1
|
Krishnamoorthy M, Wasim L, Buhari FHM, Zhao T, Mahtani T, Ho J, Kang S, Deason-Towne F, Perraud AL, Schmitz C, Treanor B. The channel-kinase TRPM7 regulates antigen gathering and internalization in B cells. Sci Signal 2018; 11:11/533/eaah6692. [PMID: 29871912 DOI: 10.1126/scisignal.aah6692] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Members of the transient receptor potential (TRP) family of ion channels are cellular sensors involved in numerous physiological and pathological processes. We identified the TRP subfamily M member 7 (TRPM7) channel-kinase as a previously uncharacterized regulator of B cell activation. We showed that TRPM7 played a critical role in the early events of B cell activation through both its ion channel and kinase functions. DT40 B cells deficient in TRPM7 or expressing a kinase-deficient mutant of TRPM7 showed defective gathering of antigen and prolonged B cell receptor (BCR) signaling. We showed that lipid metabolism was altered in TRPM7-deficient cells and in cells expressing a kinase-deficient mutant of TRPM7 and suggest that PLC-γ2 may be a target of the kinase activity of TRPM7. Primary B cells that expressed less TRPM7 or were treated with a pharmacological inhibitor of TRPM7 also displayed defective antigen gathering and increased BCR signaling. Finally, we demonstrated that blocking TRPM7 function compromised antigen internalization and presentation to T cells. These data suggest that TRPM7 controls an essential process required for B cell affinity maturation and the production of high-affinity antibodies.
Collapse
Affiliation(s)
- Mithunah Krishnamoorthy
- Department of Cell and Systems Biology, University of Toronto, 24 Harbord Street, Toronto, Ontario M5S 3G5, Canada
| | - Laabiah Wasim
- Department of Immunology, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Fathima Hifza Mohamed Buhari
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Tiantian Zhao
- Department of Immunology, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Trisha Mahtani
- Department of Cell and Systems Biology, University of Toronto, 24 Harbord Street, Toronto, Ontario M5S 3G5, Canada
| | - Josephine Ho
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Sohee Kang
- Department of Computer and Mathematical Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
| | - Francina Deason-Towne
- Department of Immunology and Microbiology, University of Colorado, Denver, CO 80206, USA
| | - Anne-Laure Perraud
- Department of Immunology and Microbiology, University of Colorado, Denver, CO 80206, USA
| | - Carsten Schmitz
- Department of Immunology and Microbiology, University of Colorado, Denver, CO 80206, USA.,Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA
| | - Bebhinn Treanor
- Department of Cell and Systems Biology, University of Toronto, 24 Harbord Street, Toronto, Ontario M5S 3G5, Canada. .,Department of Immunology, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada.,Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| |
Collapse
|
2
|
Aso C, Araki M, Ohshima N, Tatei K, Hirano T, Obinata H, Kishi M, Kishimoto K, Konishi A, Goto F, Sugimoto H, Izumi T. Protein purification and cloning of diacylglycerol lipase from rat brain. J Biochem 2016; 159:585-97. [PMID: 26790472 DOI: 10.1093/jb/mvw002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/08/2015] [Indexed: 11/14/2022] Open
Abstract
Diacylglycerol (DG) lipase, which hydrolyses 1-stearoyl-2-arachidonyl-sn-glycerol to produce an endocannabinoid, 2-arachidonoylglycerol, was purified from the soluble fraction of rat brain lysates. DG lipase was purified about 1,200-fold by a sequential column chromatographic procedure. Among proteins identified by mass spectrometry analysis in the partially purified DG lipase sample, only DDHD domain containing two (DDHD2), which was formerly regarded as a phospholipase A1, exhibited significant DG lipase activity. Rat DDHD2 expressed in Chinese hamster ovary cells showed similar enzymatic properties to partially purified DG lipase from rat brain. The source of DG lipase activity in rat brain was immunoprecipitated using anti-DDHD2 antibody. Thus, we concluded that the DG lipase activity in the soluble fraction of rat brain is derived from DDHD2. DDHD2 is distributed widely in the rat brain. Immunohistochemical analysis revealed that DDHD2 is expressed in hippocampal neurons, but not in glia.
Collapse
Affiliation(s)
- Chizu Aso
- Department of Biochemistry; Department of Anesthesiology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511; and
| | | | | | | | | | | | | | | | | | - Fumio Goto
- Department of Anesthesiology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511; and
| | - Hiroyuki Sugimoto
- Department of Biochemistry, Dokkyo Medical University School of Medicine, Mibu, Tochigi 321-0293, Japan
| | | |
Collapse
|
3
|
Ishisaka M, Hara H. The Roles of Diacylglycerol Kinases in the Central Nervous System: Review of Genetic Studies in Mice. J Pharmacol Sci 2014; 124:336-43. [DOI: 10.1254/jphs.13r07cr] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
4
|
Shirai Y, Ikeda M, Saito N. Regulation of diacylglycerol kinase by phosphorylation. Adv Biol Regul 2013; 52:239-47. [PMID: 22005481 DOI: 10.1016/j.advenzreg.2011.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 09/06/2011] [Indexed: 12/29/2022]
Affiliation(s)
- Y Shirai
- Applied Chemistry in Bioscience, Graduate School of Agriculture, Kobe 657 8501, Japan.
| | | | | |
Collapse
|
5
|
Petro EJ, Raben DM. Bacterial expression strategies for several Sus scrofa diacylglycerol kinase alpha constructs: solubility challenges. Sci Rep 2013; 3:1609. [PMID: 23558375 PMCID: PMC3617429 DOI: 10.1038/srep01609] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 03/19/2013] [Indexed: 01/27/2023] Open
Abstract
We pursued several strategies for expressing either full-length Sus scrofa diacylglycerol kinase (DGK) alpha or the catalytic domain (alphacat) in Escherichia coli. Alphacat could be extracted, refolded, and purified from inclusion bodies, but when subjected to analytical gel filtration chromatography, it elutes in the void volume, in what we conclude are microscopic aggregates unsuitable for x-ray crystallography. Adding glutathione S-transferase, thioredoxin, or maltose binding protein as N-terminal fusion tags did not improve alphacat's solubility. Coexpressing with bacterial chaperones increased the yield of alphacat in the supernatant after high-speed centrifugation, but the protein still elutes in the void upon analytical gel filtration chromatography. We believe our work will be of interest to those interested in the structure of eukaryotic DGKs, so that they know which expression strategies have already been tried, as well as to those interested in protein folding and those interested in chaperone/target-protein interactions.
