1
|
Yang J, Huang Y, Wang Z, Zhang S, Wu D, Xiong J, Wu H, Wang Y, Zhou Q, Zhu Y, Zhao G, Li B, Guo J, Xia K, Tang B, Li J. A PheWAS approach to identify associations of GBA1 variants with comprehensive phenotypes beyond neurological diseases. NPJ Parkinsons Dis 2025; 11:48. [PMID: 40097465 PMCID: PMC11914287 DOI: 10.1038/s41531-025-00901-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 03/06/2025] [Indexed: 03/19/2025] Open
Abstract
Given the established association between numerous GBA1 variants and specific neurological diseases, we extended the exploration by a phenome-wide association study to assess the impact of GBA1 variants on a wider spectrum of health-related traits. We identified 41 phenotypes associated with GBA1 variants, 39 of which were unreported, including 21 non-neurological and 20 neurological phenotypes. Based on variant-level association tests, we found beyond the neurological phenotypes particularly decreased gray-white matter contrast measures across 13 distinct brain regions, the non-coding variant rs9628662 was associated with six non-neurological traits such as hypermetropia. Another non-coding variant rs3115534 showed associations with eight biomarkers of multiple categories, and an increased risk of benign digestive neoplasms. Notably, compared to protein-coding variant p.T408M, the rs3115534 had opposing effects on three hematological biomarkers. Additionally, gene-level association analyses revealed significant associations with three neurological diseases including Parkinson's disease. The findings demonstrated that GBA1 variants significantly impact various health-related traits.
Collapse
Affiliation(s)
- Jiaqi Yang
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
- Bioinformatics Center, Xiangya Hospital & Furong Laboratory, Central South University, Changsha, 410008, Hunan, China
| | - Yuanfeng Huang
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
- Bioinformatics Center, Xiangya Hospital & Furong Laboratory, Central South University, Changsha, 410008, Hunan, China
| | - Zheng Wang
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
- Bioinformatics Center, Xiangya Hospital & Furong Laboratory, Central South University, Changsha, 410008, Hunan, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shiyu Zhang
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
- Bioinformatics Center, Xiangya Hospital & Furong Laboratory, Central South University, Changsha, 410008, Hunan, China
| | - Dai Wu
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Jiayi Xiong
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
- Bioinformatics Center, Xiangya Hospital & Furong Laboratory, Central South University, Changsha, 410008, Hunan, China
| | - Heng Wu
- Department of Neurology, & Multi-Omics Research Center for Brain Disorders, The First Affiliated Hospital, University of South China, Hengyang, Hunan, China
- Clinical Research Center for Immune-Related Encephalopathy of Hunan Province, Hengyang, Hunan, China
| | - Yijing Wang
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
- Bioinformatics Center, Xiangya Hospital & Furong Laboratory, Central South University, Changsha, 410008, Hunan, China
| | - Qiao Zhou
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
- Bioinformatics Center, Xiangya Hospital & Furong Laboratory, Central South University, Changsha, 410008, Hunan, China
| | - Yixiao Zhu
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
- Bioinformatics Center, Xiangya Hospital & Furong Laboratory, Central South University, Changsha, 410008, Hunan, China
| | - Guihu Zhao
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
- Bioinformatics Center, Xiangya Hospital & Furong Laboratory, Central South University, Changsha, 410008, Hunan, China
| | - Bin Li
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
- Bioinformatics Center, Xiangya Hospital & Furong Laboratory, Central South University, Changsha, 410008, Hunan, China
| | - Jifeng Guo
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Kun Xia
- MOE Key Laboratory of Pediatric Rare Diseases, University of South China, Hengyang, China
| | - Beisha Tang
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jinchen Li
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China.
- Bioinformatics Center, Xiangya Hospital & Furong Laboratory, Central South University, Changsha, 410008, Hunan, China.
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
2
|
Adams JC. Thrombospondins: Conserved mediators and modulators of metazoan extracellular matrix. Int J Exp Pathol 2024; 105:136-169. [PMID: 39267379 PMCID: PMC11574667 DOI: 10.1111/iep.12517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/13/2024] [Accepted: 08/18/2024] [Indexed: 09/17/2024] Open
Abstract
This review provides a personal overview of significant scientific developments in the thrombospondin field during the course of my career. Thrombospondins are multidomain, multimeric, calcium-binding extracellular glycoproteins with context-specific roles in tissue organisation. They act at cell surfaces and within ECM to regulate cell phenotype and signalling, differentiation and assembly of collagenous ECM, along with tissue-specific roles in cartilage, angiogenesis and synaptic function. More recently, intracellular, homeostatic roles have also been identified. Resolution of structures for the major domains of mammalian thrombospondins has facilitated major advances in understanding thrombospondin biology from molecule to tissue; for example, in illuminating molecular consequences of disease-causing coding mutations in human pseudoachrondroplasia. Although principally studied in vertebrates, thrombospondins are amongst the most ancient of animal ECM proteins, with many invertebrates encoding a single thrombospondin and the thrombospondin gene family of vertebrates originating through gene duplications. Moreover, thrombospondins form one branch of a thrombospondin superfamily that debuted at the origin of metazoans. The super-family includes additional sub-groups, present only in invertebrates, that differ in N-terminal domain organisation, share the distinctive TSP C-terminal region domain architecture and, to the limited extent studied to date, apparently contribute to tissue development and organisation. Finally, major lines of translational research are discussed, related to fibrosis; TSP1, TSP2 and inhibition of angiogenesis; and the alleviation of chronic cartilage tissue pathologies in pseudoachrondroplasia.
Collapse
|
3
|
Yang L, Wei Q, Sun Y, Guo J, Xu X, Zhang Z, Zhu L, Zheng X, Liu F, Wu J, Xie X, Lin S, Li H, Wu S. Hyperuricemia and coronary heart disease: The mediating role of blood pressure and thrombospondin 3. Nutr Metab Cardiovasc Dis 2023; 33:1969-1980. [PMID: 37524613 DOI: 10.1016/j.numecd.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/07/2023] [Accepted: 06/01/2023] [Indexed: 08/02/2023]
Abstract
BACKGROUND & AIMS Although hyperuricemia is a known risk factor for coronary heart disease (CHD), little is known about the role of blood pressure in mediating this association. The purpose of this study is to investigate the role of blood pressure-related indicators and Thrombospondin 3 (THBS3) in the association between hyperuricemia and CHD. METHODS AND RESULTS Our observational epidemiology study included 593 CHD cases and 760 controls from a residential stable sample. We also chose 43 new CHD patients and 43 controls to test the expression levels of THBS3 using ELISA kits. We used logistic regression models and mediating effect analysis to investigate the relationships between hyperuricemia and CHD, as well as the mediating role of blood pressure-related indicators and THBS3. In the general population (OR: 2.001 [95% CI: 1.528-2.622]), male population (OR: 1.591 [95% CI: 1.119-2.262]), and female population (OR: 2.813 [95% CI: 1.836-4.310]), hyperuricemia is an independent risk factor for CHD. In general, average systolic blood pressure (SBP) and average pulse pressure difference (PPD) mediated 3.35% and 4.59%, respectively, of the association between hyperuricemia and CHD, and 6.60% and 6.60% in women. However, in the male population, we have not yet found that blood pressure-related indicators had a significant mediating effect. Meanwhile, we found that THBS3 mediated 19.23% of the association between hyperuricemia and CHD. CONCLUSIONS Average SBP, PPD, and THBS3 all play a role in the association of hyperuricemia and CHD. In the female population, similar mediating results in blood pressure-related indicators were observed.
Collapse
Affiliation(s)
- Le Yang
- School of Public Health, Fujian Medical University, Fujian, China
| | - Qinfei Wei
- School of Public Health, Fujian Medical University, Fujian, China
| | - Yu Sun
- School of Public Health, Fujian Medical University, Fujian, China
| | - Jianhui Guo
- School of Public Health, Fujian Medical University, Fujian, China
| | - Xingyan Xu
- School of Public Health, Fujian Medical University, Fujian, China
| | - Zhiyu Zhang
- School of Public Health, Fujian Medical University, Fujian, China
| | - Li Zhu
- School of Public Health, Fujian Medical University, Fujian, China
| | - Xiaofeng Zheng
- School of Public Health, Fujian Medical University, Fujian, China
| | - Fang Liu
- School of Public Health, Fujian Medical University, Fujian, China
| | - Jiadong Wu
- School of Public Health, Fujian Medical University, Fujian, China
| | - XiaoXu Xie
- School of Public Health, Fujian Medical University, Fujian, China
| | - Shaowei Lin
- School of Public Health, Fujian Medical University, Fujian, China
| | - Huangyuan Li
- School of Public Health, Fujian Medical University, Fujian, China
| | - Siying Wu
- School of Public Health, Fujian Medical University, Fujian, China.
