1
|
Jeganathan S, Wendt M, Kiehstaller S, Brancaccio D, Kuepper A, Pospiech N, Carotenuto A, Novellino E, Hennig S, Grossmann TN. Constrained Peptides with Fine-Tuned Flexibility Inhibit NF-Y Transcription Factor Assembly. Angew Chem Int Ed Engl 2019; 58:17351-17358. [PMID: 31539186 PMCID: PMC6900064 DOI: 10.1002/anie.201907901] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/19/2019] [Indexed: 12/17/2022]
Abstract
Protein complex formation depends on the interplay between preorganization and flexibility of the binding epitopes involved. The design of epitope mimetics typically focuses on stabilizing a particular bioactive conformation, often without considering conformational dynamics, which limits the potential of peptidomimetics against challenging targets such as transcription factors. We developed a peptide-derived inhibitor of the NF-Y transcription factor by first constraining the conformation of an epitope through hydrocarbon stapling and then fine-tuning its flexibility. In the initial set of constrained peptides, a single non-interacting α-methyl group was observed to have a detrimental effect on complex stability. Biophysical characterization revealed how this methyl group affects the conformation of the peptide in its bound state. Adaption of the methylation pattern resulted in a peptide that inhibits transcription factor assembly and subsequent recruitment to the target DNA.
Collapse
Affiliation(s)
- Sadasivam Jeganathan
- Chemical Genomics Centre of the Max Planck SocietyOtto-Hahn-Strasse 1544227DortmundGermany
| | - Mathias Wendt
- Department of Chemistry and Pharmaceutical SciencesVU University AmsterdamDe Boelelaan 10831081HZAmsterdamThe Netherlands
| | - Sebastian Kiehstaller
- Department of Chemistry and Pharmaceutical SciencesVU University AmsterdamDe Boelelaan 10831081HZAmsterdamThe Netherlands
| | - Diego Brancaccio
- Department of PharmacyUniversity of Naples “Federico II”Via D. Montesano49, 80131NaplesItaly
| | - Arne Kuepper
- Chemical Genomics Centre of the Max Planck SocietyOtto-Hahn-Strasse 1544227DortmundGermany
| | - Nicole Pospiech
- Chemical Genomics Centre of the Max Planck SocietyOtto-Hahn-Strasse 1544227DortmundGermany
| | - Alfonso Carotenuto
- Department of PharmacyUniversity of Naples “Federico II”Via D. Montesano49, 80131NaplesItaly
| | - Ettore Novellino
- Department of PharmacyUniversity of Naples “Federico II”Via D. Montesano49, 80131NaplesItaly
| | - Sven Hennig
- Chemical Genomics Centre of the Max Planck SocietyOtto-Hahn-Strasse 1544227DortmundGermany
- Department of Chemistry and Pharmaceutical SciencesVU University AmsterdamDe Boelelaan 10831081HZAmsterdamThe Netherlands
| | - Tom N. Grossmann
- Chemical Genomics Centre of the Max Planck SocietyOtto-Hahn-Strasse 1544227DortmundGermany
- Department of Chemistry and Pharmaceutical SciencesVU University AmsterdamDe Boelelaan 10831081HZAmsterdamThe Netherlands
| |
Collapse
|
2
|
Jeganathan S, Wendt M, Kiehstaller S, Brancaccio D, Kuepper A, Pospiech N, Carotenuto A, Novellino E, Hennig S, Grossmann TN. Constrained Peptides with Fine‐Tuned Flexibility Inhibit NF‐Y Transcription Factor Assembly. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Sadasivam Jeganathan
- Chemical Genomics Centre of the Max Planck Society Otto-Hahn-Strasse 15 44227 Dortmund Germany
| | - Mathias Wendt
- Department of Chemistry and Pharmaceutical SciencesVU University Amsterdam De Boelelaan 1083 1081 HZ Amsterdam The Netherlands
| | - Sebastian Kiehstaller
- Department of Chemistry and Pharmaceutical SciencesVU University Amsterdam De Boelelaan 1083 1081 HZ Amsterdam The Netherlands
| | - Diego Brancaccio
- Department of PharmacyUniversity of Naples “Federico II” Via D. Montesano 49, 80131 Naples Italy
| | - Arne Kuepper
- Chemical Genomics Centre of the Max Planck Society Otto-Hahn-Strasse 15 44227 Dortmund Germany
| | - Nicole Pospiech
- Chemical Genomics Centre of the Max Planck Society Otto-Hahn-Strasse 15 44227 Dortmund Germany
| | - Alfonso Carotenuto
- Department of PharmacyUniversity of Naples “Federico II” Via D. Montesano 49, 80131 Naples Italy
| | - Ettore Novellino
- Department of PharmacyUniversity of Naples “Federico II” Via D. Montesano 49, 80131 Naples Italy
| | - Sven Hennig
- Chemical Genomics Centre of the Max Planck Society Otto-Hahn-Strasse 15 44227 Dortmund Germany
- Department of Chemistry and Pharmaceutical SciencesVU University Amsterdam De Boelelaan 1083 1081 HZ Amsterdam The Netherlands
| | - Tom N. Grossmann
- Chemical Genomics Centre of the Max Planck Society Otto-Hahn-Strasse 15 44227 Dortmund Germany
- Department of Chemistry and Pharmaceutical SciencesVU University Amsterdam De Boelelaan 1083 1081 HZ Amsterdam The Netherlands
| |
Collapse
|
3
|
Mao Y, Chen C. The Hap Complex in Yeasts: Structure, Assembly Mode, and Gene Regulation. Front Microbiol 2019; 10:1645. [PMID: 31379791 PMCID: PMC6652802 DOI: 10.3389/fmicb.2019.01645] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/03/2019] [Indexed: 01/19/2023] Open
Abstract
The CCAAT box-harboring proteins represent a family of heterotrimeric transcription factors which is highly conserved in eukaryotes. In fungi, one of the particularly important homologs of this family is the Hap complex that separates the DNA-binding domain from the activation domain and imposes essential impacts on regulation of a wide range of cellular functions. So far, a comprehensive summary of this complex has been described in filamentous fungi but not in the yeast. In this review, we summarize a number of studies related to the structure and assembly mode of the Hap complex in a list of representative yeasts. Furthermore, we emphasize recent advances in understanding the regulatory functions of this complex, with a special focus on its role in regulating respiration, production of reactive oxygen species (ROS) and iron homeostasis.
Collapse
Affiliation(s)
- Yinhe Mao
- Key Laboratory of Molecular Virology and Immunology, Unit of Pathogenic Fungal Infection and Host Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Changbin Chen
- Key Laboratory of Molecular Virology and Immunology, Unit of Pathogenic Fungal Infection and Host Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
4
|
Philipsen S, Hardison RC. Evolution of hemoglobin loci and their regulatory elements. Blood Cells Mol Dis 2018; 70:2-12. [PMID: 28811072 PMCID: PMC5807248 DOI: 10.1016/j.bcmd.2017.08.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/13/2017] [Accepted: 08/03/2017] [Indexed: 11/21/2022]
Abstract
Across the expanse of vertebrate evolution, each species produces multiple forms of hemoglobin in erythroid cells at appropriate times and in the proper amounts. The multiple hemoglobins are encoded in two globin gene clusters in almost all species. One globin gene cluster, linked to the gene NPRL3, is preserved in all vertebrates, including a gene cluster encoding the highly divergent globins from jawless vertebrates. This preservation of synteny may reflect the presence of a powerful enhancer of globin gene expression in the NPRL3 gene. Despite substantial divergence in noncoding DNA sequences among mammals, several epigenetic features of the globin gene regulatory regions are preserved across vertebrates. The preserved features include multiple DNase hypersensitive sites, at least one of which is an enhancer, and binding by key lineage-restricted transcription factors such as GATA1 and TAL1, which in turn recruit coactivators such as P300 that catalyze acetylation of histones. The maps of epigenetic features are strongly correlated with activity in gene regulation, and resources for accessing and visualizing such maps are readily available to the community of researchers and students.
