated with hypertension and that appears to be a novel candidate for a predisposing factor for hypertension.
Collapse
Affiliation(s)
- Ken Sugimoto
- From the Department of Geriatric Medicine (K.S., T.K., T.F., I.S., O.Y., M.O., H.R.), Osaka University Graduate School of Medicine, Osaka, Japan; Second Department of Internal Medicine (H.A., K.S.), Sapporo Medical University, Sapporo, Japan; Cardiovascular and Renal Medicine (K.N.), Saga University Faculty of Medicine, Saga, Japan; and Osaka General Medical Center (T.O.), Osaka Prefectural Hospital Organization, Osaka, Japan
| | - Hiroshi Akasaka
- From the Department of Geriatric Medicine (K.S., T.K., T.F., I.S., O.Y., M.O., H.R.), Osaka University Graduate School of Medicine, Osaka, Japan; Second Department of Internal Medicine (H.A., K.S.), Sapporo Medical University, Sapporo, Japan; Cardiovascular and Renal Medicine (K.N.), Saga University Faculty of Medicine, Saga, Japan; and Osaka General Medical Center (T.O.), Osaka Prefectural Hospital Organization, Osaka, Japan
| | - Tomohiro Katsuya
- From the Department of Geriatric Medicine (K.S., T.K., T.F., I.S., O.Y., M.O., H.R.), Osaka University Graduate School of Medicine, Osaka, Japan; Second Department of Internal Medicine (H.A., K.S.), Sapporo Medical University, Sapporo, Japan; Cardiovascular and Renal Medicine (K.N.), Saga University Faculty of Medicine, Saga, Japan; and Osaka General Medical Center (T.O.), Osaka Prefectural Hospital Organization, Osaka, Japan
| | - Koichi Node
- From the Department of Geriatric Medicine (K.S., T.K., T.F., I.S., O.Y., M.O., H.R.), Osaka University Graduate School of Medicine, Osaka, Japan; Second Department of Internal Medicine (H.A., K.S.), Sapporo Medical University, Sapporo, Japan; Cardiovascular and Renal Medicine (K.N.), Saga University Faculty of Medicine, Saga, Japan; and Osaka General Medical Center (T.O.), Osaka Prefectural Hospital Organization, Osaka, Japan
| | - Tomomi Fujisawa
- From the Department of Geriatric Medicine (K.S., T.K., T.F., I.S., O.Y., M.O., H.R.), Osaka University Graduate School of Medicine, Osaka, Japan; Second Department of Internal Medicine (H.A., K.S.), Sapporo Medical University, Sapporo, Japan; Cardiovascular and Renal Medicine (K.N.), Saga University Faculty of Medicine, Saga, Japan; and Osaka General Medical Center (T.O.), Osaka Prefectural Hospital Organization, Osaka, Japan
| | - Izumi Shimaoka
- From the Department of Geriatric Medicine (K.S., T.K., T.F., I.S., O.Y., M.O., H.R.), Osaka University Graduate School of Medicine, Osaka, Japan; Second Department of Internal Medicine (H.A., K.S.), Sapporo Medical University, Sapporo, Japan; Cardiovascular and Renal Medicine (K.N.), Saga University Faculty of Medicine, Saga, Japan; and Osaka General Medical Center (T.O.), Osaka Prefectural Hospital Organization, Osaka, Japan
| | - Osamu Yasuda
- From the Department of Geriatric Medicine (K.S., T.K., T.F., I.S., O.Y., M.O., H.R.), Osaka University Graduate School of Medicine, Osaka, Japan; Second Department of Internal Medicine (H.A., K.S.), Sapporo Medical University, Sapporo, Japan; Cardiovascular and Renal Medicine (K.N.), Saga University Faculty of Medicine, Saga, Japan; and Osaka General Medical Center (T.O.), Osaka Prefectural Hospital Organization, Osaka, Japan
| | - Mitsuru Ohishi
- From the Department of Geriatric Medicine (K.S., T.K., T.F., I.S., O.Y., M.O., H.R.), Osaka University Graduate School of Medicine, Osaka, Japan; Second Department of Internal Medicine (H.A., K.S.), Sapporo Medical University, Sapporo, Japan; Cardiovascular and Renal Medicine (K.N.), Saga University Faculty of Medicine, Saga, Japan; and Osaka General Medical Center (T.O.), Osaka Prefectural Hospital Organization, Osaka, Japan
| | - Toshio Ogihara
- From the Department of Geriatric Medicine (K.S., T.K., T.F., I.S., O.Y., M.O., H.R.), Osaka University Graduate School of Medicine, Osaka, Japan; Second Department of Internal Medicine (H.A., K.S.), Sapporo Medical University, Sapporo, Japan; Cardiovascular and Renal Medicine (K.N.), Saga University Faculty of Medicine, Saga, Japan; and Osaka General Medical Center (T.O.), Osaka Prefectural Hospital Organization, Osaka, Japan
| | - Kazuaki Shimamoto
- From the Department of Geriatric Medicine (K.S., T.K., T.F., I.S., O.Y., M.O., H.R.), Osaka University Graduate School of Medicine, Osaka, Japan; Second Department of Internal Medicine (H.A., K.S.), Sapporo Medical University, Sapporo, Japan; Cardiovascular and Renal Medicine (K.N.), Saga University Faculty of Medicine, Saga, Japan; and Osaka General Medical Center (T.O.), Osaka Prefectural Hospital Organization, Osaka, Japan
| | - Hiromi Rakugi
- From the Department of Geriatric Medicine (K.S., T.K., T.F., I.S., O.Y., M.O., H.R.), Osaka University Graduate School of Medicine, Osaka, Japan; Second Department of Internal Medicine (H.A., K.S.), Sapporo Medical University, Sapporo, Japan; Cardiovascular and Renal Medicine (K.N.), Saga University Faculty of Medicine, Saga, Japan; and Osaka General Medical Center (T.O.), Osaka Prefectural Hospital Organization, Osaka, Japan
| |
Collapse
|
24
|
Liclican EL, McGiff JC, Falck JR, Carroll MA. Failure to upregulate the adenosine2A receptor-epoxyeicosatrienoic acid pathway contributes to the development of hypertension in Dahl salt-sensitive rats. Am J Physiol Renal Physiol 2008; 295:F1696-704. [PMID: 18829737 DOI: 10.1152/ajprenal.90502.2008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Adenosine-activated renovascular dilatation in Sprague-Dawley (SD) rats is mediated by stimulating adenosine(2A) receptors (A(2A)R), which is linked to epoxyeicosatrienoic acid (EET) synthesis. The A(2A)R-EET pathway is upregulated by high salt (HS) intake in normotensive SD rats. Because this pathway is antipressor, we examined the role of the A(2A)R-EET pathway in Dahl salt-sensitive (SS) rats. Male Dahl salt-resistant (SR) and SS rats were fed either HS (8.0% NaCl) or normal salt (NS; 0.4% NaCl) diet for 7 days. On day 8, isolated kidneys were perfused with Krebs-Henseleit buffer containing indomethacin and N(G)-nitro-l-arginine methyl ester and preconstricted with phenylephrine. Bolus injections of the stable adenosine analog 2-chloroadenosine (2-CA; 0.1-20 microg) elicited dose-dependent dilation in both Dahl SR and SS rats. Dahl SR rats fed a HS diet demonstrated a greater renal vasodilator response to 10 microg of 2-CA, as measured by the reduction in renal perfusion pressure, than that of Dahl SR rats fed a NS diet (-104 +/- 6 vs. -77 +/- 7 mmHg, respectively; P < 0.05). In contrast, Dahl SS rats did not exhibit a difference in the vasodilator response to 2-CA whether fed NS or HS diet (96 +/- 6 vs. 104 +/- 13 mmHg in NS- and HS-fed rats, respectively). In Dahl SR but not Dahl SS rats, HS intake significantly increased purine flux, augmented the protein expression of A(2A)R and the cytochrome P-450 2C23 and 2C11 epoxygenases, and elevated the renal efflux of EETs. Thus the Dahl SR rat is able to respond to HS intake by recruiting EET formation, whereas the Dahl SS rat appears to have exhausted its ability to increase EET synthesis above the levels observed on NS intake, and this inability of Dahl SS rats to upregulate the A(2A)R-EET pathway in response to salt loading may contribute to the development of salt-sensitive hypertension.
