1
|
Flierl A, Schriner SE, Hancock S, Coskun PE, Wallace DC. The mitochondrial adenine nucleotide transporters in myogenesis. Free Radic Biol Med 2022; 188:312-327. [PMID: 35714845 DOI: 10.1016/j.freeradbiomed.2022.05.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 05/21/2022] [Accepted: 05/25/2022] [Indexed: 01/06/2023]
Abstract
Adenine Nucleotide Translocator isoforms (ANTs) exchange ADP/ATP across the inner mitochondrial membrane, are also voltage-activated proton channels and regulate mitophagy and apoptosis. The ANT1 isoform predominates in heart and muscle while ANT2 is systemic. Here, we report the creation of Ant mutant mouse myoblast cell lines with normal Ant1 and Ant2 genes, deficient in either Ant1 or Ant2, and deficient in both the Ant1 and Ant2 genes. These cell lines are immortal under permissive conditions (IFN-γ + serum at 32 °C) permitting expansion but return to normal myoblasts that can be differentiated into myotubes at 37 °C. With this system we were able to complement our Ant1 mutant studies by demonstrating that ANT2 is important for myoblast to myotube differentiation and myotube mitochondrial respiration. ANT2 is also important in the regulation of mitochondrial biogenesis and antioxidant defenses. ANT2 is also associated with increased oxidative stress response and modulation for Ca++ sequestration and activation of the mitochondrial permeability transition (mtPTP) pore during cell differentiation.
Collapse
Affiliation(s)
- Adrian Flierl
- Center for Molecular and Mitochondrial Medicine and Genetics and the Department of Biological Chemistry, University of California, Irvine, CA, USA
| | - Samuel E Schriner
- Center for Molecular and Mitochondrial Medicine and Genetics and the Department of Biological Chemistry, University of California, Irvine, CA, USA
| | - Saege Hancock
- Center for Molecular and Mitochondrial Medicine and Genetics and the Department of Biological Chemistry, University of California, Irvine, CA, USA; Center for Mitochondrial and Epigenomic Medicine, Department of Pediatrics, Division of Human Genetics, Children's Hospital of Philadelphia and The Perelman School of Medicine, University of Pennsylvania, PA, USA
| | - Pinar E Coskun
- Center for Molecular and Mitochondrial Medicine and Genetics and the Department of Biological Chemistry, University of California, Irvine, CA, USA
| | - Douglas C Wallace
- Center for Molecular and Mitochondrial Medicine and Genetics and the Department of Biological Chemistry, University of California, Irvine, CA, USA; Center for Mitochondrial and Epigenomic Medicine, Department of Pediatrics, Division of Human Genetics, Children's Hospital of Philadelphia and The Perelman School of Medicine, University of Pennsylvania, PA, USA.
| |
Collapse
|
2
|
Kokoszka JE, Waymire KG, Flierl A, Sweeney KM, Angelin A, MacGregor GR, Wallace DC. Deficiency in the mouse mitochondrial adenine nucleotide translocator isoform 2 gene is associated with cardiac noncompaction. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1857:1203-1212. [PMID: 27048932 PMCID: PMC5100012 DOI: 10.1016/j.bbabio.2016.03.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/17/2016] [Accepted: 03/18/2016] [Indexed: 01/05/2023]
Abstract
The mouse fetal and adult hearts express two adenine nucleotide translocator (ANT) isoform genes. The predominant isoform is the heart-muscle-brain ANT-isoform gene 1 (Ant1) while the other is the systemic Ant2 gene. Genetic inactivation of the Ant1 gene does not impair fetal development but results in hypertrophic cardiomyopathy in postnatal mice. Using a knockin X-linked Ant2 allele in which exons 3 and 4 are flanked by loxP sites combined in males with a protamine 1 promoter driven Cre recombinase we created females heterozygous for a null Ant2 allele. Crossing the heterozygous females with the Ant2(fl), PrmCre(+) males resulted in male and female ANT2-null embryos. These fetuses proved to be embryonic lethal by day E14.5 in association with cardiac developmental failure, immature cardiomyocytes having swollen mitochondria, cardiomyocyte hyperproliferation, and cardiac failure due to hypertrabeculation/noncompaction. ANTs have two main functions, mitochondrial-cytosol ATP/ADP exchange and modulation of the mitochondrial permeability transition pore (mtPTP). Previous studies imply that ANT2 biases the mtPTP toward closed while ANT1 biases the mtPTP toward open. It has been reported that immature cardiomyocytes have a constitutively opened mtPTP, the closure of which signals the maturation of cardiomyocytes. Therefore, we hypothesize that the developmental toxicity of the Ant2 null mutation may be the result of biasing the cardiomyocyte mtPTP to remain open thus impairing cardiomyocyte maturation and resulting in cardiomyocyte hyperproliferation and failure of trabecular maturation. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi.
Collapse
MESH Headings
- Adenine/metabolism
- Adenine Nucleotide Translocator 2/deficiency
- Adenine Nucleotide Translocator 2/genetics
- Animals
- Biological Transport
- Cell Proliferation
- Embryo, Mammalian
- Female
- Gene Expression Regulation, Developmental
- Genes, Lethal
- Heart Defects, Congenital/embryology
- Heart Defects, Congenital/genetics
- Heart Defects, Congenital/metabolism
- Heart Defects, Congenital/pathology
- Heart Failure/embryology
- Heart Failure/genetics
- Heart Failure/metabolism
- Heart Failure/pathology
- Heart Ventricles/abnormalities
- Heart Ventricles/embryology
- Heart Ventricles/metabolism
- Integrases
- Male
- Mice
- Mice, Transgenic
- Mitochondria/metabolism
- Mitochondria/pathology
- Mitochondrial Swelling/genetics
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Organogenesis
- Phenotype
Collapse
Affiliation(s)
- Jason E Kokoszka
- Forensic Biology Section, Alabama Department of Forensic Sciences, Annex C, Mobile, AL 36617, United States
| | - Katrina G Waymire
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 92697-2300, United States
| | - Adrian Flierl
- The Parkinson's Institute, Sunnyvale, CA 94085, United States
| | - Katelyn M Sweeney
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Alessia Angelin
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Grant R MacGregor
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 92697-2300, United States
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States.
| |
Collapse
|
3
|
Angiopoietin-like protein 2 increases renal fibrosis by accelerating transforming growth factor-β signaling in chronic kidney disease. Kidney Int 2016; 89:327-41. [DOI: 10.1016/j.kint.2015.12.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 09/16/2015] [Accepted: 10/07/2015] [Indexed: 01/08/2023]
|
4
|
Limongelli G, Masarone D, D’Alessandro R, Elliott PM. Mitochondrial diseases and the heart: an overview of molecular basis, diagnosis, treatment and clinical course. Future Cardiol 2012; 8:71-88. [DOI: 10.2217/fca.11.79] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The mitochondrion is the main site of production of ATP that represents the source of energy for a large number of cellular processes. Mitochondrial diseases that result in a deficit in ATP production can affect almost every organ system with a large spectrum of clinical phenotypes. Cardiomyocytes are particularly vulnerable to limited ATP supply because of their large energy requirement. Abnormalities in the mitochondrial function are increasingly recognized in association with dilated and hypertrophic cardiomyopathy, cardiac conduction defects, endothelial dysfunction and coronary artery disease. Cardiologists should, therefore, be alerted to symptoms and signs suggestive of mitochondrial diseases and become familiar with the general issues related to multisystem disease management, genetic counseling and testing.
Collapse
Affiliation(s)
- Giuseppe Limongelli
- Monaldi Hospital Second University of Naples (SUN), Naples, Italy
- The Heart Hospital, University College of London (UCL), London, UK
| | - Daniele Masarone
- Monaldi Hospital Second University of Naples (SUN), Naples, Italy
| | | | - Perry M Elliott
- The Heart Hospital, University College of London (UCL), London, UK
| |
Collapse
|
5
|
Williams RS, Neufer PD. Regulation of Gene Expression in Skeletal Muscle by Contractile Activity. Compr Physiol 2011. [DOI: 10.1002/cphy.cp120125] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
6
|
Vatish M, Yamada E, Pessin JE, Bastie CC. Fyn kinase function in lipid utilization: a new upstream regulator of AMPK activity? Arch Physiol Biochem 2009; 115:191-8. [PMID: 19728795 PMCID: PMC4324608 DOI: 10.1080/13813450903164348] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The balance of cellular energy levels in response to changes of nutrient availability, stress stimuli or exercise is a critical step in maintaining tissue and whole body homeostasis. Disruption of this balance is associated with various pathologies, including the metabolic syndrome. Recently, accumulating evidence has demonstrated that the AMP-activated protein kinase (AMPK) plays a central role in sensing changes in energy levels. The regulation of AMPK activity is currently the subject of significant investigation since this enzyme is a potential therapeutic target in both metabolic disorders and tumorigenesis. In this review, we present novel evidence of crosstalk between Fyn, one member of the Src kinase family, and AMPK.