Collapse
Affiliation(s)
- Sjaak Philipsen
- Department of Cell Biology Ee1071b, Erasmus MC, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands.
| | - Ross C Hardison
- Department of Biochemistry and Molecular Biology, Huck Institute for Comparative Genomics and Bioinformatics, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
5
|
Liu N, Hargreaves VV, Zhu Q, Kurland JV, Hong J, Kim W, Sher F, Macias-Trevino C, Rogers JM, Kurita R, Nakamura Y, Yuan GC, Bauer DE, Xu J, Bulyk ML, Orkin SH. Direct Promoter Repression by BCL11A Controls the Fetal to Adult Hemoglobin Switch. Cell 2018; 173:430-442.e17. [PMID: 29606353 DOI: 10.1016/j.cell.2018.03.016] [Citation(s) in RCA: 328] [Impact Index Per Article: 46.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 01/16/2018] [Accepted: 03/06/2018] [Indexed: 01/06/2023]
Abstract
Fetal hemoglobin (HbF, α2γ2) level is genetically controlled and modifies severity of adult hemoglobin (HbA, α2β2) disorders, sickle cell disease, and β-thalassemia. Common genetic variation affects expression of BCL11A, a regulator of HbF silencing. To uncover how BCL11A supports the developmental switch from γ- to β- globin, we use a functional assay and protein binding microarray to establish a requirement for a zinc-finger cluster in BCL11A in repression and identify a preferred DNA recognition sequence. This motif appears in embryonic and fetal-expressed globin promoters and is duplicated in γ-globin promoters. The more distal of the duplicated motifs is mutated in individuals with hereditary persistence of HbF. Using the CUT&RUN approach to map protein binding sites in erythroid cells, we demonstrate BCL11A occupancy preferentially at the distal motif, which can be disrupted by editing the promoter. Our findings reveal that direct γ-globin gene promoter repression by BCL11A underlies hemoglobin switching.
Collapse
Affiliation(s)
- Nan Liu
- Cancer and Blood Disorders Center, Dana Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Victoria V Hargreaves
- Cancer and Blood Disorders Center, Dana Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Qian Zhu
- Department of Biostatistics and Computational Biology, Dana Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jesse V Kurland
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jiyoung Hong
- Cancer and Blood Disorders Center, Dana Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Woojin Kim
- Cancer and Blood Disorders Center, Dana Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Falak Sher
- Cancer and Blood Disorders Center, Dana Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Claudio Macias-Trevino
- Cancer and Blood Disorders Center, Dana Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Julia M Rogers
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Committee on Higher Degrees in Biophysics, Harvard University, Cambridge, MA, USA
| | - Ryo Kurita
- Cell Engineering Division, RIKEN Bioresource Center, Tsukuba, Japan
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN Bioresource Center, Tsukuba, Japan
| | - Guo-Cheng Yuan
- Department of Biostatistics and Computational Biology, Dana Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Daniel E Bauer
- Cancer and Blood Disorders Center, Dana Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jian Xu
- Children's Medical Center Research Institute, Department of Pediatrics, University of Texas at Southwestern Medical Center, Dallas, TX, USA
| | - Martha L Bulyk
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Committee on Higher Degrees in Biophysics, Harvard University, Cambridge, MA, USA; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Stuart H Orkin
- Cancer and Blood Disorders Center, Dana Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Boston, MA, USA.
| |
Collapse
|
6
|
NF-Y and the immune response: Dissecting the complex regulation of MHC genes. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:537-542. [PMID: 27989934 DOI: 10.1016/j.bbagrm.2016.10.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/26/2016] [Accepted: 10/27/2016] [Indexed: 12/13/2022]
Abstract
Nuclear Factor Y (NF-Y) was first described as one of the CCAAT binding factors. Although CCAAT motifs were found to be present in various genes, NF-Y attracted a lot of interest early on, due to its role in Major Histocompatibility Complex (MHC) gene regulation. MHC genes are crucial in immune response and show peculiar expression patterns. Among other conserved elements on MHC promoters, an NF-Y binding CCAAT box was found to contribute to MHC transcriptional regulation. NF-Y along with other DNA binding factors assembles in a stereospecific manner to form a multiprotein scaffold, the MHC enhanceosome, which is necessary but not sufficient to drive transcription. Transcriptional activation is achieved by the recruitment of yet another factor, the class II transcriptional activator (CIITA). In this review, we briefly discuss basic findings on MHCII transcription regulation and we highlight NF-Y different modes of function in MHCII gene activation. This article is part of a Special Issue entitled: Nuclear Factor Y in Development and Disease, edited by Prof. Roberto Mantovani.
Collapse
|
7
|
Rodríguez-Esteban G, González-Sastre A, Rojo-Laguna JI, Saló E, Abril JF. Digital gene expression approach over multiple RNA-Seq data sets to detect neoblast transcriptional changes in Schmidtea mediterranea. BMC Genomics 2015; 16:361. [PMID: 25952370 PMCID: PMC4494696 DOI: 10.1186/s12864-015-1533-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 04/13/2015] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The freshwater planarian Schmidtea mediterranea is recognised as a valuable model for research into adult stem cells and regeneration. With the advent of the high-throughput sequencing technologies, it has become feasible to undertake detailed transcriptional analysis of its unique stem cell population, the neoblasts. Nonetheless, a reliable reference for this type of studies is still lacking. RESULTS Taking advantage of digital gene expression (DGE) sequencing technology we compare all the available transcriptomes for S. mediterranea and improve their annotation. These results are accessible via web for the community of researchers. Using the quantitative nature of DGE, we describe the transcriptional profile of neoblasts and present 42 new neoblast genes, including several cancer-related genes and transcription factors. Furthermore, we describe in detail the Smed-meis-like gene and the three Nuclear Factor Y subunits Smed-nf-YA, Smed-nf-YB-2 and Smed-nf-YC. CONCLUSIONS DGE is a valuable tool for gene discovery, quantification and annotation. The application of DGE in S. mediterranea confirms the planarian stem cells or neoblasts as a complex population of pluripotent and multipotent cells regulated by a mixture of transcription factors and cancer-related genes.
Collapse
Affiliation(s)
- Gustavo Rodríguez-Esteban
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona (UB), and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Av. Diagonal 643, Barcelona, 08028, Catalonia, Spain.
| | - Alejandro González-Sastre
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona (UB), and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Av. Diagonal 643, Barcelona, 08028, Catalonia, Spain.
| | - José Ignacio Rojo-Laguna
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona (UB), and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Av. Diagonal 643, Barcelona, 08028, Catalonia, Spain.
| | - Emili Saló
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona (UB), and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Av. Diagonal 643, Barcelona, 08028, Catalonia, Spain.
| | - Josep F Abril
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona (UB), and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Av. Diagonal 643, Barcelona, 08028, Catalonia, Spain.