| |
Collapse
|
4
|
Ma JL, Xu DP, Tao YF, Zheng T, Xu P, Qiang J. Integrated transcriptome and miRNA sequencing analyses reveal that hypoxia stress induces immune and metabolic disorders in gill of genetically improved farmed tilapia (GIFT, Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2023; 139:108909. [PMID: 37353064 DOI: 10.1016/j.fsi.2023.108909] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/12/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
The survival and growth of fish are significantly impacted by a hypoxic environment (low dissolved oxygen). In this study, we compared tissue structure, physiological changes, and mRNA/miRNA transcriptome, in gills of genetically improved farmed tilapia (GIFT, Oreochromis niloticus) between the hypoxic group (DO: 0.55 mg/L, HG) and the control group (DO: 5 mg/L, CG). The results showed that the gill filaments in the hypoxic group showed curling, engorgement, and apoptotic cells increased, and that exposure for 96 h resulted in a reduction in the antioxidant capacity. We constructed and sequenced miRNA and mRNA libraries from gill tissues of GIFT at 96 h of hypoxia stress. Between the HG and CG, a total of 14 differentially expressed (DE) miRNAs and 1557 DE genes were obtained. GO and KEGG enrichment showed that DE genes were mainly enriched in immune and metabolic pathways such as natural killer cell mediated cytotoxicity, steroid biosynthesis, primary immunodeficiency, and synthesis and degradation of ketone bodies. Based on the results of mRNA sequencing and screening for miRNA-mRNA pairs, we selected and verified six DE miRNAs and their probable target genes. The sequencing results were consistent with the qRT-PCR validation results. The result showed that under hypoxia stress, the innate immune response was up-regulated, and the adaptive immune response was down-regulated in the gill of GIFT. The synthesis of cholesterol in gill cells is reduced, which is conducive to the absorption of solvent oxygen. These findings offer fresh information about the processes of fish adaptation to hypoxic stress.
Collapse
Affiliation(s)
- Jun-Lei Ma
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Dong-Po Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China.
| | - Yi-Fan Tao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Tao Zheng
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Pao Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Jun Qiang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China.
| |
Collapse
|
5
|
Wang G, Qu F, Zhou J, Zhu B, Gao Y. Elevated THBS3 predicts poor overall survival for clear cell renal cell carcinoma and identifies LncRNA/RBP/THBS3 mRNA networks. Cell Cycle 2023; 22:316-330. [PMID: 36045611 PMCID: PMC9851198 DOI: 10.1080/15384101.2022.2117910] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/03/2022] [Accepted: 08/16/2022] [Indexed: 01/22/2023] Open
Abstract
This study was used to assess THBS3's overall survival (OS) prognostic values in clear cell renal cell carcinoma (ccRCC) as well as to determine the LncRNA/RNA binding protein (RBP)/THBS3 interactions. Clinical data and RNA sequencing data were gathered from the TCGA dataset. Significant pathways associated with THBS3 were identified by gene set enrichment analysis (GSEA). Cox regression analyses, both univariate and multivariate, were applied to assess factors with independent prognostic abilities. We also discussed THBS3's relationship to immunity. We discovered that THBS3 expression was increased in ccRCC samples, as well as shorter OS in the TCGA dataset (P<0.05). External verification results in GSE6344, ICGC, ArrayExpress, UALCAN datasets, and qRT-PCR remained consistent (all P<0.05). Cox regression analyses, both univariate and multivariate, identified THBS3 as a factor with independent prognostic ability (both P<0.001). THBS3 expression as well as several clinicopathological variables were included in the nomogram OS prognosis prediction method as well. GSEA identified four THBS3-related signal pathways and THBS3 was revealed to be significantly associated with MSI, TMB, neoantigen, and immunity (all P<0.05). We also identified several LncRNA/RBP/THBS3 mRNA networks as potentially THBS3-related mechanisms. For THBS3-related drug sensitivities, THBS3 was negatively associated with Actinomycin D, Cobimetinib, Eribulin mesilate, Geldanamycin analog, and Vinblastine, while it was positively related to Erlotinib drug sensitivity. In addition to being an independent prognostic factor for ccRCC, THBS3 had a close connection to immunity, with identifying LncRNA/RBPs/THBS3 mRNA networks. Verifications of our findings in vivo and in vitro should be done in the future.
Collapse
Affiliation(s)
- Gang Wang
- Department of Urology, Jianhu Clinical Medical College of Yangzhou University, Yancheng, Jiangsu Province, China
| | - Fangfang Qu
- Department of Anesthesiology, Jianhu Clinical Medical College of Yangzhou University, Yancheng, Jiangsu Province, China
| | - Jincai Zhou
- Department of Urology, Jianhu Clinical Medical College of Yangzhou University, Yancheng, Jiangsu Province, China
| | - Bingye Zhu
- Department of Urology, Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), Nantong, Jiangsu Province, China
| | - Yulong Gao
- Department of Urology, Jianhu Clinical Medical College of Yangzhou University, Yancheng, Jiangsu Province, China
| |
Collapse
|
6
|
Chen Y, Meng H, Meng X, Yan Z, Wang J, Meng F. Correlation Between Low THBS3 Expression in Peripheral Blood and Acute Myocardial Infarction. FRONT BIOSCI-LANDMRK 2022; 27:291. [PMID: 36336864 DOI: 10.31083/j.fbl2710291] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/12/2022] [Accepted: 09/21/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND Thrombospondin (THBS) 3 is an adhesive glycoprotein involved in cell-cell and cell-matrix interactions. The purpose of this study is to determine whether THBS3 expression in peripheral blood can be used as a biomarker to predict the risk of acute myocardial infarction (AMI). METHODS The peripheral blood of 111 patients with stable coronary artery disease (SCAD) and 112 patients with AMI was obtained. The experimental and the control cohorts were the AMI and SCAD groups, respectively. The expression of THBS3 mRNA and protein in both groups was determined using reverse-transcription polymerase chain reaction and enzyme-linked immunosorbent assay. RESULTS THBS3 expression (range) in the peripheral plasma of patients in the AMI group was lower than that of patients in the SCAD group (4.526 (3.748-5.521), 5.511 (4.726-6.334), respectively), which was 0.82 times lower than the control (p < 0.001). Furthermore, THBS3 mRNA level in the peripheral blood mononuclear cells of patients with AMI was 0.47 times lower than that in patients with SCAD (p < 0.05). AMI was associated with fasting blood glucose levels, platelet counts and low THBS3 expression. Logistic regression analysis revealed that decreased expression of THBS3 protein increased the probability of AMI by 4.076 times (p < 0.01). Additionally, high fasting blood glucose and high platelet counts increased the risk of AMI by 2.819 and 6.515 times, respectively (p < 0.05). CONCLUSIONS THBS3 mRNA and protein levels in the peripheral blood of patients in the AMI group were much lower compared with those of patients in the SCAD group. Low THBS3 expression in peripheral blood was related to AMI and was an independent risk factor for AMI. Thus, low THBS3 expression in peripheral blood may be a novel, suitable molecular marker for the early detection of AMI.