Collapse
Affiliation(s)
- Manu Vatish
- Albert Einstein College of Medicine, Diabetes Research and Training Center, Department of Medicine, Bronx, NY USA
- Clinical Sciences Research Institute, Warwick Medical School, University of Warwick, Coventry, UK
| | - Eijiro Yamada
- Albert Einstein College of Medicine, Diabetes Research and Training Center, Department of Medicine, Bronx, NY USA
| | - Jeffrey E. Pessin
- Albert Einstein College of Medicine, Diabetes Research and Training Center, Department of Medicine, Bronx, NY USA
| | - Claire C. Bastie
- Albert Einstein College of Medicine, Diabetes Research and Training Center, Department of Medicine, Bronx, NY USA
| |
Collapse
|
7
|
Menzies KJ, Robinson BH, Hood DA. Effect of thyroid hormone on mitochondrial properties and oxidative stress in cells from patients with mtDNA defects. Am J Physiol Cell Physiol 2008; 296:C355-62. [PMID: 19036942 DOI: 10.1152/ajpcell.00415.2007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mitochondrial (mt)DNA mutations contribute to various disease states characterized by low ATP production. In contrast, thyroid hormone [3,3',5-triiodothyronine (T(3))] induces mitochondrial biogenesis and enhances ATP generation within cells. To evaluate the role of T(3)-mediated mitochondrial biogenesis in patients with mtDNA mutations, three fibroblast cell lines with mtDNA mutations were evaluated, including two patients with Leigh's syndrome and one with hypertrophic cardiomyopathy. Compared with control cells, patient fibroblasts displayed similar levels of mitochondrial mass, peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha), mitochondrial transcription factor A (Tfam), and uncoupling protein 2 (UCP2) protein expression. However, patient cells exhibited a 1.6-fold elevation in ROS production, a 1.7-fold elevation in cytoplasmic Ca2+ levels, a 1.2-fold elevation in mitochondrial membrane potential, and 30% less complex V activity compared with control cells. Patient cells also displayed 20-25% reductions in both cytochrome c oxidase (COX) activity and MnSOD protein levels compared with control cells. After T(3) treatment of patient cells, ROS production was decreased by 40%, cytoplasmic Ca2+ was reduced by 20%, COX activity was increased by 1.3-fold, and ATP levels were elevated by 1.6-fold, despite the absence of a change in mitochondrial mass. There were no significant alterations in the protein expression of PGC-1alpha, Tfam, or UCP2 in either T(3)-treated patient or control cells. However, T(3) restored the mitochondrial membrane potential, complex V activity, and levels of MnSOD to normal values in patient cells and elevated MnSOD levels by 21% in control cells. These results suggest that T(3) acts to reduce cellular oxidative stress, which may help attenuate ROS-mediated damage, along with improving mitochondrial function and energy status in cells with mtDNA defects.
Collapse
Affiliation(s)
- Keir J Menzies
- School of Kinesiology and Health Science, Farqhuarson Life Science Bldg., Rm. 302, York Univ., Toronto, ON M3JIP3, Canada
| | | | | |
Collapse
|
8
|
Manoli I, Alesci S, Blackman MR, Su YA, Rennert OM, Chrousos GP. Mitochondria as key components of the stress response. Trends Endocrinol Metab 2007; 18:190-8. [PMID: 17500006 DOI: 10.1016/j.tem.2007.04.004] [Citation(s) in RCA: 265] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2007] [Revised: 04/02/2007] [Accepted: 04/30/2007] [Indexed: 02/09/2023]
Abstract
The exquisitely orchestrated adaptive response to stressors that challenge the homeostasis of the cell and organism involves important changes in mitochondrial function. A complex signaling network enables mitochondria to sense internal milieu or environmental changes and to adjust their bioenergetic, thermogenic, oxidative and/or apoptotic responses accordingly, aiming at re-establishment of homeostasis. Mitochondrial dysfunction is increasingly recognized as a key component in both acute and chronic allostatic states, although the extent of its role in the pathogenesis of such conditions remains controversial. Genetic and environmental factors that determine mitochondrial function might contribute to the significant variation of the stress response. Understanding the often reciprocal interplay between stress mediators and mitochondrial function is likely to help identify potential therapeutic targets for many stress and mitochondria-related pathologies.
Collapse
Affiliation(s)
- Irini Manoli
- Human Biochemical Genetics Section, MGB, NHGRI, NIH, Bethesda, MD 20892, USA.
| | | | | | | | | | | |
Collapse
|
9
|
Abstract
Major modifications in energy homeostasis occur in skeletal muscle during exercise. Emerging evidence suggests that changes in energy homeostasis take part in the regulation of gene expression and contribute to muscle plasticity. A number of energy-sensing molecules have been shown to sense variations in energy homeostasis and trigger regulation of gene expression. The AMP-activated protein kinase, hypoxia-inducible factor 1, peroxisome proliferator-activated receptors, and Sirt1 proteins all contribute to altering skeletal muscle gene expression by sensing changes in the concentrations of AMP, molecular oxygen, intracellular free fatty acids, and NAD+, respectively. These molecules may therefore sense information relating to the intensity, duration, and frequency of muscle exercise. Mitochondria also contribute to the overall response, both by modulating the response of energy-sensing molecules and by generating their own signals. This review seeks to examine our current understanding of the roles that energy-sensing molecules and mitochondria can play in the regulation of gene expression in skeletal muscle.
Collapse
Affiliation(s)
- Damien Freyssenet
- Unité Physiologie et Physiopathologie de l'Exercice et Handicap, EA3062, Université Jean Monnet, Saint-Etienne Cedex 2, France.
| |
Collapse
|
10
|
Jang JY, Lee CE. IL-4-induced upregulation of adenine nucleotide translocase 3 and its role in Th cell survival from apoptosis. Cell Immunol 2006; 241:14-25. [PMID: 16930576 DOI: 10.1016/j.cellimm.2006.07.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2006] [Revised: 07/11/2006] [Accepted: 07/11/2006] [Indexed: 12/20/2022]
Abstract
We have identified mitochondrial adenine nucleotide translocase (ANT)3 as a novel target up-regulated by IL-4 in human T cells. The IL-4-induced ANT3 expression is dependent on tyrosine kinase, NF-kappaB, PI3K/Akt, and Erk pathways. In fact, IL-4 induced specific activation of NF-kappaB, Akt, and Erk in Jurkat T cells and partially rescued these cells from dexamethasone-induced apoptosis. The IL-4-mediated T cell survival was blocked by inhibitors of tyrosine kinase, NF-kappaB, PI3K/Akt, and Erk. During the IL-4-induced T cell rescue, there was a concomitant increase in ANT3, nuclear NF-kappaB, and Bcl-2 and a decrease in ANT1, I-kappaB, and mitochondrial Bax-alpha levels. Importantly, overexpression of ANT3 effectively protected T cells from dexamethasone-induced apoptosis, while forced expression of ANT1 caused apoptosis. In contrast, siRNA knock-out of ANT3 expression induced T cell apoptosis and blocked the IL-4-mediated cell survival. Together these results suggest that ANT3 has a potential role in Th cell survival and immune cell homeostasis.
Collapse
Affiliation(s)
- Ji-Young Jang
- Department of Biological Science and Institute for Basic Science, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | | |
Collapse
|
11
|
Talamillo A, Fernández-Moreno MA, Martínez-Azorín F, Bornstein B, Ochoa P, Garesse R. Expression of the Drosophila melanogaster ATP synthase alpha subunit gene is regulated by a transcriptional element containing GAF and Adf-1 binding sites. ACTA ACUST UNITED AC 2005; 271:4003-13. [PMID: 15479229 DOI: 10.1111/j.1432-1033.2004.04336.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mitochondrial biogenesis is a complex and highly regulated process that requires the controlled expression of hundreds of genes encoded in two separated genomes, namely the nuclear and mitochondrial genomes. To identify regulatory proteins involved in the transcriptional control of key nuclear-encoded mitochondrial genes, we have performed a detailed analysis of the promoter region of the alpha subunit of the Drosophila melanogaster F1F0 ATP synthase complex. Using transient transfection assays, we have identified a 56 bp cis-acting proximal regulatory region that contains binding sites for the GAGA factor and the alcohol dehydrogenase distal factor 1. In vitro mutagenesis revealed that both sites are functional, and phylogenetic footprinting showed that they are conserved in other Drosophila species and in Anopheles gambiae. The 56 bp region has regulatory enhancer properties and strongly activates heterologous promoters in an orientation-independent manner. In addition, Northern blot and RT-PCR analysis identified two alpha-F1-ATPase mRNAs that differ in the length of the 3' untranslated region due to the selection of alternative polyadenylation sites.
Collapse
Affiliation(s)
- Ana Talamillo
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Facultad de Medicina, Universidad Autónoma de Madrid, Spain
| | | | | | | | | | | |
Collapse
|
12
|
Jang JY, Lee CE. Mitochondrial adenine nucleotide translocator 3 is regulated by IL-4 and IFN-γ via STAT-dependent pathways. Cell Immunol 2003; 226:11-9. [PMID: 14746803 DOI: 10.1016/j.cellimm.2003.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
IL-4 and IFN-gamma are prototypical Th2 and Th1 cytokines, respectively. They reciprocally regulate a number of genes involved in Th1 vs Th2 immune balance. Using DD-PCR analysis, adenine nucleotide translocase (ANT) 3, an enzyme which exchanges ATP and ADP through mitochondrial membrane, has been identified as a novel target counter-regulated by IL-4 and IFN-gamma. We have observed that IL-4 and IFN-gamma each up-regulates ANT3 in T cells both at mRNA and protein levels, while cotreatment of IL-4 and IFN-gamma counter-regulates ANT3 expression. In contrast, other isoforms of ANT were not affected by IL-4 or IFN-gamma. Emplyoing transfection and overexpression of STAT6 and STAT1 in STAT-deficient cells, we demonstrate that induction of ANT3 by IL-4 and IFN-gamma proceeds via pathways involving STAT6 and STAT1, respectively. Furthermore, regulation of ANT3 expression by IL-4 and IFN-gamma correlated with the modulation T cell survival by these cytokines from dex-induced apoptosis. Considering the critical role of mitochondrial ANTs in energy metabolism and apoptosis, ANT3 regulation by IL-4 and IFN-gamma may have a functional implication in cytokine-mediated T cell survival.