| |
Collapse
|
8
|
Ding S, Khoury-Hanold W, Iwasaki A, Robek MD. Epigenetic reprogramming of the type III interferon response potentiates antiviral activity and suppresses tumor growth. PLoS Biol 2014; 12:e1001758. [PMID: 24409098 PMCID: PMC3883642 DOI: 10.1371/journal.pbio.1001758] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 11/19/2013] [Indexed: 01/31/2023] Open
Abstract
The tissue-specific IFN-λ receptor expression program can be epigenetically remodeled via HDAC inhibition to strengthen anti-viral and anti-tumor activities in the central nervous system. Type III interferon (IFN-λ) exhibits potent antiviral activity similar to IFN-α/β, but in contrast to the ubiquitous expression of the IFN-α/β receptor, the IFN-λ receptor is restricted to cells of epithelial origin. Despite the importance of IFN-λ in tissue-specific antiviral immunity, the molecular mechanisms responsible for this confined receptor expression remain elusive. Here, we demonstrate that the histone deacetylase (HDAC) repression machinery mediates transcriptional silencing of the unique IFN-λ receptor subunit (IFNLR1) in a cell-type-specific manner. Importantly, HDAC inhibitors elevate receptor expression and restore sensitivity to IFN-λ in previously nonresponsive cells, thereby enhancing protection against viral pathogens. In addition, blocking HDAC activity renders nonresponsive cell types susceptible to the pro-apoptotic activity of IFN-λ, revealing the combination of HDAC inhibitors and IFN-λ to be a potential antitumor strategy. These results demonstrate that the type III IFN response may be therapeutically harnessed by epigenetic rewiring of the IFN-λ receptor expression program. Interferons (IFNs) are important cytokines that protect the host from a broad spectrum of pathogens. IFN-λ, the most recently identified IFN, exhibits potent antiviral activity similar to IFN-α/β. In contrast to the ubiquitous presence of the IFN-α/β receptor, however, the expression of the IFN-λ receptor is restricted to epithelial cells and hepatocytes and absent from immune cells and brain cells. The molecular mechanism responsible for this tissue-specific IFN-λ receptor expression has been elusive. In this study, we demonstrate that histone acetylation mediates chromatin relaxation and transcriptional activation of IFN-λ receptor expression in a cell-type-specific manner. When IFN-λ nonresponsive cells—those that don't normally express the IFN-λ receptor—are treated with inhibitors that block histone deacetylase (HDAC) function, these cells express elevated levels of the IFN-λ receptor and gain sensitivity to IFN-λ. Importantly, rewiring the receptor expression program in this manner via use of HDAC inhibitors can protect formerly IFN-λ-insensitive cells, including primary human astrocytes, from both DNA and RNA virus infection. Additionally, treatment with HDAC inhibitors can also render previously nonresponsive cell types susceptible to the antitumor activity of IFN-λ, thereby inducing apoptosis in glioblastoma cells. This work suggests that a combination of small-molecule HDAC inhibitors and IFN-λ could be a potential antiviral and anticancer strategy.
Collapse
MESH Headings
- Animals
- Apoptosis
- Cell Line, Tumor
- Cell Proliferation/drug effects
- CpG Islands
- Cricetinae
- Cytomegalovirus/drug effects
- Cytomegalovirus/physiology
- DNA Methylation/drug effects
- Epigenesis, Genetic
- Hepatocytes/drug effects
- Hepatocytes/metabolism
- Hepatocytes/pathology
- Hepatocytes/virology
- Herpesvirus 1, Human/drug effects
- Herpesvirus 1, Human/physiology
- Histone Deacetylase Inhibitors/pharmacology
- Histone Deacetylases/genetics
- Histone Deacetylases/metabolism
- Host-Pathogen Interactions
- Humans
- Interferon-gamma/genetics
- Interferon-gamma/metabolism
- Mice
- NIH 3T3 Cells
- Organ Specificity
- Promoter Regions, Genetic
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Receptors, Cytokine/antagonists & inhibitors
- Receptors, Cytokine/genetics
- Receptors, Cytokine/metabolism
- Receptors, Interferon
- Signal Transduction
- Vesiculovirus/drug effects
- Vesiculovirus/physiology
Collapse
Affiliation(s)
- Siyuan Ding
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Microbiology Graduate Program, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - William Khoury-Hanold
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Akiko Iwasaki
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Michael D. Robek
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
9
|
Dolfini D, Mantovani R. Targeting the Y/CCAAT box in cancer: YB-1 (YBX1) or NF-Y? Cell Death Differ 2013; 20:676-85. [PMID: 23449390 PMCID: PMC3619239 DOI: 10.1038/cdd.2013.13] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 01/11/2013] [Accepted: 01/18/2013] [Indexed: 01/14/2023] Open
Abstract
The Y box is an important sequence motif found in promoters and enhancers containing a CCAAT box - one of the few elements enriched in promoters of large sets of genes overexpressed in cancer. The search for the transcription factor(s) acting on it led to the biochemical purification of the nuclear factor Y (NF-Y) heterotrimer, and to the cloning - through the screening of expression libraries - of Y box-binding protein 1 (YB-1), an oncogene, overexpressed in aggressive tumors and associated with drug resistance. These two factors have been associated with Y/CCAAT-dependent activation of numerous growth-related genes, notably multidrug resistance protein 1. We review two decades of data indicating that NF-Y ultimately acts on Y/CCAAT in cancer cells, a notion recently confirmed by genome-wide data. Other features of YB-1, such as post-transcriptional control of mRNA biology, render it important in cancer biology.
Collapse
Affiliation(s)
- D Dolfini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, Milan 20133, Italy
| | - R Mantovani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, Milan 20133, Italy
| |
Collapse
|
10
|
Lima WR, Moraes M, Alves E, Azevedo MF, Passos DO, Garcia CRS. The PfNF-YB transcription factor is a downstream target of melatonin and cAMP signalling in the human malaria parasite Plasmodium falciparum. J Pineal Res 2013; 54:145-53. [PMID: 22804732 DOI: 10.1111/j.1600-079x.2012.01021.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Plasmodium falciparum causes the most severe form of malaria and is responsible for the majority of deaths worldwide. The mechanism of cell cycle control within intra-erythrocytic stages has been examined as a potential means of a promising way to identifying how to stop parasite development in red blood cells. Our group determined that melatonin increases parasitemia in P. falciparum and P. chabaudi through a complex signalling cascade. In vertebrates, melatonin controls the expression of transcription factors, leading us to postulate rather that the indoleamine would affect PfNF-YB expression in human malaria parasites. We show here that PfNF-YB transcription factor is highly expressed and colocalized in the nucleus in mature parasites during intra-erythrocytic stages, thus suggesting an important role in cell division. Moreover, we demonstrate for the first time that melatonin and cAMP modulate the PfNF-YB transcription factor expression in P. falciparum at erythrocytic stages. In addition, PfNF-YB is found to be more ubiquitinated in the presence of melatonin. Finally, the proteasome inhibitor bortezomib is able to modulate PfNF-YB expression as well. Taken together, our dada reinforce the role played by melatonin in the cell cycle control of P. falciparum and point this indolamine as a target to develop new antimalarial drugs.
Collapse
Affiliation(s)
- Wânia R Lima
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
11
|
Regulation effect of zinc fingers and homeoboxes 2 on alpha-fetoprotein in human hepatocellular carcinoma. Gastroenterol Res Pract 2013; 2013:101083. [PMID: 23533382 PMCID: PMC3600319 DOI: 10.1155/2013/101083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 01/27/2013] [Indexed: 11/24/2022] Open
Abstract
Aim. To investigate the relationship between alpha-fetoprotein and zinc fingers and homeoboxes 2 in hepatocellular carcinoma. Materials and Methods. The expressions of zinc fingers and homeoboxes 2, nuclear factor-YA, and alpha-fetoprotein mRNA in 63 hepatocellular carcinoma were detected by reverse transcriptase-polymerase chain reaction and compared with the clinical parameters of the patients. Selectively, silence of zinc fingers and homeoboxes 2 in HepG2 cells was detected by RNA interference technique. Results. Alpha-fetoprotein mRNA expression was detected in 60.3% of hepatocellular carcinoma cases. Zinc fingers and homeoboxes 2 mRNA expression (36.5%) was significantly negatively correlated with serum alpha-fetoprotein concentration and mRNA expression. A strong positive correlation was found between zinc fingers and homeoboxes 2 and nuclear factor-YA mRNA expression (42.9%), while the latter was negatively correlated with serum alpha-fetoprotein concentration and mRNA expression. Treatment with zinc fingers and homeoboxes 2 small interfering RNA led to 85% and 83% silence of zinc fingers and homeoboxes 2 mRNA and protein expression and 60% and 61% reduction of nuclear factor-YA mRNA and protein levels in the HepG2 cells, respectively. Downregulation of zinc fingers and homeoboxes 2 also induced a 2.4-fold increase in both alpha-fetoprotein mRNA and protein levels. Conclusions. Zinc fingers and homeoboxes 2 can regulate alpha-fetoprotein expression via the interaction with nuclear factor-YA in human hepatocellular carcinoma and may be used as an adjuvant diagnostic marker for alpha-fetoprotein-negative hepatocellular carcinoma.
