1
|
Choi KY, Ahn YH, Ahn HW, Cho YJ, Hong SH. Involvement of Akt2/protein kinase B β (PKBβ) in the 8-Cl-cAMP-induced cancer cell growth inhibition. J Cell Physiol 2013; 228:890-902. [PMID: 23018889 DOI: 10.1002/jcp.24240] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 09/24/2012] [Indexed: 01/01/2023]
Abstract
8-chloro-cyclic AMP (8-Cl-cAMP), which induces differentiation, growth inhibition, and apoptosis in various cancer cells, has been investigated as a putative anti-cancer drug. However, the exact mechanism of 8-Cl-cAMP functioning in cancer cells is not fully understood. Akt/protein kinase B (PKB) genes (Akt1, Akt2, and Akt3) encode enzymes belonging to the serine/threonine-specific protein kinase family. It has been suggested that Akt/PKB enhances cell survival by inhibiting apoptosis. Recently, we showed that 8-Cl-cAMP and 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) inhibited cancer cell growth through the activation of AMPK and p38 MAPK. Therefore, we anticipated that the phosphorylation of Akt/PKB would be decreased upon treatment with 8-Cl-cAMP. However, treatment with 8-Cl-cAMP and AICAR induced the phosphorylation of Akt/PKB, which was inhibited by ABT702 (an adenosine kinase inhibitor) and NBTI (an adenosine transporter inhibitor). Furthermore, whereas Compound C (an AMPK inhibitor), AMPK-DN (AMPK-dominant negative) mutant, and SB203580 (a p38 MAPK inhibitor) did not block the 8-Cl-cAMP-induced phosphorylation of Akt/PKB, TCN (an Akt1/2/3 specific inhibitor) and an Akt2/PKBβ-targeted siRNA inhibited the 8-Cl-cAMP- and AICAR-mediated phosphorylation of AMPK and p38 MAPK. TCN also reversed the growth inhibition mediated by 8-Cl-cAMP and AICAR. Moreover, an Akt1/PKBα-targeted siRNA did not reduce the phosphorylation of AMPK and p38 MAPK after treatment with 8-Cl-cAMP. These results suggest that Akt2/PKBβ activation promotes the phosphorylation of AMPK and p38 MAPK during the 8-Cl-cAMP- and AICAR-induced growth inhibition.
Collapse
Affiliation(s)
- Ki Young Choi
- School of Biological Sciences, Seoul National University, Seoul, Korea
| | | | | | | | | |
Collapse
|
2
|
Gu L, Lau SK, Loera S, Somlo G, Kane SE. Protein kinase A activation confers resistance to trastuzumab in human breast cancer cell lines. Clin Cancer Res 2009; 15:7196-206. [PMID: 19920112 DOI: 10.1158/1078-0432.ccr-09-0585] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
PURPOSE Trastuzumab is a monoclonal antibody targeted to the Her2 receptor and approved for treatment of Her2-positive breast cancer. Among patients who initially respond to trastuzumab therapy, resistance typically arises within 1 year. BT/Her(R) cells are trastuzumab-resistant variants of Her2-positive BT474 breast cancer cells. The salient feature of BT/Her(R) cells is failure to downregulate phosphoinositide 3-kinase/Akt signaling on trastuzumab binding. The current work addresses the mechanism of sustained signaling in BT/Her(R) cells, focusing on the protein kinase A (PKA) pathway. EXPERIMENTAL DESIGN We performed microarray analysis on BT/Her(R) and BT474 cell lines to identify genes that were upregulated or downregulated in trastuzumab-resistant cells. Specific genes in the PKA pathway were quantified using reverse transcription-PCR and Western hybridization. Small interfering RNA transfection was used to determine the effects of gene knockdown on cellular response to trastuzumab. Electrophoretic mobility shift assays were used to measure cyclic AMP-responsive element binding activity under defined conditions. Immunohistochemistry was used to analyze protein expression in clinical samples. RESULTS BT/Her(R) cells had elevated PKA signaling activity and several genes in the PKA regulatory network had altered expression in these cells. Downregulation of one such gene, the PKA-RIIalpha regulatory subunit, conferred partial trastuzumab resistance in Her2-positive BT474 and SK-Br-3 cell lines. Forskolin activation of PKA also produced significant protection against trastuzumab-mediated Akt dephosphorylation. In patient samples, PKA signaling appeared to be enhanced in residual disease remaining after trastuzumab-containing neoadjuvant therapy. CONCLUSIONS Activation of PKA signaling may be one mechanism contributing to trastuzumab resistance in Her2-positive breast cancer. We propose a molecular model by which PKA confers its effects.
Collapse
Affiliation(s)
- Long Gu
- Division of Tumor Cell Biology, City of Hope Comprehensive Cancer Center, Duarte, California 91107, USA
| | | | | | | | | |
Collapse
|
3
|
Bajić V, Djelić N, Spremo-Potparević B, Zivković L, Milićević Z. A study on the genotoxic effects of 8-Cl-cAMP on human lymphocytes in vitro. RUSS J GENET+ 2008; 44:631-637. [PMID: 18672796 DOI: 10.1134/s1022795408050062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
8-chloro-cyclic adenosine 3',5'-monophosphate (8-Cl-cAMP) is the most potent cAMP analogue that selectively inhibits a variety of cancer cell lines in vitro and tumors in vivo. Its action toward a variety of tumors, especially when coupled with other antitumor agents, have lead to phase I clinical investigations and recently phase II clinical investigations. Until today very little was done to evaluate its genotoxic potential. In order to evaluate its genotoxic potential we used the cytogenetic and cytokinesis block micronucleus assay in vitro on peripheral blood lymphocytes of healthy individuals. Using three concentrations (1 microM, 5 microM and 15 microM), 8-Cl-cAMP in normal human peripheral blood lymphocytes did not induce any cytogenetic aberrations of the structural type [chromatid breakage, isochromatid breakage and gaps], but did induce premature centromere separation (PCS) in all respective doses and increased the frequency of micronuclei (p <0.05) only in the highest dose (15 microM). Antiproliferative action of 8-Cl-cAMP was estimated by using the cytokinesis block nuclear division index (NDI). The results showed a decrease in the NDI of cells exposed to all doses of 8-Cl-cAMP when compared to control. Therefore, the overall results show a genotoxic potential of 8-Cl-cAMP in peripheral blood lymphocytes in vitro.