Collapse
Affiliation(s)
- Elvira L Liclican
- Dept. of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | |
Collapse
|
25
|
Minuz P, Jiang H, Fava C, Turolo L, Tacconelli S, Ricci M, Patrignani P, Morganti A, Lechi A, McGiff JC. Altered release of cytochrome p450 metabolites of arachidonic acid in renovascular disease. Hypertension 2008; 51:1379-85. [PMID: 18378855 DOI: 10.1161/hypertensionaha.107.105395] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The aim of the present cross-sectional study was to investigate whether activation of the renin-angiotensin system in renovascular disease affects the cytochrome P450 omega/omega-1 hydroxylase (20-hydroxyeicosatetraenoic acid [20-HETE]) and epoxygenase (epoxyeicosatrienoic acids [EETs]) pathways of arachidonic acid metabolism in vivo, each of which interacts with angiotensin II. Plasma concentration and urinary excretion of 20-HETE and EETs and their metabolites, dihydroxyeicosatrienoic acids, were measured in urine and plasma by mass spectrometry in 10 subjects with renovascular disease, 10 with essential hypertension, and 10 healthy normotensive subjects (control subjects), pair-matched for gender and age. Vascular and renal function were evaluated in all of the subjects. Plasma 20-HETE was highest in subjects with renovascular disease (median: 1.20 ng/mL; range: 0.42 to 1.92 ng/mL) compared with subjects with essential hypertension (median: 0.90 ng/mL; range: 0.40 to 2.17 ng/mL) and control subjects (median: 0.45 ng/mL; range: 0.14 to 1.70 ng/mL; P<0.05). Plasma 20-HETE significantly correlated with plasma renin activity in renovascular disease (r(s)=0.67; n=10; P<0.05). The urinary excretion of 20-HETE was significantly lower in subjects with renovascular disease (median: 12.9 microg/g of creatinine; range: 4.4 to 24.9 microg/g of creatinine) than in control subjects (median: 31.0 microg/g of creatinine; range: 11.9 to 102.8 microg/g of creatinine; P<0.01) and essential hypertensive subjects (median: 35.9 microg/g of creatinine; range: 14.0 to 72.5 microg/g of creatinine; P<0.05). Total plasma EETs were lowest, as was the ratio of plasma EETs to plasma dihydroxyeicosatrienoic acids, an index of epoxide hydrolase activity, in renovascular disease (ratio: 2.4; range: 1.2 to 6.1) compared with essential hypertension (ratio: 3.4; range: 1.5 to 5.6) and control subjects (ratio: 6.8; range: 1.4 to 18.8; P<0.01). In conclusion, circulating levels of 20-HETE are increased and those of EETs are decreased in renovascular disease, whereas the urinary excretion of 20-HETE is reduced. Altered cytochrome P450 arachidonic acid metabolism may contribute to the vascular and tubular abnormalities of renovascular disease.
Collapse
Affiliation(s)
- Pietro Minuz
- Department of Biomedical and Surgical Sciences, Medicina Interna C, Policlinico GB Rossi, University of Verona, 37134 Verona, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Yue H, Jansen SA, Strauss KI, Borenstein MR, Barbe MF, Rossi LJ, Murphy E. A liquid chromatography/mass spectrometric method for simultaneous analysis of arachidonic acid and its endogenous eicosanoid metabolites prostaglandins, dihydroxyeicosatrienoic acids, hydroxyeicosatetraenoic acids, and epoxyeicosatrienoic acids in rat brain tissue. J Pharm Biomed Anal 2007; 43:1122-34. [PMID: 17125954 PMCID: PMC2855500 DOI: 10.1016/j.jpba.2006.10.009] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2006] [Revised: 10/03/2006] [Accepted: 10/04/2006] [Indexed: 10/23/2022]
Abstract
A sensitive, specific, and robust liquid chromatography/mass spectrometric (LC/MS) method was developed and validated that allows simultaneous analysis of arachidonic acid (AA) and its cyclooxygenase, cytochrome P450, and lipoxygenase pathway metabolites prostaglandins (PGs), dihydroxyeicosatrienoic acids (DiHETrEs), hydroxyeicosatetraenoic acids (HETEs) and epoxyeicosatrienoic acids (EETs), including PGF(2alpha), PGE(2), PGD(2), PGJ(2), 14,15-DiHETrE, 11,12-DiHETrE, 8,9-DiHETrE, 5,6-DiHETrE, 20-HETE, 15-HETE, 12-HETE, 9-HETE, 8-HETE, 5-HETE, 14,15-EET, 11,12-EET, 8,9-EET, and 5,6-EET in rat brain tissues. Deuterium labeled PGF(2alpha)-d(4), PGD(2)-d(4), 15(S)-HETE-d(8), 14,15-EET-d(8), 11,12-EET-d(8), 8,9-EET-d(8), and AA-d(8) were used as internal standards. Solid phase extraction was used for sample preparation. A gradient LC/MS method using a C18 column and electrospray ionization source under negative ion mode was optimized for the best sensitivity and separation within 35 min. The method validation, including LC/MS instrument qualification, specificity, calibration model, accuracy, precision (without brain matrix and with brain matrix), and extraction efficiency were performed. The linear ranges of the calibration curves were 2-1000 pg for PGs, DiHETrEs, HETEs, and EETs, 10-2400 pg for PGE(2) and PGD(2), and 20-2000 ng for AA, respectively.
Collapse
Affiliation(s)
- Hongfei Yue
- Temple University, Chemistry Department, Analytical Chemistry, 1901 North 13th Street, Philadelphia, PA 19122, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Loch D, Hoey A, Morisseau C, Hammock BO, Brown L. Prevention of hypertension in DOCA-salt rats by an inhibitor of soluble expoxide hydrolase. Cell Biochem Biophys 2007; 47:87-98. [PMID: 17406062 PMCID: PMC1892223 DOI: 10.1385/cbb:47:1:87] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 11/11/2022]
Abstract
Cyclooxygenase and lipoxygenase metabolism of arachidonic acid produces compounds important in cardiovascular control. Further, arachidonic acid can be metabolised by cytochrome p450 to produce epoxyeicosatrienoic acids (EETs). These derivatives are inactivated by soluble epoxide hydrolase (sEH). The potential role of these EETs in hypertension and cardiac remodelling has been determined using the selective sEH inhibitor, N-adamantyl-N'-dodecylurea (ADU), in deoxycorticosterone acetate (DOCA)-salt hypertensive rats. Experiments were performed on male Wistar rats following uninephrectomy alone (UNX rats) or uninephrectomy with administration of DOCA (25 mg every fourth day subcutaneously) and 1% NaCl in drinking water (DOCA-salt rats). ADU (10 mg/kg/d subcutaneously) was administered for 2 wk starting 2 wk after surgery. Cardiovascular structure and function were determined using organ wet weights, histological analysis of collagen and inflammation, isolated heart and thoracic aortic ring preparations, and electrophysiological measurements. DOCA-salt hypertensive rats developed hypertension, hypertrophy, perivascular and interstitial fibrosis, endothelial dysfunction, and prolongation of the cardiac action potential duration within 4 wk. Administration of ADU prevented the further increase in systolic blood pressure and left-ventricular wet weight and normalized endothelial function. ADU treatment did not change inflammatory cell infiltration, collagen deposition, or cardiac action potential duration. EETs may be involved in the development of hypertension and endothelial dysfunction in DOCA-salt rats, but not in excessive collagen deposition or electrophysiological abnormalities.