Collapse
|
12
|
CpG methylation at the USF-binding site mediates cell-specific transcription of human ascorbate transporter SVCT2 exon 1a. Biochem J 2011; 440:73-84. [PMID: 21770893 DOI: 10.1042/bj20110392] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
SVCT2 (sodium-vitamin C co-transporter 2) is the major transporter mediating vitamin C uptake in most organs. Its expression is driven by two promoters (CpG-poor exon 1a promoter and CpG-rich exon 1b promoter). In the present study, we mapped discrete elements within the proximal CpG-poor promoter responsible for exon 1a transcription. We identified two E boxes for USF (upstream stimulating factor) binding and one Y box for NF-Y (nuclear factor Y) binding. We show further that NF-Y and USF bind to the exon 1a promoter in a co-operative manner, amplifying the binding of each to the promoter, and is absolutely required for the full activity of the exon 1a promoter. The analysis of the CpG site located at the upstream USF-binding site in the promoter showed a strong correlation between expression and demethylation. It was also shown that exon 1a transcription was induced in cell culture treated with the demethylating agent decitabine. The specific methylation of this CpG site impaired both the binding of USF and the formation of the functional NF-Y-USF complex as well as promoter activity, suggesting its importance for cell-specific transcription. Thus CpG methylation at the upstream USF-binding site functions in establishing and maintaining cell-specific transcription from the CpG-poor SVCT2 exon 1a promoter.
Collapse
|
13
|
Dolfini D, Gatta R, Mantovani R. NF-Y and the transcriptional activation of CCAAT promoters. Crit Rev Biochem Mol Biol 2011; 47:29-49. [PMID: 22050321 DOI: 10.3109/10409238.2011.628970] [Citation(s) in RCA: 189] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The CCAAT box promoter element and NF-Y, the transcription factor (TF) that binds to it, were among the first cis-elements and trans-acting factors identified; their interplay is required for transcriptional activation of a sizeable number of eukaryotic genes. NF-Y consists of three evolutionarily conserved subunits: a dimer of NF-YB and NF-YC which closely resembles a histone, and the "innovative" NF-YA. In this review, we will provide an update on the functional and biological features that make NF-Y a fundamental link between chromatin and transcription. The last 25 years have witnessed a spectacular increase in our knowledge of how genes are regulated: from the identification of cis-acting sequences in promoters and enhancers, and the biochemical characterization of the corresponding TFs, to the merging of chromatin studies with the investigation of enzymatic machines that regulate epigenetic states. Originally identified and studied in yeast and mammals, NF-Y - also termed CBF and CP1 - is composed of three subunits, NF-YA, NF-YB and NF-YC. The complex recognizes the CCAAT pentanucleotide and specific flanking nucleotides with high specificity (Dorn et al., 1997; Hatamochi et al., 1988; Hooft van Huijsduijnen et al, 1987; Kim & Sheffery, 1990). A compelling set of bioinformatics studies clarified that the NF-Y preferred binding site is one of the most frequent promoter elements (Suzuki et al., 2001, 2004; Elkon et al., 2003; Mariño-Ramírez et al., 2004; FitzGerald et al., 2004; Linhart et al., 2005; Zhu et al., 2005; Lee et al., 2007; Abnizova et al., 2007; Grskovic et al., 2007; Halperin et al., 2009; Häkkinen et al., 2011). The same consensus, as determined by mutagenesis and SELEX studies (Bi et al., 1997), was also retrieved in ChIP-on-chip analysis (Testa et al., 2005; Ceribelli et al., 2006; Ceribelli et al., 2008; Reed et al., 2008). Additional structural features of the CCAAT box - position, orientation, presence of multiple Transcriptional Start Sites - were previously reviewed (Dolfini et al., 2009) and will not be considered in detail here.
Collapse
Affiliation(s)
- Diletta Dolfini
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Milan, Italy
| | | | | |
Collapse
|
14
|
Important characteristics of sequence-specific recombination hotspots in Schizosaccharomyces pombe. Genetics 2010; 187:385-96. [PMID: 21098718 DOI: 10.1534/genetics.110.124636] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In many organisms, meiotic recombination occurs preferentially at a limited number of sites in the genome known as hotspots. In the fission yeast Schizosaccharomyces pombe, simple sequence motifs determine the location of at least some, and possibly most or all, hotspots. Recently, we showed that a large number of different sequences can create hotspots. Among those sequences we identified some recurring motifs that fell into at least five distinct families, including the well-characterized CRE family of hotspots. Here we report the essential sequence for activity of two of the novel hotspots, the oligo-C and CCAAT hotspots, and identify associated trans-acting factors required for hotspot activity. The oligo-C hotspot requires a unique 8-bp sequence, CCCCGCAC, though hotspot activity is also significantly affected by adjacent nucleotides. The CCAAT hotspot requires a more complex and degenerate sequence, including the originally identified seven nucleotide CCAATCA sequence at its core. We identified transcription factors, the CCAAT-binding factor (CBF) and Rst2, which are required specifically for activity of the CCAAT hotspots and oligo-C hotspots, respectively. Each of these factors binds to its respective motifs in vitro. However, unlike CRE, the sequence required for hotspot activity is larger than the sequence required for binding, suggesting the involvement of additional factors.
Collapse
|
15
|
Patel VS, Cooper SJB, Deakin JE, Fulton B, Graves T, Warren WC, Wilson RK, Graves JAM. Platypus globin genes and flanking loci suggest a new insertional model for beta-globin evolution in birds and mammals. BMC Biol 2008; 6:34. [PMID: 18657265 PMCID: PMC2529266 DOI: 10.1186/1741-7007-6-34] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Accepted: 07/25/2008] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Vertebrate alpha (alpha)- and beta (beta)-globin gene families exemplify the way in which genomes evolve to produce functional complexity. From tandem duplication of a single globin locus, the alpha- and beta-globin clusters expanded, and then were separated onto different chromosomes. The previous finding of a fossil beta-globin gene (omega) in the marsupial alpha-cluster, however, suggested that duplication of the alpha-beta cluster onto two chromosomes, followed by lineage-specific gene loss and duplication, produced paralogous alpha- and beta-globin clusters in birds and mammals. Here we analyse genomic data from an egg-laying monotreme mammal, the platypus (Ornithorhynchus anatinus), to explore haemoglobin evolution at the stem of the mammalian radiation. RESULTS The platypus alpha-globin cluster (chromosome 21) contains embryonic and adult alpha- globin genes, a beta-like omega-globin gene, and the GBY globin gene with homology to cytoglobin, arranged as 5'-zeta-zeta'-alphaD-alpha3-alpha2-alpha1-omega-GBY-3'. The platypus beta-globin cluster (chromosome 2) contains single embryonic and adult globin genes arranged as 5'-epsilon-beta-3'. Surprisingly, all of these globin genes were expressed in some adult tissues. Comparison of flanking sequences revealed that all jawed vertebrate alpha-globin clusters are flanked by MPG-C16orf35 and LUC7L, whereas all bird and mammal beta-globin clusters are embedded in olfactory genes. Thus, the mammalian alpha- and beta-globin clusters are orthologous to the bird alpha- and beta-globin clusters respectively. CONCLUSION We propose that alpha- and beta-globin clusters evolved from an ancient MPG-C16orf35-alpha-beta-GBY-LUC7L arrangement 410 million years ago. A copy of the original beta (represented by omega in marsupials and monotremes) was inserted into an array of olfactory genes before the amniote radiation (>315 million years ago), then duplicated and diverged to form orthologous clusters of beta-globin genes with different expression profiles in different lineages.