Collapse
Affiliation(s)
- V Bajić
- Institute of Biomedical Research, Galenika Pharmaceuticals, 11000 Belgrade, Serbia.
| | | | | | | | | |
Collapse
|
4
|
Sang Cho-Chung Y. Overview: Oncologic, Endocrine & Metabolic Antisense oligonucleotides for the treatment of cancer. ACTA ACUST UNITED AC 2008. [DOI: 10.1517/13543776.3.12.1737] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
5
|
Samuelsen JT, Schwarze PE, Huitfeldt HS, Thrane EV, Låg M, Refsnes M, Skarpen E, Becher R. Regulation of rat alveolar type 2 cell proliferation in vitro involves type II cAMP-dependent protein kinase. Am J Physiol Lung Cell Mol Physiol 2006; 292:L232-9. [PMID: 16980378 DOI: 10.1152/ajplung.00049.2006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To elucidate the role of cAMP and different cAMP-dependent protein kinases (PKA; A-kinase) in lung cell proliferation, we investigated rat alveolar type 2 cell proliferation in relation to activation or inhibition of PKA and PKA regulatory subunits (RIIalpha and RIalpha). Both the number of proliferating type 2 cells and the level of different regulatory subunits varied during 7 days of culture. The cells exhibited a distinct peak of proliferation after 5 days of culture. This proliferation peak was preceded by a rise in RIIalpha protein level. In contrast, an inverse relationship between RIalpha and type 2 cell proliferation was noted. Activation of PKA increased type 2 cell proliferation if given at peak RIIalpha expression. Furthermore, PKA inhibitors lowered the rate of proliferation only when a high RII level was observed. An antibody against the anchoring region of RIIalpha showed cell cycle-dependent binding in contrast to antibodies against other regions, possibly related to altered binding to A-kinase anchoring protein. Following activation of PKA, relocalization of RIIalpha was confirmed by immunocytochemistry. In conclusion, it appears that activation of PKA II is important in regulation of alveolar type 2 cell proliferation.
Collapse
Affiliation(s)
- Jan T Samuelsen
- Division of Environmental Medicine, Norwegian Institute of Public Health, Oslo, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
The type 1alpha regulatory subunit (RIalpha) of cAMP-dependent protein kinase (PKA) (coded by the PRKAR1A gene) is the main component of type I PKA, which regulates most of the serine-threonine kinase activity catalyzed by the PKA holoenzyme in response to cAMP. Carney complex (CNC), or the complex of spotty skin pigmentation, myxomas, and endocrine overactivity, is a multiple endocrine (and not only) neoplasia syndrome that is due to PRKAR1A-inactivating mutations. The R1alpha protein and PRKAR1A mRNA have been found to be up-regulated in a series of cell lines and human and rodent neoplasms, suggesting this molecule's involvement in tumorigenesis and its potential role in cell cycle regulation, growth, and/or proliferation. Alterations in PKA activity elicit a variety of effects depending on the tissue, developmental stage, degree of differentiation, and cAMP levels. In addition, RIalpha may have functions independent of PKA. The presence of inactivating germline mutations and the loss of its wild-type allele in some CNC lesions indicate that PRKAR1A might function as a tumor suppressor gene in these tissues, but could PRKAR1A be a classic tumor suppressor gene? Probably not, and this review explains why.
Collapse
Affiliation(s)
- Ioannis Bossis
- Section on Endocrinology and Genetics, Developmental Endocrinology Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-1862, USA
| | | |
Collapse
|
7
|
Bajic V, Stanimirovic Z, Stevanovic J. Genotoxicity potential of 8-Cl-cyclic adenosine monophosphate assessed with cytogenetic tests in vivo. Arch Med Res 2004; 35:209-14. [PMID: 15163461 DOI: 10.1016/j.arcmed.2004.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2003] [Accepted: 01/09/2004] [Indexed: 11/24/2022]
Abstract
BACKGROUND Growth-modulating noncytotoxic activity of 8-chloro-adenosine 3',5'-cyclic monophosphate (8-Cl-cAMP) showed inhibitory effect on growth of a wide variety of cancer cell lines in vitro and in vivo. To assess possible genotoxic effects of 8-Cl-cAMP, we conducted a study in vivo using male BALB/c mice. METHODS Clastogenic effects were estimated by bone marrow micronucleus assay and cytogenetic test in adult mice BALB/c strain. 8-Cl-cAMP was administered intraperitoneally (i.p.) to three dose groups including 10 mg/kg body weight (b.w.), 90 mg/kg b.w., and 160 mg/kg b.w., with saline solution as negative control and cyclophosphamide, a known mutagen, and clastogen as positive control during a 7-day period in 24-h intervals. RESULTS Micronucleus test in vivo results showed consistently increasing dose-dependent pattern increase of dose regime (10 mg/kg body weight [b.w.], 90 mg/kg b.w., and 160 mg/kg b.w.), and increase in frequency of micronuclei in polychromatic erythrocytes (4.88 +/- 0.35, 8.32 +/- 0.57, and 11.74 +/- 0.37) compared to negative control (2.04 +/- 0.28). Quantitative effects are paralleled by structural changes in chromosome morphology. 8-Cl-cAMP induced structural (breaks, gaps, centric rings, acentrics, and Robertsonian translocations) and numerical-type chromosomal aberrations (aneuploidy and polyploidy). CONCLUSIONS Results of this study demonstrate that 8-Cl-cAMP has genotoxic potential in vivo.
Collapse
|
8
|
Yu S, Mei FC, Lee JC, Cheng X. Probing cAMP-dependent protein kinase holoenzyme complexes I alpha and II beta by FT-IR and chemical protein footprinting. Biochemistry 2004; 43:1908-20. [PMID: 14967031 DOI: 10.1021/bi0354435] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although individual structures of cAMP-dependent protein kinase (PKA) catalytic (C) and regulatory (R) subunits have been determined at the atomic level, our understanding of the effects of cAMP activation on protein dynamics and intersubunit communication of PKA holoenzymes is very limited. To delineate the mechanism of PKA activation and structural differences between type I and II PKA holoenzymes, the conformation and structural dynamics of PKA holoenzymes Ialpha and IIbeta were probed by amide hydrogen-deuterium exchange coupled with Fourier transform infrared spectroscopy (FT-IR) and chemical protein footprinting. Binding of cAMP to PKA holoenzymes Ialpha and IIbeta leads to a downshift in the wavenumber for both the alpha-helix and beta-strand bands, suggesting that R and C subunits become overall more dynamic in the holoenzyme complexes. This is consistent with the H-D exchange results showing a small change in the overall rate of exchange in response to the binding of cAMP to both PKA holoenzymes Ialpha and IIbeta. Despite the overall similarity, significant differences in the change of FT-IR spectra in response to the binding of cAMP were observed between PKA holoenzymes Ialpha and IIbeta. Activation of PKA holoenzyme Ialpha led to more conformational changes in beta-strand structures, while cAMP induced more apparent changes in the alpha-helical structures in PKA holoenzyme IIbeta. Chemical protein footprinting experiments revealed an extended docking surface for the R subunits on the C subunit. Although the overall subunit interfaces appeared to be similar for PKA holoenzymes Ialpha and IIbeta, a region around the active site cleft of the C subunit was more protected in PKA holoenzyme Ialpha than in PKA holoenzyme IIbeta. These results suggest that the C subunit assumes a more open conformation in PKA holoenzyme IIbeta. In addition, the chemical cleavage patterns around the active site cleft of the C subunit were distinctly different in PKA holoenzymes Ialpha and IIbeta even in the presence of cAMP. These observations provide direct evidence that the R subunits may be partially associated with the C subunit with the pseudosubstrate sequence docked in the active site cleft in the presence of cAMP.