Collapse
Affiliation(s)
- David Loch
- Department of Physiology and Pharmacology, School of Biomedical Sciences, The University of Queensland 4072, Australia
| | - Andrew Hoey
- Centre for Biomedical Research, Faculty of Sciences, University of Southern Queensland, Toowoomba 4350, Australia
| | - Christophe Morisseau
- Department of Entomology and Cancer Research Center, University of California, Davis, CA USA 95616
| | - Bruce O. Hammock
- Department of Entomology and Cancer Research Center, University of California, Davis, CA USA 95616
| | - Lindsay Brown
- Department of Physiology and Pharmacology, School of Biomedical Sciences, The University of Queensland 4072, Australia
- *Author to whom all correspondence and reprint requests should be addressed. E-mail:
| |
Collapse
|
28
|
Jiang JG, Chen RJ, Xiao B, Yang S, Wang JN, Wang Y, Cowart LA, Xiao X, Wang DW, Xia Y. Regulation of endothelial nitric-oxide synthase activity through phosphorylation in response to epoxyeicosatrienoic acids. Prostaglandins Other Lipid Mediat 2007; 82:162-74. [PMID: 17164144 DOI: 10.1016/j.prostaglandins.2006.08.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Revised: 08/25/2006] [Accepted: 08/29/2006] [Indexed: 11/29/2022]
Abstract
Endothelial nitric oxide synthase (eNOS) is a key enzyme in NO-mediated cardiovascular homeostasis and its activity is modulated by a variety of hormonal and mechanical stimuli via phosphorylation modification. Our previous study has demonstrated that epoxyeicosatrienoic acids (EETs), the cytochrome P450 (CYP)-dependent metabolites of arachidonic acid, could robustly up-regulate eNOS expression. However, the molecular mechanism underlying the effects of EETs on eNOS remains elusive. Particularly, whether and how EETs affect eNOS phosphorylation is unknown. In the present study, we investigated the effects of EETs on eNOS phosphorylation with cultured bovine aortic endothelial cells (BAECs). BAECs were either treated with exogenous EETs or infected with recombinant adeno-associated virus (rAAV) carrying CYP2C11-CYPOR, CYP102 F87V mutant and CYP2J2, respectively, to increase endogenous EETs. Both addition of EETs and CYP epoxygenase transfection markedly increased eNOS phosphorylation at its Ser1179 and Thr497 residues. Inhibition of phosphatidylinositol 3-kinase (PI3K) with LY294002 prevented EETs-induced increases of eNOS-Ser(P)1179 but had no effect on the phosphorylation status of Thr497. However, inhibitors of protein kinase B (Akt), mitogen-activated protein kinase (MAPK) and MAPK kinase could block phosphorylation of eNOS at both sites. Inhibition of these kinases also attenuated the up-regulation of eNOS expression by EETs. Finally, administration of viral CYP epoxygenases expression vectors into rats enhanced eNOS phosphorylation and function in vivo. Thus, in addition to up-regulating eNOS expression, EETs also augment eNOS function by enhancing eNOS phosphorylation. EETs-induced up-regulation of eNOS phosphorylation and expression appears to involve in both PI3K/Akt and MAPK pathways.
Collapse
Affiliation(s)
- Jian Gang Jiang
- The Institute of Hypertension and Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Messerli F, Mancia G, Conti C, Hewkin A, Kupfer S, Champion A, Kolloch R, Benetos A, Pepine C. Lowering of Blood Pressure—The Lower, the Better? J Am Soc Nephrol 2006. [DOI: 10.1681/asn.2006070776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
30
|
Jiang H. Erythrocyte-derived epoxyeicosatrienoic acids. Prostaglandins Other Lipid Mediat 2006; 82:4-10. [PMID: 17164127 DOI: 10.1016/j.prostaglandins.2006.05.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2006] [Revised: 05/16/2006] [Accepted: 05/18/2006] [Indexed: 11/25/2022]
Abstract
Red blood cells (RBCs) are reservoirs for cis- and trans-epoxyeicosatrienoic acids (EETs) that can be released. The sources of EET release from RBCs include direct synthesis from arachidonic acid, peroxidation of phospholipids and EETs esterified into cellular phospholipids. The release of EETs from RBCs can be through cytosolic phospholipase A2 (PLA2), secretory PLA2 and other responses associated with ATP release from RBCs. The erythrocyte ATP, purinergic receptors, ATP-binding cassette transporters, PLA2 and cytoskeleton rearrangement may all participate in EET release in the microcirculatory deformation of RBCs. EETs are vasodilatory and are candidate endothelium-derived hyperpolarizing factors. Due to the anti-hypertensive, fibrinolytic, and anti-thrombotic properties of EETs, their release from RBCs is replete with implications for the control of circulation and rheological characteristics of the circulating blood.
Collapse
Affiliation(s)
- Houli Jiang
- Department of Pharmacology, New York Medical College, Valhalla, New York 10595, USA.
| |
Collapse
|
31
|
Wei Y, Sun P, Wang Z, Yang B, Carroll MA, Wang WH. Adenosine inhibits ENaC via cytochromeP-450 epoxygenase-dependent metabolites of arachidonic acid. Am J Physiol Renal Physiol 2006; 290:F1163-8. [PMID: 16234312 DOI: 10.1152/ajprenal.00301.2005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We used the patch-clamp technique to examine the effect of adenosine on epithelial sodium channel (ENaC) activity in rat cortical collecting duct (CCD). Application of adenosine inhibits ENaC activity, and the effect of adenosine was mimicked by cyclohexyladenosine (CHA), an A1adenosine-receptor agonist that reduced channel activity from 1.32 to 0.64. The inhibitory effect of CHA on ENaC was mimicked by cyclopentyladenosine (CPA), which reduced channel activity from 1.1 to 0.55. In contrast, application of CGS-21680, an A2aadenosine-receptor agonist, had no effect on ENaC and increased channel activity from 0.96 to 1.22. This suggests that the inhibitory effect of adenosine analogs resulted from stimulation of the A1adenosine receptor. Inhibition of PLC with U-73122 failed to abolish the effect of CHA on ENaC. In contrast, the inhibitory effect of CHA on ENaC was absent in the presence of the PLA2inhibitor arachidonyl trifluoromethyl ketone (AACOCF3). This suggests a role of arachidonic acid (AA) in mediating the effect of adenosine on ENaC. To determine the metabolic pathway of AA responsible for the effect of adenosine, we examined the effect of CHA in the presence of indomethacin or N-methylsulfonyl-6-(2-propargyloxyphenyl)hexanamide (MS-PPOH). Inhibition of cytochrome P-450 (CYP) epoxygenase with MS-PPOH blocked the effect of CHA on ENaC. In contrast, CHA reduced ENaC activity in the presence of indomethacin. This suggests that CYP epoxygenase-dependent metabolites of AA mediate the effect of adenosine. Because 11,12-epoxyeicosatrienoic acid (11,12-EET) inhibits ENaC activity in the CCD (Wei Y, Lin DH, Kemp R, Yaddanapudi GSS, Nasjletti A, Falck JR, and Wang WH. J Gen Physiol 124: 719–727, 2004), we examined the role of 11,12-EET in mediating the effect of adenosine on ENaC. Addition of 11,12-EET inhibited ENaC channels in the CCD in which adenosine-induced inhibition was blocked by AACOCF3. We conclude that adenosine inhibits ENaC activity by stimulation of the A1adenosine receptor in the CCD and that the effect of adenosine is mediated by 11,12-EET.