Collapse
Affiliation(s)
- Vidushi S Patel
- The ARC Centre for Kangaroo Genomics, Research School of Biological Sciences, The Australian National University, Canberra, ACT 2601, Australia
| | - Steven JB Cooper
- Australian Centre for Evolutionary Biology and Biodiversity, The University of Adelaide, Adelaide, SA 5005, Australia
- Evolutionary Biology Unit, South Australian Museum, Adelaide, SA 5000, Australia
| | - Janine E Deakin
- The ARC Centre for Kangaroo Genomics, Research School of Biological Sciences, The Australian National University, Canberra, ACT 2601, Australia
| | - Bob Fulton
- Genome Sequencing Center, Washington University School of Medicine, St Louis, Missouri 63108, USA
| | - Tina Graves
- Genome Sequencing Center, Washington University School of Medicine, St Louis, Missouri 63108, USA
| | - Wesley C Warren
- Genome Sequencing Center, Washington University School of Medicine, St Louis, Missouri 63108, USA
| | - Richard K Wilson
- Genome Sequencing Center, Washington University School of Medicine, St Louis, Missouri 63108, USA
| | - Jennifer AM Graves
- The ARC Centre for Kangaroo Genomics, Research School of Biological Sciences, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
16
|
Abstract
The nuclear factor-Y (NF-Y), a trimeric, CCAAT-binding transcriptional activator with histone-like subunits, was until recently considered a prototypical promoter transcription factor. However, recent in vivo chromatin immunoprecipitation assays associated with microarray methodologies (chromatin immunoprecipitation on chip experiments) have indicated that a large portion of target sites (40%-50%) are located outside of core promoters. We applied the tethered particle motion technique to the major histocompatibility complex class II enhancer-promoter region to characterize i), the progressive compaction of DNA due to increasing concentrations of NF-Y, ii), the role of specific subunits and domains of NF-Y in the process, and iii), the interplay between NF-Y and the regulatory factor-X, which cooperatively binds to the X-box adjacent to the CCAAT box. Our study shows that NF-Y has histone-like activity, since it binds DNA nonspecifically with high affinity to compact it. This activity, which depends on the presence of all trimer subunits and of their glutamine-rich domains, seems to be attenuated by the transcriptional cofactor regulatory factor-X. Most importantly NF-Y-induced DNA compaction may facilitate promoter-enhancer interactions, which are known to be critical for expression regulation.
Collapse
|
17
|
Xu Y, Zhou YL, Luo W, Zhu QS, Levy D, MacDougald OA, Snead ML. NF-Y and CCAAT/enhancer-binding protein alpha synergistically activate the mouse amelogenin gene. J Biol Chem 2006; 281:16090-8. [PMID: 16595692 DOI: 10.1074/jbc.m510514200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Amelogenin is the major protein component of the forming enamel matrix. In situ hybridization revealed a periodicity for amelogenin mRNA hybridization signals ranging from low to high transcript abundance on serial sections of developing mouse teeth. This in vivo observation led us to examine the amelogenin promoter for the activity of transcription factor(s) that account for this expression aspect of the regulation for the amelogenin gene. We have previously shown that CCAAT/enhancer-binding protein alpha (C/EBPalpha) is a potent transactivator of the mouse X-chromosomal amelogenin gene acting at the C/EBPalpha cis-element located in the -70/+52 minimal promoter. The minimal promoter contains a reversed CCAAT box (-58/-54) that is four base pairs downstream from the C/EBPalpha binding site. Similar to the C/EBPalpha binding site, the integrity of the reversed CCAAT box is also required for maintaining the activity of the basal promoter. We therefore focused on transcription factors that interact with the reversed CCAAT box. Using electrophoretic mobility shift assays we demonstrated that NF-Y was directly bound to this reversed CCAAT site. Co-transfection of C/EBPalpha and NF-Y synergistically increased the promoter activity. In contrast, increased expression of NF-Y alone had only marginal effects on the promoter. A dominant-negative DNA binding-deficient NF-Y mutant (NF-YAm29) dramatically decreased the promoter activity both in the absence or presence of exogenous expression of C/EBPalpha. We identified protein-protein interactions between C/EBPalpha and NF-Y by a co-immunoprecipitation analysis. These results suggest that C/EBPalpha and NF-Y synergistically activate the mouse amelogenin gene and can contribute to its physiological regulation during amelogenesis.
Collapse
Affiliation(s)
- Yucheng Xu
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California 90033, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Kahle J, Baake M, Doenecke D, Albig W. Subunits of the heterotrimeric transcription factor NF-Y are imported into the nucleus by distinct pathways involving importin beta and importin 13. Mol Cell Biol 2005; 25:5339-54. [PMID: 15964792 PMCID: PMC1157003 DOI: 10.1128/mcb.25.13.5339-5354.2005] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The transcriptional activator NF-Y is a heterotrimeric complex composed of NF-YA, NF-YB, and NF-YC, which specifically binds the CCAAT consensus present in about 30% of eukaryotic promoters. All three subunits contain evolutionarily conserved core regions, which comprise a histone fold motif (HFM) in the case of NF-YB and NF-YC. Our results of in vitro binding studies and nuclear import assays reveal two different transport mechanisms for NF-Y subunits. While NF-YA is imported by an importin beta-mediated pathway, the NF-YB/NF-YC heterodimer is translocated into the nucleus in an importin 13-dependent manner. We define a nonclassical nuclear localization signal (ncNLS) in NF-YA, and mutational analysis indicates that positively charged amino acid residues in the ncNLS are required for nuclear targeting of NF-YA. Importin beta binding is restricted to the monomeric, uncomplexed NF-YA subunit. In contrast, the nuclear import of NF-YB and NF-YC requires dimer formation. Only the NF-YB/NF-YC dimer, but not the monomeric components, are recognized by importin 13 and are imported into the nucleus. Importin 13 competes with NF-YA for binding to the NF-YB/NF-YC dimer. Our data suggest that a distinct binding platform derived from the HFM of both subunits, NF-YB/NF-YC, mediates those interactions.
Collapse
Affiliation(s)
- Joerg Kahle
- Institut für Biochemie und Molekulare Zellbiologie, Abteilung Molekularbiologie, Universität Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | | | | | | |
Collapse
|
19
|
Nagato H, Matsuo N, Sumiyoshi H, Sakata-Takatani K, Nasu M, Yoshioka H. The transcription factor CCAAT-binding factor CBF/NF-Y and two repressors regulate the core promoter of the human pro-alpha3(V) collagen gene (COL5A3). J Biol Chem 2004; 279:46373-83. [PMID: 15316020 DOI: 10.1074/jbc.m406069200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To elucidate the mechanisms underlining alpha3(V) collagen chain expression, we performed an initial analysis of the structure and function of the core promoter of the human COL5A3 gene. The core promoter, which lacks a typical TATA motif and has a high GC content, was defined within the -129 bp immediately upstream from the major transcription start site by transient transfection experiments. In this region, we identified four DNA-protein complexes, named A, B, C, and D, by a combination of DNase I footprinting and electrophoretic mobility shift assays. Electrophoretic mobility shift assays using mutant oligonucleotide revealed that the complexes A, B, C, and D bind to -122 to -117, the -101 to -96, the -83 to -78, and the -68 to -57 bp, respectively. The competition assays using consensus oligonucleotides and supershift assays with specific antibodies showed that complex A consists of CBF/NF-Y. In a chromatin immunoprecipitation assay, CBF/NF-Y protein directly bound to this region, in vivo. Functional analysis showed that CBF/NF-Y activated the gene, whereas the proteins of complexes B and C repressed its activity. Furthermore, overexpression of a mutant form of the CBF-B/NF-YA subunit, which forms CBF/NF-Y with CBF-A/NF-YB and CBF-C/NF-YC subunits, inhibited promoter activity.
