1
|
Torres RM, Turner JA, D’Antonio M, Pelanda R, Kremer KN. Regulation of CD8 T-cell signaling, metabolism, and cytotoxic activity by extracellular lysophosphatidic acid. Immunol Rev 2023; 317:203-222. [PMID: 37096808 PMCID: PMC10523933 DOI: 10.1111/imr.13208] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/07/2023] [Accepted: 04/08/2023] [Indexed: 04/26/2023]
Abstract
Lysophosphatidic acid (LPA) is an endogenous bioactive lipid that is produced extracellularly and signals to cells via cognate LPA receptors, which are G-protein coupled receptors (GPCRs). Mature lymphocytes in mice and humans express three LPA receptors, LPA2 , LPA5, and LPA6 , and work from our group has determined that LPA5 signaling by T lymphocytes inhibits specific antigen-receptor signaling pathways that ultimately impair lymphocyte activation, proliferation, and function. In this review, we discuss previous and ongoing work characterizing the ability of an LPA-LPA5 axis to serve as a peripheral immunological tolerance mechanism that restrains adaptive immunity but is subverted during settings of chronic inflammation. Specifically, LPA-LPA5 signaling is found to regulate effector cytotoxic CD8 T cells by (at least) two mechanisms: (i) regulating the actin-microtubule cytoskeleton in a manner that impairs immunological synapse formation between an effector CD8 T cell and antigen-specific target cell, thus directly impairing cytotoxic activity, and (ii) shifting T-cell metabolism to depend on fatty-acid oxidation for mitochondrial respiration and reducing metabolic efficiency. The in vivo outcome of LPA5 inhibitory activity impairs CD8 T-cell killing and tumor immunity in mouse models providing impetus to consider LPA5 antagonism for the treatment of malignancies and chronic infections.
Collapse
Affiliation(s)
- Raul M. Torres
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora Colorado, 80045
| | - Jacqueline A. Turner
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora Colorado, 80045
| | - Marc D’Antonio
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora Colorado, 80045
| | - Roberta Pelanda
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora Colorado, 80045
| | - Kimberly N. Kremer
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora Colorado, 80045
| |
Collapse
|
2
|
Oh SC, Kim SE, Jang IH, Kim SM, Lee SY, Lee S, Chu IS, Yoon SR, Jung H, Choi I, Doh J, Kim TD. NgR1 is an NK cell inhibitory receptor that destabilizes the immunological synapse. Nat Immunol 2023; 24:463-473. [PMID: 36624164 DOI: 10.1038/s41590-022-01394-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 11/22/2022] [Indexed: 01/10/2023]
Abstract
The formation of an immunological synapse (IS) is essential for natural killer (NK) cells to eliminate target cells. Despite an advanced understanding of the characteristics of the IS and its formation processes, the mechanisms that regulate its stability via the cytoskeleton are unclear. Here, we show that Nogo receptor 1 (NgR1) has an important function in modulating NK cell-mediated killing by destabilization of IS formation. NgR1 deficiency or blockade resulted in improved tumor control of NK cells by enhancing NK-to-target cell contact stability and regulating F-actin dynamics during IS formation. Patients with tumors expressing abundant NgR1 ligand had poor prognosis despite high levels of NK cell infiltration. Thus, our study identifies NgR1 as an immune checkpoint in IS formation and indicates a potential approach to improve the cytolytic function of NK cells in cancer immunotherapy.
Collapse
Affiliation(s)
- Se-Chan Oh
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Seong-Eun Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - In-Hwan Jang
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Seok-Min Kim
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Soo Yun Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Sunyoung Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea.,Department of Life Sciences, Korea University, Seoul, Republic of Korea
| | - In-Sun Chu
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea.,Department of Bioinformatics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Suk Ran Yoon
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Haiyoung Jung
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Inpyo Choi
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Junsang Doh
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Institute of Engineering Research, Bio-MAX Institute, Soft Foundry Institute, Seoul National University, Seoul, Republic of Korea.
| | - Tae-Don Kim
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea. .,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, Republic of Korea. .,Biomedical Mathematics Group, Institute for Basic Science, Daejeon, Republic of Korea. .,Department of Biopharmaceutical Convergence, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea.
| |
Collapse
|
3
|
Santoni G, Amantini C, Santoni M, Maggi F, Morelli MB, Santoni A. Mechanosensation and Mechanotransduction in Natural Killer Cells. Front Immunol 2021; 12:688918. [PMID: 34335592 PMCID: PMC8320435 DOI: 10.3389/fimmu.2021.688918] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
Natural killer (NK) cells are a main subset of innate lymphocytes that contribute to host immune protection against viruses and tumors by mediating target cell killing and secreting a wide array of cytokines. Their functions are finely regulated by a balance between activating and inhibitory receptors and involve also adhesive interactions. Mechanotransduction is the process in which physical forces sensed by mechanosensors are translated into chemical signaling. Herein, we report findings on the involvement of this mechanism that is mainly mediated by actin cytoskeleton, in the regulation of NK cell adhesion, migration, tissue infiltration and functions. Actin represents the structural basis for NK cell immunological synapse (NKIS) and polarization of secretory apparatus. NK-target cell interaction involves the formation of both uropods and membrane nanotubes that allow target cell interaction over long distances. Actin retrograde flow (ARF) regulates NK cell signaling and controls the equilibrium between activation versus inhibition. Activating NKIS is associated with rapid lamellipodial ARF, whereas lower centripetal actin flow is present during inhibitory NKIS where β actin can associate with the tyrosine phosphatase SHP-1. Overall, a better knowledge of mechanotransduction might represent a future challenge: Realization of nanomaterials tailored for NK cells, would be important to translate in vitro studies in in vivo new immunotherapeutic approaches.
Collapse
Affiliation(s)
- Giorgio Santoni
- School of Pharmacy, Section of Experimental Medicine, University of Camerino, Camerino, Italy
| | - Consuelo Amantini
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | | | - Federica Maggi
- School of Pharmacy, Section of Experimental Medicine, University of Camerino, Camerino, Italy.,Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Maria Beatrice Morelli
- School of Pharmacy, Section of Experimental Medicine, University of Camerino, Camerino, Italy
| | - Angela Santoni
- Department of Molecular Medicine, Sapienza University, Rome, Italy.,IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|
4
|
Abstract
IMiDs immunomodulatory drugs, including lenalidomide and pomalidomide represent a novel class of small molecule anticancer and anti-inflammatory drugs with broad biologic activities. However, the molecular mechanism through which these drugs exert their effects is largely undefined. Using pomalidomide and primary human monocytes, we report that pomalidomide rapidly and selectively activated RhoA and Rac1, but not Cdc42 or Ras, in the absence of any costimulation. Consistent with the activation of Rho GTPases, we found that pomalidomide enhanced F-actin formation, stabilized microtubules, and increased cell migration, all of which were blocked by selective inhibitors of ROCK1 and Rac1. Further, we showed that in Swiss 3T3 cells, pomalidomide only activated RhoA, not Rac1 or Cdc42, and potently induced stress fiber formation. The pomalidomide effect on actin cytoskeleton was blocked by the ROCK1 inhibitor, but not Rac1 inhibitor. Finally, we demonstrated that pomalidomide was able to regulate the activity of Rho GTPases and the formation of F-actin in primary human T cells as it did in monocytes and showed that the activation of RhoA was essential for pomalidomide-induced interleukin-2 expression in T cells. These novel activities provide what we believe a critical mechanism by which IMiDs drugs function as therapeutic immunomodulatory agents.
Collapse
|
5
|
Zhang Z, Schittenhelm J, Meyermann R, Schluesener HJ. Lesional accumulation of RhoA+cells in brains of experimental autoimmune encephalomyelitis and multiple sclerosis. Neuropathol Appl Neurobiol 2008; 34:231-40. [DOI: 10.1111/j.1365-2990.2007.00892.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Zhang Z, Fauser U, Schluesener HJ. Dexamethasone suppresses infiltration of RhoA+ cells into early lesions of rat traumatic brain injury. Acta Neuropathol 2008; 115:335-43. [PMID: 17929039 DOI: 10.1007/s00401-007-0301-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2007] [Revised: 09/02/2007] [Accepted: 09/18/2007] [Indexed: 01/19/2023]
Abstract
Inflammatory cell infiltration is a major part of secondary tissue damage in traumatic brain injury (TBI). RhoA is an important member of Rho GTPases and is involved in leukocyte migration. Inhibition of RhoA and its downstream target, Rho-associated coiled kinase (ROCK), has been proven to promote axon regeneration and function recovery following injury in the central nervous system (CNS). Previously, we showed that dexamethasone, an immunosuppressive corticosteroid, attenuated early expression of three molecules associated with microglia/macrophages activation following TBI in rats. Here, the effects of dexamethasone on the early expression of RhoA have been investigated in brains of TBI rats by immunohistochemistry. In brains of rats treated with TBI alone, significant RhoA+ cell accumulation was observed at 18 h post-injury and continuously increased during our observed time period. The accumulated RhoA+ cells were distributed to the areas of pannecrosis and selective neuronal loss. Most accumulated RhoA+ cells were identified as active microglia/macrophages by double-labelling. Dexamethasone (1 mg/kg body weight) was intraperitoneally injected on day 0 and 2 immediately following brain injury. Numbers of RhoA+ cells were significantly reduced on day 1 and 2 following administration of dexamethasone but returned to vehicle control level on day 4. However, dexamethasone treatment did not change the proportion of RhoA+ cells. These observations suggest that dexamethasone has only a transient effect on early leukocyte recruitment.