Collapse
Affiliation(s)
- Shaoning Yu
- Department of Human Biological Chemistry and Genetics, School of Medicine, The University of Texas Medical Branch, Galveston, Texas 77555-1031, USA
| | | | | | | |
Collapse
|
9
|
Cho-Chung YS. Antisense protein kinase A RI alpha-induced tumor reversion: portrait of a microarray. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2004; 1697:71-9. [PMID: 15023351 DOI: 10.1016/j.bbapap.2003.11.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2003] [Accepted: 11/12/2003] [Indexed: 10/26/2022]
Abstract
Antisense oligonucleotides can selectively block disease-causing genes due to the specificity of the Watson-Crick base-pairing mechanism of action. A genome-wide view of antisense technology is illustrated via protein kinase A RI alpha antisense. Complementary DNA microarray analysis of the RI alpha antisense-induced expression profile shows the up- and down-regulation of clusters of coordinately expressed genes that define the molecular portrait of a reverted tumor cell phenotype. This global view broadens the horizons of antisense technology; it advances the promise of antisense beyond a single target gene to the whole cell and the whole organism. Along with recent rapid advances in oligonucleotide technologies-including new chemical and biological understanding of more sophisticated nucleic acid drugs-oligonucleotide-based gene silencing offers not only an exquisitely specific genetic tool for exploring basic science but also an exciting possibility for treating and preventing cancer and other diseases.
Collapse
Affiliation(s)
- Yoon S Cho-Chung
- Cellular Biochemistry Section, Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Rockville Pike, Bethesda, MD 20892-1750, USA.
| |
Collapse
|
10
|
|
11
|
Lamb D, Steinberg RA. Anti-proliferative effects of 8-chloro-cAMP and other cAMP analogs are unrelated to their effects on protein kinase A regulatory subunit expression. J Cell Physiol 2002; 192:216-24. [PMID: 12115728 DOI: 10.1002/jcp.10131] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Conflicting reports have attributed 8-chloro-cAMP (Cl-cAMP)-mediated inhibition of tumor cell growth to either a toxic 8-chloro-adenosine (Cl-AdR) breakdown product or a Cl-cAMP-mediated decrease in ratio of Type I to Type II regulatory (R) subunits of protein kinase A (PKA). Using the MCF-7 human breast cancer and S49 mouse lymphoma cell lines as models, we show that the effects of Cl-cAMP and other cAMP analogs on growth and R subunit expression are unrelated. MCF-7 cell growth was insensitive to most analogs and inducers of cAMP, but was potently inhibited by Cl-cAMP acting through uptake and phosphorylation of its Cl-AdR breakdown product. Possible roles of adenosine receptors or P(2) purinoceptors in these Cl-cAMP-mediated growth effects were ruled out by studies with agonists and antagonists. Cholera toxin markedly decreased the ratio of Type I to Type II R subunits in MCF-7 cells without affecting growth, while growth inhibitory concentrations of Cl-cAMP or Cl-AdR had insignificant effects on this ratio. In S49 cells, where PKA activation is known to inhibit cell growth, PKA-deficient mutants retained sensitivity to both Cl-cAMP and the related 8-bromo-cAMP. Adenosine kinase (AK)-deficient S49 cells were inhibited only by higher concentrations of these 8-halogenated cAMP analogs. Of the commonly used cAMP analogs, only 8-(4-chlorophenylthio)-cAMP acted purely as a cyclic nucleotide-having no effect on PKA-deficient cells, but strongly inhibiting both wild-type and AK-deficient cells. Where growth inhibitory concentrations of most cAMP analogs reduced RI expression in the AK-deficient mutant, a functionally equivalent concentration of (N(6), O(2'))dibutyryl-cAMP maintained or increased this expression.
Collapse
Affiliation(s)
- Darija Lamb
- Department of Biochemistry and Molecular Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73190, USA
| | | |
Collapse
|
12
|
Schwede F, Maronde E, Genieser H, Jastorff B. Cyclic nucleotide analogs as biochemical tools and prospective drugs. Pharmacol Ther 2000; 87:199-226. [PMID: 11008001 DOI: 10.1016/s0163-7258(00)00051-6] [Citation(s) in RCA: 192] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Cyclic AMP (cAMP) and cyclic GMP (cGMP) are key second messengers involved in a multitude of cellular events. From the wealth of synthetic analogs of cAMP and cGMP, only a few have been explored with regard to their therapeutic potential. Some of the first-generation cyclic nucleotide analogs were promising enough to be tested as drugs, for instance N(6),O(2)'-dibutyryl-cAMP and 8-chloro-cAMP (currently in clinical Phase II trials as an anticancer agent). Moreover, 8-bromo and dibutyryl analogs of cAMP and cGMP have become standard tools for investigations of biochemical and physiological signal transduction pathways. The discovery of the Rp-diastereomers of adenosine 3',5'-cyclic monophosphorothioate and guanosine 3',5'-cyclic monophosphorothioate as competitive inhibitors of cAMP- and cGMP-dependent protein kinases, as well as subsequent development of related analogs, has proven very useful for studying the molecular basis of signal transduction. These analogs exhibit a higher membrane permeability, increased resistance against degradation, and improved target specificity. Furthermore, better understanding of signaling pathways and ligand/protein interactions has led to new therapeutic strategies. For instance, Rp-8-bromo-adenosine 3',5'-cyclic monophosphorothioate is employed against diseases of the immune system. This review will focus mainly on recent developments in cyclic nucleotide-related biochemical and pharmacological research, but also highlights some historical findings in the field.
Collapse
Affiliation(s)
- F Schwede
- Center for Environmental Research and Environmental Technology, Department of Bioorganic Chemistry, University of Bremen, Leobener Strasse, D-28359, Bremen, Germany
| | | | | | | |
Collapse
|
13
|
Kim SN, Kim SG, Park JH, Lee MA, Park SD, Cho-Chung YS, Hong SH. Dual anticancer activity of 8-Cl-cAMP: inhibition of cell proliferation and induction of apoptotic cell death. Biochem Biophys Res Commun 2000; 273:404-10. [PMID: 10873618 DOI: 10.1006/bbrc.2000.2949] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
8-Cl-cAMP induces apoptotic cell death in human cancer cells. To look at this more closely, we examined the changes in the levels of Bcl-2 family proteins during 8-Cl-cAMP-induced apoptosis of SH-SY5Y human neuroblastoma cells. Following the treatment with 8-Cl-cAMP, Bcl-2 was transiently down-regulated and Bad was increased continuously up to day 5. In addition, overexpression of Bcl-2 efficiently blocked the 8-Cl-cAMP-induced apoptosis, suggesting Bcl-2 family proteins may be involved in the 8-Cl-cAMP-induced apoptosis. The contribution of the apoptotic cell death and the inhibition of cell proliferation in the 8-Cl-cAMP-induced growth inhibition was closely monitored in the Bcl-2-overexpressing cells. Though the apoptosis was reduced significantly, no significant difference was observed in the inhibition of cell proliferation up to day 2 of 8-Cl-cAMP treatment. These results suggest that 8-Cl-cAMP exerts anticancer activity by two distinct mechanisms, i.e. , through the inhibition of cell proliferation as well as the induction of apoptosis. Supporting this notion was the observations that (1) suppression of apoptosis by zVAD did not abrogate 8-Cl-cAMP-induced inhibition of cell proliferation, and (2) 8-Cl-cAMP did not show additive inhibition of cell proliferation in RIIbeta-overexpressing cells.