Collapse
Affiliation(s)
- Elizabeth J. Petro
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Daniel M. Raben
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
6
|
Yamaji-Hasegawa A, Tsujimoto M. Asymmetric Distribution of Phospholipids in Biomembranes. Biol Pharm Bull 2006; 29:1547-53. [PMID: 16880602 DOI: 10.1248/bpb.29.1547] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In eukaryotic cells, the biological membrane is characterized by a non-uniform distribution of membrane lipids, vertically as well as laterally. The paradigm for the vertical non-random distribution is the plasma membrane, where phosphatidylcholine (PC), sphingomyelin (SM), and glycosphingolipids are primarily located on the exoplasmic leaflet, while aminophospholipids, including phosphatidylserine (PS) and phosphatidylethanolamine (PE), are generally enriched in the cytoplasmic leaflet. Other minor phospholipids, such as phosphatidic acid and phosphatidylinositol (PI), are also enriched on the cytoplasmic face. Such asymmetrical distribution is related to each lipid regulating various biological events through interaction with other molecules. The clarification of the regulatory mechanism of the distribution and movement of membrane lipids is crucial to understanding the physiological roles of lipids. Here we focus on PS, which has been reported to be involved in apoptosis, blood coagulation and other biological phenomena, and summarize the present understanding of the dynamics of this phospholipid, including biosynthesis, metabolism, transport, and transbilayer movement. We also refer to diseases that have been reported to be related to phospholipid asymmetry.
Collapse
|
7
|
Nogaroli L, Silva OF, Bonilha TA, Moreno PAM, Bernardo RR, Vieyra A, Einicker-Lamas M. Diacylglycerol kinase activity in purified basolateral membranes of kidney tubules. I. Evidence for coupling with phospholipase C. Int J Biochem Cell Biol 2005; 37:79-90. [PMID: 15381152 DOI: 10.1016/j.biocel.2004.05.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2003] [Revised: 05/14/2004] [Accepted: 05/17/2004] [Indexed: 10/26/2022]
Abstract
The diacylglycerol kinase (DGK) catalyzes the phosphorylation of diacylglycerol (DAG) yielding phosphatidic acid (PA) signaling molecules which are involved in the modulation of different cell responses. The aim of this work was to characterize the DGK activity associated to the basolateral membranes (BLM) of kidney proximal tubules, in a native preparation that preserves the membrane microenvironment. The Arrhenius plot of DGK activity was non-linear, indicating a complex influence of the lipid environment of the native membrane. The formation of PA was strongly impaired by U73122, an inhibitor of PLC, whereas remained unmodified when exogenous DAG or PLC were added. The Mg.ATP2- complex is the true phosphoryl-donor substrate, and the very narrow peak of activation at pH 7.0 suggests that amino acids that dissociate at this pH, i.e. hystidine residues, play a role by acting in the coordination of the Mg2+ atoms. The renal DGK is almost completely blocked by 0.1 mM sphingosine, but it is insensitive to micromolar free Ca2+ concentrations and to R59499, the most potent inhibitor of the classical DGKs. Taken as a whole, these data suggest that the DGK isoform present in BLM of proximal tubules is different from those included in the type I family, and that membranous PLC could be the main source of DAG for DGK catalysis.
Collapse
Affiliation(s)
- Luciana Nogaroli
- Laboratório de Fisico-Química Biológica Aída Hassón-Voloch, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Ilha do Fundão, 21949-900, Rio de Janerio, Brazil
| | | | | | | | | | | | | |
Collapse
|
8
|
Ohsawa T, Nishijima M, Kuge O. Functional analysis of Chinese hamster phosphatidylserine synthase 1 through systematic alanine mutagenesis. Biochem J 2004; 381:853-9. [PMID: 15130088 PMCID: PMC1133896 DOI: 10.1042/bj20040443] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2004] [Revised: 04/28/2004] [Accepted: 05/06/2004] [Indexed: 11/17/2022]
Abstract
PtdSer (phosphatidylserine) synthesis in mammalian cells occurs through the exchange of L-serine with the base moieties of phosphatidylcholine and phosphatidylethanolamine, which is catalysed by PSS (PtdSer synthase) 1 and 2 respectively. PtdSer synthesis in intact cells and an isolated membrane fraction was inhibited by exogenous PtdSer, indicating that feedback control is involved in the regulation of PtdSer biosynthesis. PSS 1 and 2 are similar in amino acid sequence, with an identity of 32%; however, due to a lack of homology with other known enzymes, their amino acid sequences do not provide information on their catalytic and regulatory mechanisms. In the present study, to identify amino acid residues crucial for the activity and/or regulation of PSS 1, we systematically introduced mutations into a Chinese hamster PSS 1 cDNA clone; namely, each of the 66 polar amino acid residues common to PSS 2 was replaced with an alanine residue. On analysis of Chinese hamster ovary cells transfected with each of the alanine mutant clones, we identified eight amino acid residues (His-172, Glu-197, Glu-200, Asn-209, Glu-212, Asp-216, Asp-221 and Asn-226) as those crucial for the enzyme reaction or the maintenance of the correct structure required for serine base-exchange activity. Among these residues, Asn-209 was suggested to be involved in the recognition and/or binding of free L-serine. We also identified six amino acid residues (Arg-95, His-97, Cys-189, Arg-262, Gln-266 and Arg-336) as those important for regulation of PSS 1. In addition, we found that the alanine mutations at Tyr-111, Asp-166, Arg-184, Arg-323, and Glu-364 affected the production and/or stability of PSS 1 in Chinese hamster ovary cells.
Collapse
Affiliation(s)
- Tomoko Ohsawa
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Masahiro Nishijima
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Osamu Kuge
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku-ku, Tokyo 162-8640, Japan
- To whom correspondence should be addressed, at the present address: Department of Chemistry, Faculty of Sciences, Kyushu University, Hakozaki 6-10–1, Higashi-ku, Fukuoka 812-8581, Japan (e-mail )
| |
Collapse
|
9
|
Jose AM, Koelle MR. Domains, amino acid residues, and new isoforms of Caenorhabditis elegans diacylglycerol kinase 1 (DGK-1) important for terminating diacylglycerol signaling in vivo. J Biol Chem 2004; 280:2730-6. [PMID: 15563467 PMCID: PMC2048986 DOI: 10.1074/jbc.m409460200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Diacylglycerol kinases (DGKs) inhibit diacylglycerol (DAG) signaling by phosphorylating DAG. DGK-1, the Caenorhabditis elegans ortholog of human neuronal DGK, inhibits neurotransmission to control behavior. DGK-1, like DGK, has three cysteine-rich domains (CRDs), a pleckstrin homology domain, and a kinase domain. To identify DGK domains and amino acid residues critical for terminating DAG signaling in vivo, we analyzed 20 dgk-1 mutants defective in DGK-1-controlled behaviors. We found by sequencing that the mutations included nine amino acid substitutions and seven premature stop codons that impair the physiological functions of DGK-1. All nine amino acid substitutions are in the second CRD, the third CRD, or the kinase domain. Thus, these domains are important for the termination of DAG signaling by DGK-1 in vivo. Seven of the substituted amino acid residues are present in all human DGKs and likely define key residues required for the function of all DGKs. An ATP-binding site mutation expected to inactivate the kinase domain retained very little physiological function, but we found two stop codon mutants predicted to truncate DGK-1 before its kinase domain that retained significantly more function. We detected novel splice forms of dgk-1 that can reconcile this apparent conflict, as they skip exons containing the stop codons to produce DGK-1 isoforms that contain the kinase domain. Two of these isoforms lack an intact pleckstrin homology domain and yet appear to have significant function. Additional novel isoform(s) account for all of the DGK-1 function necessary for one behavior, dopamine response.