Collapse
Affiliation(s)
- Zhiren Zhang
- Institute of Brain Research, University of Tuebingen, Calwer Str. 3, 72076 Tuebingen, Germany.
| | | | | |
Collapse
|
7
|
Zhang Z, Fauser U, Schluesener HJ. Expression of RhoA by inflammatory macrophages and T cells in rat experimental autoimmune neuritis. J Cell Mol Med 2007; 11:111-9. [PMID: 17367505 PMCID: PMC4401224 DOI: 10.1111/j.1582-4934.2007.00004.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
RhoA is one of the best-studied members of Rho GTPases. Experimental autoimmune neuritis (EAN), which is characterized by infiltration of T cells and macrophages into the peripheral nervous system, is an autoantigen-specific T-cell-mediated animal model of human Guillain-Barré Syndrome. In this study, RhoA expression has been investigated in the dorsal/ventral roots of EAN rats by immunohistochemistry. A significant accumulation of RhoA+ cells was observed on Day 12, with a maximum around Day 15, correlating to the clinical severity of EAN. In dorsal/ventral roots of EAN, RhoA+ cells were seen in perivascular areas but also in the parenchyma. Furthermore, double-labelling experiments showed that the major cellular sources of RhoA were reactive macrophages and T cells. In conclusion, this is the first demonstration of the presence of RhoA in the dorsal/ventral roots of EAN. The time courses and cellular sources of RhoA together with the functions of RhoA indicate that RhoA may function to facilitate macrophage and T-cell infiltration in EAN and therefore could be a potential therapeutic target.
Collapse
Affiliation(s)
- Zhiren Zhang
- Institute of Brain Research, University of Tuebingen, Tuebingen, Germany.
| | | | | |
Collapse
|
8
|
Fukui K, Tamura S, Wada A, Kamada Y, Sawai Y, Imanaka K, Kudara T, Shimomura I, Hayashi N. Expression and prognostic role of RhoA GTPases in hepatocellular carcinoma. J Cancer Res Clin Oncol 2006; 132:627-33. [PMID: 16810502 DOI: 10.1007/s00432-006-0107-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2006] [Accepted: 04/07/2006] [Indexed: 12/22/2022]
Abstract
The Rho sub-family of proteins is involved in regulating the organization of the cytoskeleton and in cell motility. Our aim is to clarify the clinical significance of Rho protein in hepatocellular carcinomas (HCC) and to determine the relationship between the level of expression and patient outcome following hepatectomy. The expression of RhoA protein in HCC and corresponding non-tumor tissues of 26 patients who underwent surgical resection was analyzed by immunoblotting. The expression level of each case was calculated as tumor/non-tumor (T/N) ratios. High expression (T/N> or =1) of RhoA protein in HCC compared to the paired non-tumor tissues was recognized in 18 patients (69.2%) of 26 samples. The activity of RhoA is also increased in HCC with high expression of RhoA. The high expression of RhoA protein did not correlate with various clinical parameters. However, the disease-free survival rates of the RhoA-high expression group (T/N> or =1) were significantly lower than those of the RhoA-low expression group (T/N<1) (P<0.05). The high expression of RhoA protein in HCC plays an important role in intrahepatic recurrence of patients who underwent a hepatectomy for HCC, and RhoA is a useful marker for predicting early recurrence in an early-stage HCC.
Collapse
Affiliation(s)
- Koji Fukui
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Osaka University, 2-2, K1, Yamada-oka, Suita, Osaka, 565-0871, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Wada A, Fukui K, Sawai Y, Imanaka K, Kiso S, Tamura S, Shimomura I, Hayashi N. Pamidronate induced anti-proliferative, apoptotic, and anti-migratory effects in hepatocellular carcinoma. J Hepatol 2006; 44:142-50. [PMID: 16298452 DOI: 10.1016/j.jhep.2005.09.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2005] [Revised: 08/03/2005] [Accepted: 09/05/2005] [Indexed: 12/04/2022]
Abstract
BACKGROUND/AIMS The small GTPase of Ras and Rho families are widely involved in human tumorgenesis and metastasis. It has recently been reported that pamidronate inhibits the mevalonate pathway, which is required for the prenylation of the small GTPase. We demonstrated a possible beneficial use of pamidronate in the treatment of hepatocellular carcinoma (HCC). METHODS The effect of pamidronate on cell proliferation was analyzed with five hepatoma cell lines using MTT assay. Apoptosis was evaluated by staining with DAPI and a histon ELISA assay. A cell migration assay was performed using the Modified Boyden Chamber. To analyze anti-proliferation effect of pamidronate in vivo, tumor volumes were monitored with the intraperitoneal injection of pamidronate after subcutaneous inoculation of PLC/PRF/5 cells into nude mice. RESULTS Pamidronate inhibited cell growth for all hepatoma cell lines. The amount of membrane associated Ras and phosphorylated extracellular signal-regulated kinase 2 (ERK 2) were reduced after pamidronate treatment. Pamidronate increased apoptosis and cleavage of Caspase-3, and -9. Pamidronate suppressed membrane associated RhoA and cell motility. In vivo, tumor volumes were significantly suppressed by pamidronate at three weeks (P<0.03). CONCLUSIONS We conclude that pamidronate has therapeutic potential in inducing anti-proliferative, apoptotic, and anti-migratory effects in HCC.
Collapse
Affiliation(s)
- Akira Wada
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Rho proteins are master regulators of a large array of cellular functions, including control of cell morphology, cell migration and polarity, transcriptional activation, and cell cycle progression. They are the eukaryotic targets of various bacterial protein toxins and effectors, which activate or inactivate the GTPases. Here Rho-inactivating toxins and effectors are reviewed, including the families of large clostridial cytotoxins and C3-like transferases, which inactivate Rho GTPases by glucosylation and ADP-ribosylation, respectively.
Collapse
Affiliation(s)
- K Aktories
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Albertstrasse 25, 79104 Freiburg, Germany.
| | | |
Collapse
|
11
|
Mzali R, Seguin L, Liot C, Auger A, Pacaud P, Loirand G, Thibault C, Pierre J, Bertoglio J. Regulation of Rho signaling pathways in interleukin-2-stimulated human T-lymphocytes. FASEB J 2005; 19:1911-3. [PMID: 16148026 DOI: 10.1096/fj.05-4030fje] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Rho GTPases are key regulators of many cellular functions, including cytoskeleton organization which is important for cell morphology and mobility, gene expression, cell cycle progression, and cytokinesis. In addition, it has recently been recognized that Rho GTPase activity is required for development of the immune system, as well as for the specialized functions of the peripheral cells that act in the immune response such as antigen presenting cells and lymphocytes. Stimulation of T lymphocytes with interleukin-2 (IL-2) induces clonal expansion of antigen-specific populations and provides a model to study cell cycle entry and cell cycle progression. We have performed gene expression analysis in a model of human T lymphocytes, which proliferate in response to IL-2. In addition to changes in genes relevant to cell cycling and to the antiapoptotic effects of IL-2, we have analyzed expression and variations of more than 300 genes involved in Rho GTPase signaling pathways. We report here that IL-2 regulates the expression of a number of proteins, which participate in the Rho GTPase pathways, including some of the GTPases themselves, GDP/GTP exchange factors, GTPase activating proteins, as well as GDIs and effectors. Our results suggest that regulation of expression of components of the Rho GTPase pathways may be an important mechanism in assembling specific signal transduction cascades that need to be active at certain times during the cell cycle. Some of our findings may also be relevant to the roles of Rho GTPases in T lymphocyte functions and proliferation.
Collapse
Affiliation(s)
- Rym Mzali
- Inserm U461, Faculté de Pharmacie Paris-XI, Chatenay-Malabry, France
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Rho GTPases are molecular switches controlling a broad range of cellular processes including lymphocyte activation. Not surprisingly, Rho GTPases are now recognized as pivotal regulators of antigen-specific T cell activation by APCs and immunological synapse formation. This review summarizes recent advances in our understanding of how Rho GTPase-dependent pathways control T lymphocyte motility, polarization and activation.