Collapse
Affiliation(s)
- S N Kim
- School of Biological Sciences, Seoul National University, Seoul, 151-742, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
14
|
Tortora G, Ciardiello F. Targeting of epidermal growth factor receptor and protein kinase A: molecular basis and therapeutic applications. Ann Oncol 2000; 11:777-83. [PMID: 10997803 DOI: 10.1023/a:1008390206250] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- G Tortora
- Dipartimento di Endocrinologia e Oncologia Molecolare e Clinica, Università di Napoli Federico II, Italy.
| | | |
Collapse
|
15
|
Indolfi C, Di Lorenzo E, Rapacciuolo A, Stingone AM, Stabile E, Leccia A, Torella D, Caputo R, Ciardiello F, Tortora G, Chiariello M. 8-chloro-cAMP inhibits smooth muscle cell proliferation in vitro and neointima formation induced by balloon injury in vivo. J Am Coll Cardiol 2000; 36:288-93. [PMID: 10898448 DOI: 10.1016/s0735-1097(00)00679-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
OBJECTIVES The aims of the present study were to assess 1) the effect of 8-C1-cAMP (cyclic-3'-5'-adenosine monophosphate) on vascular smooth muscle cell (VSMC) proliferation in vitro and 2) the efficacy of systemic administration of 8-C1-cAMP on neointimal formation after balloon injury in vivo. BACKGROUND Neointimal formation after vascular injury is responsible for restenosis after arterial stenting. Recently, 8-C1-cAMP, a cAMP analogue that induces growth arrest, has been safely administered in phase I studies in humans. METHODS The effect of 8-C1-cAMP on cell proliferation was first assessed on SMCs in vitro. To study the effects of cAMP in vivo, balloon injury was performed in 67 rats using a 2F Fogarty balloon catheter. RESULTS The 8-C1-cAMP markedly inhibited VSMC proliferation in vitro, reduced protein kinase A (PKA) RIalpha subunit expression, and induced PKA RIIbeta subunit expression. In addition, 8-C1-cAMP reduced, in a dose-dependent manner, neointimal area and neointima/media ratio after balloon injury. The proliferative activity, assessed by proliferating nuclear cell antigen immunostaining, revealed a reduction of proliferative activity of VSMCs in vivo in the 8-C1-cAMP group. Moreover, the systemic administration of 8-C1-cAMP did not affect renal function, blood pressure and heart rate. CONCLUSIONS We conclude that 8-C1-cAMP potently inhibits VSMC proliferation in vitro and reduces neointima formation by balloon injury in vivo after systemic administration. These data may have a clinical relevance in designing future strategies to prevent restenosis after arterial stenting and perhaps after percutaneous transluminal coronary angioplasty.
Collapse
MESH Headings
- 8-Bromo Cyclic Adenosine Monophosphate/administration & dosage
- 8-Bromo Cyclic Adenosine Monophosphate/analogs & derivatives
- 8-Bromo Cyclic Adenosine Monophosphate/pharmacology
- Animals
- Antineoplastic Agents/administration & dosage
- Antineoplastic Agents/pharmacology
- Aorta, Thoracic/injuries
- Aorta, Thoracic/pathology
- Arterial Occlusive Diseases/enzymology
- Arterial Occlusive Diseases/metabolism
- Arterial Occlusive Diseases/prevention & control
- Blood Pressure/drug effects
- Catheterization/adverse effects
- Cell Division/drug effects
- Cells, Cultured
- Cyclic AMP-Dependent Protein Kinase RIIbeta Subunit
- Cyclic AMP-Dependent Protein Kinase RIalpha Subunit
- Cyclic AMP-Dependent Protein Kinases/metabolism
- Down-Regulation/drug effects
- Heart Rate/drug effects
- Injections, Intraperitoneal
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Rats
- Rats, Wistar
- Tunica Intima/cytology
- Tunica Intima/drug effects
- Tunica Intima/enzymology
- Up-Regulation/drug effects
Collapse
Affiliation(s)
- C Indolfi
- Department of Molecular and Clinical Endocrinology and Oncology, University Federico II, Naples, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Pesic M, Drabek K, Esler C, Ruzdijic S, Pejanovic V, Pietrzkowski Z. Inhibition of cell growth and proliferation in human glioma cells and normal human astrocytes induced by 8-Cl-cAMP and tiazofurin. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2000; 19:963-75. [PMID: 10893715 DOI: 10.1080/15257770008033036] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
8-Cl-cAMP and tiazofurin (TR) are anti-tumor agents that besides their antiproliferative effect, also induce differentiation of tumor cells. Although, these agents exert a profound effect on the same events of tumor cell life, it is thought that 8-Cl-cAMP and TR act by modulating the signal transduction pathway through distinct mechanisms. We have compared their effect on two human glioma cell lines (U87 MG and U251 MG) and examined if there is selectivity in their action toward normal human astrocytes.
Collapse
Affiliation(s)
- M Pesic
- Institute for Biological Research, Department of Neurobiology and Immunology, Belgrade, Yugoslavia
| | | | | | | | | | | |
Collapse
|
17
|
Alper O, Hacker NF, Cho-Chung YS. Protein kinase A-Ialpha subunit-directed antisense inhibition of ovarian cancer cell growth: crosstalk with tyrosine kinase signaling pathway. Oncogene 1999; 18:4999-5004. [PMID: 10490835 DOI: 10.1038/sj.onc.1202830] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Expression of the RIalpha subunit of cAMP-dependent protein kinase type I is increased in human cancers in which an autocrine pathway for epidermal growth factor-related growth factors is activated. We have investigated the effect of sequence-specific inhibition of RIalpha gene expression on ovarian cancer cell growth. We report that RIalpha antisense treatment results in a reduction in RIalpha expression and protein kinase A type I, and inhibition of cell growth. The growth inhibition was accompanied by changes in cell morphology and appearance of apoptotic nuclei. In addition, EGF receptor, c-erbB-2 and c-erbB-3 levels were reduced, and the basal and EGF-stimulated mitogen-activated protein kinase activities were reduced. Protein kinase A type I and EGF receptor levels were also reduced in cells overexpressing EGF receptor antisense cDNA. These results suggest that the antisense depletion of RIalpha leads to blockade of both the serine-threonine kinase and the tyrosine kinase signaling pathways resulting in arrest of ovarian cancer cell growth.
Collapse
Affiliation(s)
- O Alper
- Cellular Biochemistry Section, Laboratory of Tumor Immunology and Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland MD 20892-1750, USA
| | | | | |
Collapse
|
18
|
Cho-Chung YS. Antisense oligonucleotide inhibition of serine/threonine kinases: an innovative approach to cancer treatment. Pharmacol Ther 1999; 82:437-49. [PMID: 10454218 DOI: 10.1016/s0163-7258(98)00043-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The identification of genes that confer a growth advantage on neoplastic cells and the understanding of the genetic mechanism(s) responsible for their activation have made possible a direct genetic approach to cancer treatment using nucleic acid therapeutics. Moreover, the ability to block the expression of individual genes that promote carcinogenesis provides a powerful tool to explore the molecular basis of normal growth regulation, as well as the opportunity for therapeutic intervention. One technique for turning off a single activated gene is the use of antisense oligodeoxynucleotides and their analogs for inhibition of gene expression. The serine/threonine kinases are involved in mediating intracellular responses to external signals, such as growth factors, hormones, and neurotransmitters, and are involved in cell proliferation and oncogenesis. Described herein are recent studies supporting the potential use of oligonucleotides targeting these kinases as chemotherapeutic agents for cancer treatment. The serine/threonine kinases included here are protein kinase A, protein kinase C, and c-raf-1 kinase.