Collapse
Affiliation(s)
- Antony M. Jose
- Departments of Molecular, Cellular, and Developmental Biology, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Michael R. Koelle
- Departments of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520
- ¶ To whom correspondence should be addressed: Dept. of Molecular Biophysics and Biochemistry, Yale University School of Medicine, 333 Cedar St., SHM CE-30, New Haven, CT 06520. Tel.: 203-737-5808; Fax: 203-785-6404; E-mail:
| |
Collapse
|
10
|
Kuge O, Hasegawa K, Ohsawa T, Saito K, Nishijima M. Purification and characterization of Chinese hamster phosphatidylserine synthase 2. J Biol Chem 2003; 278:42692-8. [PMID: 12912985 DOI: 10.1074/jbc.m307270200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphatidylserine (PtdSer) in mammalian cells is synthesized through the action of PtdSer synthase (PSS) 1 and 2, which catalyze the conversion of phosphatidylcholine and phosphatidylethanolamine, respectively, to PtdSer. The PtdSer synthesis in intact cells and an isolated membrane fraction is inhibited by exogenous PtdSer, indicating that inhibition of PtdSer synthases by PtdSer is important for the regulation of PtdSer biosynthesis. In this study, to examine whether the inhibition occurs through the direct interaction of PtdSer with the synthases or is mediated by unidentified factor(s), we purified a FLAG and HA peptide-tagged form of Chinese hamster PSS 2 to near homogeneity. The purified enzyme, as well as the crude enzyme in a membrane fraction, was inhibited on the addition of PtdSer to the enzyme assay mixture. In contrast to PtdSer, phosphatidylcholine and phosphatidylethanolamine did not significantly inhibit the purified enzyme. Furthermore, PtdSer-resistant PtdSer synthesis was observed on cell-free assaying of the membrane fraction prepared from a Chinese hamster ovary cell strain whose PtdSer synthesis in vivo is not inhibited by exogenous PtdSer. These results suggested that the interaction of PtdSer with PSS 2 or a very minor protein co-purified with PSS 2 was critical for the regulation of PSS 2 activity in intact cells.
Collapse
Affiliation(s)
- Osamu Kuge
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku-ku, Tokyo 162-8640, Japan.
| | | | | | | | | |
Collapse
|
11
|
Haq E, Sharma S, Khuller GK. Purification of diacylglycerol kinase from Microsporum gypseum and its phosphorylation by the catalytic subunit of protein kinase A. Arch Biochem Biophys 2001; 392:219-25. [PMID: 11488595 DOI: 10.1006/abbi.2001.2447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Diacylglycerol (DG) kinase (EC 2.7.1.107) was purified to homogeneity from the soluble extract of Microsporum gypseum, a dermatophyte. Purified enzyme showed a final specific activity of 2172 pmol/min/mg protein and its apparent molecular weight on SDS-PAGE was found to be 93 kDa. The activity of purified enzyme was inhibited in a dose-dependent manner in the presence of DG-kinase inhibitor (D5919, Sigma). DG-kinase activity was found to be stimulated in the presence of phosphatidylcholine, phosphatidylethanolamine, and cardiolipin while the activity was alleviated in the presence of phosphatidic acid and arachidonic acid. Kinase activity was partially inhibited when assayed after prior treatment with alkaline phosphatase. Treatment of DG-kinase with the catalytic subunit of protein kinase A (PKA)-stimulated DG-kinase activity in a dose-dependent manner. Incubation of DG-kinase with the catalytic subunit of PKA led to the phosphorylation of DG-kinase as revealed by autoradiography. The phosphorylated band disappeared completely in the presence of specific PKA inhibitor. Increased activity of DG-kinase on incubation with the catalytic subunit of PKA was possibly due to the phosphorylation of the former by the latter. Whether this in vitro phosphorylation and activation of DG-kinase occurs under physiological conditions remains to be elucidated.
Collapse
Affiliation(s)
- E Haq
- Department of Biochemistry, Postgraduate Institute of Medical Education & Research, Chandigarh-160 012, India
| | | | | |
Collapse
|
12
|
Jiang Y, Qian W, Hawes JW, Walsh JP. A domain with homology to neuronal calcium sensors is required for calcium-dependent activation of diacylglycerol kinase alpha. J Biol Chem 2000; 275:34092-9. [PMID: 10918059 DOI: 10.1074/jbc.m004914200] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Diacylglycerol kinases (DGKs) phosphorylate diacylglycerol produced during stimulus-induced phosphoinositide turnover and attenuate protein kinase C activation. Diacylglycerol kinase alpha is an 82-kDa DGK isoform that is activated in vitro by Ca(2+). The DGK alpha regulatory region includes tandem C1 protein kinase C homology domains and Ca(2+)-binding EF hand motifs. It also contains an N-terminal recoverin homology (RVH) domain that is related to the N termini of the recoverin family of neuronal calcium sensors. To probe the structural basis of Ca(2+) regulation, we expressed a series of DGK alpha deletions spanning its regulatory domain in COS-1 cells. Deletion of the RVH domain resulted in loss of Ca(2+)-dependent activation. Further deletion of the EF hands resulted in a constitutively active enzyme, suggesting that sequences in or near the EF hands are sufficient for autoinhibition. Binding of Ca(2+) to the EF hands protected sites within both the RVH domain and EF hands from trypsin cleavage and increased the phenyl-Sepharose binding of a recombinant DGK alpha fragment that included both the RVH domain and EF hands. These observations suggested that Ca(2+) elicits a concerted conformational change of these two domains. A cationic amphiphile, octadecyltrimethylammonium chloride, also activated DGK alpha. As with Ca(2+), this activation required the RVH domain. However, this agent did not protect the EF hands and RVH domain from trypsin cleavage. These findings indicate that the EF hands and RVH domain act as a functional unit during Ca(2+)-induced DGK alpha activation.