Collapse
Affiliation(s)
- Yanqiu Chen
- Department of Cardiology, China-Japan Union Hospital of Jilin University, 130033 Changchun, Jilin, China
- Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, 130033 Changchun, Jilin, China
- Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, 130033 Changchun, Jilin, China
- Jilin Provincial Molecular Biology Research Center for Precision Medicine of Major Cardiovascular Disease, 130033 Changchun, Jilin, China
- Jilin Provincial Cardiovascular Research Institute, 130033 Changchun, Jilin, China
| | - Heyu Meng
- Department of Cardiology, China-Japan Union Hospital of Jilin University, 130033 Changchun, Jilin, China
- Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, 130033 Changchun, Jilin, China
- Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, 130033 Changchun, Jilin, China
- Jilin Provincial Molecular Biology Research Center for Precision Medicine of Major Cardiovascular Disease, 130033 Changchun, Jilin, China
- Jilin Provincial Cardiovascular Research Institute, 130033 Changchun, Jilin, China
| | - Xin Meng
- Department of Cardiology, China-Japan Union Hospital of Jilin University, 130033 Changchun, Jilin, China
- Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, 130033 Changchun, Jilin, China
- Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, 130033 Changchun, Jilin, China
- Jilin Provincial Molecular Biology Research Center for Precision Medicine of Major Cardiovascular Disease, 130033 Changchun, Jilin, China
- Jilin Provincial Cardiovascular Research Institute, 130033 Changchun, Jilin, China
| | - Zhaohan Yan
- Department of Cardiology, China-Japan Union Hospital of Jilin University, 130033 Changchun, Jilin, China
- Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, 130033 Changchun, Jilin, China
- Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, 130033 Changchun, Jilin, China
- Jilin Provincial Molecular Biology Research Center for Precision Medicine of Major Cardiovascular Disease, 130033 Changchun, Jilin, China
- Jilin Provincial Cardiovascular Research Institute, 130033 Changchun, Jilin, China
| | - Jingru Wang
- Department of Cardiology, China-Japan Union Hospital of Jilin University, 130033 Changchun, Jilin, China
- Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, 130033 Changchun, Jilin, China
- Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, 130033 Changchun, Jilin, China
- Jilin Provincial Molecular Biology Research Center for Precision Medicine of Major Cardiovascular Disease, 130033 Changchun, Jilin, China
- Jilin Provincial Cardiovascular Research Institute, 130033 Changchun, Jilin, China
| | - Fanbo Meng
- Department of Cardiology, China-Japan Union Hospital of Jilin University, 130033 Changchun, Jilin, China
- Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, 130033 Changchun, Jilin, China
- Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, 130033 Changchun, Jilin, China
- Jilin Provincial Molecular Biology Research Center for Precision Medicine of Major Cardiovascular Disease, 130033 Changchun, Jilin, China
- Jilin Provincial Cardiovascular Research Institute, 130033 Changchun, Jilin, China
| |
Collapse
|
7
|
Chen X, Lin J, Chen M, Chen Q, Cai Z, Tang A. Identification of adhesion-associated extracellular matrix component thrombospondin 3 as a prognostic signature for clear cell renal cell carcinoma. Investig Clin Urol 2022; 63:107-117. [PMID: 34983129 PMCID: PMC8756151 DOI: 10.4111/icu.20210273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/14/2021] [Accepted: 09/30/2021] [Indexed: 11/18/2022] Open
Abstract
PURPOSE Clear cell renal cell carcinoma (ccRCC) is a highly aggressive disease, and approximately 30% of patients are diagnosed at the metastatic stage. Even with targeted therapies, the prognosis of advanced ccRCC is poor. The aim of this study was to investigate clinical prognosis signatures by analyzing the ccRCC datasets in The Cancer Genome Atlas (TCGA) and the Clinical Proteomic Tumor Analysis Consortium (CPTAC) and the function of thrombospondin 3 (THBS3) in ccRCC. MATERIALS AND METHODS We analyzed the ccRCC datasets in TCGA and CPTAC to search for extracellular matrix (ECM)-related and adhesion-associated genes, and conducted overall survival, Cox, and receiver operating characteristic analyses. We also performed CCK8, colony formation, and transwell assays to compared the proliferation and migration ability of THBS3 knockout cells with those of cells without THBS3 knockout. RESULTS Comprehensive bioinformatics analysis revealed that THBS3 is a novel candidate oncogene that is overexpressed in ccRCC tumor tissue and that its elevated expression indicates poor prognosis. Our study also showed that knockdown of THBS3 inhibits proliferation, colony formation, and migration of ccRCC cells. CONCLUSIONS In summary, our data have revealed that THBS3 is upregulated in cancer tissues and could be used as a novel prognostic marker for ccRCC. Our findings thus offer theoretical support with bioinformatics analyses to the study of ECM and adhesion proteins in ccRCC, which may provide a new perspective for the clinical management of ccRCC.
Collapse
Affiliation(s)
- Xiangling Chen
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen Institute of Translational Medicine, Shenzhen, China
- Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen Institute of Translational Medicine, Shenzhen, China
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jiatian Lin
- Department of Minimally Invasive Intervention, Peking University Shenzhen Hospital, Shenzhen, China
| | - Min Chen
- State Key Laboratory of Cell Biology, CAS Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Shanghai, China
| | - Qiaoling Chen
- Department of Biology, NO. 6 Middle School of Changsha, Changsha, China
| | - Zhiming Cai
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen Institute of Translational Medicine, Shenzhen, China
| | - Aifa Tang
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen Institute of Translational Medicine, Shenzhen, China
- Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen Institute of Translational Medicine, Shenzhen, China.
| |
Collapse
|
8
|
Rajeish M, Dechamma MM, Mani MK, Rai P, Karunasagar I, Bossier P, Karunasagar I, Maiti B. Different expression pattern of thrombospondin gene in the presence and absence of β-glucan fed Penaeus monodon challenged with white spot syndrome virus. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2021; 2:100020. [PMID: 36420513 PMCID: PMC9680046 DOI: 10.1016/j.fsirep.2021.100020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 06/04/2021] [Accepted: 08/17/2021] [Indexed: 12/04/2022] Open
Abstract
Thrombospondin (TSP) gene expression in response to WSSV infection in shrimp, Penaeus monodon. Expression pattern of TSP gene in the presence and absence of β-glucan fed shrimp. High-level expression of TSP gene in various tissues of WSSV-challenged shrimp at 2 h. Altered gene expression pattern in WSSV-challenged shrimp, fed with and without β-glucan. TSP could play a role as an acute inducible phase response protein to WSSV infection.
Thrombospondins (TSPs) are extracellular, calcium-binding glycoproteins that play an essential role in cell homeostasis and development, wound-healing, angiogenesis, connective tissue organization, immune response etc. and it conserves from sea sponges to mammals. However, their role in shrimp immunity is poorly understood. In the present study, the differential expression profiling of TSP transcripts in Penaeus monodon tissues such as gills, lymphoid organs, hepatopancreas, and hemolymph challenged with white spot syndrome virus (WSSV), were studied by quantitative real-time PCR. Further, shrimps fed with the immunostimulant (β-glucan) when challenged with WSSV showed significant upregulation of TSP expression in gills, hepatopancreas, and lymphoid organ at the early phase of WSSV infection. The results suggest that TSP may be an inducible acute phase response protein to WSSV infection. The possibility of differences in mRNA expression pattern seen in immunostimmulated shrimp after the viral challenge, possibility due to altered immune mechanisms getting triggered during immunostimulant administration and virus infections in the host.
Collapse
|
9
|
Zhang Z, Liu X, Li L, Yang Y, Yang J, Wang Y, Wu J, Wu X, Shan L, Pei F, Liu J, Wang S, Li W, Sun L, Liang J, Shang Y. SNP rs4971059 predisposes to breast carcinogenesis and chemoresistance via TRIM46-mediated HDAC1 degradation. EMBO J 2021; 40:e107974. [PMID: 34459501 DOI: 10.15252/embj.2021107974] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/28/2021] [Accepted: 08/16/2021] [Indexed: 12/19/2022] Open
Abstract
Identification of the driving force behind malignant transformation holds the promise to combat the relapse and therapeutic resistance of cancer. We report here that the single nucleotide polymorphism (SNP) rs4971059, one of 65 new breast cancer risk loci identified in a recent genome-wide association study (GWAS), functions as an active enhancer of TRIM46 expression. Recreating the G-to-A polymorphic switch caused by the SNP via CRISPR/Cas9-mediated homologous recombination leads to an overt upregulation of TRIM46. We find that TRIM46 is a ubiquitin ligase that targets histone deacetylase HDAC1 for ubiquitination and degradation and that the TRIM46-HDAC1 axis regulates a panel of genes, including ones critically involved in DNA replication and repair. Consequently, TRIM46 promotes breast cancer cell proliferation and chemoresistance in vitro and accelerates tumor growth in vivo. Moreover, TRIM46 is frequently overexpressed in breast carcinomas, and its expression is correlated with lower HDAC1 expression, higher histological grades, and worse prognosis of the patients. Together, our study links SNP rs4971059 to replication and to breast carcinogenesis and chemoresistance and support the pursuit of TRIM46 as a potential target for breast cancer intervention.
Collapse
Affiliation(s)
- Zihan Zhang
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing, China
| | - Xiaoping Liu
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Lei Li
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Yang Yang
- Breast Disease Center, Peking University People's Hospital, Beijing, China
| | - Jianguo Yang
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Yue Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jiajing Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiaodi Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Lin Shan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Fei Pei
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jianying Liu
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Shu Wang
- Breast Disease Center, Peking University People's Hospital, Beijing, China
| | - Wei Li
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA
| | - Luyang Sun
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing, China
| | - Jing Liang
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing, China
| | - Yongfeng Shang
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Stone RN, Frahs SM, Hardy MJ, Fujimoto A, Pu X, Keller-Peck C, Oxford JT. Decellularized Porcine Cartilage Scaffold; Validation of Decellularization and Evaluation of Biomarkers of Chondrogenesis. Int J Mol Sci 2021; 22:6241. [PMID: 34207917 PMCID: PMC8230108 DOI: 10.3390/ijms22126241] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 12/21/2022] Open
Abstract
Osteoarthritis is a major concern in the United States and worldwide. Current non-surgical and surgical approaches alleviate pain but show little evidence of cartilage restoration. Cell-based treatments may hold promise for the regeneration of hyaline cartilage-like tissue at the site of injury or wear. Cell-cell and cell-matrix interactions have been shown to drive cell differentiation pathways. Biomaterials for clinically relevant applications can be generated from decellularized porcine auricular cartilage. This material may represent a suitable scaffold on which to seed and grow chondrocytes to create new cartilage. In this study, we used decellularization techniques to create an extracellular matrix scaffold that supports chondrocyte cell attachment and growth in tissue culture conditions. Results presented here evaluate the decellularization process histologically and molecularly. We identified new and novel biomarker profiles that may aid future cartilage decellularization efforts. Additionally, the resulting scaffold was characterized using scanning electron microscopy, fluorescence microscopy, and proteomics. Cellular response to the decellularized scaffold was evaluated by quantitative real-time PCR for gene expression analysis.