Collapse
Affiliation(s)
- Yuan Wei
- Dept. of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | | | | | |
Collapse
|
32
|
Roy U, Joshua R, Stark R, Balazy M. Cytochrome P450/NADPH-dependent biosynthesis of 5,6-trans-epoxyeicosatrienoic acid from 5,6-trans-arachidonic acid. Biochem J 2006; 390:719-27. [PMID: 15916533 PMCID: PMC1199666 DOI: 10.1042/bj20050681] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
5,6-trans-AA (5,6-TAA, where TAA stands for trans-arachidonic acid) is a recently identified trans fatty acid that originates from the cis-trans isomerization of AA initiated by the NO2 radical. This trans fatty acid has been detected in blood circulation and we suggested that it functions as a lipid mediator of the toxic effects of NO2. To understand its role as a lipid mediator, we studied the metabolism of 5,6-TAA by liver microsomes stimulated with NADPH. Profiling of metabolites by liquid chromatography/MS revealed a complex mixture of oxidized products among which were four epoxides, their respective hydrolysis products (dihydroxyeicosatrienoic acids), and several HETEs (hydroxyeicosatetraenoic acids) resulting from allylic, bis-allylic and (omega-1)/(omega-2) hydroxylations. We found that the C5-C6 trans bond competed with the three cis bonds for oxidative metabolism mediated by CYP (cytochrome P450) epoxygenase and hydroxylase. This was evidenced by the detection of 5,6-trans-EET (where EET stands for epoxyeicosatrienoic acid), 5,6-erythro-dihydroxyeicosatrienoic acid and an isomer of 5-HETE. A standard of 5,6-trans-EET obtained by iodolactonization of 5,6-TAA was used for the unequivocal identification of the unique microsomal epoxide in which the oxirane ring was of trans configuration. Additional lipid products originated from the metabolism involving the cis bonds and thus these metabolites had the trans C5-C6 bond. The 5,6-trans-isomers of 18- and 19-HETE were likely to be products of the CYP2E1, because a neutralizing antibody partially inhibited their formation without having an effect on the formation of the epoxides. Our study revealed a novel pathway of microsomal oxidative metabolism of a trans fatty acid in which both cis and trans bonds participated. Of particular significance is the detection of the trans-epoxide of AA, which may be involved in the metabolic activation of such trans fatty acids and probably contribute to their biological activity. Unlike its cis-isomer, 5,6-trans-EET was significantly more stable and resisted microsomal hydrolysis and conjugation with glutathione catalysed by hepatic glutathione S-transferase.
Collapse
Affiliation(s)
- Uzzal Roy
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, U.S.A
| | - Robert Joshua
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, U.S.A
| | - Russell L. Stark
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, U.S.A
| | - Michael Balazy
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
33
|
Liclican EL, McGiff JC, Pedraza PL, Ferreri NR, Falck JR, Carroll MA. Exaggerated response to adenosine in kidneys from high salt-fed rats: role of epoxyeicosatrienoic acids. Am J Physiol Renal Physiol 2005; 289:F386-92. [PMID: 15814528 DOI: 10.1152/ajprenal.00421.2004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cytochrome P-450 (CYP)-dependent epoxyeicosatrienoic acids (EETs) dilate rat preglomerular microvessels when adenosine2Areceptors (A2AR) are stimulated. As high salt (HS) intake increases epoxygenase activity and adenosine levels, we hypothesized that renal adenosine responses would be greater in HS-fed rats. Male Sprague-Dawley rats were fed either HS (4.0% NaCl) or normal salt (NS; 0.4% NaCl) diet. On day 8, isolated kidneys were perfused with Krebs' buffer containing indomethacin (10 μM) and l-NAME (200 μM) and preconstricted to ∼150 mmHg with infusion of phenylephrine (10−7M). Renal effluents were extracted for analysis of eicosanoids by gas chromatography-mass spectrometry. Bolus injections of the stable adenosine analog 2-chloroadenosine (2-CA; 0.1–10 μg) resulted in dose-dependent dilation; at 10 μg, perfusion pressure (PP) was lowered to a greater extent in the kidneys of HS rats compared with NS rats (−60 ± 4 vs. −31 ± 8 mmHg; P < 0.05) and the area of response was increased (27 ± 6 vs. 9 ± 4 mm2; P < 0.05), as was EET release (132 ± 23 vs. 38 ± 18 ng; P < 0.05). HS treatment increased A2AR and CYP2C23 protein expression. A selective epoxygenase inhibitor, MS-PPOH (12 μM), significantly reduced the response to 2-CA in HS rats; PP, area of response, and EET release decreased by 40, 70, and 81%, respectively, whereas lesser changes were evident in NS kidneys. Thus the greater vasodilator response to 2-CA seen in kidneys obtained from HS-fed rats was mediated by increased EET release. As EETs are renal vasodilator and natriuretic eicosanoids, interactions between adenosine and EETs may contribute to the adaptive response to HS intake.
Collapse
Affiliation(s)
- Elvira L Liclican
- Department of Pharmacology, New York Medical College, Valhalla, 10595, USA
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
The rationale for the development of selective inhibitors of cyclooxygenase-2 (COX-2) was the proposal that this enzyme plays an important role in inflammation but does not contribute to the resistance of the gastrointestinal mucosa against injury. However, studies from several groups have established that both COX-1 and COX-2 have important functions in the maintenance of gastrointestinal mucosal integrity. Thus, in the normal rat stomach lesions only develop when both COX-1 and COX-2 are inhibited. On the other hand, in specific pathophysiological situations the isolated inhibition of either COX-1 or COX-2 without simultaneous suppression of the other COX isoenzyme is ulcerogenic. Furthermore, COX-2 plays an important role in the healing of gastric ulcers and inhibition of COX-2 delays ulcer healing. From these findings the initial concept that only inhibition of COX-1 interferes with gastrointestinal defense has to be re-evaluated.