Collapse
Affiliation(s)
- Ji-Young Jang
- Department of Biological Science and Institute for Basic Science, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | | |
Collapse
|
13
|
Scheller K, Seibel P, Sekeris CE. Glucocorticoid and thyroid hormone receptors in mitochondria of animal cells. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 222:1-61. [PMID: 12503846 DOI: 10.1016/s0074-7696(02)22011-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
This article concerns the localization of glucocorticoid and thyroid hormone receptors in mitochondria of animal cells. The receptors are discussed in terms of their potential role in the regulation of mitochondrial transcription and energy production by the oxidative phosphorylation pathway, realized both by nuclear-encoded and mitochondrially encoded enzymes. A brief survey of the role of glucocorticoid and thyroid hormones on energy metabolism is presented, followed by a description of the molecular mode of action of these hormones and of the central role of the receptors in regulation of transcription. Subsequently, the structure and characteristics of glucocorticoid and thyroid hormone receptors are described, followed by a section on the effects of glucocorticoid and thyroid hormones on the transcription of mitochondrial and nuclear genes encoding subunits of OXPHOS and by an introduction to the mitochondrial genome and its transcription. A comprehensive description of the data demonstrates the localization of glucocorticoid and thyroid hormone receptors in mitochondria as well as the detection of potential hormone response elements that bind to these receptors. This leads to the conclusion that the receptors potentially play a role in the regulation of transcription of mitochondrial genes. The in organello mitochondrial system, which is capable of sustaining transcription in the absence of nuclear participation, is presented, responding to T3 with increased transcription rates, and the central role of a thyroid receptor isoform in the transcription effect is emphasized. Lastly, possible ways of coordinating nuclear and mitochondrial gene transcription in response to glucocorticoid and thyroid hormones are discussed, the hormones acting directly on the genes of the two compartments by way of common hormone response elements and indirectly on mitochondrial genes by stimulation of nuclear-encoded transcription factors.
Collapse
Affiliation(s)
- Klaus Scheller
- Department of Cell and Developmental Biology, Biocenter of the University, D-97074 Würzburg, Germany
| | | | | |
Collapse
|
14
|
Coskun PE, Ruiz-Pesini E, Wallace DC. Control region mtDNA variants: longevity, climatic adaptation, and a forensic conundrum. Proc Natl Acad Sci U S A 2003; 100:2174-6. [PMID: 12606714 PMCID: PMC151313 DOI: 10.1073/pnas.0630589100] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Pinar E Coskun
- Center for Molecular and Mitochondrial Medicine and Genetics, University of California, Irvine, CA 92692-3940, USA
| | | | | |
Collapse
|
15
|
Duborjal H, Beugnot R, Mousson de Camaret B, Issartel JP. Large functional range of steady-state levels of nuclear and mitochondrial transcripts coding for the subunits of the human mitochondrial OXPHOS system. Genome Res 2002; 12:1901-9. [PMID: 12466294 PMCID: PMC187576 DOI: 10.1101/gr.194102] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2002] [Accepted: 10/08/2002] [Indexed: 12/24/2022]
Abstract
We have measured, by reverse transcription and real-time quantitative PCR, the steady-state levels of the mitochondrial and nuclear transcripts encoding several subunits of the human oxidative phosphorylation (OXPHOS) system, in different normal tissues (muscle, liver, trachea, and kidney) and in cultured cells (normal fibroblasts, 143B osteosarcoma cells, 143B206 rho(0) cells). Five mitochondrial transcripts and nine nuclear transcripts were assessed. The measured amounts of these OXPHOS transcripts in muscle samples corroborated data obtained by others using the serial analysis of gene expression (SAGE) method to appraise gene expression in the same type of tissue. Steady-state levels for all the transcripts were found to range over more than two orders of magnitude. Most of the time, the mitochondrial H-strand transcripts were present at higher levels than the nuclear transcripts. The mitochondrial L-strand transcript ND6 was usually present at a low level. Cultured 143B cells contained significantly reduced amounts of mitochondrial transcripts in comparison with the tissue samples. In 143B206 rho(0) cells, fully depleted of mitochondrial DNA, the levels of nuclear OXPHOS transcripts were not modified in comparison with the parental cells. This observation indicated that nuclear transcription is not coordinated with mitochondrial transcription. We also observed that in the different tissues and cells, there is a transcriptional coregulation of all the investigated nuclear genes. Nuclear OXPHOS gene expression seems to be finely regulated.
Collapse
|
16
|
Scarpulla RC. Nuclear activators and coactivators in mammalian mitochondrial biogenesis. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1576:1-14. [PMID: 12031478 DOI: 10.1016/s0167-4781(02)00343-3] [Citation(s) in RCA: 459] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The biogenesis of mitochondria requires the expression of a large number of genes, most of which reside in the nuclear genome. The protein-coding capacity of mtDNA is limited to 13 respiratory subunits necessitating that nuclear regulatory factors play an important role in governing nucleo-mitochondrial interactions. Two classes of nuclear transcriptional regulators implicated in mitochondrial biogenesis have emerged in recent years. The first includes DNA-binding transcription factors, typified by nuclear respiratory factor (NRF)-1, NRF-2 and others, that act on known nuclear genes that specify mitochondrial functions. A second, more recently defined class, includes nuclear coactivators typified by PGC-1 and related family members (PRC and PGC-1 beta). These molecules do not bind DNA but rather work through their interactions with DNA-bound transcription factors to regulate gene expression. An important feature of these coactivators is that their expression is responsive to physiological signals mediating thermogenesis, cell proliferation and gluconeogenesis. Thus, they have the ability to integrate the action of multiple transcription factors in orchestrating programs of gene expression essential to cellular energetics. The interplay of these nuclear factors appears to be a major determinant in regulating the biogenesis of mitochondria.
Collapse
Affiliation(s)
- Richard C Scarpulla
- Department of Cell and Molecular Biology, Northwestern Medical School, 303 East Chicago Avenue, Searle 4-458, Chicago, IL 60611, USA.
| |
Collapse
|
17
|
Portman MA. The adenine nucleotide translocator: regulation and function during myocardial development and hypertrophy. Clin Exp Pharmacol Physiol 2002; 29:334-8. [PMID: 11985546 DOI: 10.1046/j.1440-1681.2002.03654.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
1. The present review focuses on the adenine nucleotide translocator (ANT), which facilitates exchange of cytosolic ADP for mitochondrial ATP. This protein serves a central role in regulating cellular oxidative capacity. 2. The ANT, a nuclear-encoded mitochondrial protein, is developmentally regulated and, thus, accumulates within the mitochondrial membrane during maturation. 3. Accumulation of ANT parallels changes in kinetics of myocardial respiration determined from 31P magnetic resonance spectroscopy studies. 4. Thyroid hormone modulates developmental transitions in ANT content, as well as respiratory control patterns. These transitions are linked to quantitative ANT changes, not to alterations in functionality at individual exchanger sites. 5. Developmental programming for ANT and parallel alterations in oxidative phosphorylation kinetics are relevant to the heart, which exhibits remodelling in response to pathological processes. Maladaptive hearts exhibiting ANT deficits demonstrate ADP-dependent respiratory kinetics similar to the newborn heart. Thus, ANT deficits and alterations in mitochondrial respiratory function may contribute to the pathogenesis of myocardial remodelling and heart failure.
Collapse
Affiliation(s)
- Michael A Portman
- Division of Cardiology, Department of Pediatrics, University of Washington School of Medicine and Children's Hospital and Medical Center, Seattle, Washington, USA.
| |
Collapse
|
18
|
Garesse R, Vallejo CG. Animal mitochondrial biogenesis and function: a regulatory cross-talk between two genomes. Gene 2001; 263:1-16. [PMID: 11223238 DOI: 10.1016/s0378-1119(00)00582-5] [Citation(s) in RCA: 204] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mitochondria play a pivotal role in cell physiology, producing the cellular energy and other essential metabolites as well as controlling apoptosis by integrating numerous death signals. The biogenesis of the oxidative phosphorylation system (OXPHOS) depends on the coordinated expression of two genomes, nuclear and mitochondrial. As a consequence, the control of mitochondrial biogenesis and function depends on extremely complex processes that require a variety of well orchestrated regulatory mechanisms. It is now clear that in order to provide cells with the correct number of structural and functional differentiated mitochondria, a variety of intracellular and extracellular signals including hormones and environmental stimuli need to be integrated. During the last few years a considerable effort has been devoted to study the factors that regulate mtDNA replication and transcription as well as the expression of nuclear-encoded mitochondrial genes in physiological and pathological conditions. Although still in their infancy, these studies are starting to provide the molecular basis that will allow to understand the mechanisms involved in the nucleo-mitochondrial communication, a cross-talk essential for cell life and death.