Collapse
Affiliation(s)
- Hitoshi Nagato
- Department of Anatomy, Biology and Medicine, Faculty of Medicine, Oita University, 1-1 Hasama-machi, Oita 879-5593, Japan
| | | | | | | | | | | |
Collapse
|
20
|
Romier C, Cocchiarella F, Mantovani R, Moras D. The NF-YB/NF-YC structure gives insight into DNA binding and transcription regulation by CCAAT factor NF-Y. J Biol Chem 2003; 278:1336-45. [PMID: 12401788 DOI: 10.1074/jbc.m209635200] [Citation(s) in RCA: 211] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The heterotrimeric transcription factor NF-Y recognizes with high specificity and affinity the CCAAT regulatory element that is widely represented in promoters and enhancer regions. The CCAAT box acts in concert with neighboring elements, and its bending by NF-Y is thought to be a major mechanism required for transcription activation. We have solved the structure of the NF-YC/NF-YB subcomplex of NF-Y, which shows that the core domains of both proteins interact through histone fold motifs. This histone-like pair is closely related to the H2A/H2B and NC2alpha/NC2beta families, with features that are both common to this class of proteins and unique to NF-Y. The structure together with the modeling of the nonspecific interaction of NF-YC/NF-YB with DNA and the full NF-Y/CCAAT box complex highlight important structural features that account for different and possibly similar biological functions of the transcriptional regulators NF-Y and NC2. In particular, it emphasizes the role of the newly described alphaC helix of NF-YC, which is both important for NF-Y trimerization and a target for regulatory proteins, such as MYC and p53.
Collapse
Affiliation(s)
- Christophe Romier
- Département de Biologie et Génomique Structurales, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/Université Louis Pasteur, 1 Rue Laurent Fries, B.P. 10142, 67404 Illkirch Cedex, France
| | | | | | | |
Collapse
|
21
|
Cassel DL, Subudhi SK, Surrey S, McKenzie SE. GATA and NF-Y participate in transcriptional regulation of FcgammaRIIA in megakaryocytic cells. Blood Cells Mol Dis 2000; 26:587-97. [PMID: 11112392 DOI: 10.1006/bcmd.2000.0337] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human FcgammaRIIA, expressed on platelets, neutrophils, and macrophages, plays a major role in platelet activation and immune clearance. Clinical observations indicate that regulation of expression of this receptor is an important factor influencing the course of immune thrombocytopenia. We used both transient transfection with FcgammaRIIA promoter constructs and electrophoretic mobility shift assays (EMSA) to study the regulation of FcgammaRIIA transcription. In HEL (erythromegakaryocytic) cells, the 200 bp immediately 5' of the ATG start codon accounted for the majority of the activity of a 3.6-kb promoter fragment. Putative GATA (-161) and NF-Y (-119) sites are present. EMSA analyses demonstrate specific binding of both GATA-1 and GATA-2 to labeled oligonucleotides containing the putative GATA site with HEL but not U937 (myelomonocytic) nuclear extracts. Antibodies to NF-Y supershift the specific -119 NF-Y complex with HEL, U937, Jurkat (T-lymphocytic), and HeLa (nonhematopoietic) nuclear extracts. Comparison of the activity of GATA and NF-Y mutant constructs in HEL and U937 demonstrates that while either GATA or NF-Y mutation results in a large decrease in the promoter activity (2.2- and 2.3-fold, respectively) in HEL cells, neither mutation is effective in reducing activity in U937 cells. This is the first example of a promoter active in the megakaryocyte lineage in which NF-Y cooperates additively with GATA factors to regulate transcription. Identification of other factors that must be operational for FcgammaRIIA transcription in myelomonocytic cells which lack GATA factors will bolster our ongoing efforts to dissect the function of these Fc receptors in megakaryocytic and myelomonocytic cells in vivo.
Collapse
MESH Headings
- 5' Untranslated Regions/genetics
- Antigens, CD/drug effects
- Antigens, CD/genetics
- Antigens, CD/physiology
- Binding Sites
- CCAAT-Binding Factor/pharmacology
- DNA-Binding Proteins/pharmacology
- Electrophoresis, Polyacrylamide Gel
- Erythroid-Specific DNA-Binding Factors
- GATA1 Transcription Factor
- GATA2 Transcription Factor
- Gene Expression Regulation/drug effects
- Genes, Reporter
- Humans
- Megakaryocytes/drug effects
- Megakaryocytes/metabolism
- Promoter Regions, Genetic
- Receptors, IgG/drug effects
- Receptors, IgG/genetics
- Receptors, IgG/physiology
- Transcription Factors/pharmacology
- Transcription, Genetic/drug effects
- Transfection
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- D L Cassel
- Department of Pediatrics, Jefferson Medical College, Philadelphia, Pennsylvania 19107, USA
| | | | | | | |
Collapse
|
22
|
Abstract
Protein coding genes are transcribed by Polymerase II, under the control of short discrete DNA elements in promoters and enhancers, recognized with high efficiency and specificity by trans-acting factors and by general transcription proteins (Tjian and Maniatis, 1994). The former regulate specific genes or set of genes, usually in a tissue-, developmental-, cell-cycle or stimuli-dependent way; the latter are involved in the activation of all promoters, as a whole multi-subunit holoenzyme (Parvis and Young, 1998). A limited set of elements, such as the GC and CCAAT-boxes, are present in a very high number of promoters. The whole process is further complicated by the need to operate in the context of higher order chromatin structures (Workman and Kingston, 1998). This review focuses on the CCAAT sequence and on the NF-Y protein, also known as CBF, which binds to it.
Collapse
Affiliation(s)
- R Mantovani
- Dipartimento di Genetica e Biologia dei Microrganismi, Università di Milano, Italy.
| |
Collapse
|
23
|
Zemzoumi K, Frontini M, Bellorini M, Mantovani R. NF-Y histone fold alpha1 helices help impart CCAAT specificity. J Mol Biol 1999; 286:327-37. [PMID: 9973554 DOI: 10.1006/jmbi.1998.2496] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
NF-Y is a conserved trimeric transcriptional activator with an extremely high specificity for CCAAT boxes. The NF-YB and NF-YC subunits have histone fold motifs with a high degree of homology to NC2alpha/beta, a TBP-binding repressor. The histone fold is composed of three alpha helices, alpha1, alpha2, alpha3, separated by short loops. Structural data on core histones showed that alpha1 are involved in DNA-binding. To understand the molecular basis of NF-Y sequence-specificity, we constructed deletion and swapping mutants, in which the alpha1 of NC2 and archeal HMfB, a bona fide histonic protein, was placed in NF-YB and NF-YC. Our analysis indicates that (i) subunit interactions are normal; (ii) NF-YB-NF-YC and NC2alpha/beta do not form heterodimers and NC2 cannot associate NF-YA. (iii) None of the NF-Y swaps can complex with TBP on a TATA box. (iv) Specific residues, R47 and K49 in NF-YC and N61 in NF-YB, are crucial for CCAAT-binding. We conclude that specificity of the NF-Y trimer is not due to NF-YA only, but stems in part from the contribution of the histone fold alpha1, particularly that of NF-YB.