Collapse
Affiliation(s)
- M Deckert
- INSERM Unit 576, Hôpital de l'Archet, BP3079, 06202 Nice, France.
| | | | | |
Collapse
|
13
|
Aktories K, Wilde C, Vogelsgesang M. Rho-modifying C3-like ADP-ribosyltransferases. Rev Physiol Biochem Pharmacol 2004; 152:1-22. [PMID: 15372308 DOI: 10.1007/s10254-004-0034-4] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
C3-like exoenzymes comprise a family of seven bacterial ADP-ribosyltransferases, which selectively modify RhoA, B, and C at asparagine-41. Crystal structures of C3 exoenzymes are available, allowing novel insights into the structure-function relationships of these exoenzymes. Because ADP-ribosylation specifically inhibits the biological functions of the low-molecular mass GTPases, C3 exoenzymes are established pharmacological tools to study the cellular functions of Rho GTPases. Recent studies, however, indicate that the functional consequences of C3-induced ADP-ribosylation are more complex than previously suggested. In the present review the basic properties of C3 exoenzymes are briefly summarized and new findings are reviewed.
Collapse
Affiliation(s)
- K Aktories
- Institute of Experimental and Clinical Pharmacology and Toxicology, Albert-Ludwigs University Freiburg, Otto-Krayer-Haus, Albertstr. 25, Freiburg, Germany.
| | | | | |
Collapse
|
14
|
Abstract
We studied modulation of current in human embryonic kidney tsA-201 cells coexpressing rat erg1 channels with M(1) muscarinic receptors. Maximal current was inhibited 30% during muscarinic receptor stimulation, with a small positive shift of the midpoint of activation. Inhibition was attenuated by coexpression of the regulator of G-protein signalling RGS2 or of a dominant-negative protein, G(q), but not by N-ethylmaleimide or C3 toxin. Overexpression of a constitutively active form of G(q) (but not of G(13) or of G(s)) abolished the erg current. Hence it is likely that G(q/11), and not G(i/o) or G(13), mediates muscarinic inhibition. Muscarinic suppression of erg was attenuated by chelating intracellular Ca(2+) to < 1 nm free Ca(2+) with 20 mm BAPTA in the pipette, but suppression was normal if internal Ca(2+) was strongly clamped to a 129 nm free Ca(2+) level with a BAPTA buffer and this was combined with numerous other measures to prevent intracellular Ca(2+) transients (pentosan polysulphate, preincubation with thapsigargin, and removal of extracellular Ca(2+)). Hence a minimum amount of Ca(2+) was necessary for the inhibition, but a Ca(2+) elevation was not. The ATP analogue AMP-PCP did not prevent inhibition. The protein kinase C (PKC) blockers staurosporine and bisindolylmaleimide I did not prevent inhibition, and the PKC-activating phorbol ester PMA did not mimic it. Neither the tyrosine kinase inhibitor genistein nor the tyrosine phosphatase inhibitor dephostatin prevented inhibition by oxotremorine-M. Hence protein kinases are not needed. Experiments with a high concentration of wortmannin were consistent with recovery being partially dependent on PIP(2) resynthesis. Wortmannin did not prevent muscarinic inhibition. Our studies of muscarinic inhibition of erg current suggest a role for phospholipase C, but not the classical downstream messengers, such as PKC or a calcium transient.
Collapse
Affiliation(s)
- Wiebke Hirdes
- Department of Physiology and Biophysics, University of Washington School of Medicine, G-424 Health Sciences Building, Box 357290, Seattle, WA 98195-7290, USA
| | | | | |
Collapse
|
15
|
Blanco-Colio LM, Muñoz-García B, Martín-Ventura JL, Lorz C, Díaz C, Hernández G, Egido J. 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors decrease Fas ligand expression and cytotoxicity in activated human T lymphocytes. Circulation 2003; 108:1506-13. [PMID: 12952848 DOI: 10.1161/01.cir.0000089086.48617.2b] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND HMG-CoA reductase inhibitors reduce cardiovascular mortality, although the mechanisms of action have not been completely elucidated. The presence of T cells and apoptotic cells in atherosclerotic plaques is well established, the reduction of cellular content being a marker of their vulnerability. One of the main mechanisms of cell death activation is the Fas-Fas ligand (FasL) system. METHODS AND RESULTS We studied whether HMG-CoA reductase inhibitors can regulate FasL expression and cytotoxicity in human T cells (Jurkat cells). Activation of Jurkat cells with phorbol esters and ionomycin increased FasL expression, an effect prevented by atorvastatin or simvastatin. Mevalonate and geranylgeranylpyrophosphate but not farnesylpyrophosphate prevented the effect of atorvastatin, indicating that protein geranylation was involved in FasL expression. The C3 exotoxin, which selectively inactivates Rho proteins, also decreased FasL expression on T cells. Overexpression of constitutively active RhoA increased FasL expression in Jurkat cells, and dominant-negative RhoA decreased FasL expression in activated cells, indicating that RhoA is implicated in FasL expression. Atorvastatin also decreased cytotoxic activity of activated Jurkat cells on FasL-sensitive cells. Finally, atorvastatin treatment reduced FasL expression in peripheral blood mononuclear cells and human carotid atherosclerotic plaques. CONCLUSIONS Atorvastatin regulates FasL expression in T cells, probably because of the inhibition of RhoA prenylation. These results provide novel information by which atorvastatin may regulate the cytotoxic activity of T cells and the number of cells in the atherosclerotic plaque.
Collapse
Affiliation(s)
- Luis Miguel Blanco-Colio
- Vascular Research Laboratory, Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
16
|
Khurana D, Leibson PJ. Regulation of lymphocyte-mediated killing by GTP-binding proteins. J Leukoc Biol 2003; 73:333-8. [PMID: 12629146 DOI: 10.1189/jlb.0802385] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Exocytosis of granules containing apoptosis-inducing proteins is one mechanism of target cell killing by cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells. Granules containing perforin and granzymes are redistributed to the area of cell contact initiated by specific interactions between surface ligands on a target cell and receptors on an effector lymphocyte. The formation of a stable conjugate between a cytotoxic lymphocyte and its potential target cell, followed by the directed delivery of granule components to the target cell are prerequisites of lymphocyte-mediated killing. Critical to understanding the development of cytotoxic function by CTLs and NK cells is the delineation of the second messenger pathways that specifically control the reorganization of the actin cytoskeleton during cell-mediated cytotoxicity. The low molecular weight guanosine 5'-triphosphate-binding proteins of the Rho family play a central role in these regulatory events controlling cytotoxic lymphocyte activation.
Collapse
Affiliation(s)
- Dianne Khurana
- Department of Immunology, Mayo Graduate and Medical Schools, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | |
Collapse
|
17
|
Vigorito E, Billadeu DD, Savoy D, McAdam S, Doody G, Fort P, Turner M. RhoG regulates gene expression and the actin cytoskeleton in lymphocytes. Oncogene 2003; 22:330-42. [PMID: 12545154 DOI: 10.1038/sj.onc.1206116] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
RhoG, a member of the Rho family of GTPases, has been implicated as a regulator of the actin cytoskeleton. In this study, we show a novel function for the small GTPase RhoG on the regulation of the interferon-gamma promoter and nuclear factor of activated T cells (NFAT) gene transcription in lymphocytes. Optimal function of RhoG for the expression of these genes requires a calcium signal, normally provided by the antigen receptor. In addition, RhoG potentiation of NFAT requires the indirect activity of Rac and Cdc42; however, pathways distinct from those activated by Rac and Cdc42 mediate RhoG activation of NFAT-dependent transcription. Using effector domain mutants of RhoG we found that its ability to potentiate NFAT-dependent transcription correlates with its capacity to increase actin polymerization, supporting the suggestion that NFAT-dependent transcription is an actin-dependent process. RhoG also promotes T-cell spreading on fibronectin, a property that is independent of its ability to enhance NFAT-dependent transcription. Hence, these results implicate RhoG in leukocyte trafficking and the control of gene expression induced in response to antigen encounter.
Collapse
Affiliation(s)
- Elena Vigorito
- Laboratory for Lymphocyte Signalling and Development, Molecular Immunology Programme, The Babraham Institute, Cambridge, UK.
| | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Experiments with cell lines have unveiled the implication of the Rho/Rac family of GTPases in cytoskeletal organization, mitogenesis, and cell migration. However, there have not been adequate animal models to investigate the role of these proteins in more physiological settings. This scenario has changed recently in the case of the T-cell lineage after the generation of animal models for Rho/Rac family members, their regulators, and effectors. These studies have revealed the implication of these GTPases on multiple regulatory layers of T-cells, including the coordination of cytoskeletal change, activation of kinase cascades, stimulation of calcium fluxes, and the induction of gene expression. These pathways affect the transition of different T-cell maturation stages, the positive/negative selection of thymocytes, T-cell responses to antigens, and the homeostasis of peripheral T-lymphocytes. Moreover, these animals have revealed interesting cross-talks between Rho/Rac pathways and other signal transduction routes that participate in lymphocyte responses.