Collapse
Affiliation(s)
- R Garesse
- Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid, Arturo Duperier, 4, 28029 Madrid, Spain.
| | | |
Collapse
|
19
|
Lefai E, Fernandez-Moreno MA, Alahari A, Kaguni LS, Garesse R. Differential regulation of the catalytic and accessory subunit genes of Drosophila mitochondrial DNA polymerase. J Biol Chem 2000; 275:33123-33. [PMID: 10930405 DOI: 10.1074/jbc.m003024200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The developmental pattern of expression of the genes encoding the catalytic (alpha) and accessory (beta) subunits of mitochondrial DNA polymerase (pol gamma) has been examined in Drosophila melanogaster. The steady-state level of pol gamma-beta mRNA increases during the first hours of development, reaching its maximum value at the start of mtDNA replication in Drosophila embryos. In contrast, the steady-state level of pol gamma-alpha mRNA decreases as development proceeds and is low in stages of active mtDNA replication. This difference in mRNA abundance results at least in part from differences in the rates of mRNA synthesis. The pol gamma genes are located in a compact cluster of five genes that contains three promoter regions (P1-P3). The P1 region directs divergent transcription of the pol gamma-beta gene and the adjacent rpII33 gene. P1 contains a DNA replication-related element (DRE) that is essential for pol gamma-beta promoter activity, but not for rpII33 promoter activity in Schneider's cells. A second divergent promoter region (P2) controls the expression of the orc5 and sop2 genes. The P2 region contains two DREs that are essential for orc5 promoter activity, but not for sop2 promoter activity. The expression of the pol gamma-alpha gene is directed by P3, a weak promoter that does not contain DREs. Electrophoretic mobility shift experiments demonstrate that the DRE-binding factor (DREF) regulatory protein binds to the DREs in P1 and P2. DREF regulates the expression of several genes encoding key factors involved in nuclear DNA replication. Its role in controlling the expression of the pol gamma-beta and orc5 genes establishes a common regulatory mechanism linking nuclear and mitochondrial DNA replication. Overall, our results suggest that the accessory subunit of mtDNA polymerase plays an important role in the control of mtDNA replication in Drosophila.
Collapse
Affiliation(s)
- E Lefai
- Departamento de Bioquimica, Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, Facultad de Medicina, Universidad Autónoma de Madrid, c/Arzobispo Morcillo 4, 28029 Madrid, Spain
| | | | | | | | | |
Collapse
|
20
|
Mott JL, Denniger G, Zullo SJ, Zassenhaus HP. Genomic structure of murine mitochondrial DNA polymerase-gamma. DNA Cell Biol 2000; 19:601-5. [PMID: 11058962 DOI: 10.1089/104454900750019353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We have sequenced a genomic clone of the gene encoding the mouse mitochondrial DNA polymerase. The gene consists of 23 exons, which span approximately 13.2 kb, with exons ranging in size from 53 to 768 bp. All intron-exon boundaries conform to the GT-AG rule. By comparison with the human genomic sequence, we found remarkable conservation of the gene structure; the intron-exon borders are in almost identical locations for the 22 introns. The 5' upstream region contains approximately 300 bp of homology between the mouse and human sequences that presumably contain the promoter element. This region lacks any obvious TATA domain and is relatively GC rich, consistent with the housekeeping function of the mitochondrial DNA polymerase. Finally, within the 5' flanking region, both mouse and human genes have a region of 73 bp with high homology to the tRNA-Arg gene.
Collapse
Affiliation(s)
- J L Mott
- Department of Molecular Microbiology and Immunology, St. Louis University Health Sciences Center, St. Louis, Missouri 63104, USA
| | | | | | | |
Collapse
|
21
|
Portman MA, Xiao Y, Qian K, Tucker RL, Parish SM, Ning XH. Thyroid hormone coordinates respiratory control maturation and adenine nucleotide translocator expression in heart in vivo. Circulation 2000; 102:1323-9. [PMID: 10982550 DOI: 10.1161/01.cir.102.11.1323] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The signal transduction mechanism linking mitochondrial ATP synthesis with cytosolic ATP utilization in heart changes during postnatal development in vivo. This maturational process occurs in parallel with accumulation of mitochondrial adenine nucleotide translocator (ANT), which provides a possible site for respiratory control. We postulated that thyroid hormone regulates these maturational processes. METHODS AND RESULTS We used (31)P MR spectroscopy to determine the relationship between myocardial high-energy phosphates, phosphocreatine, and ADP and oxygen consumption (MVO(2)) during epinephrine stimulation in 32- to 40-day-old lambs thyroidectomized after birth (THY) and age-matched controls. Steady-state protein and mRNA levels for ANT isoforms and beta-F(1)-ATPase were assessed from left ventricular tissues by Western and Northern blotting. With greater doses of epinephrine, THY attained lower peak MVO(2) than controls (P:<0.05). Controls maintained high-energy phosphate levels, unlike THY, which demonstrated significantly decreased phosphocreatine/ATP and increased cytosolic ADP despite lower peak MVO(2). No significant differences in beta-F(1)-ATPase protein or mRNA occurred between groups. However, ANT isoform mRNA levels were 2-fold greater and protein levels 4-fold greater in control hearts. CONCLUSIONS These data imply that the maturational shift away from ADP-mediated respiratory control is regulated by thyroid hormone in vivo. Specific thyroid-modulated increases in ANT mRNA and protein imply that this regulation occurs in part at a pretranslational level.
Collapse
Affiliation(s)
- M A Portman
- Division of Cardiology, Department of Pediatrics, University of Washington School of Medicine, and Children's Hospital and Regional Medical Center, Seattle, WA 98105-0371, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Affiliation(s)
- M A Portman
- Division of Cardiology, University of Washington, and Children's Hospital and Regional Medical Center, Seattle, Washington 98105-0371, USA
| |
Collapse
|
23
|
Levy SE, Chen YS, Graham BH, Wallace DC. Expression and sequence analysis of the mouse adenine nucleotide translocase 1 and 2 genes. Gene 2000; 254:57-66. [PMID: 10974536 DOI: 10.1016/s0378-1119(00)00252-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Only two isoforms of the adenine nucleotide translocase (Ant) protein have been identified in mouse, as opposed to the three in humans. To determine whether the homologous mouse and human proteins share similar patterns of expression, Northern and Western analyses were performed on several mouse tissues. Mouse Ant1 is expressed at high levels in skeletal muscle and heart, similar to human ANT1. Mouse Ant2 is strongly expressed in all tissues but muscle, in marked contrast to human ANT2. To investigate the molecular basis of these differences, we cloned and sequenced the genomic loci of mouse Ant1 and Ant2, and compared them to the three human ANT loci. The mouse and human ANT1 and ANT2 genes showed substantial homology starting about 300 base pairs (bp) 5' to the coding region and continuing through the 3' untranslated region (UTR). Repeats constituted 32% of 15kb of Ant1 sequence and 36% of the 27kb of Ant2 sequence and included SINEs, LINEs and LTR elements. The core promoters of the mouse and human ANT1 and ANT2 genes are very similar. However, the mouse Ant1 gene lacks the upstream OXBOX and REBOX elements found in human ANT1 genes, thought to be important for muscle-specific expression. The mouse Ant2 gene, like human ANT2, has an upstream GRBOX, yet this element is not associated with suppression of transcription, as hypothesized for human ANT2. These discrepancies indicate that additional studies will be required to fully understand the transcriptional regulation of both Ant1 and Ant2.
Collapse
MESH Headings
- Animals
- Base Sequence
- Blotting, Northern
- Blotting, Western
- DNA/chemistry
- DNA/genetics
- Female
- Gene Expression
- Genes/genetics
- Isoenzymes/genetics
- Isoenzymes/metabolism
- Male
- Mice
- Mice, Inbred Strains
- Mitochondrial ADP, ATP Translocases/genetics
- Mitochondrial ADP, ATP Translocases/metabolism
- Molecular Sequence Data
- Promoter Regions, Genetic
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Repetitive Sequences, Nucleic Acid
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
- Tissue Distribution
Collapse
Affiliation(s)
- S E Levy
- Emory University School of Medicine, Center for Molecular Medicine, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
24
|
Woontner M, Crnic LS, Koeller DM. Analysis of the expression of murine glutaryl-CoA dehydrogenase: in vitro and in vivo studies. Mol Genet Metab 2000; 69:116-22. [PMID: 10720438 DOI: 10.1006/mgme.2000.2962] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glutaric acidemia type I (GAI) is an autosomal recessive organic acidemia caused by a mutation in the gene encoding glutaryl-CoA dehydrogenase (GCD). Clinically, GAI is characterized by progressive dystonia, resulting from degeneration of neurons in the caudate and putamen nuclei of the striatum. In an attempt to understand the basis for the specific neuropathology in GAI, we have analyzed the expression of the murine GCD gene using both in vitro and in vivo approaches. Transfection studies mapped the mouse GCD promoter to a 500-bp region of DNA 5' of the translation start site. The promoter lacks a TATA consensus sequence, but includes possible binding sites for several transcription factors with roles in the regulation of nuclear genes encoding mitochondrial proteins. Western blot and RT/PCR analyses of mouse tissues demonstrated that GCD is ubiquitously expressed, with the highest levels of expression in liver and kidney, consistent with its role in amino acid oxidation. Expression in multiple regions of the brain was also detected by Western blotting. Based on these results we conclude that the specific neuropathology associated with GCD deficiency in GAI cannot be accounted for by its expression pattern.
Collapse
Affiliation(s)
- M Woontner
- Department of Pediatrics, University of Colorado Health Sciences Center, Denver, Colorado, 80262, USA
| | | | | |
Collapse
|
25
|
Abstract
Over the past 11 years, a considerable body of evidence has accumulated implicating defects in the mitochondrial energy-generating pathway, oxidative phosphorylation, in a wide variety of degenerative diseases including myopathy and cardiomyopathy. Most classes of pathogenic mitochondrial DNA mutations affect the heart, in association with a variety of other clinical manifestations that can include skeletal muscle, the central nervous system (including eye), the endocrine system, and the renal system. To better understand the pathophysiologic basis of mitochondrial diseases and their role in myopathy and cardiomyopathy, several mouse models of mitochondrial disease have been prepared. Mitochondrial DNA mutations from cultured cells have been introduced into mice; nuclear DNA genes involved in mitochondrial energy production and reactive oxygen species detoxification have been genetically inactivated, which resulted in mice with hypertrophic and dilated cardiomyopathy, respectively. Physiologic characterization of these mice has confirmed the importance of decreased mitochondrial energy production, increased mitochondrial reactive oxygen species production, and the mitochondrial initiation of apoptosis in mitochondrial disease. With these insights, new therapeutic approaches for neuromuscular and cardiac disease have been suggested.