Collapse
Affiliation(s)
- Y Jiang
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | |
Collapse
|
13
|
Giusto NM, Pasquaré SJ, Salvador GA, Castagnet PI, Roque ME, Ilincheta de Boschero MG. Lipid metabolism in vertebrate retinal rod outer segments. Prog Lipid Res 2000; 39:315-91. [PMID: 10856601 DOI: 10.1016/s0163-7827(00)00009-6] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- N M Giusto
- Instituto de Investigaciones Bioquímicas, Universidad Nacional del Sur and Consejo Nacional de Investigaciones Científicas y Técnicas, CC 857, B 8000 FWB, Bahia Blanca, Argentina.
| | | | | | | | | | | |
Collapse
|
14
|
Müller G, Jordan H, Petry S, Wetekam EM, Schindler P. Analysis of lipid metabolism in adipocytes using a fluorescent fatty acid derivative. I. Insulin stimulation of lipogenesis. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1347:23-39. [PMID: 9233684 DOI: 10.1016/s0005-2760(97)00044-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Stimulation of lipid synthesis (lipogenesis) is one of the most pronounced metabolic actions of insulin. Here we demonstrate insulin-stimulated lipogenesis in isolated rat adipocytes using a fatty acid derivative which carries a fluorophore. Three major fluorescent lipid products (lipids 1, 2, 3) are generated as revealed by TLC analysis and subsequent fluorescent scanning or imaging. Lipolytic digestion and labeling studies suggest monoacylglycerol-3-phosphate and diacylglycerol (-3-phosphate) structures harboring a single fluorescent fatty acyl residue each for lipids 1 and 3 (2), respectively. Fluorescent triglycerides are not generated. Assaying acylation with isolated microsomes using the purified lipids 1 and 3 indicates that incorporation of one fluorescent fatty acyl residue into glycerol(-3-phosphate) interferes with subsequent esterification. Pretreatment of the adipocytes with insulin significantly stimulates synthesis of lipids 1 and 2, only. The insulin concentration-response relationship (EC50 = 0.5 nM) and the maximal insulin response for synthesis of lipid 1 (stimulation factor = 14- to 20-fold at low glucose and 3- to 7-fold at high glucose) are comparable with those for incorporation of [3-3H]glucose into total adipocyte lipids. Thus this fluorescence-based assay may be useful for studying insulin action and lipogenesis.
Collapse
Affiliation(s)
- G Müller
- Hoechst-Marion-Roussel, Pharmaceutical Research Site, DG Metabolism, Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|
15
|
Nobe K, Ohata H, Momose K. Receptor-mediated diacylglycerol kinase translocation dependent on both transient increase in the intracellular calcium concentration and modification by protein kinase C. Biochem Pharmacol 1997; 53:1683-94. [PMID: 9264321 DOI: 10.1016/s0006-2952(97)82454-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Diacylglycerol kinase (DG kinase) is activated by various stimuli in many types of cells. We reported earlier that carbachol (CCh) induced DG kinase translocation from the cytosolic fraction to the membrane fraction in guinea pig taenia coli (Biochem. Pharmacol., 50: 591-599, 1995). In this study, the regulation mechanisms of DG kinase translocation are reported, based on the following findings: 1) CCh sustained an increase in DG kinase in the membrane fraction and a decrease in the cytosolic fraction; 2) blocking calcium influx by removing extracellular calcium did not affect the CCh-induced sustained DG kinase translocation; 3) exposing purified protein kinase C (PKC) to DG kinase increased DG kinase affinity to octylglycoside micelles only with the enzyme extracted from the cytosolic fraction; and 4) CCh-induced DG kinase translocation was reversed by removing CCh, and the serine/threonine phosphatase inhibitor, okadaic acid, blocked the reversal of the translocation. These results suggest that CCh-induced DG kinase translocation is promoted by both a transient increase in intracellular calcium, which may be released from the intracellular store, and by DG kinase phosphorylation by PKC.
Collapse
Affiliation(s)
- K Nobe
- Department of Pharmacology, School of Pharmaceutical Sciences, Showa University, Tokyo, Japan.
| | | | | |
Collapse
|
16
|
Houssa B, Schaap D, van der Wal J, Goto K, Kondo H, Yamakawa A, Shibata M, Takenawa T, van Blitterswijk WJ. Cloning of a novel human diacylglycerol kinase (DGKtheta) containing three cysteine-rich domains, a proline-rich region, and a pleckstrin homology domain with an overlapping Ras-associating domain. J Biol Chem 1997; 272:10422-8. [PMID: 9099683 DOI: 10.1074/jbc.272.16.10422] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Diacylglycerol kinase (DGK) attenuates levels of second messenger diacylglycerol in cells and produces another (putative) messenger, phosphatidic acid. We have previously purified a 110-kDa DGK from rat brain (Kato, M., and Takenawa, T. (1990) J. Biol. Chem. 265, 794-800). Here we report the cDNA cloning from human brain and retina cDNA libraries. The cDNA encodes a novel DGK isotype, termed DGKtheta, of 941 amino acids with an apparent molecular mass of 110 kDa. DGKtheta contains a C-terminal putative catalytic domain, which is present in all eukaryotic DGKs. In contrast to other DGK isotypes, DGKtheta contains three cysteine-rich domains instead of two. The third cysteine-rich domain is most homologous to the second one in other DGK isotypes. This particular sequence homology extends C-terminally beyond the typical cysteine/histidine core structure and is DGK-specific. DGKtheta furthermore contains various domains for protein-protein interaction, such as a proline- and glycine-rich domain with a putative SH3 domain-binding site and a pleckstrin homology domain with an overlapping Ras-associating domain. DGKtheta is expressed in the brain and, to a lesser extent, in the small intestine, duodenum, and liver. In situ hybridization of DGKtheta mRNA in adult rat brain reveals high expression in the cerebellar cortex and hippocampus. DGKtheta activity in COS cell lysates is optimal toward diacylglycerols containing an unsaturated fatty acid at the sn-2 position.
Collapse
Affiliation(s)
- B Houssa
- Division of Cellular Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Affiliation(s)
- R Lehner
- Banting and Best Department of Medical Research, University of Toronto, Canada
| | | |
Collapse
|
18
|
Sakane F, Imai S, Kai M, Wada I, Kanoh H. Molecular cloning of a novel diacylglycerol kinase isozyme with a pleckstrin homology domain and a C-terminal tail similar to those of the EPH family of protein-tyrosine kinases. J Biol Chem 1996; 271:8394-401. [PMID: 8626538 DOI: 10.1074/jbc.271.14.8394] [Citation(s) in RCA: 147] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A fourth member of the diacylglycerol kinase (DGK) gene family termed DGK delta was cloned from the human testis cDNA library. The cDNA sequence contains an open reading frame of 3,507 nucleotides encoding a putative DGK protein of 130,006 Da. Interestingly, the new DGK isozyme contains a pleckstrin homology domain found in a number of proteins involved in signal transduction. Furthermore, the C-terminal tail of this isozyme is very similar to those of the EPH family of receptor tyrosine kinases. The primary structure of the delta-isozyme also has two cysteine-rich zinc finger-like structures (C3 region) and the C-terminal C4 region, both of which have been commonly found in the three isozymes previously cloned (DGKs alpha, beta and gamma). However, DGK delta lacks the EF-hand motifs (C2) and contains a long Glu- and Ser-rich insertion (317 residues), which divides the C4 region into two portions. Taken together, these structural features of DGK delta indicate that this isozyme belongs to a DGK subfamily distinct from that consisting of DGKs alpha, beta, and gamma. Increased DGK activity without marked preference to arachidonoyl type of diacylglycerol was detected in the particulate fraction of COS-7 cells expressing the transfected DGKdelta cDNA. The enzyme activity was independent of phosphatidylserine, which is a common activator for the previously sequenced DGKs. Northern blot analysis showed that the DGK delta mRNA (approximately 6.3 kilobases) is most abundant in human skeletal muscle but undetectable in the brain, thymus, and retina. This expression pattern is different from those of the previously cloned DGKs. Our results show that the DGK gene family consists of at least two subfamilies consisting of enzymes with distinct structural characteristics and that each cell type probably expresses its own characteristic repertoire of DGKs whose functions may be regulated through different signal transduction pathways.