Collapse
Affiliation(s)
- Brigitta M Peskar
- Department of Experimental Clinical Medicine, University of Bochum, Universitätsstrasse 150, D-44801 Bochum, Germany.
| |
Collapse
|
35
|
Du L, Yermalitsky V, Ladd PA, Capdevila JH, Mernaugh R, Keeney DS. Evidence that cytochrome P450 CYP2B19 is the major source of epoxyeicosatrienoic acids in mouse skin. Arch Biochem Biophys 2005; 435:125-33. [PMID: 15680914 DOI: 10.1016/j.abb.2004.11.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2004] [Revised: 11/22/2004] [Indexed: 11/27/2022]
Abstract
CYP2B19 is an arachidonic acid monooxygenase highly expressed in the outer, differentiated cell layers of mouse epidermis. We aimed to establish whether CYP2B19 is the source of epidermal epoxyeicosatrienoic acids (EETs), which are implicated in mechanisms regulating epidermal cornification. We show that primary cultures of mouse epidermal keratinocytes expressed native CYP2B19, as determined by mass spectrometry. Differentiation upregulated CYP2B19 mRNA levels ( approximately 39-fold) detected by real-time PCR, CYP2B19 immunoreactivity detected by Western blotting, and cellular levels of the CYP2B19 product 11,12-EET. Cellular 11,12-EET formed from endogenous arachidonic acid increased preferentially (4- to 12-fold) at Day 4 or 5 of differentiation, compared with undifferentiated (Day 0) keratinocyte cultures. Temporally, these results concur with the maximal levels of CYP2B19 mRNA measured at Day 2 and CYP2B19 immunoreactivity at Day 4. We conclude that while mouse epidermis likely expresses multiple cytochrome P450 enzymes, existing evidence supports native CYP2B19 as being the major source of epidermal EET formation.
Collapse
Affiliation(s)
- Liping Du
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | | | | | |
Collapse
|
36
|
Seki T, Wang MH, Miyata N, Laniado-Schwartzman M. Cytochrome P450 4A Isoform Inhibitory Profile of N-Hydroxy-N'-(4-butyl-2-methylphenyl)-formamidine (HET0016), a Selective Inhibitor of 20-HETE Synthesis. Biol Pharm Bull 2005; 28:1651-4. [PMID: 16141533 DOI: 10.1248/bpb.28.1651] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examined the effect of N-hydroxy-N'-(4-butyl-2-methylphenyl)-formamidine) (HET0016), an inhibitor of 20-hydroxy-5,8,11,14-eicosatetraenoic acid (20-HETE) synthesis on the omega-hydroxylation and epoxidation of arachidonic acid (AA) catalyzed by recombinant cytochrome P450 4A1 (CYP4A1), CYP4A2 and CYP4A3, and characterized the enzyme inhibitory profile of HET0016. The IC50 values of HET0016 for recombinant CYP4A1-, CYP4A2- and CYP4A3-catalyzed 20-HETE synthesis averaged 17.7 nM, 12.1 nM and 20.6 nM, respectively. The IC50 value for production of 11,12-epoxy-5,8,14-eicosatrienoic acid (11,12-EET) by CYP4A2 and 4A3 averaged 12.7 nM and 22.0 nM, respectively. The IC50 value for CYP2C11 activity was 611 nM which was much greater than that for CYP4As. The initial velocity study showed the Ki value of HET0016 for CYP4A1 was 19.5 nM and a plot of Vmax versus amount of recombinant CYP4A1 added shows HET0016 is an irreversible non-competitive inhibitor. These results indicate that HET0016 is a selective, non-competitive and irreversible inhibitor of CYP4A.
Collapse
Affiliation(s)
- Takayuki Seki
- Medicinal Pharmacology Laboratory, Medicinal Research Laboratories, Taisho Pharmaceutical Co., Ltd., Saitama, Japan.
| | | | | | | |
Collapse
|
37
|
Spiecker M, Liao JK. Vascular protective effects of cytochrome p450 epoxygenase-derived eicosanoids. Arch Biochem Biophys 2005; 433:413-20. [DOI: 10.1016/j.abb.2004.10.009] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2004] [Revised: 10/06/2004] [Indexed: 11/15/2022]
|
38
|
Yue H, Strauss KI, Borenstein MR, Barbe MF, Rossi LJ, Jansen SA. Determination of bioactive eicosanoids in brain tissue by a sensitive reversed-phase liquid chromatographic method with fluorescence detection. J Chromatogr B Analyt Technol Biomed Life Sci 2004; 803:267-77. [PMID: 15063335 DOI: 10.1016/j.jchromb.2003.12.027] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2003] [Revised: 12/24/2003] [Accepted: 12/31/2003] [Indexed: 11/28/2022]
Abstract
Arachidonic acid (AA) is metabolized to prostaglandins (PGs) via cyclooxygenases (COX) catalysis, and to epoxyeicosatrienoic acids (EETs), dihydroxyeicosatrienoic acids (DiHETrEs), and hydroxyeicosatetraenoic acids (HETEs) via cytochrome P450 (CYP450) enzymes. A reliable and robust fluorescence based HPLC method for these eicosanoids was developed. A new selective reverse-phase solid phase extraction (SPE) procedure was developed for PG, DiHETrEs, HETE, and EETs of interest from rat cortical brain tissue. The eicosanoids were derivatized with 2-(2,3-naphthalimino)ethyl-trifluoromethanesulphonate (NE-OTf), followed by separation and quantification at high sensitivity using reverse-phase HPLC with fluorescent detection, and further identified via LC/MS. The derivatization was studied and optimized to obtain reproducible reactions. Various PGs, DiHETrEs, HETEs, EETs, and AA were sensitively detected and baseline resolved simultaneously. LC/MS under positive electrospray ionization selected ion monitoring (SIM) mode was developed to further identify the peaks of these eicosanoids in cortical brain tissue. The method was applied in the traumatic brain injured rat brain.
Collapse
Affiliation(s)
- Hongfei Yue
- Chemistry Department, Analytical Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA 19122, USA
| | | | | | | | | | | |
Collapse
|
39
|
Rajapakse NW, Roman RJ, Falck JR, Oliver JJ, Evans RG. Modulation of V1-receptor-mediated renal vasoconstriction by epoxyeicosatrienoic acids. Am J Physiol Regul Integr Comp Physiol 2004; 287:R181-7. [PMID: 14988086 DOI: 10.1152/ajpregu.00555.2002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study examined the effects of renal arterial infusion of a selective cytochrome P-450 epoxygenase inhibitor, N-methylsulfonyl-6-(2-propargyloxyphenyl)hexanamide (MS-PPOH; 2 mg/kg plus 1.5 mg·kg−1·h−1), on renal hemodynamic responses to infusions of [Phe2,Ile3,Orn8]vasopressin and ANG II into the renal artery of anesthetized rabbits. MS-PPOH did not affect basal renal blood flow (RBF) or cortical or medullary blood flow measured by laser-Doppler flowmetry (CLDF/MLDF). In vehicle-treated rabbits, [Phe2,Ile3,Orn8]vasopressin (30 ng·kg−1·min−1) reduced MLDF by 62 ± 7% but CLDF and RBF were unaltered. In MS-PPOH-treated rabbits, RBF and CLDF fell by 51 ± 8 and 59 ± 13%, respectively, when [Phe2,Ile3,Orn8]vasopressin was infused. MS-PPOH had no significant effects on the MLDF response to [Phe2,Ile3,Orn8]vasopressin (43 ± 9% reduction). ANG II (20 ng·kg−1·min−1) reduced RBF by 45 ± 10% and CLDF by 41 ± 14%, but MLDF was not significantly altered. MS-PPOH did not affect blood flow responses to ANG II. Formation of epoxyeicosatrienoic acids (EETs) and dihydroxyeicosatrienoic acids (DiHETEs) was 49% lower in homogenates prepared from the renal cortex of MS-PPOH-treated rabbits than from vehicle-treated rabbits. MS-PPOH had no effect on the renal formation of 20-hydroxyeicosatetraenoic acid (20-HETE). Incubation of renal cortical homogenates from untreated rabbits with [Phe2,Ile3,Orn8]vasopressin (0.2–20 ng/ml) did not affect formation of EETs, DiHETEs, or 20-HETE. These results do not support a role for de novo EET synthesis in modulating renal hemodynamic responses to ANG II. However, EETs appear to selectively oppose V1-receptor-mediated vasoconstriction in the renal cortex but not in the medullary circulation and contribute to the relative insensitivity of medullary blood flow to V1-receptor activation.