Collapse
Affiliation(s)
- D C Wallace
- Center for Molecular Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
26
|
The Effects of Bioenergetic Stress and Redox Balance on the Expression of Genes Critical to Mitochondrial Function. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s1568-1254(00)80017-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
27
|
Heddi A, Stepien G, Benke PJ, Wallace DC. Coordinate induction of energy gene expression in tissues of mitochondrial disease patients. J Biol Chem 1999; 274:22968-76. [PMID: 10438462 DOI: 10.1074/jbc.274.33.22968] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We have examined the transcript levels of a variety of oxidative phosphorylation (OXPHOS) and associated bioenergetic genes in tissues of a patient carrying the myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) A3243G mitochondrial DNA (mtDNA) mutation and the skeletal muscles of 14 patients harboring other pathogenic mtDNA mutations. The patients' tissues, which harbored 88% or more mutant mtDNA, had increased levels of mtDNA transcripts, increased nuclear OXPHOS gene transcripts including the ATP synthase beta subunit and the heart-muscle isoform of the adenine nucleotide translocator, and increased ancillary gene transcripts including muscle mitochondrial creatine phosphokinase, muscle glycogen phosphorylase, hexokinase I, muscle phosphofructokinase, the E1alpha subunit of pyruvate dehydrogenase, and the ubiquinone oxidoreductase. A similar coordinate induction of bioenergetic genes was observed in the muscle biopsies of severe pathologic mtDNA mutations. The more significant coordinated expression was found in muscle from patients with the MELAS, myoclonic epilepsy with ragged red fibers, and chronic progressive external ophthalmoplegia deletion syndromes, with ragged red muscle fibers and mitochondrial paracrystalline inclusions. High levels of mutant mtDNAs were linked to a high induction of the mtDNA and nuclear OXPHOS genes and of several associated bioenergetic genes. These observations suggest that human tissues attempt to compensate for OXPHOS defects associated with mtDNA mutations by stimulating mitochondrial biogenesis, possibly mediated through redox-sensitive transcription factors.
Collapse
Affiliation(s)
- A Heddi
- Department of Genetics and Molecular Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | | | | | |
Collapse
|
28
|
Murdock DG, Boone BE, Esposito LA, Wallace DC. Up-regulation of nuclear and mitochondrial genes in the skeletal muscle of mice lacking the heart/muscle isoform of the adenine nucleotide translocator. J Biol Chem 1999; 274:14429-33. [PMID: 10318868 DOI: 10.1074/jbc.274.20.14429] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mice deficient in the heart/muscle specific isoform of the adenine nucleotide translocator (ANT1) exhibit many of the hallmarks of human oxidative phosphorylation (OXPHOS) disease, including a dramatic proliferation of skeletal muscle mitochondria. Because many of the genes necessary for mitochondrial biosynthesis, OXPHOS function, and response to OXPHOS disease might be expected to be up-regulated in the Ant1(-/-) mouse, we used differential display reverse transcription-polymerase chain reaction techniques in an effort to identify these genes. 17 genes were identified as up-regulated in Ant1-deficient mice, and they fall into four categories: 1) nuclear and mitochondrial genes encoding OXPHOS components, 2) mitochondrial tRNA and rRNA genes, 3) genes involved in intermediary metabolism, and 4) an eclectic group of other genes. Among the latter genes, we identified the gene encoding anti-apoptotic Mcl-1, the Skd3 gene, and the WS-3 gene, which were previously unknown to be related to mitochondrial function. These results indicate that identification of genes up-regulated in the skeletal muscle of the Ant1-deficient mouse provides a novel method for identifying mammalian genes required for mitochondrial biogenesis.
Collapse
Affiliation(s)
- D G Murdock
- Center for Molecular Medicine, Emory University School for Medicine, Atlanta, Georgia 30322, USA
| | | | | | | |
Collapse
|
29
|
Dörner A, Olesch M, Giessen S, Pauschinger M, Schultheiss HP. Transcription of the adenine nucleotide translocase isoforms in various types of tissues in the rat. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1417:16-24. [PMID: 10076031 DOI: 10.1016/s0005-2736(98)00245-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two different isoforms of the adenine nucleotide translocase (ANT1 and ANT2) have been identified in the rat. In order to obtain enhanced knowledge of the ANT isoform expression, we analyzed the transcription pattern of both isoforms and their mRNA levels in various tissues of the rat using the PCR technique. A predominant ANT1 mRNA percentage was recorded in the skeletal muscle, heart and brain, ranging from 81 to 58%. In contrast to these tissues, the percentages of ANT2 were dominant with a range from 59 to 75% in the kidney, lung, spleen and liver. The level of total ANT mRNA varied markedly in the various organs. Tissues with a dominant ANT1 percentage simultaneously showed a high level of total ANT transcription (24-41 attomol/ng total RNA). In comparison to the latter, tissues with a prevalent ANT2 transcription were shown to have an even lower ANT transcription level (2-5 attomol/ng total RNA). The predominance of the ANT1 expression appeared to be restricted to tissues with an inability to regenerate by means of mitotic division, whereas a prevalent ANT2 transcription is found in cell types able to proliferate. The level of total ANT transcription but not the individual ANT isoform expression depends to a great extent on the energy requirements of the tissue.
Collapse
Affiliation(s)
- A Dörner
- Department of Cardiology, Benjamin Franklin Klinik, Free University Berlin, Hindenburgdamm 30, 12200, Berlin, Germany.
| | | | | | | | | |
Collapse
|
30
|
Giraud S, Bonod-Bidaud C, Wesolowski-Louvel M, Stepien G. Expression of human ANT2 gene in highly proliferative cells: GRBOX, a new transcriptional element, is involved in the regulation of glycolytic ATP import into mitochondria. J Mol Biol 1998; 281:409-18. [PMID: 9698557 DOI: 10.1006/jmbi.1998.1955] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The adenine nucleotide translocator (ANT) is the most abundant mitochondrial inner membrane protein which catalyses the exchange of ADP and ATP between cytosol and mitochondria. The human ANT protein has three isoforms encoded by three differentially regulated nuclear genes. The ANT gene expression was examined in several human cells. The gene encoding the ANT2 isoform was found specifically induced in Simian virus 40 (SV40)-transformed, tumoral and mtDNA lacking rho degrees cell lines. Moreover, the ANT2 gene was preferentially expressed under a glycolytic metabolism. Functional complementation of a Saccharomyces cerevisiae mutant revealed that the human ANT2 protein specifically restores yeast cell growth under anaerobic conditions. Sequence analysis of the ANT2 proximal promoter in comparison to that of the third yeast adenine nucleotide translocator (AAC3) led us to identify a new motif termed GRBOX. Promoter-deletion transfection and mobility gel-shift assays revealed that this motif is recognized by a negative transcriptional regulator. This transcription factor might be involved in a molecular mechanism which selects the import of the glycolytic ATP in the mitochondrial matrix. This ATP import is required in highly proliferative cells, such as tumour cells, which depend strongly on glycolysis for ATP synthesis.
Collapse
Affiliation(s)
- S Giraud
- CNRS UMR-5534, Université Claude Bernard Lyon1, 43 Bd du 11 Novembre 1918, Villeurbanne, Cedex, 69622, France.
| | | | | | | |
Collapse
|
31
|
Leary SC, Battersby BJ, Hansford RG, Moyes CD. Interactions between bioenergetics and mitochondrial biogenesis. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1365:522-30. [PMID: 9711303 DOI: 10.1016/s0005-2728(98)00105-4] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We studied the interaction between energy metabolism and mitochondrial biogenesis during myogenesis in C2C12 myoblasts. Metabolic rate was nearly constant throughout differentiation, although there was a shift in the relative importance of glycolytic and oxidative metabolism, accompanied by increases in pyruvate dehydrogenase activation state and total activity. These changes in mitochondrial bioenergetic parameters observed during differentiation occurred in the absence of a hypermetabolic stress. A chronic (3 day) energetic stress was imposed on differentiated myotubes using sodium azide to inhibit oxidative metabolism. When used at low concentrations, azide inhibited more than 70% of cytochrome oxidase (COX) activity without changes in bioenergetics (either lactate production or creatine phosphorylation) or mRNA for mitochondrial enzymes. Higher azide concentrations resulted in changes in bioenergetic parameters and increases in steady state COX II mRNA levels. Azide did not affect mtDNA copy number or mRNA levels for other mitochondrial transcripts, suggesting azide affects stability, rather than synthesis, of COX II mRNA. These results indicate that changes in bioenergetics can alter mitochondrial genetic regulation, but that mitochondrial biogenesis accompanying differentiation occurs in the absence of hypermetabolic challenge.