Collapse
Affiliation(s)
- Xosé R Bustelo
- Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer, University of Salamanca-CSIC. 37007 Salamanca, Spain.
| |
Collapse
|
19
|
Lou Z, Billadeau DD, Savoy DN, Schoon RA, Leibson PJ. A role for a RhoA/ROCK/LIM-kinase pathway in the regulation of cytotoxic lymphocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:5749-57. [PMID: 11698448 DOI: 10.4049/jimmunol.167.10.5749] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Polarization of lipid rafts and granules to the site of target contact is required for the development of cell-mediated killing by cytotoxic lymphocytes. We have previously shown that these events require the activation of proximal protein tyrosine kinases. However, the downstream intracellular signaling molecules involved in the development of cell-mediated cytotoxicity remain poorly defined. We report here that a RhoA/ROCK/LIM-kinase axis couples the receptor-initiated protein tyrosine kinase activation to the reorganization of the actin cytoskeleton required for the polarization of lipid rafts and the subsequent generation of cell-mediated cytotoxicity. Pharmacologic and genetic interruption of any element of this RhoA/ROCK/LIM-kinase pathway inhibits both the accumulation of F-actin and lipid raft polarization to the site of target contact and the subsequent delivery of the lethal hit. These data define a specialized role for a RhoA-->ROCK-->LIM-kinase pathway in cytotoxic lymphocyte activation.
Collapse
Affiliation(s)
- Z Lou
- Department of Pharmacology, Mayo Graduate School, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | |
Collapse
|
20
|
Rodríguez-Fernández JL, Sánchez-Martín L, Rey M, Vicente-Manzanares M, Narumiya S, Teixidó J, Sánchez-Madrid F, Cabañas C. Rho and Rho-associated kinase modulate the tyrosine kinase PYK2 in T-cells through regulation of the activity of the integrin LFA-1. J Biol Chem 2001; 276:40518-27. [PMID: 11489881 DOI: 10.1074/jbc.m102896200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have examined the role of the small GTPase Rho and its downstream effector, the Rho-associated kinase (ROCK), in the control of the adhesive and signaling function of the lymphocyte function-associated antigen-1 (LFA-1) integrin in human T-lymphocytes. Inhibition of Rho (either by treatment with C3-exoenzyme or transfection with a dominant-negative form of Rho (N19Rho)) or ROCK (by treatment with Y-27632) results in the following: (a) partial disorganization and aggregation of cortical filamentous actin (F-actin); (b) induction of LFA-1-mediated cellular adhesion to the LFA-1 ligand intercellular adhesion molecule-1 (ICAM-1) through a mechanism involving clustering of LFA-1 molecules, rather than alterations in the level of expression or in the affinity state of this integrin; and (c) induction of cellular polarization and activation of the tyrosine kinase PYK2. Transfection of T-cells with a constitutively active form of Rho (V14Rho) blocks the clustering of LFA-1 on the membrane and the LFA-1-mediated activation of PYK2. Importantly, the activation of PYK2 caused by inhibition of Rho or ROCK takes place only when the T-cells are plated onto ICAM-1 but not when they are either prevented from interacting with ICAM-1 with anti-LFA-1 blocking antibodies or when they are plated on the nonspecific poly-l-lysine substrate. These results indicate that the small GTPase Rho regulates the tyrosine kinase PYK2 in T-cells through the F-actin-mediated control of the activity of the integrin LFA-1. These findings represent a novel paradigm for the regulation of the activity of a cytoplasmic tyrosine kinase by the small GTPase Rho.
Collapse
Affiliation(s)
- J L Rodríguez-Fernández
- Instituto de Farmacología y Toxicología CSIC, Facultad de Medicina, Universidad Complutense, 28040 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Wilde C, Aktories K. The Rho-ADP-ribosylating C3 exoenzyme from Clostridium botulinum and related C3-like transferases. Toxicon 2001; 39:1647-60. [PMID: 11595628 DOI: 10.1016/s0041-0101(01)00152-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- C Wilde
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie der Albert-Ludwigs-Universität Freiburg, Albertstr. 25, D-79104, Freiburg, Germany
| | | |
Collapse
|
22
|
Jevremovic D, Billadeau DD, Schoon RA, Dick CJ, Leibson PJ. Regulation of NK cell-mediated cytotoxicity by the adaptor protein 3BP2. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:7219-28. [PMID: 11390470 DOI: 10.4049/jimmunol.166.12.7219] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Stimulation of lymphocytes through multichain immune recognition receptors activates multiple signaling pathways. Adaptor proteins play an important role in integrating these pathways by their ability to simultaneously bind multiple signaling components. Recently, the 3BP2 adaptor protein has been shown to positively regulate the transcriptional activity of T cells. However, the mechanisms by which signaling components are involved in this regulation remain unclear, as does a potential role for 3BP2 in the regulation of other cellular functions. Here we describe a positive regulatory role for 3BP2 in NK cell-mediated cytotoxicity. We also identify p95(vav) and phospholipase C-gamma isoforms as binding partners of 3BP2. Our results show that tyrosine-183 of 3BP2 is specifically involved in this interaction and that this residue critically influences 3BP2-dependent function. Therefore, 3BP2 regulates NK cell-mediated cytotoxicity by mobilizing key downstream signaling effectors.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Adjuvants, Immunologic/biosynthesis
- Adjuvants, Immunologic/metabolism
- Adjuvants, Immunologic/physiology
- Amino Acid Sequence
- Carrier Proteins/biosynthesis
- Carrier Proteins/metabolism
- Carrier Proteins/physiology
- Cell Cycle Proteins
- Cytotoxicity, Immunologic
- HeLa Cells
- Humans
- Isoenzymes/metabolism
- Jurkat Cells
- K562 Cells
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Lymphocyte Activation
- Membrane Proteins/biosynthesis
- Membrane Proteins/metabolism
- Membrane Proteins/physiology
- Molecular Sequence Data
- Phospholipase C gamma
- Phosphoproteins/metabolism
- Phosphorylation
- Precipitin Tests
- Protein Isoforms/biosynthesis
- Protein Isoforms/physiology
- Protein-Tyrosine Kinases/metabolism
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins c-vav
- Receptors, IgG/immunology
- Receptors, IgG/metabolism
- Receptors, Immunologic/metabolism
- Receptors, Immunologic/physiology
- Signal Transduction/immunology
- Type C Phospholipases/metabolism
- Tyrosine/metabolism
- Tyrosine/physiology
- ZAP-70 Protein-Tyrosine Kinase
- src Homology Domains/immunology
Collapse
Affiliation(s)
- D Jevremovic
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | |
Collapse
|
23
|
Billadeau DD, Mackie SM, Schoon RA, Leibson PJ. The Rho family guanine nucleotide exchange factor Vav-2 regulates the development of cell-mediated cytotoxicity. J Exp Med 2000; 192:381-92. [PMID: 10934226 PMCID: PMC2193212 DOI: 10.1084/jem.192.3.381] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2000] [Accepted: 05/23/2000] [Indexed: 11/04/2022] Open
Abstract
Previous pharmacologic and genetic studies have demonstrated a critical role for the low molecular weight GTP-binding protein RhoA in the regulation of cell-mediated killing by cytotoxic lymphocytes. However, a specific Rho family guanine nucleotide exchange factor (GEF) that activates this critical regulator of cellular cytotoxicity has not been identified. In this study, we provide evidence that the Rho family GEF, Vav-2, is present in cytotoxic lymphocytes, and becomes tyrosine phosphorylated after the cross-linking of activating receptors on cytotoxic lymphocytes and during the generation of cell-mediated killing. In addition, we show that overexpression of Vav-2 in cytotoxic lymphocytes enhances cellular cytotoxicity, and this enhancement requires a functional Dbl homology and Src homology 2 domain. Interestingly, the pleckstrin homology domain of Vav-2 was found to be required for enhancement of killing through some, but not all activating receptors on cytotoxic lymphocytes. Lastly, although Vav and Vav-2 share significant structural homology, only Vav is able to enhance nuclear factor of activated T cells-activator protein 1-mediated gene transcription downstream of the T cell receptor. These data demonstrate that Vav-2, a Rho family GEF, differs from Vav in the control of certain lymphocyte functions and participates in the control of cell-mediated killing by cytotoxic lymphocytes.