Collapse
Affiliation(s)
- K Zemzoumi
- Dipartimento di Genetica e di Biologia dei Microrganismi, Università di Milano, Via Celoria 26, Milano, 20133, Italy
| | | | | | | |
Collapse
|
24
|
Dudenhöffer C, Rohaly G, Will K, Deppert W, Wiesmüller L. Specific mismatch recognition in heteroduplex intermediates by p53 suggests a role in fidelity control of homologous recombination. Mol Cell Biol 1998; 18:5332-42. [PMID: 9710617 PMCID: PMC109118 DOI: 10.1128/mcb.18.9.5332] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We demonstrate that wild-type p53 inhibits homologous recombination. To analyze DNA substrate specificities in this process, we designed recombination experiments such that coinfection of simian virus 40 mutant pairs generated heteroduplexes with distinctly unpaired regions. DNA exchanges producing single C-T and A-G mismatches were inhibited four- to sixfold more effectively than DNA exchanges producing G-T and A-C single-base mispairings or unpaired regions of three base pairs comprising G-T/A-C mismatches. p53 bound specifically to three-stranded DNA substrates, mimicking early recombination intermediates. The KD values for the interactions of p53 with three-stranded substrates displaying differently paired and unpaired regions reflected the mismatch base specificities observed in recombination assays in a qualitative and quantitative manner. On the basis of these results, we would like to advance the hypothesis that p53, like classical mismatch repair factors, checks the fidelity of homologous recombination processes by specific mismatch recognition.
Collapse
Affiliation(s)
- C Dudenhöffer
- Heinrich-Pette-Institut für Experimentelle Virologie und Immunologie an der Universität Hamburg, D-20251 Hamburg, Germany
| | | | | | | | | |
Collapse
|
25
|
Liberati C, Sgarra R, Manfioletti G, Mantovani R. DNA binding of NF-Y: the effect of HMGI proteins depends upon the CCAAT box. FEBS Lett 1998; 433:174-8. [PMID: 9738956 DOI: 10.1016/s0014-5793(98)00905-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
NF-Y is a conserved sequence-specific transcription factor binding to CCAAT boxes. The chromatin-associated HMGI proteins influence promoter activities through positive and negative effects on binding of transcription factors. It was previously shown that HMGI(Y) synergizes the binding of NF-Y to the alpha2-collagen CCAAT box [Currie, R.A. (1997) J. Biol Chem. 272, 30880-30888]. Using recombinant proteins, we confirm that at low concentrations of NF-Y, HMGI(Y) acts synergistically on the alpha2-collagen CCAAT and we extend this observation to HMGI and HMGI-C. However, enhancement of DNA binding to gamma-globin, alpha-globin and MHC class II Ea CCAAT boxes was not observed. At high concentrations, HMGI proteins inhibit binding to alpha2-collagen and to gamma-globin, but not to high affinity Ea or a-globin CCAAT. In none of our experiments did we see a ternary complex between NF-Y, HMGI(Y) and DNA. In protein competition experiments, NF-Y affinity was at least two orders of magnitude higher, even in the context of the suboptimal gamma-globin CCAAT. Our data prove that HMGI proteins have complex positive and negative effects on NF binding to some, but not to all CCAAT boxes, suggesting that this phenomenon is dictated by the sequences flanking the pentanucleotide rather than direct protein-protein interactions.
Collapse
Affiliation(s)
- C Liberati
- Dipartimento de Genetica e di Biologia dei Microrganismi, Università di Milano, Milan, Italy
| | | | | | | |
Collapse
|
26
|
Liberati C, Ronchi A, Lievens P, Ottolenghi S, Mantovani R. NF-Y organizes the gamma-globin CCAAT boxes region. J Biol Chem 1998; 273:16880-9. [PMID: 9642249 DOI: 10.1074/jbc.273.27.16880] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The CCAAT-binding activator NF-Y is formed by three evolutionary conserved subunits, two of which contain putative histone-like domains. We investigated NF-Y binding to all CCAAT boxes of globin promoters in direct binding, competition, and supershift electrophoretic mobility shift assay; we found that the alpha, zeta, and proximal gamma CCAAT boxes of human and the prosimian Galago bind avidly, and distal gamma CCAAT boxes have intermediate affinity, whereas the epsilon and beta sequences bind NF-Y very poorly. We developed an efficient in vitro transcription system from erythroid K562 cells and established that both the distal and the proximal CCAAT boxes are important for optimal gamma-globin promoter activity. Surprisingly, NF-Y binding to a mutated distal CCAAT box (a C to T at position -114) is remarkably increased upon occupancy of the high affinity proximal element, located 27 base pairs away. Shortening the distance between the two CCAAT boxes progressively prevents simultaneous CCAAT binding, indicating that NF-Y interacts in a mutually exclusive way with CCAAT boxes closer than 24 base pairs apart. A combination of circular permutation and phasing analysis proved that (i) NF-Y-induced angles of the two gamma-globin CCAAT boxes have similar amplitudes; (ii) occupancy of the two CCAAT boxes leads to compensatory distortions; (iii) the two NF-Y bends are spatially oriented with combined twisting angles of about 100 degrees. Interestingly, such distortions are reminiscent of core histone-DNA interactions. We conclude that NF-Y binding imposes a high level of functionally important coordinate organization to the gamma-globin promoter.
Collapse
Affiliation(s)
- C Liberati
- Dipartimento di Genetica e di Biologia dei Microrganismi, Università di Milano, Via Celoria 26, 20133 Milano, Italy
| | | | | | | | | |
Collapse
|
27
|
Hudson EA, Munks RJL, Manson MM. Characterization of transcriptional regulation of γ-glutamyl transpeptidase in rat liver involving both positive and negative regulatory elements. Mol Carcinog 1997. [DOI: 10.1002/(sici)1098-2744(199712)20:4<376::aid-mc7>3.0.co;2-h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
28
|
Lamb KA, Johnson LR, Rizzino A. NF-Y binds to the CCAAT box motif of the FGF-4 gene and promotes FGF-4 expression in embryonal carcinoma cells. Mol Reprod Dev 1997; 48:301-9. [PMID: 9322240 DOI: 10.1002/(sici)1098-2795(199711)48:3<301::aid-mrd1>3.0.co;2-v] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
FGF-4 appears to be the first fibroblast growth factor (FGF) expressed during embryogenesis, and its expression is critical for early mammalian development. FGF-4 is expressed in the embryonic cell lines, F9, D3, and NT2/D1; but its expression in these cells is repressed upon differentiation. Transcription of the FGF-4 gene in embryonic cells is regulated by an enhancer in the third exon and by a positive regulatory region upstream of the transcription start site. A CCAAT box motif within the positive regulatory region has been shown to support FGF-4 expression, but the factor that binds to this site in vivo has not been identified. In this report, we demonstrate that the transcription factor complex NF-Y binds to the FGF-4 CCAAT box motif when nuclear extracts from each of the embryonic cell lines and their differentiated cells were examined by gel mobility shift analyses. Importantly, we demonstrate that expression of a dominant-negative NF-YA mutant protein reduces the expression of FGF-4 promoter/reporter gene constructs in F9 EC cells. Hence, we provide strong evidence that the transcription factor NF-Y is involved in the expression of the FGF-4 gene.
Collapse
Affiliation(s)
- K A Lamb
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha 68198-6805, USA
| | | | | |
Collapse
|
29
|
Löster K, Josić D. Analysis of protein aggregates by combination of cross-linking reactions and chromatographic separations. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL SCIENCES AND APPLICATIONS 1997; 699:439-61. [PMID: 9392387 DOI: 10.1016/s0378-4347(97)00215-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Chemical cross-linking provides a method that covalently bridges near-neighbour associations within proteins and protein aggregates. Combined with chromatographic separations and protein-chemical methods, it may be used to localize and to investigate three-dimensional relations as present under natural conditions. This paper reviews the chemistry and application of cross-linking reagents and the development of combination experimental approaches in view of chromatographic separations and cross-linking reactions. Investigations of homooligomeric and heterooligomeric protein associations as well as conformational analysis are presented.