Collapse
Affiliation(s)
- F Sakane
- Department of Biochemistry, Sapporo Medical University School of Medicine, South-1, West-17, Sapporo 060, Japan
| | | | | | | | | |
Collapse
|
19
|
Abstract
R59022, a diacylglycerol (DAG) kinase inhibitor, stimulated meiotic maturation of Xenopus laevis oocytes when applied extracellularly. The time course of R59022-induced oocyte maturation was proportional to the concentration of R59022 in the low micromolor range, and the 30 microM-induced response was a fast or faster than progesterone-induced maturation. Dose-response analysis yielded an apparent EC50 for R59022-induced oocyte maturation of approximately 15 microM. An increase in total oocyte DAG levels was observed following treatment with 10 microM R59022. Treatment of oocytes with R59022 also resulted in a significant increase in intracellular pH similar to the increase observed with progesterone. When various phosphodiesterase (PDE) inhibitors were tested for their effects on R59022-induced oocyte maturation, papaverine (a potent nonselective inhibitor of PDE) and CI-930 (a selective PDE III inhibitor) were observed to significantly inhibit the R59022-stimulated response. The sensitivity of R59022-induced oocyte maturation to inhibition by papaverine was intermediate between the sensitivities of the IGF-1- or progesterone-induced responses. Treatment of oocytes with R59022 did not significantly affect the level of oocyte PDE activity measured in vivo, suggesting that elevated levels of DAG may parallel observed increases in PDE but do not directly lead to a stimulation of PDE. The t ime course for stimulation of ribosomal S6 kinase activity by R59022 followed the pattern for stimulation of ribosomal S6 kinase activity by R59022 followed the pattern for stimulation by progesterone rather than IGF-1. Treatment of isolated membranes with R59022 resulted in inhibition of membrane-associated adenyl cyclas e activity that was not mimicked by DAG analogs. Thus, in addition to elevating oocyte levels of DAG, R59022 also has steroid-like actions.
Collapse
Affiliation(s)
- S E Sadler
- Department of Biological Sciences, University of Denver, University Park, Colorado 80208, USA
| | | | | |
Collapse
|
20
|
Hosoi K, Shioda Y, Ueha T, Atsumi T, Sugita K, Kurihara K. ATP- and EGF-stimulated phosphatidulinositol synthesis by two different pathways, phospholipase D and diacylglycerol kinase, in A-431 epidermoid carcinoma cells. Biochem Cell Biol 1996; 74:197-209. [PMID: 9213428 DOI: 10.1139/o96-020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The [(3)H]inositol incorporation into the membrane fraction of A-431 human epidermoid carcinoma cells was markedly increased by stimulation of the cells with either epidermal growth factor (EGF), ATP, bradykinin, or a calcium ionophore A23187 in the presence of 1 mM extracellular calcium ions; most incorporated [(3)H]inositol was found to have accumulated as phosphatidylinositol (PI). The EGF- and ATP-stimulated PI synthesis was inhibited by two protein kinase C inhibitors, staurosporine and 1-(5-isoquinolinesulfonyl)-2-methylpiperazine dihydrochloride (H-7), and an intracellular calcium chelator, 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester (BAPTA/AM), but not by the calmodulin antagonist N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide hydrochloride (W-7). Pretreatment of cells with pertussis toxin (IAP, islet-activating protein) inhibited the PI synthesis, [Ca(2+)]i elevation, and inositol trisphosphate (IP(3)) production by ATP, suggesting that the phospholipase C(PLC) system coupled with IAP-sensitive G protein is involved in the ATP-stimulated PI synthesis. On the other hand, the ATP stimulation increased the release of [(3)H]choline and [(32)P)phosphatidic acid (PA) from radiolabeled cells, and such release was not inhibited by IAP. In the presence of n-butyl alcohol, which prevents the production of PA by generation of phosphatidylbutanol, the ATP-stimulated PI synthesis was reduced. Because n-butyl alcohol did not inhibit IP(3) production and [Ca(2+)]i elevation, this fact suggests that the lAP-insensitive PLD system is involved in the ATP-stimulated PI synthesis. In A-431 cells, the stimulation of P(2)-purinergic receptors appears to activate the IAP-sensitive PLC system and IAP-insensitive PLD system, both of which are essential for the stimulation of PI synthesis. The present results imply the general prospect that ligand stimulation, which mobilizes second messengers and consumes their precursors, simultaneously provokes the pathway to synthesize and salvage the second messenger precursors as well.
Collapse
Affiliation(s)
- K Hosoi
- Department of Physiology, Tokushima University School of Dentistry, Japan
| | | | | | | | | | | |
Collapse
|
21
|
Walsh JP, Suen R, Glomset JA. Arachidonoyl-diacylglycerol kinase. Specific in vitro inhibition by polyphosphoinositides suggests a mechanism for regulation of phosphatidylinositol biosynthesis. J Biol Chem 1995; 270:28647-53. [PMID: 7499383 DOI: 10.1074/jbc.270.48.28647] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We previously described the purification of a membrane-bound diacylglycerol kinase highly selective for sn-1-acyl-2-arachidonoyl diacylglycerols (Walsh, J. P., Suen, R., Lemaitre, R. N., and Glomset, J. A. (1994) J. Biol. Chem. 269, 21155-21164). This enzyme appears to be responsible for the rapid clearance of the arachidonate-rich pool of diacylglycerols generated during stimulus-induced phosphoinositide turnover. We have now shown phosphatidylinositol 4,5-bisphosphate to be a potent and specific inhibitor of arachidonoyl-diacylglycerol kinase. Kinetic analyses indicated a Ki for phosphatidylinositol 4,5-bisphosphate of 0.04 mol %. Phosphatidic acid also was an inhibitor with a Ki of 0.7 mol %. Other phospholipids had only small effects at these concentrations. A series of multiply phosphorylated lipid analogs also inhibited the enzyme, indicating that the head group phosphomonoesters are the primary determinants of the polyphosphoinositide effect. However, these compounds were not as potent as phosphatidylinositol 4,5-bisphosphate, indicating some specificity for the polyphosphoinositide additional to its total charge. Five other diacylglycerol kinases were activated to varying degrees by phosphatidylinositol 4,5-bisphosphate and phosphatidic acid, suggesting that inhibition by acidic lipids may be specific for the arachidonoyl-DAG kinase isoform. Given the presumed role of arachidonoyl-diacylglycerol kinase in the phosphoinositide cycle, this inhibition may represent a mechanism for polyphosphoinositides to regulate their own synthesis.