Collapse
Affiliation(s)
- Y S Cho-Chung
- Cellular Biochemistry Section, Laboratory of Tumor Immunology and Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1750, USA
| |
Collapse
|
19
|
Caraglia M, Di Gennaro E, Barbarulo D, Marra M, Tagliaferri P, Abbruzzese A, Budillon A. Up-regulated EGF receptors undergo to rapid internalization and ubiquitin-dependent degradation in human cancer cells exposed to 8-Cl-cAMP. FEBS Lett 1999; 447:203-8. [PMID: 10214946 DOI: 10.1016/s0014-5793(99)00292-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
8-Cl-cAMP, a cAMP analogue that antagonizes type I cAMP-dependent protein kinase, is a novel anti-tumor agent presently under investigation in clinical trials. Herein we report the effects of this agent on epidermal growth factor receptor expression and degradation in human KB cancer cells. Exposure to 10 microM 8-Cl-cAMP for 48 h induced a 65% increase in epidermal growth factor receptor surface expression while the receptor synthesis was 22-fold enhanced. Analysis of epidermal growth factor-dependent receptor internalization in 8-Cl-cAMP-treated cells showed a higher endocytosis rate as well as an accelerated degradation which occurred together with an increased receptor ubiquitination. The enhanced degradation of epidermal growth factor receptor correlated with the lack of epidermal growth factor-induced proliferation and mitogen-activated protein kinase stimulation. The disregulation of epidermal growth factor receptor internalization and ubiquitin-dependent degradation could underlay a new mechanism of the anti-tumor activity of 8-Cl-cAMP suggesting its combination with agents that disrupt epidermal growth factor receptor signalling.
Collapse
Affiliation(s)
- M Caraglia
- Dipartimento di Biochimica e Biofisica, II Università di Napoli, Naples, Italy
| | | | | | | | | | | | | |
Collapse
|
20
|
Paolillo M, Feliciello A, Porcellini A, Garbi C, Bifulco M, Schinelli S, Ventra C, Stabile E, Ricciardelli G, Schettini G, Avvedimento EV. The type and the localization of cAMP-dependent protein kinase regulate transmission of cAMP signals to the nucleus in cortical and cerebellar granule cells. J Biol Chem 1999; 274:6546-52. [PMID: 10037748 DOI: 10.1074/jbc.274.10.6546] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
cAMP signals are received and transmitted by multiple isoforms of cAMP-dependent protein kinases, typically determined by their specific regulatory subunits. In the brain the major regulatory isoform RIIbeta and the RII-anchor protein, AKAP150 (rat) or 75 (bovine), are differentially expressed. Cortical neurons express RIIbeta and AKAP75; conversely, granule cerebellar cells express predominantly RIalpha and RIIalpha. Cortical neurons accumulate PKA catalytic subunit and phosphorylated cAMP responsive element binding protein very efficiently into nuclei upon cAMP induction, whereas granule cerebellar cells fail to do so. Down-regulation of RIIbeta synthesis by antisense oligonucleotides inhibited cAMP-induced nuclear signaling in cortical neurons. Expression in cerebellar granule cells of RIIbeta and AKAP75 genes by microinjection of specific expression vectors, markedly stimulated cAMP-induced transcription of the lacZ gene driven by a cAMP-responsive element promoter. These data indicate that the composition of PKA in cortical and granule cells underlies the differential ability of these cells to transmit cAMP signals to the nucleus.
Collapse
Affiliation(s)
- M Paolillo
- Istituto di Farmacologia, Facoltà di Farmacia, Università di Pavia, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Ciardiello F, Caputo R, Bianco R, Damiano V, Pomatico G, Pepe S, Bianco AR, Agrawal S, Mendelsohn J, Tortora G. Cooperative inhibition of renal cancer growth by anti-epidermal growth factor receptor antibody and protein kinase A antisense oligonucleotide. J Natl Cancer Inst 1998; 90:1087-94. [PMID: 9672257 DOI: 10.1093/jnci/90.14.1087] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND The expression of epidermal growth factor receptor (EGFR) and type I cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKAI) is associated with neoplastic transformation. By use of human renal cancer cell lines (i.e., 769-P, ACHN, A498, and SW839), we investigated the antiproliferative activity and the antitumor activity of an anti-EGFR humanized chimeric mouse monoclonal antibody, MAb C225, and a novel mixed backbone 18-mer antisense oligonucleotide, HYB 190, that targets expression of the RIalpha regulatory subunit of PKAI. METHODS The antiproliferative activity of MAb C225 and oligonucleotide HYB 190, alone or in combination, on different renal cancer cell lines was determined by monitoring cell growth in soft agar. In addition, the induction of apoptosis by treatment with the anti-EGFR antibody and/or antisense PKAI oligonucleotides was evaluated by flow cytometric analysis of fragmented DNA. The antitumor activity of MAb C225 and oligonucleotide HYB 190 was determined in athymic mice bearing established ACHN tumor xenografts. Cell proliferation and tumor growth data were evaluated for statistical significance using Student's t test; reported P values are two-sided. RESULTS MAb C225 and oligonucleotide HYB 190 inhibited colony formation in soft agar in a dose-dependent manner for all renal cancer cell lines tested. We observed a potentiation of growth inhibition and induction of apoptosis when 769-P cells and ACHN cells were treated with both agents. Combination treatment with MAb C225 and oligonucleotide HYB 190 caused regression of ACHN tumor xenografts, whereas single-agent treatment only delayed tumor growth. CONCLUSION The combination of anti-EGFR MAb C225 and ited cooperative antiproliferative effects and cooperative antitumor effects on EGFR and PKAI-expressing human renal cancer cell lines.
Collapse
Affiliation(s)
- F Ciardiello
- Cattedra di Oncologia Medica, Dipartimento di Endocrinologia e Oncologia Molecolare e Clinica, Facoltà di Medicina e Chirurgia, Università degli Studi di Napoli Federico II, Naples, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Tortora G, Caputo R, Damiano V, Bianco R, Pepe S, Pomatico G, Bianco AR, Jiang Z, Agrawal S, Ciardiello F. Cooperative antitumor effect of mixed backbone oligonucleotides targeting protein kinase A in combination with cytotoxic drugs or biologic agents. ANTISENSE & NUCLEIC ACID DRUG DEVELOPMENT 1998; 8:141-5. [PMID: 9593054 DOI: 10.1089/oli.1.1998.8.141] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- G Tortora
- Cattedra di Oncologia Medica, Dipartimento di Endocrinologia e Oncologia Molecolare e Clinica, Università Federico II, Napoli, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Ciardiello F, Dixit M, di Isernia G, Damiano V, Bianco R, Bianco AR, Arteaga CL, Tortora G. Down-regulation of type I protein kinase A by transfection of human breast cancer cells with an epidermal growth factor receptor antisense expression vector. Breast Cancer Res Treat 1998; 47:57-62. [PMID: 9493976 DOI: 10.1023/a:1005909419828] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
MDA-468 human breast cancer cells overexpress the EGFR and exhibit a functional TGFalpha-EGFR autocrine pathway. Loss of EGFR expression following stable transfection with an antisense EGFR cDNA containing plasmid down-regulates type I cAMP-dependent protein kinase (PKAI) expression with acquisition of cell growth resistance to the PKAI inhibitor 8-Cl-cAMP. These results suggest that PKAI expression and function are controlled by a TGFalpha-EGFR autocrine pathway in human breast cancer cells overexpressing the EGFR.