Collapse
Affiliation(s)
- Roxanne N. Stone
- Interdisciplinary Studies Program, Boise State University, Boise, ID 83725, USA;
- Biomolecular Research Center, Boise State University, Boise, ID 83725, USA; (S.M.F.); (M.J.H.); (A.F.); (X.P.); (C.K.-P.)
| | - Stephanie M. Frahs
- Biomolecular Research Center, Boise State University, Boise, ID 83725, USA; (S.M.F.); (M.J.H.); (A.F.); (X.P.); (C.K.-P.)
- Center of Biomedical Research Excellence in Matrix Biology, Boise State University, Boise, ID 83725, USA
- Biomolecular Sciences Graduate Programs, Boise State University, Boise, ID 83725, USA
| | - Makenna J. Hardy
- Biomolecular Research Center, Boise State University, Boise, ID 83725, USA; (S.M.F.); (M.J.H.); (A.F.); (X.P.); (C.K.-P.)
- Center of Biomedical Research Excellence in Matrix Biology, Boise State University, Boise, ID 83725, USA
- Biomolecular Sciences Graduate Programs, Boise State University, Boise, ID 83725, USA
| | - Akina Fujimoto
- Biomolecular Research Center, Boise State University, Boise, ID 83725, USA; (S.M.F.); (M.J.H.); (A.F.); (X.P.); (C.K.-P.)
- Center of Biomedical Research Excellence in Matrix Biology, Boise State University, Boise, ID 83725, USA
| | - Xinzhu Pu
- Biomolecular Research Center, Boise State University, Boise, ID 83725, USA; (S.M.F.); (M.J.H.); (A.F.); (X.P.); (C.K.-P.)
- Center of Biomedical Research Excellence in Matrix Biology, Boise State University, Boise, ID 83725, USA
- Biomolecular Sciences Graduate Programs, Boise State University, Boise, ID 83725, USA
| | - Cynthia Keller-Peck
- Biomolecular Research Center, Boise State University, Boise, ID 83725, USA; (S.M.F.); (M.J.H.); (A.F.); (X.P.); (C.K.-P.)
- Center of Biomedical Research Excellence in Matrix Biology, Boise State University, Boise, ID 83725, USA
| | - Julia Thom Oxford
- Biomolecular Research Center, Boise State University, Boise, ID 83725, USA; (S.M.F.); (M.J.H.); (A.F.); (X.P.); (C.K.-P.)
- Center of Biomedical Research Excellence in Matrix Biology, Boise State University, Boise, ID 83725, USA
- Biomolecular Sciences Graduate Programs, Boise State University, Boise, ID 83725, USA
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA
| |
Collapse
|
11
|
Duquette M, Nadler M, Okuhara D, Thompson J, Shuttleworth T, Lawler J. Members of the thrombospondin gene family bind stromal interaction molecule 1 and regulate calcium channel activity. Matrix Biol 2014; 37:15-24. [PMID: 24845346 PMCID: PMC4502920 DOI: 10.1016/j.matbio.2014.05.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 05/06/2014] [Accepted: 05/06/2014] [Indexed: 01/24/2023]
Abstract
The thrombospondins (TSPs) are a family of matricellular proteins that regulate cellular phenotype through interactions with a myriad of other proteins and proteoglycans. We have identified a novel interaction of the members of the TSP gene family with stromal interaction molecule 1 (STIM1). This association is robust since it is preserved in Triton X-100, can be detected with multiple anti-TSP-1 and anti-STIM1 antibodies, and is detected in a wide range of cell types. We have also found that STIM1 co-immunoprecipitates with TSP-4 and cartilage oligomeric matrix protein (COMP), and that a recombinant version of the N-terminal domain of STIM1 binds to the signature domain of TSP-1 and COMP. The association of the TSPs with STIM1 is observed in both the presence and absence of calcium indicating that the calcium-dependent conformation of the signature domain of TSPs is not required for binding. Thus, this interaction could occur in the ER under conditions of normal or low calcium concentration. Furthermore, we observed that the expression of COMP in HEK 293 cells decreases STIM1-mediated calcium release activated calcium (CRAC) channel currents and increases arachidonic acid calcium (ARC) channel currents. These data indicate that the TSPs regulate STIM1 function and participate in the reciprocal regulation of two channels that mediate calcium entry into the cell.
Collapse
Affiliation(s)
- Mark Duquette
- The Division of Experimental Pathology, Department of Pathology, Beth Israel Deaconess Medical School, Harvard Medical School, 99 Brookline Ave., Boston, MA 02215, United States
| | - Monica Nadler
- The Division of Experimental Pathology, Department of Pathology, Beth Israel Deaconess Medical School, Harvard Medical School, 99 Brookline Ave., Boston, MA 02215, United States
| | - Dayne Okuhara
- Synta Pharmaceuticals, 45 Hartwell Avenue, Lexington, MA 02421, United States
| | - Jill Thompson
- The Department of Pharmacology and Physiology, Box 711, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, United States
| | - Trevor Shuttleworth
- The Department of Pharmacology and Physiology, Box 711, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, United States
| | - Jack Lawler
- The Division of Experimental Pathology, Department of Pathology, Beth Israel Deaconess Medical School, Harvard Medical School, 99 Brookline Ave., Boston, MA 02215, United States.
| |
Collapse
|
12
|
Zhou F, Zheng L, Zhang D, Huang J, Qiu L, Yang Q, Jiang S. Molecular cloning, characterization and expression analysis of thrombospondin gene from Penaeus monodon. Mar Genomics 2011; 4:121-8. [DOI: 10.1016/j.margen.2011.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2011] [Revised: 03/07/2011] [Accepted: 03/10/2011] [Indexed: 11/29/2022]
|
13
|
Thrombospondins function as regulators of angiogenesis. J Cell Commun Signal 2009; 3:189-200. [PMID: 19798599 PMCID: PMC2778581 DOI: 10.1007/s12079-009-0060-8] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Accepted: 07/30/2009] [Indexed: 12/22/2022] Open
Abstract
Thrombospondins (TSPs) -1 and -2 were among the first protein inhibitors of angiogenesis to be identified, a property that was subsequently attributed to the interactions of sequences in their type I repeats with endothelial cell-surface receptors. The interactions of TSPs-1 and -2 with cell-surface receptors, proteases, growth factors, and other bioactive molecules, coupled with the absence of direct structural functions that can be attributed to these matrix proteins, qualify them for inclusion in the category of ‘matricellular proteins’. The phenotypes of TSP-1, TSP-2, and double TSP-1/2-null mice confirm the roles that these proteins play in the regulation of angiogenesis, and provide clues to some of the other important functions of these multi-domain proteins. One of these functions is the ability of TSP-1 to activate the latent TGFβ1 complex, a property that is not shared by TSP-2. A major pathway by which TSP1 or TSP2 inhibits angiogenesis involves an interaction with CD 36 on endothelial cells, which leads to apoptosis of both the liganded and adjacent cells. However a homeostatic mechanism, which inhibits endothelial cell proliferation, and may be physiologically preferable under some circumstances, has also been elucidated, and involves interaction with the very low density lipoprotein receptor (VLDLR). The interaction of TSP1with its receptor, CD47, further inhibits angiogenesis by antagonizing nitric oxide signaling in endothelial and vascular smooth muscle cells. Paradoxically, there is also evidence that TSP-1 can function to promote angiogenesis. This apparent contradiction can be explained by the presence of sequences in different domains of the protein that interact with different receptors on endothelial cells. The anti-angiogenic function of TSPs has spurred interest in their use as anti-tumor agents. Currently, peptide mimetics, based on sequences in the type I repeats of TSPs that have been shown to have anti-angiogenic properties, are undergoing clinical testing.
Collapse
|
14
|
Culp WD, Tsagozis P, Burgio M, Russell P, Pisa P, Garland D. Interference of macrophage migration inhibitory factor expression in a mouse melanoma inhibits tumor establishment by up-regulating thrombospondin-1. Mol Cancer Res 2008; 5:1225-31. [PMID: 18171979 DOI: 10.1158/1541-7786.mcr-07-0229] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine with proinflammatory, proangiogenic, and protumorigenic properties. The molecular mechanisms underlying the role of MIF in tumorigenesis and angiogenesis are not well understood. To address these roles, an interfering MIF (iMIF) RNA was stably introduced into the B16-F10 mouse melanoma cell line, reducing MIF mRNA expression 1.6-fold and MIF protein expression 2.8-fold relative to control cells. When iMIF cells were subcutaneously injected into C57BL/6 mice, tumor establishment was significantly delayed and there was a marked absence of intratumoral vasculature in iMIF tumors relative to controls. A comparative gene expression analysis of iMIF and control melanoma cell lines revealed that thrombospondin-1 (TSP-1) mRNA expression was up-regulated 88-fold in the iMIF cells by real-time PCR. A 2-fold increase in TSP-1 protein levels was observed in iMIF cell culture supernatants. These results strongly suggest that the delayed tumor establishment and reduced vasculature in iMIF melanomas are linked to the up-regulation of the antiangiogenic TSP-1. They further define a novel function of MIF as a regulator of TSP-1 in a mouse melanoma model.