Collapse
Affiliation(s)
- Niwanthi W Rajapakse
- Dept. of Physiology, P.O. Box 13F, Monash Univ., Melbourne, Victoria 3800, Australia.
| | | | | | | | | |
Collapse
|
40
|
Sarkis A, Lopez B, Roman RJ. Role of 20-hydroxyeicosatetraenoic acid and epoxyeicosatrienoic acids in hypertension. Curr Opin Nephrol Hypertens 2004; 13:205-14. [PMID: 15202615 DOI: 10.1097/00041552-200403000-00009] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Cytochrome P-450 metabolites of arachidonic acid have been reported to play an important role in the control of renal function and vascular tone, and in the long-term control of arterial pressure. In this regard, 20-hydroxyeicosatetraenoic acid is a potent vasoconstrictor that inhibits sodium reabsorption in the kidney. Epoxyeicosatrienoic acids are endothelium-derived relaxing factors that hyperpolarize vascular smooth muscle cells and also promote sodium excretion in the kidney. RECENT FINDINGS Studies have demonstrated that the expression of cytochrome P-450 enzymes and the synthesis of 20-hydroxyeicosatetraenoic acid and epoxyeicosatrienoic acids in the kidney and peripheral vasculature are altered in many genetic and experimental models of hypertension. The production of these compounds is altered following exposure to high-salt or high-fat diets, in hepatorenal syndrome, in diabetes and in patients with toxemia of pregnancy. However, the functional significance of changes in the formation of 20-hydroxyeicosatetraenoic acid and epoxyeicosatrienoic acids in the pathogenesis of hypertension are just being uncovered. SUMMARY This review summarizes recent findings that address the issue of whether cytochrome P-450 metabolites of arachidonic acid play an important role in the regulation of renal tubular and peripheral vascular function and contribute to the pathogenesis of hypertension.
Collapse
Affiliation(s)
- Albert Sarkis
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | |
Collapse
|
41
|
Wang H, Lin L, Jiang J, Wang Y, Lu ZY, Bradbury JA, Lih FB, Wang DW, Zeldin DC. Up-regulation of endothelial nitric-oxide synthase by endothelium-derived hyperpolarizing factor involves mitogen-activated protein kinase and protein kinase C signaling pathways. J Pharmacol Exp Ther 2003; 307:753-64. [PMID: 12975498 DOI: 10.1124/jpet.103.052787] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Cytochrome P450 (P450)-dependent metabolites of arachidonic acid, the epoxyeicosatrienoic acids (EETs), are proposed to be endothelium-derived hyperpolarizing factors (EDHF) that affect vascular tone; however, the effects of EDHF on endothelial-derived nitric oxide biosynthesis remain unknown. We examined the regulation of endothelial nitric-oxide synthase (eNOS) by EDHF and investigated the relevant signaling pathways involved. The P450 epoxygenases CYP102 F87V mutant, CYP2C11-CYPOR, and CYP2J2 were transfected into cultured bovine aortic endothelial cells, and the effects of endogenously formed or exogenously applied EETs on eNOS expression and activity were assessed. Transfection with the P450 epoxygenases led to increased eNOS protein expression, an effect that was attenuated by cotreatment with the P450 inhibitor 17-ODYA. Northern analysis demonstrated that P450 transfection led to increased eNOS mRNA levels consistent with an effect at the pretranslational level. P450 epoxygenase transfection resulted in increased eNOS activity as measured by the conversion of L-arginine to L-citrulline. Addition of synthetic EETs (50-200 nM) to the culture media also increased eNOS expression and activity. Treatment with mitogen-activated protein kinase (MAPK), MAPK kinase, and protein kinase C inhibitors apigenin, 2'-amino-3'-methoxyflavone (PD98059), and 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H-7), respectively, significantly inhibited the effects of P450 transfection on eNOS expression. Overexpression of P450 epoxygenases or addition of synthetic EETs increased Thr495 phosphorylation of eNOS, an effect that was inhibited by both apigenin and PD98059. Overexpression of P450 epoxygenases in rats resulted in increased aortic eNOS expression, providing direct evidence that EDHF can influence vascular eNOS levels in vivo. Based on this data, we conclude that EDHF up-regulates eNOS via activation of MAPK and protein kinase C signaling pathways.
Collapse
Affiliation(s)
- Hong Wang
- Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, #1095 Jie Fang Da Dao Avenue, Wuhan 430030, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Zhao X, Pollock DM, Zeldin DC, Imig JD. Salt-sensitive hypertension after exposure to angiotensin is associated with inability to upregulate renal epoxygenases. Hypertension 2003; 42:775-80. [PMID: 12900436 DOI: 10.1161/01.hyp.0000085649.28268.df] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The current study was designed to determine whether angiotensin II infusion could lead to persistent salt-sensitive hypertension and to examine involvement of renal microvascular epoxygenases in this process. Six groups were studied: rats maintained on a normal salt diet for 4 weeks (NS); rats maintained on a high salt diet for 4 weeks (HS); and all other animals receiving angiotensin II (ANG) infusion and being fed a normal or high salt diet for 2 weeks; then the angiotensin II infusion was stopped and diets were either maintained or switched (ANG/NS-NS, ANG/NS-HS, ANG/HS-HS, ANG/HS-NS). Angiotensin II infusion resulted in a rise in blood pressure and an increase in urinary albumin excretion over the 2-week period. After angiotensin II withdrawal, blood pressure returned to normal in animals receiving a normal salt diet from weeks 2 to 4 (ANG/NS-NS and ANG/HS-NS groups). In contrast, blood pressure remained elevated in the group maintained on a high salt diet throughout the entire 4-week period (ANG/HS-HS group). Renal microvascular CYP2C11 and CYP2C23 protein levels were decreased by 50% to 60% in the ANG/HS-HS group compared with the NS group. Likewise, renal microvascular CYP2J protein was significantly decreased in the ANG/HS-HS group versus the NS group. Renal microvascular CYP2C11 and CYP2C23 mRNA levels were reduced in the ANG/HS-HS group compared with both the NS and HS groups. These results support the hypothesis that angiotensin II infusion induces persistent salt-sensitive hypertension after withdrawal of angiotensin II that may be due to downregulation of CYP2C and CYP2J epoxygenases in renal microvessels.