Collapse
Affiliation(s)
- F Ciardiello
- Dipartimento di Endocrinologia e Oncologia Molecolare e Clinica, Facoltà di Medicina e Chirurgia, Università degli Studi di Napoli Federico II, Italy
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Tortora G, Caputo R, Damiano V, Bianco R, Pepe S, Bianco AR, Jiang Z, Agrawal S, Ciardiello F. Synergistic inhibition of human cancer cell growth by cytotoxic drugs and mixed backbone antisense oligonucleotide targeting protein kinase A. Proc Natl Acad Sci U S A 1997; 94:12586-91. [PMID: 9356493 PMCID: PMC25047 DOI: 10.1073/pnas.94.23.12586] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Protein kinase A type I plays a key role in neoplastic transformation, conveying mitogenic signals of different growth factors and oncogenes. Inhibition of protein kinase A type I by antisense oligonucleotides targeting its RIalpha regulatory subunit results in cancer cell growth inhibition in vitro and in vivo. A novel mixed backbone oligonucleotide HYB 190 and its mismatched control HYB 239 were tested on soft agar growth of several human cancer cell types. HYB 190 demonstrated a dose-dependent inhibition of colony formation in all cell lines whereas the HYB 239 at the same doses caused a modest or no growth inhibition. A noninhibitory dose of each mixed backbone oligonucleotide was used in OVCAR-3 ovarian and GEO colon cancer cells to study whether any cooperative effect may occur between the antisense and a series of cytotoxic drugs acting by different mechanisms. Treatment with HYB 190 resulted in an additive growth inhibitory effect with several cytotoxic drugs when measured by soft agar colony formation. A synergistic growth inhibition, which correlated with increased apoptosis, was observed when HYB 190 was added to cancer cells treated with taxanes, platinum-based compounds, and topoisomerase II selective drugs. This synergistic effect was also observed in breast cancer cells and was obtained with other related drugs such as docetaxel and carboplatin. Combination of HYB 190 and paclitaxel resulted in an accumulation of cells in late S-G2 phases of cell cycle and marked induction of apoptosis. A cooperative effect of HYB 190 and paclitaxel was also obtained in vivo in nude mice bearing human GEO colon cancer xenografts. These results are the first report of a cooperative growth inhibitory effect obtained in a variety of human cancer cell lines by antisense mixed backbone oligonucleotide targeting protein kinase A type I-mediated mitogenic signals and specific cytotoxic drugs.
Collapse
Affiliation(s)
- G Tortora
- Cattedra di Oncologia Medica, Dipartimento di Endocrinologia e Oncologia Molecolare e Clinica, Università Federico II, Via Pansini 5, 80131 Napoli, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Cummings J, Langdon SP, Ritchie AA, Burns DJ, Mackay J, Stockman P, Leonard RC, Miller WR. Pharmacokinetics, metabolism and tumour disposition of 8-chloroadenosine 3',5'-monophosphate in breast cancer patients and xenograft bearing mice. Ann Oncol 1996; 7:291-6. [PMID: 8740794 DOI: 10.1093/oxfordjournals.annonc.a010574] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND 8-Chloroadenosine 3',5'-monophosphate (8-Cl-cAMP) is undergoing phase I clinical trials as an anticancer drug. However, there is debate as to whether it is a prodrug for its 8-Cl-adenosine metabolite. DESIGN Pharmacokinetics, metabolism and tumour disposition studies have been performed in 7 breast cancer patients receiving continuous infusion (28 day) 8-Cl-cAMP (0.54 or 1.08 mg/kg/day) and tumour biopsies were obtained before and on the last day of infusion. Parallel studies were performed in nude mice bearing the HT29 human colon cancer xenograft after continuous infusion (7 day) of active drug doses (50 or 100 mg/kg/day). RESULTS Steady state plasma levels (Css) of 8-Cl-cAMP in patients ranged from 0.15-0.72 microM but 8-Cl-adenosine was not detected in plasma. In contrast, 8-Cl-cAMP was not detectable in 3 tumour biopsies but 8-Cl-adenosine was present in 2 samples at high concentrations (1.33 and 2.02 microM). In mice, Css of 8-Cl-cAMP ranged from 3.2-4.6 microM and 8-Cl adenosine was present in plasma only at the higher dose (100 mg/kg/day, peak concentration of 2.3 microM). In the HT29 xenograft, 8-Cl-cAMP levels were considerably lower than in plasma (0.37-1.22 microM) while 8-Cl-adenosine was present at 5.3-21.0 microM and 8-Cl-AMP was found at 11.3-35.7 microM. CONCLUSIONS The fate of 8-Cl-cAMP in human tumours is characterised by extensive metabolism to products which are not generally observed in plasma. These data raise the possibility that 8-Cl-cAMP is a prodrug for a product of its metabolism in human tumours.
Collapse
Affiliation(s)
- J Cummings
- Imperial Cancer Research Fund, Western General Hospital, Edinburgh, U.K
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Cho-Chung YS. Protein kinase A-directed antisense restrains cancer growth: sequence-specific inhibition of gene expression. ANTISENSE & NUCLEIC ACID DRUG DEVELOPMENT 1996; 6:237-44. [PMID: 8915509 DOI: 10.1089/oli.1.1996.6.237] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Increased expression of the RI alpha subunit of cAMP-dependent protein kinase type I has been shown in human cancer cell lines, in primary tumors, in cells after transformation, and in cells upon stimulation of growth. The sequence-specific inhibition of RI alpha gene expression by an antisense oligodeoxynucleotide results in the differentiation of leukemia cells and growth arrest of cancer cells of epithelial origin. A single-injection RI alpha antisense treatment in vivo also causes a reduction in RI alpha expression and inhibition of tumor growth. Tumor cells behave like untransformed cells by making less protein kinase type I. The RI alpha antisense, which produces a biochemical imprint for growth control, requires infrequent dosing to restrain neoplastic growth in vivo.