Collapse
Affiliation(s)
- S C Leary
- Department of Biology, Queen's University, Kingston, Ont., Canada
| | | | | | | |
Collapse
|
32
|
Grossman LI, Seelan RS, Jaradat SA. Transcriptional regulation of mammalian cytochrome c oxidase genes. Electrophoresis 1998; 19:1254-9. [PMID: 9694260 DOI: 10.1002/elps.1150190805] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The cytochrome c oxidase (COX) holoenzyme is a 13-subunit complex that carries out the terminal step in the electron transport chain. Three of the subunits, which contain the electron transfer function, are coded by mitochondrial DNA and the other ten subunits by nuclear DNA. Since the holoenzyme contains equivalent amounts of each subunit, we and others have examined transcriptional regulation of COX nuclear subunits to explore whether there is a common basis for co-regulation. Each gene is seen to have a unique pattern of recognition by regulatory factors; although some factors bind to more than one gene, not all COX genes seem to be regulated by the same set of factors. Current information about the COX promoters that have been examined is summarized, and the relation of promoter regulation to coordinate gene expression is discussed.
Collapse
Affiliation(s)
- L I Grossman
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | | | | |
Collapse
|
33
|
Scheffler IE. Molecular genetics of succinate:quinone oxidoreductase in eukaryotes. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1998; 60:267-315. [PMID: 9594577 DOI: 10.1016/s0079-6603(08)60895-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Succinate:quinone oxidoreductase is a membrane-associated complex in mitochondria, often referred to as complex II, based on the fractionation scheme developed by Y. Hatefi and colleagues. It consists of four peptides, two of which are integral membrane proteins (15 and 12-13 kDa, respectively) and two others that are peripheral membrane proteins, i.e., a flavoprotein (Fp, 70 kDa) and an iron-protein (Ip, 27 kDa). The mature, functional complex contains a cytochrome in association with the membrane proteins, a flavin linked covalently to the largest peptide, and three iron-sulfur clusters in the 27-kDa subunit. The present review touches only briefly on the biochemical and biophysical properties of this complex. Instead, the focus is on the molecular-genetic studies that have become possible since the first genes from eukaryotes were cloned in 1989. The evolutionary conservation of the amino acid sequence of both the Fp and the Ip peptides has facilitated the cloning of these genes from a large variety of eukaryotic organisms by PCR-based methods. The review addresses questions related to the regulation of the expression of these genes, with an emphasis on mammals and yeast, for which most of the information is available. Four different genes have to be co-ordinately regulated. Transcriptional as well as posttranscriptional regulatory mechanisms have been observed in diverse organisms. Intriguing observations have been made in studies of this enzyme during the life cycle of organisms existing alternately under aerobic and anaerobic conditions. Naturally occurring or induced mutations in these genes have shed light on several questions related to the assembly of this complex, and on the relationship between structure and function. Four different peptides are imported into the mitochondria. They have to be modified, folded, and assembled. The stage is set for the exploration of highly specific changes introduced by site-directed mutagenesis. Until recently the genes were believed to be exclusively nuclear in all eukaryotes, but exceptions have since been found. This finding has relevance in the discussion of the evolution of mitochondria from prokaryotes. A highly conserved set of genes is found in prokaryotes, and some informative comparisons on gene organization and expression in prokaryotes and eukaryotes have been included.
Collapse
Affiliation(s)
- I E Scheffler
- Department of Biology, University of California, San Diego 92093, USA
| |
Collapse
|
34
|
Portman MA, Xiao Y, Song Y, Ning XH. Expression of adenine nucleotide translocator parallels maturation of respiratory control in heart in vivo. THE AMERICAN JOURNAL OF PHYSIOLOGY 1997; 273:H1977-83. [PMID: 9362269 DOI: 10.1152/ajpheart.1997.273.4.h1977] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Changes in the relationship between myocardial high-energy phosphates and oxygen consumption in vivo occur during development, implying that the mode of respiratory control undergoes maturation. We hypothesized that these maturational changes in sheep heart are paralleled by alterations in the adenine nucleotide translocator (ANT), which are in turn related to changes in the expression of this gene. Increases in myocardial oxygen consumption (MVO2) were induced by epinephrine infusion in newborn (0-32 h, n = 6) and mature sheep (30-32 days, n = 6), and high-energy phosphates were monitored with 31P nuclear magnetic resonance. Western blot analyses for the ANT1 and the beta-subunit of F1-adenosinetriphosphatase (ATPase) were performed in these hearts and additional (n = 9 total per group) as well as in fetal hearts (130-132 days of gestation, n = 5). Northern blot analyses were performed to assess for changes in steady-state RNA transcripts for these two genes. Kinetic analyses for the 31P spectra data revealed that the ADP-MVO2 relationship for the newborns conformed to a Michaelis-Menten model but that the mature data did not conform to first- or second-order kinetic control of respiration through ANT. Maturation from fetal to mature was accompanied by a 2.5-fold increase in ANT protein (by Western blot), with no detectable change in beta-F1-ATPase. Northern blot data show that steady-state mRNA levels for ANT and beta-F1-ATPase increased approximately 2.5-fold from fetal to mature. These data indicate that 1) respiratory control pattern in the newborn is consistent with a kinetic type regulation through ANT, 2) maturational decreases in control through ANT are paralleled by specific increases in ANT content, and 3) regulation of these changes in ANT may be related to increases in steady-state transcript levels for its gene.
Collapse
Affiliation(s)
- M A Portman
- Department of Pediatrics, University of Washington School of Medicine and Children's Hospital and Medical Center, Seattle 98195-6320, USA
| | | | | | | |
Collapse
|
35
|
Doerner A, Pauschinger M, Badorff A, Noutsias M, Giessen S, Schulze K, Bilger J, Rauch U, Schultheiss HP. Tissue-specific transcription pattern of the adenine nucleotide translocase isoforms in humans. FEBS Lett 1997; 414:258-62. [PMID: 9315697 DOI: 10.1016/s0014-5793(97)01000-4] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Three adenine nucleotide translocase isoforms (ANT1, ANT2 and ANT3) are coded by different genes. The relative amounts of the three ANT isoform mRNAs were determined in detail in various human tissues. ANT isoforms were co-expressed in all tested tissues revealing tissue-specific transcription patterns. The highest ANT1 mRNA proportions were found in terminally differentiated tissues like skeletal muscle, heart and brain, whereas ANT2 was mainly expressed in tissues capable of proliferation and regeneration as in the kidneys, spleen, liver, fibroblasts and lymphocytes. The ANT3 mRNA proportion was not prominently expressed in any of the tissues tested. In conclusion, tissue-specific expression of ANT isoforms is strongly related to the state of cellular differentiation.
Collapse
Affiliation(s)
- A Doerner
- Department of Cardiology, Benjamin Franklin Hospital, Free University of Berlin, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Garesse R, Carrodeguas JA, Santiago J, Pérez ML, Marco R, Vallejo CG. Artemia mitochondrial genome: molecular biology and evolutive considerations. Comp Biochem Physiol B Biochem Mol Biol 1997; 117:357-66. [PMID: 9253173 DOI: 10.1016/s0305-0491(96)00338-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
During the last two decades an increasing amount of information has been accumulated regarding the gene structure and organization of the mitochondrial genome from various organisms. Many studies carried out mainly in mammals, have contributed to the knowledge of the basic elements involved in the replication and transcription of mitochondrial DNA. However, very little is known about these processes in invertebrates. In this review we discuss our current knowledge of the animal mitochondrial genetic system and briefly summarize the structure of the Artemia mitochondrial genome, the characteristics of its transcriptional machinery and how its expression is controlled during early development, in relation with what is known in other organisms. Artemia is the only crustacean where the mtDNA has been studied at this level of detail up to date.
Collapse
Affiliation(s)
- R Garesse
- Instituto de Investigaiones Biomédicas (CSIC), Madrid, Spain
| | | | | | | | | | | |
Collapse
|
37
|
Graham BH, Waymire KG, Cottrell B, Trounce IA, MacGregor GR, Wallace DC. A mouse model for mitochondrial myopathy and cardiomyopathy resulting from a deficiency in the heart/muscle isoform of the adenine nucleotide translocator. Nat Genet 1997; 16:226-34. [PMID: 9207786 DOI: 10.1038/ng0797-226] [Citation(s) in RCA: 402] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In an attempt to create an animal model of tissue-specific mitochondrial disease, we generated 'knockout' mice deficient in the heart/muscle isoform of the adenine nucleotide translocator (Ant1). Histological and ultrastructural examination of skeletal muscle from Ant1 null mutants revealed ragged-red muscle fibers and a dramatic proliferation of mitochondria, while examination of the heart revealed cardiac hypertrophy with mitochondrial proliferation. Mitochondria isolated from mutant skeletal muscle exhibited a severe defect in coupled respiration. Ant1 mutant adults also had a resting serum lactate level fourfold higher than that of controls, indicative of metabolic acidosis. Significantly, mutant adults manifested severe exercise intolerance. Therefore, Ant1 mutant mice have the biochemical, histological, metabolic and physiological characteristics of mitochondrial myopathy and cardiomyopathy.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Cardiomegaly/genetics
- Cardiomegaly/pathology
- Cardiomyopathies/genetics
- Cardiomyopathies/metabolism
- Cardiomyopathies/pathology
- Cell Respiration
- Cloning, Molecular
- Disease Models, Animal
- Mice
- Mice, Knockout
- Mitochondria, Muscle/genetics
- Mitochondria, Muscle/metabolism
- Mitochondria, Muscle/ultrastructure
- Mitochondrial ADP, ATP Translocases/deficiency
- Mitochondrial ADP, ATP Translocases/genetics
- Mitochondrial ADP, ATP Translocases/metabolism
- Mitochondrial Myopathies/genetics
- Mitochondrial Myopathies/metabolism
- Mitochondrial Myopathies/pathology
- Molecular Sequence Data
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Myocardium/metabolism
- Myocardium/pathology
- Oxidative Phosphorylation
- Physical Exertion
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- Stem Cells/pathology
Collapse
Affiliation(s)
- B H Graham
- Center for Molecular Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | | | |
Collapse
|
38
|
Breen GA, Jordan EM. Regulation of the nuclear gene that encodes the alpha-subunit of the mitochondrial F0F1-ATP synthase complex. Activation by upstream stimulatory factor 2. J Biol Chem 1997; 272:10538-42. [PMID: 9099698 DOI: 10.1074/jbc.272.16.10538] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We have previously identified several positive cis-acting regulatory regions in the promoters of the bovine and human nuclear-encoded mitochondrial F0F1-ATP synthase alpha-subunit genes (ATPA). One of these cis-acting regions contains the sequence 5'-CACGTG-3' (an E-box), to which a number of transcription factors containing a basic helix-loop-helix motif can bind. This E-box element is required for maximum activity of the ATPA promoter in HeLa cells. The present study identifies the human transcription factor, upstream stimulatory factor 2 (USF2), as a nuclear factor that binds to the ATPA E-box and demonstrates that USF2 plays a critical role in the activation of the ATPA gene in vivo. Evidence includes the following. Antiserum directed against USF2 recognized factors present in HeLa nuclear extracts that interact with the ATPA promoter in mobility shift assays. Wild-type USF2 proteins synthesized from expression vectors trans-activated the ATPA promoter through the E-box, whereas truncated USF2 proteins devoid of the amino-terminal activation domains did not. Importantly, expression of a dominant-negative mutant of USF2 lacking the basic DNA binding domain but able to dimerize with endogenous USF proteins significantly reduced the level of activation of the ATPA promoter caused by ectopically coexpressed USF2, demonstrating the importance of endogenous USF2 in activation of the ATPA gene.