Collapse
Affiliation(s)
- Daniel D. Billadeau
- Department of Immunology, Mayo Graduate and Medical Schools, Mayo Clinic, Rochester, Minnesota 55905
| | - Stacy M. Mackie
- Department of Immunology, Mayo Graduate and Medical Schools, Mayo Clinic, Rochester, Minnesota 55905
| | - Renee A. Schoon
- Department of Immunology, Mayo Graduate and Medical Schools, Mayo Clinic, Rochester, Minnesota 55905
| | - Paul J. Leibson
- Department of Immunology, Mayo Graduate and Medical Schools, Mayo Clinic, Rochester, Minnesota 55905
| |
Collapse
|
24
|
Godbold GD, Mann BJ. Cell killing by the human parasite Entamoeba histolytica is inhibited by the rho-inactivating C3 exoenzyme. Mol Biochem Parasitol 2000; 108:147-51. [PMID: 10802329 DOI: 10.1016/s0166-6851(00)00207-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- G D Godbold
- Division of Infectious Diseases, Departments of Internal Medicine and Microbiology, University of Virginia Health Sciences Center, Building MR4, Room 2115, Charlottesville, VA, USA
| | | |
Collapse
|
25
|
Angkachatchai V, Finkel TH. ADP-Ribosylation of Rho by C3 Ribosyltransferase Inhibits IL-2 Production and Sustained Calcium Influx in Activated T Cells. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.7.3819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Abstract
Activation of the T lymphocyte induces dramatic cytoskeletal changes, and there is increasing evidence that disruption of the cytoskeleton inhibits early and late events of T cell signal transduction. However, relatively little is known about the signaling molecules involved in activation-induced cytoskeletal rearrangement. The rho family of small GTP-binding proteins, which include rho, rac, and cdc42, regulates the cytoskeleton and coordinates various cellular functions via their many effector targets. In prior studies, the Clostridium botulinum toxin C3 exoenzyme has been used to ADP-ribosylate and inactivate rho. In this study, we demonstrate that treatment of T cells with C3 exoenzyme inhibits IL-2 transcription following ligation of the TCR. Inhibition of IL-2 expression correlated with loss of sustained increase in [Ca+2]i and mitogen activated protein kinase (MAPK/Erk) activity, but not with activation of the tyrosine kinase, lck. These findings are the first to show that ADP-ribosylation of rho by C3 ribosyltransferase (exoenzyme) inhibits IL-2 production due, in part, to the requirement for sustained calcium influx and MAPK activation after Ag receptor ligation.
Collapse
Affiliation(s)
- Vachras Angkachatchai
- *Division of Basic Sciences, Department of Pediatrics, National Jewish Medical and Research Center, Denver, CO 80206; and
| | - Terri H. Finkel
- *Division of Basic Sciences, Department of Pediatrics, National Jewish Medical and Research Center, Denver, CO 80206; and
- †Departments of Immunology, Pediatrics, and Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, Denver, CO 80262
| |
Collapse
|
26
|
Altman A, Deckert M. The function of small GTPases in signaling by immune recognition and other leukocyte receptors. Adv Immunol 1999; 72:1-101. [PMID: 10361572 DOI: 10.1016/s0065-2776(08)60017-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- A Altman
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, San Diego, California 92121, USA
| | | |
Collapse
|
27
|
Woodside DG, Wooten DK, McIntyre BW. Adenosine diphosphate (ADP)-ribosylation of the guanosine triphosphatase (GTPase) rho in resting peripheral blood human T lymphocytes results in pseudopodial extension and the inhibition of T cell activation. J Exp Med 1998; 188:1211-21. [PMID: 9763600 PMCID: PMC2212504 DOI: 10.1084/jem.188.7.1211] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Scrape loading Clostridium botulinum C3 exoenzyme into primary peripheral blood human T lymphocytes (PB T cells) efficiently adenosine diphosphate (ADP)-ribosylates and thus inactivates the guanosine triphosphatase (GTPase) Rho. Basal adhesion of PB T cells to the beta1 integrin substrate fibronectin (Fn) was not inhibited by inactivation of Rho, nor was upregulation of adhesion using phorbol myristate acetate (PMA; 10 ng/ml) or Mn++ (1 mM) affected. Whereas untreated PB T cells adherent to Fn remain spherical, C3-treated PB T cells extend F-actin-containing pseudopodia. Inactivation of Rho delayed the kinetics of PMA-dependent PB T cell homotypic aggregation, a process involving integrin alphaLbeta2. Although C3 treatment of PB T cells did not prevent adhesion to the beta1 integrin substrate Fn, it did inhibit beta1 integrin/CD3-mediated costimulation of proliferation. Analysis of intracellular cytokine production at the single cell level demonstrated that ADP-ribosylation of Rho inhibited beta1 integrin/ CD3 and CD28/CD3 costimulation of IL-2 production within 6 h of activation. Strikingly, IL-2 production induced by PMA and ionomycin was unaffected by C3 treatment. Thus, the GTPase Rho is a novel regulator of T lymphocyte cytoarchitecture, and functional Rho is required for very early events regulating costimulation of IL-2 production in PB T cells.
Collapse
Affiliation(s)
- D G Woodside
- Department of Immunology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | |
Collapse
|
28
|
Nieto M, Navarro F, Perez-Villar JJ, del Pozo MA, González-Amaro R, Mellado M, Frade JMR, Martínez-A C, López-Botet M, Sánchez-Madrid F. Roles of Chemokines and Receptor Polarization in NK-Target Cell Interactions. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.7.3330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
We report that the ability of NK cells to produce chemokines is increased in NK-target cell conjugates. The chemokines produced play a critical role in the polarization and recruitment of NK cells as well as in the NK effector-target cell conjugate formation. Chemokines induce the formation of two specialized regions in the NK cell: the advancing front or leading edge, where chemokine receptors CCR2 and CCR5 cluster, which might guide the cells toward the chemotactic source, and the uropod, where adhesion molecules ICAM-1 and -3 are redistributed. NK cell polarity was intrinsically involved in conjugate formation. The redistribution of both adhesion receptors and CCR was preserved during the formation of NK-target cell conjugates. Time-lapse videomicroscopy studies of the formation of effector-target conjugates showed that morphologic poles are also functionally distinct; while the binding to target cells was preferentially mediated through the leading edge, the uropod was found at the rear of migrating NK cells and recruited additional NK cells to the vicinity of K562 target cells. Inhibition of cell polarization and adhesion receptor redistribution blocked the formation of NK-K562 cell conjugates and the cytotoxic activity of NK cells. We discuss the implication of NK-cell polarization in the development of cytotoxic responses.
Collapse
Affiliation(s)
- Marta Nieto
- *Servicio de Inmunología, Hospital de la Princesa, Universidad Autónoma de Madrid, and
| | - Francisco Navarro
- *Servicio de Inmunología, Hospital de la Princesa, Universidad Autónoma de Madrid, and
| | | | - Miguel Angel del Pozo
- *Servicio de Inmunología, Hospital de la Princesa, Universidad Autónoma de Madrid, and
| | | | - Mario Mellado
- †Department of Immunology and Oncology, Centro Nacional de Biotecnología, CSIC, Universidad Autónoma de Madrid, Campus de Cantoblanco, Madrid, Spain
| | - José M. R. Frade
- †Department of Immunology and Oncology, Centro Nacional de Biotecnología, CSIC, Universidad Autónoma de Madrid, Campus de Cantoblanco, Madrid, Spain
| | - Carlos Martínez-A
- †Department of Immunology and Oncology, Centro Nacional de Biotecnología, CSIC, Universidad Autónoma de Madrid, Campus de Cantoblanco, Madrid, Spain
| | - Miguel López-Botet
- *Servicio de Inmunología, Hospital de la Princesa, Universidad Autónoma de Madrid, and
| | | |
Collapse
|
29
|
Chang JH, Pratt JC, Sawasdikosol S, Kapeller R, Burakoff SJ. The small GTP-binding protein Rho potentiates AP-1 transcription in T cells. Mol Cell Biol 1998; 18:4986-93. [PMID: 9710582 PMCID: PMC109083 DOI: 10.1128/mcb.18.9.4986] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Rho family of small GTP-binding proteins is involved in the regulation of cytoskeletal structure, gene transcription, specific cell fate development, and transformation. We demonstrate in this report that overexpression of an activated form of Rho enhances AP-1 activity in Jurkat T cells in the presence of phorbol myristate acetate (PMA), but activated Rho (V14Rho) has little or no effect on NFAT, Oct-1, and NF-kappaB enhancer element activities under similar conditions. Overexpression of a V14Rho construct incapable of membrane localization (CAAX deleted) abolishes PMA-induced AP-1 transcriptional activation. The effect of Rho on AP-1 is independent of the mitogen-activated protein kinase pathway, as a dominant-negative MEK and a MEK inhibitor (PD98059) did not affect Rho-induced AP-1 activity. V14Rho binds strongly to protein kinase Calpha (PKCalpha) in vivo; however, deletion of the CAAX site on V14Rho severely diminished this association. Evidence for a role for PKCalpha as an effector of Rho was obtained by the observation that coexpression of the N-terminal domain of PKCalpha blocked the effects of activated Rho plus PMA on AP-1 transcriptional activity. These data suggest that Rho potentiates AP-1 transcription during T-cell activation.