Collapse
Affiliation(s)
- Xueying Zhao
- Vascular Biology Center, Medical College of Georgia, Augusta, GA 30912-2500, USA
| | | | | | | |
Collapse
|
43
|
Wang MH, Smith A, Zhou Y, Chang HH, Lin S, Zhao X, Imig JD, Dorrance AM. Downregulation of renal CYP-derived eicosanoid synthesis in rats with diet-induced hypertension. Hypertension 2003; 42:594-9. [PMID: 12939236 DOI: 10.1161/01.hyp.0000090123.55365.ba] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The incidence of essential hypertension increases with obesity; however, the mechanisms that link obesity with hypertension are unclear. Renal cytochrome P450 (CYP)-derived eicosanoids--hydroxyeicosatetraenoic acids (HETEs), epoxyeicosatrienoic acids (EETs), and dihydroxyeicosatrienoic acids (DHETs)--have been shown to play an important role in the regulation of renal function, vascular tone, and blood pressure. The objective of this study was to examine CYP-derived eicosanoid synthesis in the different renal zones (cortex, medulla, and papilla) of rats fed a high fat diet (HF). Male Sprague-Dawley rats were fed a HF diet or regular rat chow for 10 weeks. After 10 weeks, HF rats showed significantly higher systolic blood pressure, body weight, and fat:body weight ratio. The renal omega-hydroxylase activity was decreased by 46% in cortex, 43% in medulla, and 46% in papilla of HF rats. The renal epoxygenase activity was decreased by 46% in cortex, 31% in medulla, and 56% in papilla of HF rats. Interestingly, the changes in the rate of 20-HETE and EET formation in different renal zones were consistent with the levels of expression of CYP4A and CYP2C23 proteins, respectively. Furthermore, there were no significant changes in the synthesis of these metabolites in the renal microvessels. These results demonstrate that HF diet causes the downregulation of CYP4A and CYP2C23 in renal tubules, and these proteins are responsible for renal 20-HETE and EET formation. The reduction in the synthesis of these eicosanoids may play an important role in the regulation of renal function and blood pressure in obesity-induced hypertension.
Collapse
Affiliation(s)
- Mong-Heng Wang
- Department of Physiology, Medical College of Georgia, Augusta, GA 30912, USA.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Liu J, Callahan SM, Brunner LJ. Effect of sodium alterations on hepatic cytochrome P450 3A2 and 2C11 and renal function in rats. Drug Dev Ind Pharm 2003; 29:767-75. [PMID: 12906334 DOI: 10.1081/ddc-120021776] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Numerous dietary supplements are known to modulate cytochrome P450 (CYP)-mediated metabolism and subsequently alter drug toxicity or efficacy in animals and humans. In the present study we investigated the effect of varying amounts of sodium intake on renal function and the metabolic activity of the hepatic CYP3A2 and CYP2C11 isoforms. Rats were maintained on standard rodent chow or a low-salt rice diet. Within each of these groups rats received either a single intraperitoneal injection of furosemide to initiate salt depletion, or saline. Additional groups included salt supplementation of 500 mg/300 g body weight/day and 1.25 g/300 g body weight/day of sodium chloride solution. Rats receiving the low-salt diet, both with and without a concomitant furosemide administration, had a significant reduction in creatinine clearance without changes in serum creatinine. In addition, urine flow rate was markedly reduced in rats maintained on the low-salt diet. Western blot analysis indicated that neither sodium supplementation nor deprivation altered hepatic microsomal CYP3A2 levels; however, hepatic CYP2C11 levels significantly increased in rats receiving the largest sodium supplement. In vitro metabolic activity of CYP3A2 was unchanged as compared with controls. Activity of CYP2C11 was significantly reduced in both rat groups receiving additional sodium supplements. Acute manipulation of daily sodium intake does alter renal function and specific hepatic CYP isoforms and should be considered when using these rat models.
Collapse
Affiliation(s)
- Jinrong Liu
- Pharmaceutics Division, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712-1074, USA
| | | | | |
Collapse
|
45
|
Miyazono M, Zhu D, Nemenoff R, Jacobs ER, Carter EP. Increased epoxyeicosatrienoic acid formation in the rat kidney during liver cirrhosis. J Am Soc Nephrol 2003; 14:1766-75. [PMID: 12819236 DOI: 10.1097/01.asn.0000076074.63334.99] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Vascular complications during liver cirrhosis are often severe, particularly in the kidney. These complications are the result of complex and poorly understood interactions between the injured liver and other organs such as the lungs, heart, and kidney. The purpose of this study was to investigate the alterations to renal hemodynamics during cirrhosis, focusing on the actions of epoxyeicosatrienoic acids (EET), known to be potent regulators of renal hemodynamics. Cirrhosis was induced in rats by common bile duct ligation (CBDL), and they were compared with sham rats. Experiments were conducted 4 wk after either the sham or CBDL surgery. Vasoreactivity was assessed in isolated perfused kidneys. cPLA(2) expression and cytochrome P450 (CYP450) expression were measured using Western blot. cPLA(2) enzymatic activity was measured by radioenzymatic assay. EET production was measured using rpHPLC analysis. The major findings were that kidneys from CBDL rats had significantly greater acetylcholine-induced vasodilation that was partially blocked by nitric oxide (NO) and prostaglandin inhibition and fully blocked by the combined inhibition of NO, prostaglandins, and CYP450 metabolites. Expression and activity of cPLA(2) in CBDL kidneys was increased, providing arachidonic acid substrate to the CYP450 enzymes. Finally, expression and activity of CYP450 enzymes was elevated in CBDL kidneys, resulting in significantly greater production of the vasodilating 11,12-EET and 14,15-EET. While it is well documented that renal vasoconstriction leading to impaired renal function occurs during cirrhosis, our data clearly demonstrate that endogenous production of EET is increased in cirrhotic kidneys. This may be a homeostatic response to preserve renal perfusion.
Collapse
Affiliation(s)
- Motoaki Miyazono
- Cardiovascular-Pulmonary Research Laboratory, Department of Medicine, University of Colorado Health Sciences Center, 4200 East 9th Avenue, Denver, CO 80262, USA
| | | | | | | | | |
Collapse
|
46
|
Nakagawa K, Marji JS, Schwartzman ML, Waterman MR, Capdevila JH. Androgen-mediated induction of the kidney arachidonate hydroxylases is associated with the development of hypertension. Am J Physiol Regul Integr Comp Physiol 2003; 284:R1055-62. [PMID: 12531784 DOI: 10.1152/ajpregu.00459.2002] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hypertension is a leading cause of cardiovascular, cerebral, and renal disease morbidity and mortality, and epidemiological evidence suggests a role for sex-dependent mechanisms in the pathophysiology of hypertension. We show here that treatment of rats with 5alpha-dihydrotestosterone increases the activity of the kidney arachidonate omega/omega-1 hydroxylase and the biosynthesis of 20-HETE (165 and 177% of control untreated male and female rats, respectively) and raises the systolic blood pressures of male and females rats by 46 and 57 mmHg, respectively. These androgen effects are associated with an upregulation in the kidney levels of CYP 4A8 mRNA and a decrease in CYP 4A1 transcripts. Dissected renal microvessels, the target tissue for most of the prohypertensive actions of 20-HETE, show an androgen-dependent upregulation of vascular CYP 4A8 mRNA and a fourfold increase in 20-HETE synthase activity. We propose that androgens regulate renal function and systemic blood pressure through a combination of transcriptional and hemodynamic mechanisms that are ultimately responsible for the regulation of renovascular tone and function.