Collapse
|
15
|
Abstract
The prevalence of gout appears to be rapidly increasing worldwide and is no longer a disorder suffered primarily by over-fed alcohol consumers. Emerging risk factors include longevity, metabolic syndrome, and new classes of pharmacologic agents. In some ethnic populations, no obvious risk factors can explain the high incidence of hyperuricemia and gout, suggesting a genetic liability. Studies to identify genes associated with gout have included families with defects in purine metabolism, as well as families in whom the occurrence of gout is secondary to renal disorders such as juvenile hyperuricemic nephropathy and medullary cystic kidney disease. Case-control studies of isolated aboriginal cohorts suffering from primary gout have revealed several chromosomal loci that may harbor genes that are important to the development and/or progression of gout.
Collapse
|
16
|
Wolf MTF, Mucha BE, Hennies HC, Attanasio M, Panther F, Zalewski I, Karle SM, Otto EA, Deltas CC, Fuchshuber A, Hildebrandt F. Medullary cystic kidney disease type 1: mutational analysis in 37 genes based on haplotype sharing. Hum Genet 2006; 119:649-58. [PMID: 16738948 DOI: 10.1007/s00439-006-0176-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2005] [Accepted: 03/22/2006] [Indexed: 01/24/2023]
Abstract
Medullary cystic kidney disease type 1 (MCKD1) is an autosomal dominant, tubulo-interstitial nephropathy that causes renal salt wasting and end-stage renal failure in the fourth to seventh decade of life. MCKD1 was localized to chromosome 1q21. We demonstrated haplotype sharing and confirmed the telomeric border by a recombination of D1S2624 in a Belgian kindred. Since the causative gene has been elusive, high resolution haplotype analysis was performed in 16 kindreds. Clinical data and blood samples of 257 individuals (including 75 affected individuals) from 26 different kindreds were collected. Within the defined critical region mutational analysis of 37 genes (374 exons) in 23 MCKD1 patients was performed. In addition, for nine kindreds RT-PCR analysis for the sequenced genes was done to screen for mutations activating cryptic splice sites. We found consistency with the haplotype sharing hypothesis in an additional nine kindreds, detecting three different haplotype subsets shared within a region of 1.19 Mb. Mutational analysis of all 37 positional candidate genes revealed sequence variations in 3 different genes, AK000210, CCT3, and SCAMP3, that were segregating in each affected kindred and were not found in 96 healthy individuals, indicating, that a single responsible gene causing MCKD1 remains elusive. This may point to involvement of different genes within the MCKD1 critical region.
Collapse
Affiliation(s)
- Matthias T F Wolf
- Department of Pediatrics, University of Michigan, Ann Arbor, MI 48109-0646, USA, and University Children's Hospital, Freiburg University, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
McKenzie P, Chadalavada SC, Bohrer J, Adams JC. Phylogenomic analysis of vertebrate thrombospondins reveals fish-specific paralogues, ancestral gene relationships and a tetrapod innovation. BMC Evol Biol 2006; 6:33. [PMID: 16620379 PMCID: PMC1464143 DOI: 10.1186/1471-2148-6-33] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2006] [Accepted: 04/18/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Thrombospondins (TSPs) are evolutionarily-conserved, extracellular, calcium-binding glycoproteins with important roles in cell-extracellular matrix interactions, angiogenesis, synaptogenesis and connective tissue organisation. Five TSPs, designated TSP-1 through TSP-5, are encoded in the human genome. All but one have known roles in acquired or inherited human diseases. To further understand the roles of TSPs in human physiology and pathology, it would be advantageous to extend the repertoire of relevant vertebrate models. In general the zebrafish is proving an excellent model organism for vertebrate biology, therefore we set out to evaluate the status of TSPs in zebrafish and two species of pufferfish. RESULTS We identified by bioinformatics that three fish species encode larger numbers of TSPs than vertebrates, yet all these sequences group as homologues of TSP-1 to -4. By phylogenomic analysis of neighboring genes, we uncovered that, in fish, a TSP-4-like sequence is encoded from the gene corresponding to the tetrapod TSP-5 gene. Thus, all TSP genes show conservation of synteny between fish and tetrapods. In the human genome, the TSP-1, TSP-3, TSP-4 and TSP-5 genes lie within paralogous regions that provide insight into the ancestral genomic context of vertebrate TSPs. CONCLUSION A new model for TSP evolution in vertebrates is presented. The TSP-5 protein sequence has evolved rapidly from a TSP-4-like sequence as an innovation in the tetrapod lineage. TSP biology in fish is complicated by the presence of additional lineage- and species-specific TSP paralogues. These novel results give deeper insight into the evolution of TSPs in vertebrates and open new directions for understanding the physiological and pathological roles of TSP-4 and TSP-5 in humans.
Collapse
Affiliation(s)
- Patrick McKenzie
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Seetharam C Chadalavada
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Justin Bohrer
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Josephine C Adams
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
- Dept. of Cell Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| |
Collapse
|
18
|
Hankenson KD, Hormuzdi SG, Meganck JA, Bornstein P. Mice with a disruption of the thrombospondin 3 gene differ in geometric and biomechanical properties of bone and have accelerated development of the femoral head. Mol Cell Biol 2005; 25:5599-606. [PMID: 15964815 PMCID: PMC1156967 DOI: 10.1128/mcb.25.13.5599-5606.2005] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Thrombospondin 3 (TSP3) is structurally similar to cartilage oligomeric matrix protein (COMP/TSP5), but its function is unknown. To determine the functional significance of TSP3, we generated mice with a targeted disruption of Thbs3. TSP3-null mice are viable and fertile and show normal prenatal skeletal patterning, based on Alcian blue/Alizarin red S staining. However, subtle and transient abnormalities were detected in the developing postnatal skeleton. Young adult TSP3-null mice are heavier than controls, and analyses of the geometric and biomechanical properties of long bones show increases in the moments of inertia, endocortical and periostal radii, and failure load. The bones of 9-week-old TSP3-null male mice also have a significantly greater cortical area. Most of these differences were no longer detected in 15-week-old mice. Micro-computed tomography scans showed that the trabecular bone proximal to the femoral head growth plate developed at an earlier time in TSP3-null mice than in wild-type mice. Thus, vascular invasion and ossification start in the femoral heads of TSP3-null mice at 9 weeks, whereas the wild-type femoral head is still composed of hypertrophic chondroctyes in a calcified matrix at 15 weeks. These results provide evidence for a role for TSP3 in the regulation of skeletal maturation in mice.
Collapse
Affiliation(s)
- Kurt D Hankenson
- Department of Orthopaedic Surgery, and Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | |
Collapse
|
19
|
Affiliation(s)
- J Adams
- Vascular Research Division, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Avenue Boston, Massachusetts 02115, USA
| | | |
Collapse
|
20
|
Shibata T, Misawa N, Takeo C, Saeki N, Saito Y, Tatsuno I. Analysis of Genes Dominantly Expressed in Rat Cerebral Endothelial Cells Using Suppression Subtractive Hybridization. J Atheroscler Thromb 2005; 12:330-7. [PMID: 16394617 DOI: 10.5551/jat.12.330] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In mammals, a fully developed, highly branched vascular system specialized for each particular organ or tissue is essential for obtaining metabolic nutrients supply. The formation of a blood-brain barrier that protects against environmental insults is a distinguishing feature of the brain's vascular system. Since this is accomplished by cerebral endothelial cells (CECs), we analyzed the genes specifically and/or dominantly expressed in rat CECs using Suppression Subtractive Hybridization (SSH). We found 39 genes specifically and/or dominantly expressed in CECs. 24 genes of known function (thrombospondin-2, vimentin, etc.), 13 genes of known sequence but unknown function including 7 of ESTs (SNERG1, rat GPCR, etc.), and 2 novel genes. The physiological significance of these genes in CECs has been under investigation. SSH is useful for identifying genes regulated in an organ-specific manner in cells such as CECs to obtain clarification of their physiological roles.