Collapse
Affiliation(s)
- K Löster
- Institut für Molekularbiologie und Biochemie, Freie Universität Berlin, Berlin-Dahlem, Germany
| | | |
Collapse
|
30
|
Marcus N, Green M. NF-Y, a CCAAT box-binding protein, is one of the trans-acting factors necessary for the response of the murine ERp72 gene to protein traffic. DNA Cell Biol 1997; 16:1123-31. [PMID: 9324314 DOI: 10.1089/dna.1997.16.1123] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The accumulation of incompletely assembled immunoglobulin mu heavy chain in transfected COS cells stimulates the cellular response to protein traffic that results in the increased transcription and elevated synthesis of several ER chaperones, including ERP72, a member of the protein disulfide isomerase family of molecular chaperones. The ERp72 promoter contains an 82 bp ER protein traffic response element (ERPTRE) that is sufficient to mediate this response. Previously, it had been shown that the alteration of a putative AP-2 site and a CCAAT and inverted CCAAT site within the ERPTRE significantly decreased the response of ERp72 promoter to mu chain accumulation. We have extended these findings by demonstrating a role for NF-Y and a potentially novel DNA-binding protein in the regulation of transcription from the ERp72 promoter. The fact that NF-Y binding to the ERPTRE is observed in extracts from both control cells and cells in which the response to protein traffic has been activated indicates that the binding of NF-Y, while necessary, is not sufficient to account for the response. Each of the two CCAAT sites in the ERPTRE can bind NF-Y independently, but both sites must be intact for full ERPTRE function. A second protein can bind to the ERPTRE independently of NF-Y and at a site overlapping or close to the 3' end of the reverse CCAAT site. It is possible that interactions between NF-Y, this protein and perhaps other factors are responsible for the regulation of the protein traffic response.
Collapse
Affiliation(s)
- N Marcus
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, MO 63104, USA
| | | |
Collapse
|
31
|
Bellorini M, Zemzoumi K, Farina A, Berthelsen J, Piaggio G, Mantovani R. Cloning and expression of human NF-YC. Gene X 1997; 193:119-25. [PMID: 9249075 DOI: 10.1016/s0378-1119(97)00109-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The CCAAT box is an important element in eukaryotic promoters and NF-Y (CBF) is a conserved heterotrimeric protein binding to it. Two subunits, NF-YB and NF-YC, contain a histone-like motif. We cloned the complete cDNA coding for the human NF-YC gene. The ORF codes for a 335 aa protein that shows virtual identity to the rat sequence, confirming the stunning invariance of NF-Y genes across species. We expressed and purified the yeast homology domain of NF-YC in bacteria and performed EMSA together with the corresponding conserved domains of NF-YA and NF-YB, obtaining a CCAAT-binding mini-NF-Y. We evaluated the expression of NF-YC and found that mRNA levels are similar in different human tissues except in testis.
Collapse
Affiliation(s)
- M Bellorini
- Dipartimento di Genetica e Biologia dei Microrganismi, Università di Milano, Milan, Italy
| | | | | | | | | | | |
Collapse
|
32
|
Serra E, Liu JL, Capron A, Zemzoumi K, Dissous C. Expression of NF-Y nuclear factor in Schistosoma mansoni. Parasitology 1996; 113 ( Pt 5):457-64. [PMID: 8893531 DOI: 10.1017/s003118200008152x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The A subunit of NF-Y nuclear factor from Schistosoma mansoni was expressed in E. coli fused to a histidine tag and purified by affinity chromatography using a Ni(2+)-Agarose matrix. Antibodies against the recombinant protein were prepared and used for Western blot and immunolocalization. The presence of SMNF-YA in all stages of the parasite life-cycle was determined by RT-PCR and Western blot analysis. The immunolocalization of SMNF-YA showed the presence of this factor in a parenchymal cell population of cercariae and adult worms and in embryos within eggs. The expression of SMNF-YA was demonstrated to decrease in maturating spermatozoites whereas an accumulation of this factor was observed in the nucleus from oocytes during their maturation processes.
Collapse
Affiliation(s)
- E Serra
- Unité INSERM 167, Institut Pasteur Lille, France
| | | | | | | | | |
Collapse
|
33
|
Maity SN, De Crombrugghe B. Purification, characterization, and role of CCAAT-binding factor in transcription. Methods Enzymol 1996; 273:217-32. [PMID: 8791615 DOI: 10.1016/s0076-6879(96)73022-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- S N Maity
- Department of Molecular Genetics, M.D. Anderson Cancer Center, University of Texas, Houston 77030, USA
| | | |
Collapse
|
34
|
|
35
|
Yabuki T, Ejiri S, Tsutsumi K. Ubiquitous factors that interact simultaneously with two distinct cis-elements on the rat aldolase B gene promoter. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1216:15-9. [PMID: 8218407 DOI: 10.1016/0167-4781(93)90032-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The proximal promoter region (nucleotide -202 to -1) of the rat aldolase B gene confers liver-specific transcription, and contains three indispensable protein-binding sites (site A, site B and site C). Site A binds HNF-1 and HNF-3, and site B binds NF-Y and a CCAAT-binding factor AlF-B (Tsutsumi et al. (1989) Mol. Cell. Biol. 9, 4923-4931; Raymondjean et al. (1991) Nucleic Acids Res. 19, 6145-6153), trans-acting factors that interact with site C, however, have not been well characterized. In this study, we identified specific factors that bind site C by two-dimensional gel electrophoretic analyses. The factors interacted with two distinct cis-elements; site C and site B. This observation, together with the fact that site C contains a C/EBP binding motif, implied that the site C-binding factors are members of C/EBP family. However, analyses of their binding characteristics, their relative molecular masses, and their distribution in different cell types showed that the site C binding factors are different from known members of C/EBP family.
Collapse
Affiliation(s)
- T Yabuki
- Institute for Cell Biology and Genetics, Faculty of Agriculture, Iwate University, Japan
| | | | | |
Collapse
|
36
|
Framson P, Bornstein P. A serum response element and a binding site for NF-Y mediate the serum response of the human thrombospondin 1 gene. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53493-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
37
|
Slack JL, Liska DJ, Bornstein P. Regulation of expression of the type I collagen genes. AMERICAN JOURNAL OF MEDICAL GENETICS 1993; 45:140-51. [PMID: 8456796 DOI: 10.1002/ajmg.1320450203] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The identification and functional analysis of DNA-protein interactions in the intronic and 5' flanking regions of the type I collagen genes has begun to define a series of cis-elements and trans-acting factors which regulate transcription of these genes. Studies such as these will eventually be expected to elucidate the mechanisms responsible for coordinate transcription of the alpha 1 and alpha 2 genes, a question which remains central to the field of collagen research. Although it is relatively straightforward to define sites of DNA-protein binding, interpretation of the functional importance of such interactions can be extremely complex. Furthermore, while mutation or deletion of a particular binding site may alter the functional activity of a construct transfected into cultured cells, there is no guarantee that a similar change will have the same effect in vivo, where the entire gene locus is present in its native chromosomal context. Nevertheless, these kinds of in vitro studies offer the best current approach to defining and isolating transcription factors that control expression of the alpha 1 and alpha 2 genes. Ultimately, it will be necessary to test the activity of such factors (and their respective cis-elements) in defined systems in vivo.
Collapse
Affiliation(s)
- J L Slack
- Department of Biochemistry and Medicine, University of Washington, Seattle 98195
| | | | | |
Collapse
|
38
|
Zorbas H, Rein T, Krause A, Hoffmann K, Winnacker E. Nuclear factor I (NF I) binds to an NF I-type site but not to the CCAAT site in the human alpha-globin gene promoter. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42470-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|