Collapse
Affiliation(s)
- J P Walsh
- Department of Medicine, Indiana University, Indianapolis 46202-5111, USA
| | | | | |
Collapse
|
22
|
Nobe K, Aizawa H, Ohata H, Momose K. Protein kinase C is involved in translocation of diacyglycerol kinase induced by carbachol in guinea pig taenia coli. Biochem Pharmacol 1995; 50:591-9. [PMID: 7669061 DOI: 10.1016/0006-2952(95)00184-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The regulatory mechanisms of diacylglycerol (DG) kinase activity were studied in guinea pig taenia coli. In an octylglycoside mixed micellar assay system, DG kinase activities were distributed in both membrane and cytosolic fractions. Treatment of the tissue with carbachol (CCh) increased the activity in the membrane fraction and decreased the cytosolic fraction without affecting total DG kinase activity. The Km value of DG kinase in the membrane fraction was unchanged by treatment with CCh, although Vmax was increased. These findings suggest that DG kinase may be translocated from the cytosol to the membrane by CCh-stimulation. Increase in DG content by treatment of tissue with a cell-permeable species of DG, dioctanoyl-sn-glycerol, did not induce DG kinase translocation. Each treatment with protein kinase C (PKC) inhibitor and PKC-desensitization blocked CCh-induced DG kinase translocation; and phorbol ester induced the translocation only in intracellular calcium-accumulated tissues. Considering these results, CCh-induced DG kinase activation appears to involve DG kinase translocation from the cytosol to the membrane in association with both PKC and intracellular calcium concentration rather than cellular DG content.
Collapse
Affiliation(s)
- K Nobe
- Department of Pharmacology, School of Pharmaceutical Sciences, Showa University, Tokyo, Japan
| | | | | | | |
Collapse
|
23
|
Nobe K, Ohata H, Momose K. Activation of diacylglycerol kinase by carbachol in guinea pig taenia coli. Biochem Pharmacol 1994; 48:2005-14. [PMID: 7802689 DOI: 10.1016/0006-2952(94)90499-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Changes in diacylglycerol kinase (DG kinase) activity in carbachol (CCh)-stimulated guinea pig taenia coli were investigated. In a mixed micellar assay system, added 1,2-dioctanoyl-sn-glycerol (diC8) and endogenous DG were competitively bound to common DG kinase isozymes from guinea pig taenia coli and phosphorylated, suggesting that diC8 is useful as a probe of agonist effects on DG kinase activity. In phosphorus-32 ([32P]Pi)- and diC8-prelabeled guinea pig taenia coli, diC8 was phosphorylated by DG kinase to [32P]dioctanoyl-phosphatidic acid ([32P]diC8-PA). CCh increased the accumulation of both [32P]diC8-PA and endogenous [32P]phosphatidic acid ([32P]PA) in a time- and dose-dependent manner (0.1-100 microM CCh). CCh-induced increases in [32P]diC8-PA and [32P]PA were inhibited by 1 microM atropine and 3 microM DG kinase inhibitor (R59022). These findings indicated the activation of DG kinase by muscarinic receptor stimulation in guinea pig taenia coli. Therefore, DG kinase activation may play an important role in CCh-induced PA formation. CCh-induced [32P]diC8-PA and [32P]PA accumulation was dependent on intracellular calcium concentrations. However, a KCl-induced increase in intracellular calcium, without receptor stimulation, was ineffective. Moreover, treatment with phorbol ester also increased accumulation of both PA species in KCl-treated tissues. These findings suggest that muscarinic receptor mediated activation of DG kinase may require both an increase in intracellular calcium and PKC activation in guinea pig taenia coli.
Collapse
Affiliation(s)
- K Nobe
- Department of Pharmacology, School of Pharmaceutical Sciences, Showa University, Tokyo, Japan
| | | | | |
Collapse
|
24
|
Lee MW, Severson DL. Signal transduction in vascular smooth muscle: diacylglycerol second messengers and PKC action. THE AMERICAN JOURNAL OF PHYSIOLOGY 1994; 267:C659-78. [PMID: 7943196 DOI: 10.1152/ajpcell.1994.267.3.c659] [Citation(s) in RCA: 170] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Agonist-stimulated phospholipid turnover can generate diacylglycerol (DAG), an intracellular second messenger that activates protein kinase C (PKC). DAG can be produced from the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) by a phosphoinositide-specific phospholipase C and by the degradation of phosphatidylcholine (PC) by a phospholipase C or the concerted actions of phospholipase D and phosphatidate phosphohydrolase. In vascular smooth muscle, agonist-stimulated DAG accumulation is biphasic; PIP2 hydrolysis produces a transient increase in DAG, which is followed by a sustained phase of DAG accumulation from PC degradation. Metabolism of DAG attenuates PKC activation and thus results in signal termination. The metabolic fates for DAG include 1) ATP-dependent phosphorylation to form phosphatidic acid (DAG kinase), 2) hydrolysis to release fatty acids and glycerol (DAG and monoacylglycerol lipases), 3) synthesis of triacylglycerol (DAG acyltransferase), and 4) synthesis of PC (choline phosphotransferase). Hydrolysis through the lipase pathway is the predominant metabolic fate of DAG in vascular smooth muscle. Activation of PKC in vascular smooth muscle modulates agonist-stimulated phospholipid turnover, produces an increase in contractile force, and regulates cell growth and proliferation. Further research is required to investigate cross talk between signal transduction mechanisms involving lipid second messengers. In addition, spatial considerations such as nuclear PKC activation and the influence of diradylglycerol generation on the duration of PKC activation are important issues.