Collapse
Affiliation(s)
- Takahisa Shibata
- Department of Clinical Cell Biology, Chiba University Graduate School of Medicine, Chiba, Japan
| | | | | | | | | | | |
Collapse
|
21
|
Wolf MTF, van Vlem B, Hennies HC, Zalewski I, Karle SM, Puetz M, Panther F, Otto E, Fuchshuber A, Lameire N, Loeys B, Hildebrandt F. Telomeric refinement of the MCKD1 locus on chromosome 1q21. Kidney Int 2004; 66:580-5. [PMID: 15253709 DOI: 10.1111/j.1523-1755.2004.00799.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Autosomal-dominant medullary cystic kidney disease type 1 (MCKD1) is a tubulointerstitial nephropathy that causes renal salt wasting and end-stage renal failure in the sixth decade of life. The chromosomal locus for MCKD1 was localized to chromosome 1q21 in a Cyprotic kindred. In this report we describe further refinement of the critical genetic region by a recombination in a Belgian kindred. METHODS Clinical data and blood samples of 33 individuals from a large Belgian kindred were collected and high-resolution haplotype analysis was performed. RESULTS In the Belgian kindred linkage to the MCKD1 locus on chromosome 1q21 was found with a logarithm of odds (LOD) score significant for linkage. A recombination in individual III:7 for marker D1S2624 refines the critical genetic region to 2.1 Mb. In this kindred a wide variety of clinical symptoms and age of onset of renal failure was detected. CONCLUSION We confirm the MCKD1 locus on chromosome 1q21 and show further refinement of the MCKD1 locus to 2.1 Mb. This allowed us to exclude another 17 genes as positional candidate genes.
Collapse
Affiliation(s)
- Matthias T F Wolf
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan 48109-0646, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Yamano K, Qiu GF, Unuma T. Molecular cloning and ovarian expression profiles of thrombospondin, a major component of cortical rods in mature oocytes of penaeid shrimp, Marsupenaeus japonicus. Biol Reprod 2004; 70:1670-8. [PMID: 14766728 DOI: 10.1095/biolreprod.103.025379] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
In penaeid shrimp, cortical rods (CRs) are formed in peripheral crypts of the oocyte after completion of yolk accumulation; subsequently the CRs are utilized as a source of jelly materials that surround fertilized eggs. In our previous study, of five major components, three CR proteins displayed quite similar immunological characteristics. In this study, cDNA sequences and developmental expression profiles at both transcriptional and protein levels were examined to elucidate the molecular characteristics of CR proteins and the process of CR formation. Sequencing cDNAs exhibited the presence of three related forms that have identical sequences except for the loss of 246 and 369 bp in medium and short forms, respectively, suggesting that a single gene generates three transcriptional variants corresponding to the three CR proteins. Their deduced amino acid sequences revealed similarities to those of extracellular matrix proteins in a thrombospondin (TSP) 3,4/cartilage oligomeric protein family, and thereby the CR proteins were designated mjTSP. Semiquantitative analysis by real-time polymerase chain reaction revealed the presence of mjTSP transcripts, at similar levels, in immature, vitellogenic, and mature ovaries. Furthermore, in situ hybridization localized the majority of transcripts in previtellogenic oocytes in ovaries at all developmental stages. By the Western blot, on the other hand, mjTSP proteins were undetectable in immature ovaries but became obvious at the early vitellogenic stage. The immunosignals were enhanced during vitellogenic stages and maintained a high intensity in mature ovaries. Thus, transcription, translation of mjTSP, and formation of the CR structure occurred at different stages of ovarian development.
Collapse
Affiliation(s)
- Keisuke Yamano
- Division of Farming Biology, National Research Institute of Aquaculture, Fisheries Research Agency, Nansei, Mie 516-0193, Japan.
| | | | | |
Collapse
|
23
|
Si Z, Palkama A, Gebhardt BM, Velasquez D, Galeano MJ, Beuerman RW. Distribution of thrombospondin-4 in the bovine eye. Curr Eye Res 2003; 27:165-73. [PMID: 14562182 DOI: 10.1076/ceyr.27.3.165.16050] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE The purpose of this study was to analyze the distribution of thrombospondin-4 (TSP-4) in the bovine eye. METHODS Anterior and posterior segments of the bovine eyes were sectioned and stained by the indirect immunofluorescence method with an anti-TSP-4 antibody. The tissues were analyzed by reverse-transcription-polymerase chain reaction (RT-PCR) to determine where the TSP-4 mRNA is produced. RESULTS Immunohistochemical staining for TSP-4 indicated the presence of TSP-4 in the cornea (epithelium, basement membrane, and keratocytes), conjunctiva (epithelium and stroma), aqueous ducts, sclera, iris (stroma), ciliary processes and muscle, trabecular meshwork, Bruch's membrane, retina, lamina cribrosa, and optic nerve, and in all blood vessel walls. TSP-4 mRNA was expressed by the cells in all structures. CONCLUSIONS TSP-4 is widely distributed in the bovine eye where it may play a role in the functions of basement membranes in various tissues. It is abundant in the trabecular and uveo-scleral pathways and may play a role in the regulation of aqueous outflow resistance.
Collapse
Affiliation(s)
- Zhaomin Si
- LSU Eye Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Pimanda JE, Annis DS, Raftery M, Mosher DF, Chesterman CN, Hogg PJ. The von Willebrand factor-reducing activity of thrombospondin-1 is located in the calcium-binding/C-terminal sequence and requires a free thiol at position 974. Blood 2002; 100:2832-8. [PMID: 12351392 DOI: 10.1182/blood-2002-03-0770] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plasma von Willebrand factor (VWF) is a multimeric protein that mediates adhesion of platelets to sites of vascular injury; however, only the very large VWF multimers are effective in promoting platelet adhesion in flowing blood. The multimeric size of VWF can be controlled by the glycoprotein, thrombospondin-1 (TSP-1), which facilitates reduction of the disulfide bonds that hold VWF multimers together. The TSP family of extracellular glycoproteins consists of 5 members in vertebrates, TSP-1 through TSP-4 and TSP-5/COMP. TSP-1 and TSP-2 are structurally similar trimeric proteins composed of disulfide-linked 150-kDa monomers. Recombinant pieces of TSP-1 and TSP-2 incorporating combinations of domains that span the entire subunit were produced in insect cells and examined for VWF reductase activity. VWF reductase activity was present in the Ca(++)-binding repeats and C-terminal sequence of TSP-1, but not of TSP-2. Alkylation of Cys974 in the C-terminal TSP-1 construct, which is a serine in TSP-2, ablated VWF reductase activity. These results imply that the reductase function of TSP-1 centers around Cys974 in the C-terminal sequence.
Collapse
Affiliation(s)
- John E Pimanda
- Centre for Thrombosis and Vascular Research and Cytokine Research Unit, School of Medical Sciences, University of New South Wales and Department of Haematology, Prince of Wales Hospital, Sydney, Australia
| | | | | | | | | | | |
Collapse
|
25
|
Svensson L, Aszódi A, Heinegård D, Hunziker EB, Reinholt FP, Fässler R, Oldberg A. Cartilage oligomeric matrix protein-deficient mice have normal skeletal development. Mol Cell Biol 2002; 22:4366-71. [PMID: 12024046 PMCID: PMC133870 DOI: 10.1128/mcb.22.12.4366-4371.2002] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cartilage oligomeric matrix protein (COMP) belongs to the thrombospondin family and is a homopentamer primarily expressed in cartilage. Mutations in the COMP gene result in the autosomal dominant chondrodysplasias pseudoachondroplasia (PSACH) and some types of multiple epiphyseal dysplasia (MED), which are characterized by mild to severe short-limb dwarfism and early-onset osteoarthritis. We have generated COMP-null mice to study the role of COMP in vivo. These mice show no anatomical, histological, or ultrastructural abnormalities and show none of the clinical signs of PSACH or MED. Northern blot analysis and immunohistochemical analysis of cartilage indicate that the lack of COMP is not compensated for by any other member of the thrombospondin family. The results also show that the phenotype in PSACH/MED cartilage disorders is not caused by the reduced amount of COMP.
Collapse
Affiliation(s)
- Liz Svensson
- Department of Cell and Molecular Biology, BMC, University of Lund, Sweden
| | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Thrombospondins are secreted, multidomain macromolecules that act as regulators of cell interactions in vertebrates. Gene knockout mice constructed for two members of this family demonstrate roles in the organization and homeostasis of multiple tissues, with particularly significant activities in the regulation of angiogenesis. This review discusses the functions of thrombospondins with regard to their cellular mechanisms of action and highlights recent advances in understanding how multifactorial molecular interactions, at the cell surface and within extracellular matrix, produce cell-type-specific effects on cell behavior and the organization of matrix and tissues.