Collapse
Affiliation(s)
- J H Chang
- Division of Pediatric Oncology, Dana-Farber Cancer Institute, and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
30
|
Billadeau DD, Brumbaugh KM, Dick CJ, Schoon RA, Bustelo XR, Leibson PJ. The Vav-Rac1 pathway in cytotoxic lymphocytes regulates the generation of cell-mediated killing. J Exp Med 1998; 188:549-59. [PMID: 9687532 PMCID: PMC2212464 DOI: 10.1084/jem.188.3.549] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/1998] [Revised: 05/19/1998] [Indexed: 11/04/2022] Open
Abstract
The Rac1 guanine nucleotide exchange factor, Vav, is activated in hematopoietic cells in response to a large variety of stimuli. The downstream signaling events derived from Vav have been primarily characterized as leading to transcription or transformation. However, we report here that Vav and Rac1 in natural killer (NK) cells regulate the development of cell-mediated killing. There is a rapid increase in Vav tyrosine phosphorylation during the development of antibody-dependent cellular cytotoxicity and natural killing. In addition, overexpression of Vav, but not of a mutant lacking exchange factor activity, enhances both forms of killing by NK cells. Furthermore, dominant-negative Rac1 inhibits the development of NK cell-mediated cytotoxicity by two mechanisms: (a) conjugate formation between NK cells and target cells is decreased; and (b) those NK cells that do form conjugates have decreased ability to polarize their granules toward the target cell. Therefore, our results suggest that in addition to participating in the regulation of transcription, Vav and Rac1 are pivotal regulators of adhesion, granule exocytosis, and cellular cytotoxicity.
Collapse
Affiliation(s)
- D D Billadeau
- Department of Immunology, Mayo Clinic and Foundation, Rochester, Minnesota 55905, USA
| | | | | | | | | | | |
Collapse
|
31
|
Godbold GD, Mann BJ. Involvement of the actin cytoskeleton and p21rho-family GTPases in the pathogenesis of the human protozoan parasite Entamoeba histolytica. Braz J Med Biol Res 1998; 31:1049-58. [PMID: 9777011 DOI: 10.1590/s0100-879x1998000800004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It has been estimated that infection with the enteric protozoan parasite Entamoeba histolytica kills more than 50,000 people a year. Central to the pathogenesis of this organism is its ability to directly lyse host cells and cause tissue destruction. Amebic lesions show evidence of cell lysis, tissue necrosis, and damage to the extracellular matrix. The specific molecular mechanisms by which these events are initiated, transmitted, and effected are just beginning to be uncovered. In this article we review what is known about host cell adherence and contact-dependent cytolysis. We cover the involvement of the actin cytoskeleton and small GTP-binding proteins of the p21rho-family in the process of cell killing and phagocytosis, and also look at how amebic interactions with molecules of the extracellular matrix contribute to its cytopathic effects.
Collapse
Affiliation(s)
- G D Godbold
- University of Virginia Health Sciences Center, Charlottesville 22908, USA
| | | |
Collapse
|
32
|
Miller BC. Western blot analysis of the delta (delta)-opioid receptor in activated murine T cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1998; 437:159-67. [PMID: 9666267 DOI: 10.1007/978-1-4615-5347-2_17] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- B C Miller
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas 75235-9038, USA
| |
Collapse
|
33
|
Abstract
Immunological interest in small GTPases has focused for some years almost exclusively on the role of Ras in promoting lymphocyte activation and development. A new concept in this field is that GTPases are linked to multiple biochemical effector signalling pathways and are consequently able to regulate diverse cellular processes. It is also now recognised that GTPases other than Ras regulate lymphocyte biology. Rap 1 has been suggested as a negative regulator of lymphocyte responses and Rho GTPases are important components of signalling pathways used by antigen receptors and by costimulatory, cytokine and chemokine receptors to regulate the immune response.
Collapse
Affiliation(s)
- S W Henning
- Lymphocyte Activation Laboratory, Imperial Cancer Research Fund, London, UK.
| | | |
Collapse
|
34
|
Brumbaugh KM, Binstadt BA, Leibson PJ. Signal transduction during NK cell activation: balancing opposing forces. Curr Top Microbiol Immunol 1998; 230:103-22. [PMID: 9586353 DOI: 10.1007/978-3-642-46859-9_8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Significant progress has been made in our understanding of the basic signaling mechanisms regulating NK cell activation. Advances have been fueled in part by the molecular characterization of specific activating receptors (e.g., the Fc gamma RIII multi-subunit complex) and inhibitory receptors (e.g., novel MHC-recognizing inhibitory receptors). However, certain aspects of these analyses are complicated by the heterogeneous nature of the receptor-ligand interactions utilized during the development of a cytotoxic response. Future advances will depend in part on the further molecular characterization of the involved receptors and second messengers and on the development of experimental models for genetically manipulating the signaling elements. It will remain important to understand both activating and inhibitory signaling pathways as the emerging theme is that the balance of these two opposing forces determines the functional outcome of an NK cells interaction with its target.
Collapse
Affiliation(s)
- K M Brumbaugh
- Department of Immunology, Mayo Clinic and Foundation, Rochester, MN 55905, USA
| | | | | |
Collapse
|
35
|
Gómez J, Martínez-A C, González A, Rebollo A. Dual role of Ras and Rho proteins: at the cutting edge of life and death. Immunol Cell Biol 1998; 76:125-34. [PMID: 9619482 DOI: 10.1046/j.1440-1711.1998.00723.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Small GTP-binding proteins of the Ras superfamily are master controllers of the cell physiology. The range of processes in which these proteins are involved include cell cycle progression, cell division, regulation of cell morphology and motility and intracellular trafficking of molecules and organelles. The study of apoptosis, the physiological form of cell suicide, is progressively linking the functions of small G proteins to the control of the mechanisms that trigger the genetic programmes of cell death. To date, isoforms of the Ras and Rho groups have been related to both promotion and suppression of apoptosis. Further, signalling pathways driven by these proteins have been associated with the function and/or expression of molecules that regulate apoptotic responses. Thus, all available evidence points to a critical role for Ras and Rho proteins as major gatekeepers of the decision between cellular life and death.
Collapse
Affiliation(s)
- J Gómez
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Universidad Autónoma de Madrid, Spain
| | | | | | | |
Collapse
|
36
|
Post PL, Bokoch GM, Mooseker MS. Human myosin-IXb is a mechanochemically active motor and a GAP for rho. J Cell Sci 1998; 111 ( Pt 7):941-50. [PMID: 9490638 DOI: 10.1242/jcs.111.7.941] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The heavy chains of the class IX myosins, rat myr5 and human myosin-IXb, contain within their tail domains a region with sequence homology to GTPase activating proteins for the rho family of G proteins. Because low levels of myosin-IXb expression preclude purification by conventional means, we have employed an immunoadsorption strategy to purify myosin-IXb, enabling us to characterize the mechanochemical and rho-GTPase activation properties of the native protein. In this report we have examined the light chain content, actin binding properties, in vitro motility and rho-GTPase activity of human myosin-IXb purified from leukocytes. The results presented here indicate that myosin-IXb contains calmodulin as a light chain and that it binds to actin with high affinity in both the absence and presence of ATP. Myosin-IXb is an active motor which, like other calmodulin-containing myosins, exhibits maximal velocity of actin filaments (15 nm/second) in the absence of Ca2+. Native myosin-IXb exhibits GAP activity on rho. Class IX myosins may be an important link between rho and rho-dependent remodeling of the actin cytoskeleton.
Collapse
Affiliation(s)
- P L Post
- Department of Molecular Biology, Yale University, New Haven, CT 06520, USA.
| | | | | |
Collapse
|
37
|
Affiliation(s)
- R B Lobell
- Merck Research Laboratories, Department of Cancer Research, Merck and Company, Inc., West Point, Pennsylvania 19486, USA
| |
Collapse
|
38
|
Takaishi K, Sasaki T, Kotani H, Nishioka H, Takai Y. Regulation of cell-cell adhesion by rac and rho small G proteins in MDCK cells. J Biophys Biochem Cytol 1997; 139:1047-59. [PMID: 9362522 PMCID: PMC2139955 DOI: 10.1083/jcb.139.4.1047] [Citation(s) in RCA: 460] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The Rho small G protein family, consisting of the Rho, Rac, and Cdc42 subfamilies, regulates various cell functions, such as cell shape change, cell motility, and cytokinesis, through reorganization of the actin cytoskeleton. We show here that the Rac and Rho subfamilies furthermore regulate cell-cell adhesion. We prepared MDCK cell lines stably expressing each of dominant active mutants of RhoA (sMDCK-RhoDA), Rac1 (sMDCK-RacDA), and Cdc42 (sMDCK-Cdc42DA) and dominant negative mutants of Rac1 (sMDCK-RacDN) and Cdc42 (sMDCK-Cdc42DN) and analyzed cell adhesion in these cell lines. The actin filaments at the cell-cell adhesion sites markedly increased in sMDCK-RacDA cells, whereas they apparently decreased in sMDCK-RacDN cells, compared with those in wild-type MDCK cells. Both E-cadherin and beta-catenin, adherens junctional proteins, at the cell-cell adhesion sites also increased in sMDCK-RacDA cells, whereas both of them decreased in sMDCK-RacDN cells. The detergent solubility assay indicated that the amount of detergent-insoluble E-cadherin increased in sMDCK-RacDA cells, whereas it slightly decreased in sMDCK-RacDN cells, compared with that in wild-type MDCK cells. In sMDCK-RhoDA, -Cdc42DA, and -Cdc42DN cells, neither of these proteins at the cell-cell adhesion sites was apparently affected. ZO-1, a tight junctional protein, was not apparently affected in any of the transformant cell lines. Electron microscopic analysis revealed that sMDCK-RacDA cells tightly made contact with each other throughout the lateral membranes, whereas wild-type MDCK and sMDCK-RacDN cells tightly and linearly made contact at the apical area of the lateral membranes. These results suggest that the Rac subfamily regulates the formation of the cadherin-based cell- cell adhesion. Microinjection of C3 into wild-type MDCK cells inhibited the formation of both the cadherin-based cell-cell adhesion and the tight junction, but microinjection of C3 into sMDCK-RacDA cells showed little effect on the localization of the actin filaments and E-cadherin at the cell-cell adhesion sites. These results suggest that the Rho subfamily is necessary for the formation of both the cadherin-based cell- cell adhesion and the tight junction, but not essential for the Rac subfamily-regulated, cadherin-based cell- cell adhesion.