Collapse
Affiliation(s)
- M W Lee
- Medical Research Council Signal Transduction Group, Faculty of Medicine, University of Calgary, Alberta, Canada
| | | |
Collapse
|
25
|
|
26
|
Kai M, Sakane F, Imai S, Wada I, Kanoh H. Molecular cloning of a diacylglycerol kinase isozyme predominantly expressed in human retina with a truncated and inactive enzyme expression in most other human cells. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)32336-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
27
|
van der Bend R, de Widt J, Hilkmann H, van Blitterswijk W. Diacylglycerol kinase in receptor-stimulated cells converts its substrate in a topologically restricted manner. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)41748-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
28
|
Kanoh H, Sakane F, Imai S, Wada I. Diacylglycerol kinase and phosphatidic acid phosphatase--enzymes metabolizing lipid second messengers. Cell Signal 1993; 5:495-503. [PMID: 8312127 DOI: 10.1016/0898-6568(93)90045-n] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- H Kanoh
- Department of Biochemistry, Sapporo Medical College, Japan
| | | | | | | |
Collapse
|
29
|
The different effects of sphingosine on diacylglycerol kinase isozymes in Jurkat cells, a human T-cell line. ACTA ACUST UNITED AC 1993. [DOI: 10.1016/0005-2760(93)90242-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
30
|
Moritz A, Westerman J, De Graan PN, Payrastre B, Gispen WH, Wirtz KW. Characterization of phosphatidylinositol-4-phosphate 5-kinase activities from bovine brain membranes. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1168:79-86. [PMID: 8389203 DOI: 10.1016/0005-2760(93)90269-f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Phosphatidylinositol-4-phosphate (PtdIns(4)P) kinase activity associated with bovine brain membranes, was released by NaCl treatment and partially purified by chromatography on phosphocellulose, phenylsepharose, Ultrogel AcA44, DEAE-cellulose and ATP-agarose. The final preparation contained a 6333-fold purified protein fraction with a specific activity of 171 nmol.min-1 x mg-1. Under conditions where this PtdIns(4)P kinase activity (PtdIns(4)P kinase activity b) did not bind to DEAE-cellulose, a PtdIns(4)P kinase activity purified earlier (Moritz, A., De Graan, P.N.E., Ekhart, P.F., Gispen, W.H. and Wirtz, K.W.A. (1990) J. Neurochem. 54, 351-354) does bind (PtdIns(4)P kinase activity a). Both enzyme activities specifically used PtdIns(4)P as substrate and phosphorylated the inositol moiety at the 5'-position. PtdIns(4) kinase activity a has an apparent Km of 18 microM for PtdIns(4)P whereas PtdIns(4)P kinase activity b has a Km of 4 microM. All other measured kinetic parameters (i.e., Km for ATP, Mg(2+)-dependence, pH optimum, activation by phosphatidylserine and inhibition by phosphatidylinositol 4,5-bisphosphate) were similar for both enzyme activities.
Collapse
Affiliation(s)
- A Moritz
- Center for Biomembranes and Lipid Enzymology, Rudolf Magnus Institute, University of Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
31
|
Goto K, Watanabe M, Kondo H, Yuasa H, Sakane F, Kanoh H. Gene cloning, sequence, expression and in situ localization of 80 kDa diacylglycerol kinase specific to oligodendrocyte of rat brain. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1992; 16:75-87. [PMID: 1339302 DOI: 10.1016/0169-328x(92)90196-i] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A 3.1 kbp cDNA clone encoding diacylglycerol (DG) kinase of 80 kDa (80K-DG kinase) was isolated from a rat brain cDNA library. The deduced amino acid sequence was 82% homologous to previously identified porcine 80K-DG kinase and contained zinc finger-like sequences, E-F hand motifs and ATP-binding sites similar to the porcine counterpart. By in situ hybridization histochemistry of rat brain at postnatal week 3, the expression signals for 80K-DG kinase mRNA appeared predominantly on somata of discrete cells in the white matter, and the expression pattern was similar to that of the myelin-specific proteins. In immunohistochemistry using the antibody against bacterially expressed DG kinase-fusion protein, numerous fibrous or dot-like structures exhibiting the immunoreactivity were concentrated in the white matter and they were arranged to radiate in the cerebral cortex and the cerebellar granular layer in a pattern almost identical to that of oligodendrocytes. No neuronal cells exhibited the immunoreactivity. The present finding thus strongly suggests that 80K-DG kinase is expressed specifically in the oligodendrocytes, but not neurons, and may be involved in the myelin formation and metabolism. In addition, the intense hybridization signals and the immunoreactivity for this protein were detected in the entire medulla of the thymus and the periarterial lymphatic area of the splenic white pulp both of which represent T-cell-dependent areas.
Collapse
Affiliation(s)
- K Goto
- Department of Anatomy, Tohoku University School of Medicine, Sendai, Japan
| | | | | | | | | | | |
Collapse
|
32
|
Punnonen K, Yuspa SH. Ultraviolet light irradiation increases cellular diacylglycerol and induces translocation of diacylglycerol kinase in murine keratinocytes. J Invest Dermatol 1992; 99:221-6. [PMID: 1321202 DOI: 10.1111/1523-1747.ep12650445] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cellular lipid metabolism can provide a variety of mediators of signal transduction, including diacylglycerols and inositol phosphates. These factors may be involved in the control of epidermal differentiation and proliferation because they are modulated by extracellular calcium, which also regulates the maturation phenotype of cultured keratinocytes. The effect of non-cytotoxic exposures to ultraviolet light on lipid metabolism was studied in cultured murine keratinocytes. Ultraviolet treatment of cultured murine keratinocytes growing in 0.05 mM Ca++ did not significantly change the total amount of [3H]inositol phosphates at 0.5, 8 or 24 h post-irradiation. Irradiated cells responded to an increase from 0.05 mM Ca++ to 1.4 mM Ca++ medium with increased formation of inositol phosphates suggesting irradiation did not alter the normal inositol lipid turnover in response to the Ca++ signal for terminal differentiation. Irradiation (20-120 J/m2 of UVB) induced a dose-dependent increase in the cellular level of diacylglycerols as measured at 24 h post-irradiation, without changing the turnover of other phospholipids including phosphatidylcholine and phosphatidylethanolamine. The increased cellular levels of diacylglycerols following ultraviolet exposure were accompanied by changes in the activity of diacylglycerol kinase (DAG-kinase). The cytosolic DAG-kinase activity was decreased whereas the DAG-kinase activity in the membrane fraction was increased. These results suggest that ultraviolet irradiation increases the level of diacylglycerols via changes in de novo metabolism through a DAG-kinase pathway. Elevated diacylglycerol may influence signal-transduction pathways mediated by cellular lipids and contribute to some keratinocyte responses to ultraviolet light.
Collapse
Affiliation(s)
- K Punnonen
- Laboratory of Cellular Carcinogenesis and Tumor Promotion, National Cancer Institute, Bethesda, Maryland 20892
| | | |
Collapse
|
33
|
Inoue H, Yoshioka T, Hotta Y. Partial purification and characterization of membrane-associated diacylglycerol kinase of Drosophila heads. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1122:219-24. [PMID: 1322704 DOI: 10.1016/0167-4838(92)90327-a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A membrane-associated diacylglycerol kinase of Drosophila heads was purified to near homogeneity from the KCl extract of Drosophila heads. The purification procedure involved chromatography on Q-Sepharose, ammonium sulfate fractionation, Superose 12, hydroxyapatite and ATP-agarose. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of fractions after the ATP-agarose column chromatography showed that only a 115 kDa protein correlated well with the enzyme activity. The apparent Km values of partially purified DG kinase were 220 microM for ATP and 540 microM for diolein, respectively. The activity of the DG kinase was inhibited by deoxycholate and was not activated by Ca2+.