Collapse
Affiliation(s)
- J C Adams
- MRC Laboratory for Molecular Cell Biology and Department of Biochemistry and Molecular Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom.
| |
Collapse
|
27
|
Misenheimer TM, Hahr AJ, Harms AC, Annis DS, Mosher DF. Disulfide connectivity of recombinant C-terminal region of human thrombospondin 2. J Biol Chem 2001; 276:45882-7. [PMID: 11590138 DOI: 10.1074/jbc.m104218200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The thrombospondin (TSP) family of extracellular glycoproteins consists of five members in vertebrates, TSP1 to -4 and TSP5/cartilage oligomeric matrix protein, and a single member in Drosophila. TSPs are modular multimeric proteins. The C-terminal end of a monomer consists of 3-6 EGF-like modules; seven tandem 23-, 36-, or 38-residue aspartate-rich, Ca(2+)-binding repeats; and an approximately 230-residue C-terminal sequence. The Ca(2+)-binding repeats and C-terminal sequence are spaced almost exactly the same in different TSPs and share many blocks of identical residues. We studied the C-terminal portion of human TSP2 from the third EGF-like module through the end of the protein (E3CaG2). E3CaG2, CaG2 lacking the EGF module, and Ca2 composed of only the Ca(2+)-binding repeats were expressed using recombinant baculoviruses and purified from conditioned media of insect cells. As previously described for intact TSP1, E3CaG2 bound Ca(2+) in a cooperative manner as assessed by equilibrium dialysis, and its circular dichroism spectrum was sensitive to the presence of Ca(2+). Mass spectrometry of the recombinant proteins digested with endoproteinase Asp-N revealed that disulfide pairing of the 18 cysteines in the Ca(2+)-binding repeats and C-terminal sequence is sequential, i.e. a 1-2, 3-4, 5-6, etc., pattern.
Collapse
Affiliation(s)
- T M Misenheimer
- Department of Medicine and the Biotechnology Center, University of Wisconsin, Madison, Wisconsin 53706, USA.
| | | | | | | | | |
Collapse
|
28
|
Adolph KW. Relationship of transcription of Drosophila melanogaster gene CG11327 and the gene for a thrombospondin homologue (DTSP). DNA SEQUENCE : THE JOURNAL OF DNA SEQUENCING AND MAPPING 2001; 12:273-9. [PMID: 11916261 DOI: 10.3109/10425170109025002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Because of the close proximity of D. melanogaster gene CG11327 and the gene for a thrombospondin homologue (DTSP), the relationship between transcription of the two genes has been investigated. As part of this study, the cDNA sequence of gene CG11327 was determined, and structural features of the encoded protein were characterized. The CG11327 open reading frame specifies a polypeptide of 475 amino acid residues, molecular weight 53,666. The highly acidic protein has an aspartic acid + glutamic acid content of 23.2%. Weak similarities to other proteins suggest that it may function as a transcription factor or structural protein of the cell cycle. The existence of overlapping transcripts was found to be a significant feature of transcription of gene CG11327 and the DTSP gene. The 3' end of the DTSP gene overlaps the 5' end of gene CG11327 by at least 177bp, and the region of overlap includes exon 13 and the 3' UTR of the DTSP gene.
Collapse
Affiliation(s)
- K W Adolph
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis 55455, USA.
| |
Collapse
|
29
|
Abstract
The cDNA of a thrombospondin homologue in Drosophila melanogaster (DTSP) has been sequenced, and structural features of the translated protein analyzed. Thrombospondin proteins had previously been identified only in vertebrates, including human and mouse. Comparison with the genomic sequence revealed that the DTSP gene is divided into 13 exons; The translation initiation site is in exon 2. The transcription start site was analyzed using a PCR procedure, and the longest transcripts were found to initiate about 300 bp 5' of the predicted start site. The open reading frame of the DTSP cDNA encodes a protein that has 1060 amino acid residues. The polypeptide is composed of domains or repeats characteristic of the TSP3/TSP4/COMP subfamily of thrombospondin proteins: Amino-terminal domain, four Type II repeats, seven Type III repeats, carboxyl-terminal domain. The protein is highly acidic, particularly in the region of Type III repeats, with an Asp + Glu content of 15.8%. A signal peptide was detected at the N-terminus, which indicates that DTSP, like other TSPs, functions as an extracellular protein. Ten Asn residues were identified as potential glycosylation sites. Alignment of the amino acid sequences of the Drosophila TSP with human TSP1-TSP4 and COMP demonstrated a high degree of homology between the four Type II repeats, seven Type III repeats, and C-terminal domain.
Collapse
Affiliation(s)
- K W Adolph
- University of Minnesota, Department of Biochemistry, Molecular Biology and Biophysics, 6-155 Jackson Hall, 321 Church St. S.E., Minneapolis, MN 55455, USA.
| |
Collapse
|
30
|
Narouz-Ott L, Maurer P, Nitsche DP, Smyth N, Paulsson M. Thrombospondin-4 binds specifically to both collagenous and non-collagenous extracellular matrix proteins via its C-terminal domains. J Biol Chem 2000; 275:37110-7. [PMID: 10956668 DOI: 10.1074/jbc.m007223200] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Full-length and truncated forms of rat thrombospondin-4 (TSP-4) were expressed recombinantly in a mammalian cell line and purified to homogeneity. Biochemical analysis revealed a limited proteolytic processing, which detaches the N-terminal heparin-binding domain from the rest of the molecule and confirmed the importance of the heptad-repeat domain for pentamerization. In electron microscopy the uncleaved TSP-4 was seen as a large central particle to which five smaller globules are attached by elongated linker regions. Binding of TSP-4 to collagens and to non-collagenous proteins could be detected in enzyme-linked immunosorbent assay-style ligand binding assays, by surface plasmon resonance spectroscopy, and in rotary shadowing electron microscopy. Although the binding of TSP-4 to solid-phase collagens was enhanced by Zn(2+), that to non-collagenous proteins was not. The interactions of TSP-4 with both classes of proteins are mediated by C-terminal domains of the TSP-4 subunits but do not require an oligomeric structure. Major binding sites for TSP-4 are located in or close to the N- and C-terminal telopeptides in collagen I, but additional sites are detected in more central regions of the molecule.
Collapse
Affiliation(s)
- L Narouz-Ott
- Institute for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 52, Cologne D-50931, Germany
| | | | | | | | | |
Collapse
|
31
|
Carron JA, Hiscott P, Hagan S, Sheridan CM, Magee R, Gallagher JA. Cultured human retinal pigment epithelial cells differentially express thrombospondin-1, -2, -3, and -4. Int J Biochem Cell Biol 2000; 32:1137-42. [PMID: 11137453 DOI: 10.1016/s1357-2725(00)00065-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Thrombospondins are a family of at least five proteins (TSP-1 to -4 and cartilage oligomeric matrix protein or COMP) whose functions are indeterminate. Distribution differences between family members suggest each protein may have some distinct functions. The retinal pigment epithelium (RPE) has divers unusual roles for an epithelia and can produce TSP-1. However, the wide range of RPE activities suggests that, if different thrombospondin family members do have different functions, RPE may express thrombospondins additional to TSP-1. Therefore, we analysed expression of thrombospondin isoforms by RPE using reverse-transcription-linked polymerase chain reaction. Cultured cells exhibited differential expression of TSP-1 to -4; TSP-2 and TSP-4 appearing later in culture than TSP-1 and TSP-3. In situ RPE expressed mRNA for TSP-1 to -4. No COMP mRNA was detected in RPE. These observations suggest that thrombospondin isoforms are regulated differently by the cells and that these proteins may have different functions in the RPE.
Collapse
Affiliation(s)
- J A Carron
- Human Bone Cell Research Group, Department of Human Anatomy and Cell Biology, University of Liverpool, Liverpool, UK
| | | | | | | | | | | |
Collapse
|
32
|
Carron JA, Bowler WB, Wagstaff SC, Gallagher JA. Expression of members of the thrombospondin family by human skeletal tissues and cultured cells. Biochem Biophys Res Commun 1999; 263:389-91. [PMID: 10491303 DOI: 10.1006/bbrc.1999.1380] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously shown that the multifunctional platelet glycoprotein thrombospondin-1 (TSP-1) promotes resorption in an in vitro resorption assay. However, TSP-1 is one of a family of multifunctional TSP molecules, and the current study was undertaken to investigate whether it is TSP-1 or another TSP family member which may be involved in regulation of resorption in vivo. RT-PCR was performed on cultured human bone cells, cultured human chondrocytes, and three separate samples of human osteoclastoma tissue using primers specific for each TSP family member. mRNA for TSP-2 was detected in almost all samples, and significantly in all osteoclastomas in the above tissues, while TSP-1 was detected less frequently and was only seen in one of three osteoclastomas. TSP-3, -4, and COMP were detected only in a minority of cases. These results indicate that TSP-2 is the most common TSP family member found in skeletal tissues and that TSP-2, rather than TSP-1, may be the molecule responsible for promoting resorption in vivo.