Collapse
Affiliation(s)
- G A Breen
- Department of Molecular and Cell Biology, The University of Texas at Dallas, Richardson, Texas 75083-0688, USA.
| | | |
Collapse
|
39
|
Heddi A, Faure-Vigny H, Wallace DC, Stepien G. Coordinate expression of nuclear and mitochondrial genes involved in energy production in carcinoma and oncocytoma. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1316:203-9. [PMID: 8781539 DOI: 10.1016/0925-4439(96)00026-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The expression of mitochondrial and nuclear genes involved in ATP production was examined in renal carcinomas, renal oncocytomas, and a salivary oncocytoma. Renal carcinomas were found to have a reduced mitochondrial DNA (mtDNA) content while oncocytomas had increased mtDNA contents. This parallels morphological changes in mitochondrial number in these tumours. In the carcinomas, mtDNA transcripts were decreased 5- to 10-fold relative to control kidneys, suggesting that mitochondrial transcript levels depend on the mtDNA content. In renal oncocytomas, mtDNA transcripts were slightly reduced in spite of a high mtDNA content. However, in the salivary gland oncocytoma, mtDNA transcripts were increased more than 10-fold in parallel with a 10-fold increase in mtDNA content. The expression of the nuclear DNA oxidative phosphorylation genes, ATPsyn beta and ANT2, was reduced up to 4-fold in renal carcinoma. In contrast, the levels of these two nuclear gene transcripts were induced about 4-fold in renal oncocytoma and up to 30-fold in salivary gland oncocytoma. Moreover, the ANT2 precursors were observed to change in oncocytomas. These data suggest a coordinated regulation of nuclear and mitochondrial gene expression in renal carcinomas and the specific induction of nuclear OXPHOS gene expression in oncocytomas.
Collapse
Affiliation(s)
- A Heddi
- Department of Genetics and Molecular Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
40
|
Seelan RS, Gopalakrishnan L, Scarpulla RC, Grossman LI. Cytochrome c oxidase subunit VIIa liver isoform. Characterization and identification of promoter elements in the bovine gene. J Biol Chem 1996; 271:2112-20. [PMID: 8567667 DOI: 10.1074/jbc.271.4.2112] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Cytochrome c oxidase subunit VIIa is specified by two nuclear genes, one (COX7AH) producing a heart/muscle-specific isoform and the other (COX7AL) a form expressed in all tissues. We have isolated both genes to examine their transcriptional regulation. Here, we characterize the core promoter of COX7AL and show that a 92-base pair region flanking the 5'-end promotes most of the activity of this gene. The 92-bp basal promoter contains sites for the nuclear respiratory factors NRF-1 and NRF-2, which have been shown to contribute to the transcription of a number of nuclear genes involved in mitochondrial respiratory activity, and also at least four Sp1 motifs. We show that both the NRF-1 and NRF-2 binding sites are functional in COX7AL and present evidence suggesting that interaction between the NRF-1 site and an upstream element contributes to expression.
Collapse
Affiliation(s)
- R S Seelan
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, USA
| | | | | | | |
Collapse
|
41
|
Martin I, Villena JA, Giralt M, Iglesias R, Mampel T, Vińas O, Villarroya F. Influence of thyroid hormones on the human ATP synthase beta-subunit gene promoter. Mol Cell Biochem 1996; 154:107-11. [PMID: 8717424 DOI: 10.1007/bf00226778] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The action of thyroid hormones on the expression of the mitochondrial ATP synthase beta-subunit gene (ATPsyn beta) is controversial. We detected a binding site for the thyroid hormone receptor between -366 and -380 in the human ATPsyn beta gene by DNase I footprint analysis and band-shift assays. However, expression vectors in which the chloramphenicol acetyl transferase (CAT) reporter gene is driven by the 5' upstream region of ATPsyn beta gene were unresponsive to T3 when transiently transfected to HepG2 or GH4C1 cells. CAT constructs driven by the rat phosphoenolpyruvate carboxykinase (PEPCK) or the growth hormone (GH) promoters were stimulated several fold by T3 in parallel experiments. It is proposed that the biological effects of thyroid hormones on the ATPsyn beta expression occur through indirect mechanisms.
Collapse
Affiliation(s)
- I Martin
- Departament de Bioquimica i Fisiologia, Universitat de Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
42
|
Wan B, Moreadith RW. Structural characterization and regulatory element analysis of the heart isoform of cytochrome c oxidase VIa. J Biol Chem 1995; 270:26433-40. [PMID: 7592858 DOI: 10.1074/jbc.270.44.26433] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In order to investigate the mechanism(s) governing the striated muscle-specific expression of cytochrome c oxidase VIaH we have characterized the murine gene and analyzed its transcriptional regulatory elements in skeletal myogenic cell lines. The gene is single copy, spans 689 base pairs (bp), and is comprised of three exons. The 5'-ends of transcripts from the gene are heterogeneous, but the most abundant transcript includes a 5'-untranslated region of 30 nucleotides. When fused to the luciferase reporter gene, the 3.5-kilobase 5'-flanking region of the gene directed the expression of the heterologous protein selectively in differentiated Sol8 cells and transgenic mice, recapitulating the pattern of expression of the endogenous gene. Deletion analysis identified a 300-bp fragment sufficient to direct the myotube-specific expression of luciferase in Sol8 cells. The region lacks an apparent TATA element, and sequence motifs predicted to bind NRF-1, NRF-2, ox-box, or PPAR factors known to regulate other nuclear genes encoding mitochondrial proteins are not evident. Mutational analysis, however, identified two cis-elements necessary for the high level expression of the reporter protein: a MEF2 consensus element at -90 to -81 bp and an E-box element at -147 to -142 bp. Additional E-box motifs at closely located positions were mutated without loss of transcriptional activity. The dependence of transcriptional activation of cytochrome c oxidase VIaH on cis-elements similar to those found in contractile protein genes suggests that the striated muscle-specific expression is coregulated by mechanisms that control the lineage-specific expression of several contractile and cytosolic proteins.
Collapse
Affiliation(s)
- B Wan
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas 75235-8573, USA
| | | |
Collapse
|
43
|
Li K, Neufer PD, Williams RS. Nuclear responses to depletion of mitochondrial DNA in human cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1995; 269:C1265-70. [PMID: 7491917 DOI: 10.1152/ajpcell.1995.269.5.c1265] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The derivation of human cell lines devoid of mitochondrial (mt) DNA (rho 0) provides an opportunity to study nuclear responses to a chronic impairment of mitochondrial oxidative phosphorylation. Expression of several nuclear genes is induced in human rho 0 cells, including those encoding integral proteins of the mitochondrial inner membrane, intermediate filaments, and ribosomes. In contrast to conditions in which mitochondrial respiration is altered acutely, expression of heat shock proteins and immediate early genes is not induced. Mitochondria from rho 0 cells maintain a transmembrane electrochemical potential and are distributed within the cytoplasm of these cells in a manner indistinguishable from that of wild-type cells. We conclude that a chronic deficiency of mitochondrial oxidative phosphorylation produced by elimination of mtDNA is associated with a different pattern of gene induction than that provoked by other acute or subacute conditions that impair mitochondrial respiration or create energy demands in excess of mitochondrial respiratory capacity.
Collapse
Affiliation(s)
- K Li
- Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas 75235-8573, USA
| | | | | |
Collapse
|
44
|
Bachman NJ. Isolation and characterization of the functional gene encoding bovine cytochrome c oxidase subunit IV. Gene 1995; 162:313-8. [PMID: 7557450 DOI: 10.1016/0378-1119(95)00329-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The structure and expression of the gene (COX4) encoding bovine cytochrome c oxidase subunit IV (COX IV) was studied in order to identify conserved DNA sequence elements involved in the control of mammalian nuclear respiratory genes. The functional bovine COX4 gene consists of five exons and four introns and is similar in organization to rat and mouse COX4. The domain encoded by exon 3 is the most highly conserved among the three species, suggesting it may encode a key functional domain of COX IV. Transcription of bovine COX4 begins at multiple sites, as has been seen previously for rat and mouse COX4 and other TATA-less genes. Comparative analysis of bovine, rat and mouse COX4 promoters identified multiple binding sites for the regulatory proteins Sp1 and GABP (NRF-2). The varied arrangements of multiple Sp1 and GABP sites in mammalian COX4 promoters suggests flexibility in the positioning of regulatory factors in controlling COX4 expression.