Collapse
Affiliation(s)
- K Takaishi
- Department of Molecular Biology and Biochemistry, Osaka University Medical School, Suita 565, Japan
| | | | | | | | | |
Collapse
|
39
|
Aepfelbacher M, Essler M, Huber E, Sugai M, Weber PC. Bacterial toxins block endothelial wound repair. Evidence that Rho GTPases control cytoskeletal rearrangements in migrating endothelial cells. Arterioscler Thromb Vasc Biol 1997; 17:1623-9. [PMID: 9327754 DOI: 10.1161/01.atv.17.9.1623] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We investigated the effect of bacterial toxins that modify and inactivate Rho GTP-binding proteins on the migratory response of endothelial cells to wounding. C3-transferase from Clostridium botulinum, EDIN from Staphylococcus aureus, and toxin A from Clostridium difficile blocked migration of human umbilical vein endothelial cells (HUVECs) in an in vitro wound repair assay. Migrating HUVECs expressed actin microspikes (maximum at 10 minutes after wounding), ruffles (maximum at 12 hours), and fibers (maximum at 24 hours), and within these actin structures, vinculin-containing focal complexes/adhesions were formed. C3-Transferase ADP ribosylated RhoA, RhoB, and RhoC in HUVECs and abolished the formation of actin stress fibers/focal adhesions but had no effect on expression of microspikes, ruffles, or the associated vinculin-containing focal complexes. Similar results were obtained with EDIN and toxin A. These results indicate that endothelial cells migrating into a wounded area express distinct combinations of actin/vinculin structures in a spatially and temporally coordinated manner. The GTPase Rho selectively controls the formation of actin fibers/focal adhesions that occurs 2 to 24 hours after wounding. A mechanism is proposed by which Rho-specific bacterial toxins could influence vascular repair, angiogenesis, or atherosclerosis.
Collapse
Affiliation(s)
- M Aepfelbacher
- Institut für Prophylaxe und Epidemiologie der Kreislaufkrankheiten, University of Munich, Germany
| | | | | | | | | |
Collapse
|
40
|
Henning SW, Galandrini R, Hall A, Cantrell DA. The GTPase Rho has a critical regulatory role in thymus development. EMBO J 1997; 16:2397-407. [PMID: 9171353 PMCID: PMC1169840 DOI: 10.1093/emboj/16.9.2397] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The present study employs a genetic approach to explore the role of Rho GTPases in murine thymic development. Inactivation of Rho function in the thymus was achieved by thymic targeting of a transgene encoding C3 transferase from Clostridium botulinum which selectively ADP-ribosylates Rho within its effector domain and thereby abolishes its biological function. Thymi lacking functional Rho isolated from C3 transgenic mice were strikingly smaller and showed a marked (90%) decrease in cellularity compared with their normal litter mates. We also observed a similar decrease in levels of peripheral T cells in C3 transgenic mice. Analysis of the maturation status of thymocytes indicated that differentiation of progenitor cells to mature T cells can occur in the absence of Rho function, and both positive and negative selection of T cells appear to be intact. However, transgenic mice that lack Rho function in the thymus show maturational, proliferative and cell survival defects during T-cell development that severely impair the generation of normal numbers of thymocytes and mature peripheral T cells. The present study thus identifies a role for Rho-dependent signalling pathways in thymocyte development. The data show that the function of Rho GTPases is critical for the proliferative expansion of thymocytes. This defines a selective role for the GTPase Rho in early thymic development as a critical integrator of proliferation and cell survival signals.
Collapse
Affiliation(s)
- S W Henning
- Lymphocyte Activation Laboratory, Imperial Cancer Research Fund, London, UK.
| | | | | | | |
Collapse
|
41
|
Yin L, Schwartzberg P, Scharton-Kersten TM, Staudt L, Lenardo M. Immune responses in mice deficient in Ly-GDI, a lymphoid-specific regulator of Rho GTPases. Mol Immunol 1997; 34:481-91. [PMID: 9307064 DOI: 10.1016/s0161-5890(97)00053-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Ly-GDI (lymphoid-specific guanosine diphosphate (GDP) dissociation inhibitor), also called D4-GDI, is preferentially expressed in hematopoietic tissues including bone marrow, thymus, spleen and lymph nodes. It binds to the small guanosine triphosphate (GTP)-binding protein Rho and inhibits GDP dissociation from Rho proteins. To explore the function of Ly-GDI in lymphocytes, we have generated Ly-GDI-deficient mice by gene targeting. These mice showed no striking abnormalities of lymphoid development or thymocyte selection. The mice also exhibited, for the most part, normal immune responses including lymphocyte proliferation, IL-2 production, cytotoxic T lymphocyte activity, antibody production, antigen processing and presentation, immune cell aggregation and migration, and protection against an intracellular protozoan. However, Ly-GDI-deficient mice exhibited deregulated T and B cell interactions after in vitro cultivation of mixed lymphocyte populations in concanavalin A (Con A) leading to overexpansion of B lymphocytes. Further studies revealed that Ly-GDI deficiency decreased IL-2 withdrawal apoptosis of lymph node cells while dexamethasone- and T cell receptor-induced apoptosis remained intact. These data implicate the regulation of the Rho GTPase by Ly-GDI in lymphocyte survival and responsiveness, but suggest that these functions may be partially complemented by other Rho regulatory proteins when the Ly-GDI protein is deficient.
Collapse
Affiliation(s)
- L Yin
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, U.S.A
| | | | | | | | | |
Collapse
|
42
|
Torgersen KM, Vaage JT, Levy FO, Hansson V, Rolstad B, Taskén K. Selective activation of cAMP-dependent protein kinase type I inhibits rat natural killer cell cytotoxicity. J Biol Chem 1997; 272:5495-500. [PMID: 9038153 DOI: 10.1074/jbc.272.9.5495] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The present study examines the expression and involvement of cAMP-dependent protein kinase (PKA) isozymes in cAMP-induced inhibition of natural killer (NK) cell-mediated cytotoxicity. Rat interleukin-2-activated NK cells express the PKA alpha-isoforms RIalpha, RIIalpha, and Calpha and contain both PKA type I and type II. Prostaglandin E2, forskolin, and cAMP analogs all inhibit NK cell lysis of major histocompatibility complex class I mismatched allogeneic lymphocytes as well as of standard tumor target cells. Specific involvement of PKA in the cAMP-induced inhibition of NK cell cytotoxicity is demonstrated by the ability of a cAMP antagonist, (Rp)-8-Br-adenosine 3',5'-cyclic monophosphorothioate, to reverse the inhibitory effect of complementary cAMP agonist (Sp)-8-Br-adenosine 3',5'-cyclic monophosphorothioate. Furthermore, the use of cAMP analog pairs selective for either PKA isozyme (PKA type I or PKA type II), shows a preferential involvement of the PKA type I isozyme, indicating that PKA type I is necessary and sufficient to completely abolish killer activatory signaling leading to NK cell cytotoxicity. Finally, combined treatment with phorbol ester and ionomycin maintains NK cell cytotoxicity and eliminates the cAMP-mediated inhibition, demonstrating that protein kinase C and Ca2+-dependent events stimulate the cytolytic activity of NK cells at a site distal to the site of cAMP/PKA action.
Collapse
Affiliation(s)
- K M Torgersen
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway.
| | | | | | | | | | | |
Collapse
|
43
|
Brenner B, Gulbins E, Busch GL, Koppenhoefer U, Lang F, Linderkamp O. L-selectin regulates actin polymerisation via activation of the small G-protein Rac2. Biochem Biophys Res Commun 1997; 231:802-7. [PMID: 9070897 DOI: 10.1006/bbrc.1997.6191] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
L-selectin mediated adhesion to endothelial cells is a crucial step in the immune response to pathogens (1, 2) and in lymphocyte homing (3, 4). Selectin molecules mediate leukocyte rolling on endothelial cells, the initial step of adhesion (5, 6). We have previously shown that stimulation of Jurkat T-lymphocytes via L-selectin results in activation of the p21Ras pathway and synthesis of reactive oxygen intermediates (7). Here, we show that cellular stimulation via L-selectin induces a change of cytoskeleton organisation demonstrated by a tenfold increase of actin filament polymerisation. This actin polymerisation is mediated by a Ras and Rac2 regulated pathway, since inhibition of Ras by transient transfection of transdominant inhibitory N17Ras or suppression of Rac2 protein expression by antisense oligonucleotides prevents L-selectin triggered actin polymerisation. Our results point to a signaling cascade from L-selectin via Ras and Rac2 to actin filaments, which might be important for leukocyte adhesion.