Collapse
Affiliation(s)
- Y S Cho-Chung
- Cellular Biochemistry Section, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1750, USA
| |
Collapse
|
27
|
Strobl JS, Wonderlin WF, Flynn DC. Mitogenic signal transduction in human breast cancer cells. GENERAL PHARMACOLOGY 1995; 26:1643-9. [PMID: 8745151 DOI: 10.1016/0306-3623(95)00062-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
1. Signal transduction pathways activated during growth of human breast cancer cells in tissue culture are reviewed. 2. Steroid hormones and growth factors stimulate similar mitogenic pathways and frequently modulate each other's activity. 3. A response common to estrogen, progestins and most polypeptide mitogens is induction of the nuclear transcription factors myc, fos and jun in early G1 phase of the cell cycle. 4. Some growth factors also stimulate cyclin D1, a regulatory protein responsible for the activation of cell cycle-dependent kinases in G1. 5. In addition, insulin, IGF-I and EGF activate tyrosine kinase receptors. 6. Several tyrosine phosphorylated proteins occur in human breast cancer cells, and include the EGF and estrogen receptors. 7. Cyclic AMP plays a critical role in breast cancer cell proliferation through the activation of protein kinase A, and it also modulates the activity of estrogen and progesterone receptors. 8. EGF is the only breast cell mitogen known to raise intracellular free calcium levels. 9. Calcium may play a dual role in breast cancer cell proliferation, activating both calmodulin-dependent processes and regulating cell membrane potential through the activation of potassium channels. 10. Potassium channel activity and cell proliferation are linked in breast cancer cells, the cell membrane potential shifting between a depolarized state in G1/G0 cells and a hyperpolarized state during S phase. 11. Activation of an ATP-sensitive potassium channel is required for breast cancer cells to undergo the G1/G0-S transition.
Collapse
Affiliation(s)
- J S Strobl
- Department of Pharmacology & Toxicology, West Virginia University, Morgantown 26506, USA
| | | | | |
Collapse
|
28
|
Cho-Chung YS, Pepe S, Clair T, Budillon A, Nesterova M. cAMP-dependent protein kinase: role in normal and malignant growth. Crit Rev Oncol Hematol 1995; 21:33-61. [PMID: 8822496 DOI: 10.1016/1040-8428(94)00166-9] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- Y S Cho-Chung
- Laboratory of Tumor Immunology and Biology, DCBDC, NCI, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
29
|
Roger PP, Reuse S, Maenhaut C, Dumont JE. Multiple facets of the modulation of growth by cAMP. VITAMINS AND HORMONES 1995; 51:59-191. [PMID: 7483330 DOI: 10.1016/s0083-6729(08)61038-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- P P Roger
- Institute of Interdisciplinary Research, Free University of Brussels, Belgium
| | | | | | | |
Collapse
|
30
|
Ciardiello F, Tortora G, Pepe S, Bianco C, Baldassarre G, Ruggiero A, Bianco C, Selvam MP, Bianco AR. Reduction of RI alpha subunit of cAMP-dependent protein kinase expression induces growth inhibition of human mammary epithelial cells transformed by TGF-alpha, c-Ha-ras, and c-erbB-2 genes. Ann N Y Acad Sci 1993; 698:102-7. [PMID: 7904135 DOI: 10.1111/j.1749-6632.1993.tb17194.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- F Ciardiello
- Cattedra di Oncologia Medica, II Facoltà di Medicina e Chirurgia, Università degli Studi di Napoli, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Cho-Chung YS, Clair T. The regulatory subunit of cAMP-dependent protein kinase as a target for chemotherapy of cancer and other cellular dysfunctional-related diseases. Pharmacol Ther 1993; 60:265-88. [PMID: 8022860 DOI: 10.1016/0163-7258(93)90010-b] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Three separate experimental approaches, using site-selective cAMP analogs, antisense strategy and retroviral vector-mediated gene transfer, have provided evidence that two isoforms, the RI- and RII-regulatory subunits of cAMP-dependent protein kinase, have opposite roles in cell growth and differentiation; RI being growth stimulatory while RII is a growth-inhibitory and differentiation-inducing protein. As RI expression is enhanced during chemical or viral carcinogenesis, in human cancer cell lines and in primary human tumors, it is a target for cancer diagnosis and therapy. 8-Cl-cAMP and RI antisense oligodeoxynucleotide, those that effectively down-regulate RI alpha and up-regulate RII beta, provide new approaches toward the treatment of cancer. This approach to modulation of RI vs RII cAMP transducers may also be beneficial toward therapy of endocrine or cellular dysfunction-related diseases where abnormal signal transduction of cAMP is critically involved.
Collapse
Affiliation(s)
- Y S Cho-Chung
- Cellular Biochemistry Section, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | | |
Collapse
|
32
|
Ciardiello F, Pepe S, Bianco C, Baldassarre G, Ruggiero A, Bianco C, Selvam MP, Bianco AR, Tortora G. Down-regulation of RI alpha subunit of cAMP-dependent protein kinase induces growth inhibition of human mammary epithelial cells transformed by c-Ha-ras and c-erbB-2 proto-oncogenes. Int J Cancer 1993; 53:438-43. [PMID: 8094073 DOI: 10.1002/ijc.2910530315] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
MCF-10A is a spontaneously immortalized, non-transformed human mammary epithelial cell line. We have recently obtained MCF-10A clones (MCF-10A HE cells) that are transformed following over-expression of both a human point-mutated c-Ha-ras and the c-erbB-2 proto-oncogenes. Two isoforms of the cAMP-dependent protein kinase (cAK) have been described in mammalian cells. Enhanced levels of type-I cAK (cAKI) are generally found in tumor cells. To determine whether inhibition of cAKI expression may interfere with ras and erbB-2 oncogene-induced transformation of human mammary epithelial cells, we have tested the effects of 2 agents that specifically down-regulate cAKI, such as 8-chloro-cAMP and an anti-sense oligodeoxynucleotide targeted against the RI alpha regulatory subunit of cAKI on MCF-10A HE cells. Treatment of MCF-10A HE cells with 8-chloro-cAMP induces a dose-dependent growth inhibition under both monolayer and soft-agar growth conditions, that is correlated with an accumulation of MCF-10A HE cells in G0/G1 phases of the cell cycle and a reduction of the number of cells in S phase. In contrast, 8-chloro-cAMP has no effect on MCF-10A cell growth. Furthermore, 8-chloro-cAMP treatment of MCF-10A HE cells induces a 4- to 6-fold reduction in p185erbB-2 expression and brings p21ras expression to levels comparable to those found in MCF-10A cells. Treatment of MCF-10A HE cells with an RI alpha anti-sense oligodeoxynucleotide determines a comparable inhibition of both anchorage-dependent and anchorage-independent cell growth. Our results suggest that cAKI may act as a mediator of ras and erbB-2 oncogene action in human breast cells and that interference with cAKI action provides a potential tool for inhibiting the growth-promoting effects of these oncogenes.