Collapse
Affiliation(s)
- H Inoue
- Department of Basic Sciences, School of Human Sciences, Waseda University, Tokorozawa, Japan
| | | | | |
Collapse
|
34
|
Ilincheta de Boschero MG, Giusto NM. Phosphatidic acid and polyphosphoinositide metabolism in rod outer segments. Differential role of soluble and peripheral proteins. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1127:105-15. [PMID: 1322705 DOI: 10.1016/0005-2760(92)90265-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The phosphorylation of endogenous diacylglycerol (DAG) and phosphoinositides by [tau-32P]ATP was studied in bovine rod outer segments (ROS) selectively depleted of soluble or peripheral and soluble proteins by treatment with moderate (100 mM) or low (5 mM) ionic strength medium, respectively. DAG kinase activity was similar in bleached and non-bleached ROS extracted with 100 mM medium, and amounted to 70% of that observed in the corresponding non-extracted ROS. Phosphatidic acid (PtdH) labelling in ROS extracted in the dark with low ionic strength medium was markedly lower than in those extracted in light. Thus, even when a major proportion of DAG kinase was associated to the membrane, a soluble form also occurred. Most of the membrane-bound fraction behaved as a peripherally associated protein, its binding to the membrane being modified by light. Ir ROS extracted at moderate ionic strength the labelling of inositides was similar to that in non-extracted ROS. A marked enhancement in polyphosphoinositide labelling was observed in ROS extracted in the dark with low ionic strength. Alkaline treatment of ROS also produced inhibition of polyphosphoinositide phosphorylation. A peripheral form of a type C phospholipase, or a peripheral protein-mediated activation of a particulate form thereof, is suggested. Labelled polyphosphoinositides were more actively hydrolyzed in the light and in the dark plus GTP tau S than in the dark-incubated membranes. The results of phosphorylation experiments in membranes where differential extraction of the alpha subunit of transducin was carried out suggest that alpha and beta tau subunits may play opposite modulating roles in PtdH and polyphosphoinositide metabolism.
Collapse
Affiliation(s)
- M G Ilincheta de Boschero
- Instituto de Investigaciones Bioquímicas, Universidad Nacional del Sur y Consejo Nacional de Investigaciones Científicas y Técnicas, Bahía Blanca, Argentina
| | | |
Collapse
|
35
|
|
36
|
Kanoh H, Sakane F, Yamada K. Diacylglycerol kinase isozymes from brain and lymphoid tissues. Methods Enzymol 1992; 209:162-72. [PMID: 1323029 DOI: 10.1016/0076-6879(92)09020-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
37
|
Asaoka Y, Oka M, Yoshida K, Nishizuka Y. Lysophosphatidylcholine as a possible second messenger synergistic to diacylglycerol and calcium ion for T-lymphocyte activation. Biochem Biophys Res Commun 1991; 178:1378-85. [PMID: 1872854 DOI: 10.1016/0006-291x(91)91046-f] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
An immediate reaction product of phosphatidylcholine hydrolysis catalyzed by phospholipase A2, lysophosphatidylcholine (lysoPC), synergizes with a membrane-permeable diacylglycerol, 1,2-dioctanoylglycerol, and ionomycin to activate resting T-lymphocytes as measured by interleukin-2 alpha-receptor expression. It is suggestive that both phospholipase C and phospholipase A2 are directly involved in signal transduction in a synergistic fashion and that lysoPC acts as an additional second messenger for cellular regulation, probably for long-term responses such as cell proliferation and differentiation.
Collapse
Affiliation(s)
- Y Asaoka
- Biosignal Research Center, Kobe University, Japan
| | | | | | | |
Collapse
|
38
|
Ferguson JE, Hanley MR. The role of phospholipases and phospholipid-derived signals in cell activation. Curr Opin Cell Biol 1991; 3:206-12. [PMID: 1652988 DOI: 10.1016/0955-0674(91)90140-t] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The complexity of receptor-regulated breakdown and modification of phospholipids continues to grow. New developments extend our concepts of signalling enzymes and possible messengers.
Collapse
Affiliation(s)
- J E Ferguson
- Department of Biological Chemistry, School of Medicine, University of California, Davis 95616
| | | |
Collapse
|
39
|
Sakane F, Yamada K, Imai S, Kanoh H. Porcine 80-kDa diacylglycerol kinase is a calcium-binding and calcium/phospholipid-dependent enzyme and undergoes calcium-dependent translocation. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(20)89615-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
40
|
Hjelmstad RH, Bell RM. Molecular insights into enzymes of membrane bilayer assembly. Biochemistry 1991; 30:1731-40. [PMID: 1993188 DOI: 10.1021/bi00221a001] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- R H Hjelmstad
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710
| | | |
Collapse
|
41
|
Shears SB. Regulation of the metabolism of 1,2-diacylglycerols and inositol phosphates that respond to receptor activation. Pharmacol Ther 1991; 49:79-104. [PMID: 1649478 DOI: 10.1016/0163-7258(91)90023-f] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This review assimilates information on the regulation of the metabolism of those inositol phosphates and diacylglycerols that respond to receptor activation. Particular emphasis is placed on the regulation of specific enzymes, the occurrence of isoenzymes, and metabolic compartmentalization; the overall aim is to demonstrate the significance of these activities in relation to the physiological impact of the various cell signalling processes.
Collapse
Affiliation(s)
- S B Shears
- Inositol Lipid Section, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709
| |
Collapse
|
42
|
Schaap D, de Widt J, van der Wal J, Vandekerckhove J, van Damme J, Gussow D, Ploegh HL, van Blitterswijk WJ, van der Bend RL. Purification, cDNA-cloning and expression of human diacylglycerol kinase. FEBS Lett 1990; 275:151-8. [PMID: 2175712 DOI: 10.1016/0014-5793(90)81461-v] [Citation(s) in RCA: 112] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Diacylglycerol (DG) kinase attenuates the level of the second messenger DG in signal transduction, and therefore possibly modulates protein kinase C (PKC). DG kinase was purified to homogeneity from human white blood cells, showing an Mr of 86 kDa as determined by SDS-PAGE and gel filtration. Two amino acid sequences of tryptic peptides from DG kinase were determined and degenerate oligonucleotides were prepared and used in the polymerase chain reaction. An amplified DNA fragment was subsequently used to clone the full-length human DG kinase cDNA. This sequence is the human homolog of a porcine DG kinase cDNA sequence reported recently. The sequence contains a double EF-hand structure typical for Ca2+ binding proteins. DG kinase further contains a double cysteine repeat that is present in all PKC isoforms, where it constitutes the phorbol ester (and most likely diacylglycerol) binding site. Therefore we speculate that the double cysteine repeat in DG kinase is involved in DG binding. DG kinase is transcribed as a single mRNA of 3.2 kb, that is highly expressed in T-lymphocytes. The human DG kinase cDNA when transfected in mammalian cells (COS-7) results in a 6-7-fold increase of DG kinase activity.
Collapse
Affiliation(s)
- D Schaap
- Division of Cellular Biochemistry, The Netherlands Cancer Institute (Antoni van Leeuwenhoek Huis), Amsterdam
| | | | | | | | | | | | | | | | | |
Collapse
|