Collapse
Affiliation(s)
- Kiyoshi Nakagawa
- Departments of Medicine and Biochemistry, Vanderbilt University Medical School, Nashville, Tennessee 37232, USA
| | | | | | | | | |
Collapse
|
47
|
Cheng MK, McGiff JC, Carroll MA. Renal arterial 20-hydroxyeicosatetraenoic acid levels: regulation by cyclooxygenase. Am J Physiol Renal Physiol 2003; 284:F474-9. [PMID: 12419775 DOI: 10.1152/ajprenal.00239.2002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
20-HETE, a potent vasoconstrictor, is generated by cytochrome P-450 omega-hydroxylases and is the principal eicosanoid produced by preglomerular microvessels. It is released from preglomerular microvessels by ANG II and is subject to metabolism by cyclooxygenase (COX). Because low-salt (LS) intake stimulates the renin-angiotensin system and induces renal cortical COX-2 expression, we examined 20-HETE release from renal arteries (interlobar and arcuate and interlobular arteries) obtained from 6- to 7-wk-old male Sprague-Dawley rats fed either normal salt (0.4% NaCl) or LS (0.05% NaCl) diets for 10 days. With normal salt intake, the levels of 20-HETE recovered were similar in arcuate and interlobular arteries and interlobar arteries: 30.1 +/- 8.5 vs. 24.6 +/- 5.3 ng. mg protein(-1). 30 min(-1), respectively. An LS diet increased 20-HETE levels in the incubate of either arcuate and interlobular or interlobar renal arteries only when COX was inhibited. Addition of indomethacin (10 microM) to the incubate of arteries obtained from rats fed an LS diet resulted in a two- to threefold increase in 20-HETE release from arcuate and interlobular arteries, from 39.1 +/- 13.2 to 101.8 +/- 42.6 ng. mg protein(-1). 30 min(-1) (P < 0.03), and interlobar arteries, from 31.7 +/- 15.1 to 61.9 +/- 29.4 ng. mg protein(-1). 30 min(-1) (P < 0.05) compared with release of 20-HETE when COX was not inhibited. An LS diet enhanced vascular expression of cytochrome P-4504A and COX-2 in arcuate and interlobular arteries; COX-1 was unaffected. Metabolism of 20-HETE by COX is proposed to represent an important regulatory mechanism in setting preglomerular microvascular tone.
Collapse
Affiliation(s)
- Monica K Cheng
- Department of Pharmacology, New York Medical College, Valhalla, New York 10595, USA
| | | | | |
Collapse
|
48
|
Kompanowska-Jezierska E, Walkowska A, Sadowski J. Role of prostaglandin cyclooxygenase and cytochrome P450 pathways in the mechanism of natriuresis which follows hypertonic saline infusion in the rat. ACTA PHYSIOLOGICA SCANDINAVICA 2003; 177:93-9. [PMID: 12492783 DOI: 10.1046/j.1365-201x.2003.01052.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIM The prostaglandin cyclooxygenase (COX) and P450 cytochrome (CYP450) pathways of arachidonic acid metabolism are functionally interrelated and both engaged in control of sodium excretion; the study focused on their contribution to the natriuresis which follows hypertonic saline infusion in the rat. METHODS In anaesthetized rats, clearance studies were conducted, supplemented with laser-Doppler measurements of the cortical and medullary blood flow (CBF, MBF), and measurement of medullary tissue admittance (Y), an index of interstitial ion concentration. RESULTS Indomethacin (Indo), 5 mg kg(-1) i.v. paradoxically enhanced the natriuresis secondary to intra-aortic suprarenal 5% saline load, further increasing sodium excretion by 385 +/- 73% (P < 0.01). After acute clotrimazole, 10 mg kg(-1) i.v. an inhibitor of CYP450 epoxygenase, the increase in natriuresis was smaller and did not differ from that observed after the drug's ethanol solvent. In rats pre-treated with clotrimazole for 3 days, hypertonic saline loading increased sodium excretion (U(Na)V) to 0.94 +/- 0.22 micromol min(-1) , compared with a significantly greater (P < 0.05) increase to 2.76 +/- 0.48 micromol min(-1) measured in untreated controls. Indo increased U(Na)V twofold, similarly in the clotrimazole and in the control group; in the absence or presence of clotrimazole treatment, COX blockade significantly decreased MBF and increased Y. CONCLUSION The data indicate that blockade of the CYP450 epoxygenase significantly impairs excretion of sodium in rats acutely loaded with hypertonic NaCl solution. The paradoxical post-Indo natriuresis is preserved in clotrimazole treated rats, which speaks against the role of CYP450 pathway in the response.
Collapse
Affiliation(s)
- E Kompanowska-Jezierska
- Laboratory of Renal and Body Fluid Physiology, M. Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawiñskiego 5, 02-106 Warsaw, Poland
| | | | | |
Collapse
|
49
|
Capdevila JH, Falck JR. Biochemical and molecular properties of the cytochrome P450 arachidonic acid monooxygenases. Prostaglandins Other Lipid Mediat 2002; 68-69:325-44. [PMID: 12432927 DOI: 10.1016/s0090-6980(02)00038-2] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The cytochrome P450 (P450) arachidonic acid (AA) monooxygenase metabolizes the fatty acid to a series of epoxy- and hydroxy-acid derivatives. Catalytic turnover requires NADPH, and requires the redox-coupled activation and cleavage of diatomic oxygen, and the delivery of an active form of atomic oxygen to ground state carbon atoms. Past and present advances in P450 biochemistry and molecular biology are beginning to provide a description of the P450 isoform specificity of AA bioactivation, and the mechanisms of action and physiological relevance of the P450 metabolites. The demonstration of the endogenous biosynthesis of many of these metabolites has established the P450 pathway as an important route for AA bioactivation, and has begun to uncovered new and important functional roles for this enzyme system in cell and organ physiology.
Collapse
Affiliation(s)
- Jorge H Capdevila
- Department of Medicine, Vanderbilt University Medical School, Nashville, TN 37232, USA.
| | | |
Collapse
|
50
|
Wang JF, Yang Y, Sullivan MF, Min J, Cai J, Zeldin DC, Xiao YF, Morgan JP. Induction of cardiac cytochrome p450 in cocaine-treated mice. Exp Biol Med (Maywood) 2002; 227:182-8. [PMID: 11856816 DOI: 10.1177/153537020222700305] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Cytochrome P450 (P450) is a ubiquitous family of enzymes responsible for the metabolism of a wide variety of drugs and their metabolites, including cocaine. To investigate the effects of cocaine on myocardial injuries and cardiac P450 expression, BALB/c mice were injected daily intraperitoneally with cocaine (30 mg/kg) or cocaine plus pretreatment of P450 inhibitors for 14 days. Tumor necrosis factor-alpha (TNF-alpha) content and creatine phosphokinase (CPK) activity in mice hearts and serums were significantly increased after long-term treatment with cocaine. Pretreatment with the P450 inhibitor, cimetidine (Cime, 50 mg/kg) or metyrapone (Mety, 40 mg/kg) abolished or significantly attenuated the effects of cocaine on TNF-alpha and CPK activity. Western blot analysis shows that mouse cardiac tissues express the P450 isoforms CYP1A1, CYP1A2, and CYP2J2. The protein levels normalized with cyclophilin A were 1.20 plus minus 0.07, 0.67 plus minus 0.03, and 1.48 plus minus 0.01 for CYP1A1, CYP1A2, and CYP 2J2, respectively. After cocaine administration, CYP2J2 increased by 43.6% and CYP1A1 increased by 108.5%, but CYP1A2 was not significantly altered. However, the cytochrome P450 inhibitors Cime and Mety suppressed the cocaine-induced increase in CYP1A1 and CYP2J2 expression. Moreover, application of Cime or Mety alone did not alter the level of cardiac TNF-alpha or the expression of P450. Our results demonstrate that long-term exposure to cocaine causes an increase in cardiac CYP1A1 and CYP2J2 concentration. We speculate that induction of P450 isoforms may cause cardiac injury due to cocaine metabolites locally catalyzed by P450 or the increase in P450 expression itself.
Collapse
Affiliation(s)
- Ju-Feng Wang
- Cardiovascular Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | | | |
Collapse
|