Collapse
Affiliation(s)
- B Brenner
- Department of Pediatrics, University of Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
44
|
Alberola-Ila J, Takaki S, Kerner JD, Perlmutter RM. Differential signaling by lymphocyte antigen receptors. Annu Rev Immunol 1997; 15:125-54. [PMID: 9143684 DOI: 10.1146/annurev.immunol.15.1.125] [Citation(s) in RCA: 227] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Studies performed during the past several years make plain that ligand occupancy of antigen receptors need not necessarily provoke identical responses in all instances. For example, ligation of antigen receptors may stimulate a proliferative response, induce a state of unresponsiveness to subsequent stimulation (anergy), or induce apoptosis. How does a single type of transmembrane receptor induce these very heterogeneous cellular responses? In the following pages, we outline evidence supporting the view that the nature of the ligand/receptor interaction directs the physical recruitment of signaling pathways differentially inside the lymphocyte and hence defines the nature of the subsequent immune response. We begin by providing a functional categorization of antigen receptor components, considering the ways in which these components interact with the known set of signal transduction pathways, and then review the evidence suggesting that differential signaling through the TCR is achieved by qualitative differences in the effector pathways recruited by TCR, perhaps reflecting the time required to bring complicated signal transduction elements into proximity within the cell. The time-constant of the interaction between antigen and receptor in this way determines, at least in part, the nature of the resulting response. Finally, although our review focuses substantially on T cell receptor signaling, we have included a less detailed description of B cell receptor signaling as well, simply to emphasize the parallels that exist in these two closely related systems.
Collapse
Affiliation(s)
- J Alberola-Ila
- Department of Immunology, University of Washington, Seattle 98195, USA
| | | | | | | |
Collapse
|
45
|
Cussac D, Leblanc P, L'Heritier A, Bertoglio J, Lang P, Kordon C, Enjalbert A, Saltarelli D. Rho proteins are localized with different membrane compartments involved in vesicular trafficking in anterior pituitary cells. Mol Cell Endocrinol 1996; 119:195-206. [PMID: 8807639 DOI: 10.1016/0303-7207(96)03814-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In order to explore the role of certain GTP binding proteins in the rat anterior pituitary, we have analyzed the subcellular distribution of the proteins rho and rab. They were found in both membrane and cytosolic fractions. Rab1 and rab2 were localized in both Golgi and endoplasmic reticulum (ER) membranes, while rab4 and rab6 were found in fractions enriched with Golgi and plasma membranes, implicating these proteins in the control of vesicular intracellular trafficking as described in other systems. Rab3 was localized like a fraction of synaptophysin, suggesting a role for rab3 in the targeting of "synaptic-like' microvesicles. We have identified three substrates of C. botulinum exoenzyme C3. A 26-kDa substrate with an isoelectric point (pI) of 5.2, probably rhoB, was localized in the lightest fractions such as rab3 and synaptophysin proteins. Two other 23-24 kDa substrates with pI of 5.5-5.8, probably rhoA and/or rhoC, were found in both fractions enriched with ER and secretory granules. Rho proteins have been implicated in the control of actin polymerization. Their localization in anterior pituitary suggests that rhoB could control the association of synaptic-like microvesicles and plasma membrane, and that rhoA/rhoC could play a role in secretory granule exocytosis; these two pathways being involved in cytoskeleton protein reorganisation in response to extracellular signals.
Collapse
Affiliation(s)
- D Cussac
- I.C.N.E. UMR 9941 CNRS Institut Jean Roche Faculté de Médecine Nord, Marseille, France
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Poggi A, Spada F, Costa P, Tomasello E, Revello V, Pella N, Zocchi MR, Moretta L. Dissection of lymphocyte function-associated antigen 1-dependent adhesion and signal transduction in human natural killer cells shown by the use of cholera or pertussis toxin. Eur J Immunol 1996; 26:967-975. [PMID: 8647187 DOI: 10.1002/eji.1830260502] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The effect of the guanosine triphosphate-binding protein (G-protein) inhibitors cholera toxin (Ctx) and pertussis toxin (Ptx) has been analyzed on lymphocyte function-associated antigen 1 (LFA-1)-dependent adhesion and signal transduction in human natural killer (NK) cells. Ctx, but not Ptx, inhibited the LFA-1-dependent adhesion of NK cells to tumor target cells which constitutively express the intercellular cell adhesion molecule-1 (ICAM-1) and to NIH/3T3 mouse fibroblasts stably transfected with human ICAM-1. This effect was detectable only by the use of the entire Ctx but not of the Ctx B subunit. In addition, Ctx could inhibit both NK cell binding and spreading to purified ICAM-1 protein. NK cell treatment with Ctx modified neither the surface expression of LFA-1 nor its Mg2+ binding site. These findings, together with the absence of any detectable effect of Ctx on the constitutive phosphorylation of LFA-1 alpha, suggests that this toxin modifies the avidity of LFA-1 for ICAM-1 by acting on LFA-1-cytoskeletal protein association. Unlike Ctx, Ptx did not affect NK cell adhesion. The effects of Ctx and Ptx are unlikely to depend on intracellular levels of cyclic adenosine 3',5'-monophosphate (cAMP), since a strong increase of cAMP was induced by both toxins. Moreover, this was confirmed by the observation that the LFA-1-dependent adhesion was not inhibited by the adenylate cyclase activator forskolin (FSK), the phosphodiesterase inhibitor isobutyl-1-methylxanthine (IBMX), or both, which increase intracellular cAMP levels. Unlike the differential effect on cell adhesion, both the intracellular calcium [Ca2+]i increase and phosphoinositide breakdown mediated via LFA-1 were consistently inhibited in a dose-dependent manner by both Ctx and Ptx. Also in this case, the inhibitory effect did not depend on an increase of intracellular cAMP as indicated by NK cell treatment with FSK, IBMX, or both. Further evidence of the involvement of G-proteins in LFA-1-mediated signal transduction was the inhibitory effect of the GDP analog guanosine-5'-O-2-thiodiphosphate (GDP beta S) on LFA-1-mediated calcium mobilization. Taken together, our data provide evidence that the LFA-1-mediated NK cell adhesion and signal transduction are partially independent phenomena which may be regulated by different G-proteins.
Collapse
Affiliation(s)
- A Poggi
- Laboratory of Immunopathology, Centro di Biotecnologie Avanzate, Genoa, Italy
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Rebollo A, Gómez J, Martínez-A C. Lessons from immunological, biochemical, and molecular pathways of the activation mediated by IL-2 and IL-4. Adv Immunol 1996; 63:127-96. [PMID: 8787631 DOI: 10.1016/s0065-2776(08)60856-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- A Rebollo
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Universidad Autónoma de Madrid, Spain
| | | | | |
Collapse
|
48
|
Aepfelbacher M. ADP-ribosylation of Rho enhances adhesion of U937 cells to fibronectin via the alpha 5 beta 1 integrin receptor. FEBS Lett 1995; 363:78-80. [PMID: 7537229 DOI: 10.1016/0014-5793(95)00285-h] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
To examine the role of Rho GTP binding proteins in the adhesion of monocytic cells to fibronectin we used the C3 exoenzyme of Clostridium botulinum which ADP-ribosylates and inactivates Rho proteins in situ. Treatment of human monocytic U937 cells with C3 exoenzyme (10 micrograms/ml, 24 h) increased adhesion to fibronectin 2-fold but had no effect on adhesion to collagen or huamn serum albumin. The increase in fibronectin adhesion was prevented by antibodies against the alpha 5 and beta 1 integrin subunits, but surface expression of beta 1 and alpha 5 was not altered. These results suggest that Rho proteins regulate the interaction of the monocyte alpha 5 beta 1 integrin receptor with fibronectin by post receptor mechanisms.
Collapse
Affiliation(s)
- M Aepfelbacher
- Institut für Prophylaxe und Epidemiologie der Kreislaufkrankheiten, Ludwig-Maximilians Universität München, Germany
| |
Collapse
|
49
|
Toratani S, Yokosawa H. Evidence for the involvement of the Rho GTP-binding protein in egg activation of the ascidian Halocynthia roretzi. Dev Growth Differ 1995. [DOI: 10.1046/j.1440-169x.1995.00004.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
50
|
Morii N, Narumiya S. Preparation of native and recombinant Clostridium botulinum C3 ADP-ribosyltransferase and identification of Rho proteins by ADP-ribosylation. Methods Enzymol 1995; 256:196-206. [PMID: 7476433 DOI: 10.1016/0076-6879(95)56024-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- N Morii
- Department of Pharmacology, Kyoto University Faculty of Medicine, Japan
| | | |
Collapse
|