Collapse
Affiliation(s)
- F Ciardiello
- Cattedra di Oncologia Medica, II Facoltà di Medicina e Chirurgia, Università degli Studi di Napoli, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Just G, Holler E. Enhanced levels of cyclic AMP, adenosine(5')tetraphospho(5')adenosine and nucleoside 5'-triphosphates in mouse leukemia P388/D1 after treatment with cis-diamminedichloroplatinum(II). Biochem Pharmacol 1991; 42:285-94. [PMID: 1650208 DOI: 10.1016/0006-2952(91)90715-h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
As part of the exploration of the mechanism of platinum(II) complex-induced growth inhibition and/or cytotoxicity, we studied the intracellular levels of several nucleotides during treatment of mouse leukemia P388/D1 at selected concentrations of 1 microM cis-diamminedichloroplatinum(II) (cis-DDP) and 20 microM of its trans-isomer (trans-DDP). The effects and their time-dependences are correlated with those on cell growth parameters previously published (Just G and Holler E, Cancer Res 49: 7072-7078, 1989). The effects of cis-DDP are strong and irreversible, whereas those of trans-DDP are marginal and reversible, in parallel with similar effects on cell growth parameters. Concentrations of nucleoside 5'-di- and 5'-triphosphates increase in parallel with cellular DNA and protein content by three- to four-fold after 60 hr of treatment. The nucleoside monophosphates dAMP, dGMP and dTMP reveal concentration maxima during exponential cell growth that are two- to six-fold higher than in the control cultures. Levels of cyclic AMP, adenosine(5')tetraphospho(5')adenosine (Ap4A) and CDP rise three- to five-fold above those in the control cultures within a few hours of the start of treatment. The level of coenzyme NAD+ falls below that of the control, concomitantly with an arrest of cells in the G2 phase of the cell cycle and with the appearance of giant cells. Due to the high reactivity of cis-DDP and the continuous concentration increase during the treatment, purine nucleoside 5'-triphosphates provide a possibility for the acquisition of resistance to cis-DDP. The correlation of responses of metabolically and regulatory active nucleotides with biological effects suggests their function in antitumorigenesis.
Collapse
Affiliation(s)
- G Just
- Institut für Biophysik und physikalische Biochemie, Universität Regensburg, Germany
| | | |
Collapse
|
34
|
Tortora G, Pepe S, Yokozaki H, Meissner S, Cho-Chung YS. Cooperative effect of 8-Cl-cAMP and rhGM-CSF on the differentiation of HL-60 human leukemia cells. Biochem Biophys Res Commun 1991; 177:1133-40. [PMID: 2059204 DOI: 10.1016/0006-291x(91)90657-s] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In HL-60 leukemia cells the site-selective cAMP analog, 8-Cl-cAMP, at a dose of 5 microM produced growth inhibition with no signs of toxicity, whereas granulocyte-macrophage colony stimulating factor (GM-CSF) exerted an early transient increase of cell proliferation which was followed by differentiation toward monocytes. 8-Cl-cAMP in combination with GM-CSF blocked the growth stimulation due to GM-CSF and demonstrated a synergistic effect on the differentiation of HL-60 cells. The early proliferative effect of GM-CSF was correlated with an increased expression of type I regulatory subunit of cAMP-dependent protein kinase (RI alpha). Treatment with an RI alpha antisense oligodeoxynucleotide suppressed the GM-CSF-inducible cell proliferation and differentiation. Conversely, an RII beta antisense oligodeoxynucleotide, which suppresses the RII beta and causes a compensatory increase in RI alpha level, greatly enhanced the early proliferative input and the differentiation induced by GM-CSF. These results provide an insight into the mechanism of action of GM-CSF and the rationale for a combination differentiation therapy with 8-Cl-cAMP and GM-CSF.
Collapse
Affiliation(s)
- G Tortora
- Laboratory of Tumor Immunology and Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | | | | | | | | |
Collapse
|
35
|
Ciardiello F, Kim N, McGeady ML, Liscia DS, Saeki T, Bianco C, Salomon DS. Expression of transforming growth factor alpha (TGF alpha) in breast cancer. Ann Oncol 1991; 2:169-82. [PMID: 2043488 DOI: 10.1093/oxfordjournals.annonc.a057897] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Transforming growth factor alpha (TGF alpha) is one growth factor that has been circumstantially implicated in regulating the autocrine growth of breast cancer cells. Expression of TGF alpha can be modulated by activated cellular protooncogenes such as ras and by estrogens. For example, the epidermal growth factor (EGF)-responsive normal NOG-8 mouse and human MCF-10A mammary epithelial cell lines can be transformed with either a point-mutated c-Ha-ras protooncogene or with a normal or point-mutated c-neu (erbB-2) protooncogene. In ras transformed NOG-8 and MCF-10A cells but not in neu transformed cells there is a loss in or an attenuated response to the mitogenic effects of EGF. This response may be due in part to an enhanced production of endogenous TGF alpha that is coordinately and temporally linked to the expression of the activated ras gene and to the acquisition of transformation-associated properties in these cells. TGF alpha mRNA and TGF alpha protein can also be detected in approximately 50-70% of primary human breast tumors. In addition, approximately 2- to 3-fold higher levels of biologically active and immunoreactive TGF alpha can also be detected in the pleural effusions from breast cancer patients as compared with the TGF alpha levels in the serous effusions of noncancer patients. Over-expression of a full-length TGF alpha cDNA in NOG-8 and MCF-10A cells is capable of transforming these cells. Finally, expression of TGF alpha mRNA and production of biologically active TGF alpha protein is also found in normal rodent and human mammary epithelial cells.
Collapse
Affiliation(s)
- F Ciardiello
- Laboratory of Tumor Immunology and Biology, National Cancer Institute, National Institutes of Health, Bethesda
| | | | | | | | | | | | | |
Collapse
|
36
|
Cho-Chung YS, Clair T, Tortora G, Yokozaki H. Role of site-selective cAMP analogs in the control and reversal of malignancy. Pharmacol Ther 1991; 50:1-33. [PMID: 1653961 DOI: 10.1016/0163-7258(91)90071-s] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Two isoforms of cAMP receptor protein, RI and RII, the regulatory subunits of cAMP-dependent protein kinase, transduce opposite signals, the RI being stimulatory and the RII being inhibitory of cell proliferation. In normal cells RI and RII exist at a specific physiological ratio whereas in cancer cells such physiological balance of these receptor proteins is disrupted. Reversal and suppression of malignancy can be achieved when the physiologic ratio of these intracellular signal transducers of cAMP is restored as shown by the use of site-selective cAMP analogs, antisense oligodeoxynucleotides or gene transfer, suggesting new approaches to cancer control.
Collapse
Affiliation(s)
- Y S Cho-Chung
- Cellular Biochemistry Section, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | | | | | | |
Collapse
|
37
|
Cho-Chung YS, Clair T, Tortora G, Yokozaki H, Pepe S. Suppression of malignancy targeting the intracellular signal transducing proteins of cAMP: the use of site-selective cAMP analogs, antisense strategy, and gene transfer. Life Sci 1991; 48:1123-32. [PMID: 1848339 DOI: 10.1016/0024-3205(91)90449-l] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
An hypothesis has been presented suggesting that two isoforms of cAMP receptor proteins are crucial effectors in tumorigenesis. The evidence in support of this hypothesis shows that: (1) cAMP transduces dual controls, both positive and negative, on cell growth and differentiation. (2) Such dual controls are respectively governed by two isoforms of cAMP receptor proteins, the type I and type II regulatory subunits of cAMP-dependent protein kinase. (3) In normal physiology, the functional balance of these cAMP receptor isoforms is strictly controlled to meet either stimulation or inhibition of cell growth as it is required, whereas such control is lost in cancer cells. (4) Cancer cells can also be made to differentiate and acquire growth control when the functional balance of these intracellular signal transducers of cAMP is restored by the use of site-selective cAMP analogs, antisense strategy, or gene transfer, suggesting new approaches to cancer therapy.
Collapse
Affiliation(s)
- Y S Cho-Chung
- Cellular Biochemistry Section, National Cancer Institute, Bethesda, Maryland 20892
| | | | | | | | | |
Collapse
|