Collapse
Affiliation(s)
- N J Bachman
- Franklin and Marshall College, Lancaster, PA 17604, USA
| |
Collapse
|
45
|
Izquierdo JM, Jiménez E, Cuezva JM. Hypothyroidism affects the expression of the beta-F1-ATPase gene and limits mitochondrial proliferation in rat liver at all stages of development. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 232:344-50. [PMID: 7556180 DOI: 10.1111/j.1432-1033.1995.344zz.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In order to analyze the role of thyroid hormones in mitochondrial biogenesis, we have studied the expression pattern of the beta subunit of the mitochondrial ATP-synthase complex in liver and in isolated mitochondria during postnatal development of hypothyroid rats. Chemically induced hypothyroidism promoted a significant reduction in body and liver masses at all stages of development. Furthermore, plasma 3,5,3'-triiodo-L-thyronine (T3) and 3,5,3',5'-tetraiodo-L-thyronine (T4) concentrations were significantly reduced in hypothyroid animals when compared to euthyroid animals. Remarkably, steady-state beta-F1-ATPase mRNA levels in livers of hypothyroid animals showed an approximately 50% reduction when compared to age-matched euthyroid rats at all stages of development. The relative amounts of beta-F1-ATPase protein determined in isolated mitochondria of 1-day-old and adult hypothyroid animals were similar to those determined in mitochondria of age-matched euthyroids, indicating that hypothyroidism does not affect organelle differentiation in the liver of suckling and adult rats. In contrast, the relative amount of beta-F1-ATPase protein in liver homogenates varied (0-30% reduction) due to the hypothyroid condition during development. These findings suggest the existence of compensatory mechanisms operating at the translational and/or post-translational levels which promote proliferation of mitochondria in the hypothyroid liver. However, when the liver mass was considered, hypothyroidism significantly reduced overall mitochondrial proliferation in rat liver. Interestingly, the effects of thyroid hormones on the biogenesis of the ATP synthase complex at latter stages of development provide an example in which the hypothyroid condition limits the expression of the nuclear-encoded gene with no apparent effect on the expression of the mitochondrial-encoded genes (ATP synthase subunits 6-8).
Collapse
Affiliation(s)
- J M Izquierdo
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Spain
| | | | | |
Collapse
|
46
|
Puntschart A, Claassen H, Jostarndt K, Hoppeler H, Billeter R. mRNAs of enzymes involved in energy metabolism and mtDNA are increased in endurance-trained athletes. THE AMERICAN JOURNAL OF PHYSIOLOGY 1995; 269:C619-25. [PMID: 7573391 DOI: 10.1152/ajpcell.1995.269.3.c619] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Improvements in endurance capacity by training are associated with structural and biochemical adaptations of working muscles that affect the mitochondrial compartment. We investigated whether the 1.8-fold higher mitochondrial volume density in a group of endurance-trained athletes compared with untrained subjects was reflected by higher steady-state levels of mRNAs coding for components of the oxidative phosphorylation pathway using a quantitative polymerase chain reaction approach. We found that mitochondrially encoded RNAs (cytochrome-c oxidase subunit I, NADH reductase subunit 6, 16S rRNA), as well as nuclear-encoded RNAs (cytochrome-c oxidase subunit IV, succinate dehydrogenase, fumarase) are all increased coordinately in the athletes (1.54- to 1.94-fold). In addition, mitochondrial (mt) DNA concentration was also 1.55-fold higher in the trained athletes, whereas genomic DNA was not changed. Our findings thus show similar RNA expression of mitochondrially encoded genes in sedentary and endurance-trained subjects, whereas pretranslational control mechanisms account for higher levels of nuclear-encoded RNAs in the athletes.
Collapse
Affiliation(s)
- A Puntschart
- Department of Anatomy, University of Bern, Switzerland
| | | | | | | | | |
Collapse
|
47
|
Nelson BD, Luciakova K, Li R, Betina S. The role of thyroid hormone and promoter diversity in the regulation of nuclear encoded mitochondrial proteins. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1271:85-91. [PMID: 7599231 DOI: 10.1016/0925-4439(95)00014-u] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Thyroid hormone regulates the in vivo expression of a selected set of rat nuclear genes encoding mitochondrial inner membrane proteins. Certain mRNAs, such as that for cytochrome c1, are increased as much as 20-50-fold, while others, such as core protein 1 of Complex III and the F1-ATPase beta-subunit do not respond. The promoter region of human cytochrome c1 also supports thyroid hormone induction of a reporter gene in transient transfection experiments. Thus, thyroid hormone regulates only selected genes, even for subunits within the same complex and in widely varying species. By contrast, growth activation of quiescent NIH3T3 cells, a second paradigm used for stimulating mitochondrial biogenesis, does not increase cytochrome c1 mRNA but does increase F1-ATPase beta-subunit mRNA. These findings suggest that nuclear OXPHOS genes are not necessarily expressed in a coordinated manner, and that multiple regulatory circuits might exist which are linked to different physiological stimuli. Analysis of the promoters of several OXPHOS genes reveals a great diversity and heterogeneity of transfactor binding elements. No single regulatory feature exists which could account for a coordinated expression of all OXPHOS genes. The potential diversity for regulating expression of nuclear OXPHOS genes raises the possibility for the existence of disease states linked to regulatory defects.
Collapse
Affiliation(s)
- B D Nelson
- Department of Biochemistry, Arrhenius Laboratories, University of Stockholm, Sweden
| | | | | | | |
Collapse
|
48
|
Izquierdo JM, Ricart J, Ostronoff LK, Egea G, Cuezva JM. Changing patterns of transcriptional and post-transcriptional control of beta-F1-ATPase gene expression during mitochondrial biogenesis in liver. J Biol Chem 1995; 270:10342-50. [PMID: 7730341 DOI: 10.1074/jbc.270.17.10342] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
To elucidate the mechanisms that regulate the expression of nuclear genes during biogenesis of mammalian mitochondria, the expression pattern of the beta-subunit of the ATP synthase gene has been characterized in rat liver between day 20 in utero and 12 weeks postnatal. The parallelism existing between transcriptional activity of the gene and the amount of beta-F1-ATPase protein in liver indicates that proliferation of mitochondria is controlled at the transcriptional level. On the other hand, an increased stability (4-5-fold) of beta-F1-ATPase mRNA during early neonatal life as well as a rapid postnatal activation of translation rates affecting mitochondrial proteins appear to control mitochondrial differentiation. Immunoelectron microscopy of the F1-ATPase complex during liver development revealed that the rapid postnatal increase in the in vivo rate of F1-ATPase synthesis was mostly used for functional differentiation of pre-existing organelles (Valcarce, C., Navarrete, R. M., Encabo, P., Loeches, E., Satrústegui, J., and Cuezva, J. M. (1988) J. Biol Chem. 263, 7767-7775). The findings support that beta-F1-ATPase mRNA decay is developmentally regulated in liver, indicating that gene expression is also controlled at this level during physiological transitions that affect biogenesis of mitochondria.
Collapse
MESH Headings
- Animals
- Female
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Enzymologic
- Half-Life
- Microscopy, Immunoelectron
- Mitochondria, Liver/enzymology
- Mitochondria, Liver/ultrastructure
- Organelles
- Pregnancy
- Proton-Translocating ATPases/genetics
- RNA Processing, Post-Transcriptional
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- Transcription, Genetic
Collapse
Affiliation(s)
- J M Izquierdo
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Spain
| | | | | | | | | |
Collapse
|
49
|
Sewards R, Wiseman B, Jacobs HT. Apparent functional independence of the mitochondrial and nuclear transcription systems in cultured human cells. MOLECULAR & GENERAL GENETICS : MGG 1994; 245:760-8. [PMID: 7830724 DOI: 10.1007/bf00297283] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We have constructed a series of reporter constructs which test the effects of sequence elements from the control region of human mitochondrial DNA on expression in the nucleus, as assayed by transient expression in cultured human cells. The mitochondrial heavy-strand promoter (HSP) was unable to function as a promoter in nuclear DNA. Neither the HSP, nor the binding region for the mitochondrial transcription factor mtTF1 from the light-strand promoter, had any significant or systematic modulatory effects upon transcription from strong or weak RNA polymerase II (pol II) promoters, in three different human cell lines. The same finding held true regardless of orientation with respect to the start site of transcription. Similar results were obtained with a rho 0 derivative of one of these lines, indicating that mitochondrial promoter sequences in the nucleus cannot modulate transcription in response to altered mtDNA copy number. These results support the view that the nuclear and mitochondrial transcription systems in human cells are functionally independent, and do not communicate through factors recognizing shared sequence elements, as suggested by studies in yeast.
Collapse
Affiliation(s)
- R Sewards
- Robertson Institute of Biotechnology, Department of Genetics, University of Glasgow, Scotland, UK
| | | | | |
Collapse
|
50
|
Villena J, Martin I, Viñas O, Cormand B, Iglesias R, Mampel T, Giralt M, Villarroya F. ETS transcription factors regulate the expression of the gene for the human mitochondrial ATP synthase beta-subunit. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)31683-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|