Collapse
Affiliation(s)
- J A Carron
- Department of Human Anatomy and Cell Biology, New Medical School, University of Liverpool, Ashton Street, Liverpool, L69 3GE, United Kingdom
| | | | | | | |
Collapse
|
33
|
Adolph KW, Bornstein P. The human thrombospondin 3 gene: analysis of transcription initiation and an alternatively spliced transcript. MOLECULAR CELL BIOLOGY RESEARCH COMMUNICATIONS : MCBRC 1999; 2:47-52. [PMID: 10527891 DOI: 10.1006/mcbr.1999.0148] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Thrombospondin 3 (TSP3) is a member of a family of modular, extracellular proteins that have been implicated in a diverse number of important biological processes. To contribute to an understanding of the precise roles of human TSP3, aspects of TSP3 gene transcription have been investigated. The TSP3 gene (THBS3) shares a promoter/intergenic region of 1.4 kb with the divergently transcribed metaxin gene, and the existence of TSP3 transcription initiation sites in the TSP3/metaxin intergenic region was investigated by a PCR procedure. Transcripts were detected which initiate in the intergenic region, up to several hundred bases upstream from the major transcription start site. An alternatively spliced transcript of TSP3 was also detected by the PCR procedure. This includes a new exon, exon A', which replaces exon A. Exon A' is located in the TSP3/metaxin intergenic region, 1 kb 5' of exon A. In addition, transcripts of metaxin were found with extended 5' ends; these overlap the 5' end of the TSP3 alternative transcript. The complexities of TSP3 transcription initiation revealed by this study could contribute to the tissue-specific expression and diverse functions of TSP3.
Collapse
Affiliation(s)
- K W Adolph
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis 55455, USA.
| | | |
Collapse
|
34
|
Adolph KW. Detection of exon skipping and retained introns in transcription of the human thrombospondin 2 gene. Biochem Biophys Res Commun 1999; 259:527-32. [PMID: 10364452 DOI: 10.1006/bbrc.1999.0812] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Alternative transcripts of the gene for human thrombospondin 2 (TSP2), an extracellular glycoprotein, have been identified using a PCR procedure. Species that show exon skipping and/or retained introns were revealed. In particular, a species was characterized in which exon 3 has been spliced from the sequence. This transcript is otherwise intact from exon 1A to exon 22. Transcripts which retain intron 1A, intron 1B, or intron 2 were also identified. Tissue-specific differences were evident in the transcripts with retained introns. In addition, a species which both retained intron 1B and skipped exon 3 was revealed. The existence of these alternative transcripts of the human TSP2 gene could be important for understanding the diverse functions and tissue-specific expression implicated for TSP2.
Collapse
Affiliation(s)
- K W Adolph
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, 55455, USA
| |
Collapse
|
35
|
Adolph KW. Relative abundance of thrombospondin 2 and thrombospondin 3 mRNAs in human tissues. Biochem Biophys Res Commun 1999; 258:792-6. [PMID: 10329465 DOI: 10.1006/bbrc.1999.0710] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The levels of thrombospondin 2 (TSP2) and thrombospondin 3 (TSP3) mRNAs in a variety of human tissues were determined by analysis of multiple-tissue mRNA dot blots. For TSP2 mRNA, aorta and fetal heart had the greatest relative abundance. High levels were also detected for muscle, fetal, endocrine, immune, and nerve tissues. The pattern of expression of TSP3 mRNA was very different: kidney, pituitary gland, trachea, uterus, and fetal kidney had the greatest abundance. In general, TSP3 mRNA was expressed at high levels in endocrine, muscle, and fetal tissues. In addition to the tissue-specific differences, a more even distribution of TSP3 mRNA among tissues was observed. The high relative abundance of the two mRNAs in a variety of tissues and the tissue-specific differences in expression could be significant for understanding the diverse roles implicated for TSP2 and TSP3.
Collapse
Affiliation(s)
- K W Adolph
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, 55455, USA
| |
Collapse
|
36
|
Vacca A, Di Marcotullio L, Giannini G, Farina M, Scarpa S, Stoppacciaro A, Calce A, Maroder M, Frati L, Screpanti I, Gulino A. Thrombospondin-1 is a mediator of the neurotypic differentiation induced by EGF in thymic epithelial cells. Exp Cell Res 1999; 248:79-86. [PMID: 10094815 DOI: 10.1006/excr.1999.4394] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Thymic epithelial cell component originates from cranial neural crest as well as from endoderm and ectoderm of the third pharyngeal pouch and branchial cleft. Epidermal growth factor (EGF) has been previously shown to play a crucial role in directing thymic epithelial cells toward a neural-oriented cell fate. To identify genes that are involved in the EGF-induced neurotypic differentiation of the thymic stroma-derived TC-1S cell line, we studied EGF-treated and untreated cells by RNA fingerprinting PCR-based differential screening. We obtained 23 distinct sequences including 18 known genes and 5 sequences previously unreported, which are currently under characterization. Here, we describe the involvement of one of the isolated genes, the thrombospondin-1, as a mediator of the neurotypic differentiation induced by EGF in TC-1S cells. We show that thrombospondin-1 mRNA and protein levels are increased by EGF. Moreover, exogenous thrombospondin-1 is able to enhance the outgrowth of neurite-like processes as well as the expression of neurofilaments and neural cell adhesion molecule in TC-1S cells. These observations suggest that the up-regulation of thrombospondin-1 synthesis induced by EGF contributes to the differentiation choice of thymic epithelial cells toward a neural fate, reminiscent of their neural crest origin.
Collapse
Affiliation(s)
- A Vacca
- Department of Experimental Medicine and Pathology, University "La Sapienza" of Rome, Rome, 00161, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Kazuno M, Tokunaga T, Oshika Y, Tanaka Y, Tsugane R, Kijima H, Yamazaki H, Ueyama Y, Nakamura M. Thrombospondin-2 (TSP2) expression is inversely correlated with vascularity in glioma. Eur J Cancer 1999; 35:502-6. [PMID: 10448307 DOI: 10.1016/s0959-8049(98)00374-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Thrombospondins (TSPs) are angiostatic factors in various cancers. However, the significance of TSPs has not been well characterised in glioma. We examined TSP1, TSP2 and vascular endothelial growth factor (VEGF) gene expression by reverse transcription-polymerase chain reaction (RT-PCR) in 37 gliomas. Thirty of the 37 glioma specimens showed VEGF gene expression. Eighteen of the 37 gliomas expressed the TSP1 gene. Seven gliomas lacked TSP2 gene expression, while the other 30 expressed TSP2. The lack of TSP2 gene expression was significantly associated with higher histological grade (Fisher's test, P = 0.0019) and increased vessel counts and density (Student's t-test, P < 0.0001), while there were no correlations between TSP1 and VEGF gene expression and clinicopathological features. These results indicate that the lack of TSP2 gene expression is a potent factor for enhancement of angiogenesis in glioma.
Collapse
Affiliation(s)
- M Kazuno
- Department of Neurosurgery, Tokai University, School of Medicine, Kanagawa, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Tokunaga T, Nakamura M, Oshika Y, Abe Y, Ozeki Y, Fukushima Y, Hatanaka H, Sadahiro S, Kijima H, Tsuchida T, Yamazaki H, Tamaoki N, Ueyama Y. Thrombospondin 2 expression is correlated with inhibition of angiogenesis and metastasis of colon cancer. Br J Cancer 1999; 79:354-9. [PMID: 9888480 PMCID: PMC2362194 DOI: 10.1038/sj.bjc.6690056] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Two subtypes of thrombospondin (TSP-1 and TSP-2) have inhibitory roles in angiogenesis in vitro, although the biological significance of these TSP isoforms has not been determined in vivo. We examined TSP-1 and TSP-2 gene expression by reverse transcription polymerase chain reaction (RT-PCR) analysis in 61 colon cancers. Thirty-eight of these 61 colon cancers were positive for TSP-2 expression and showed hepatic metastasis at a significantly lower incidence than those without TSP-2 expression (P = 0.02). TSP-2 expression was significantly associated with M0 stage in these colon cancers (P = 0.03), whereas TSP-1 expression showed no apparent correlation with these factors. The colon cancer patients with TSP-2 expression showed a significantly low frequency of liver metastasis correlated with the cell-associated isoform of vascular endothelial growth factor (VEGF-189) (P = 0.0006). Vascularity was estimated by CD34 staining, and TSP-2(-)/VEGF-189(+) colon cancers showed significantly increased vessel counts and density in the stroma (P < 0.0001). TSP-2(-)/VEGF-189(+) colon cancer patients also showed significantly poorer prognosis compared with those with TSP-2(+)/VEGF-189(-) (P = 0.0014). These results suggest that colon cancer metastasis is critically determined by angiogenesis resulting from the balance between the angioinhibitory factor TSP-2 and angiogenic factor VEGF-189.
Collapse
Affiliation(s)
- T Tokunaga
- Department of Pathology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Collins M, Rojnuckarin P, Zhu YH, Bornstein P. A far upstream, cell type-specific enhancer of the mouse thrombospondin 3 gene is located within intron 6 of the adjacent metaxin gene. J Biol Chem 1998; 273:21816-24. [PMID: 9705320 DOI: 10.1074/jbc.273.34.21816] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thrombospondin 3 (TSP3) is a secreted, pentameric glycoprotein whose regulation of expression and function are not well understood. Mouse Thbs3 is located just downstream from the divergently transcribed metaxin gene (Mtx), which encodes an outer mitochondrial membrane import protein. Although Thbs3 and Mtx share a common promoter region, previous studies showed that Mtx is regulated by proximal elements that had little effect on Thbs3 expression. In this study, transient transfection of rat chondrosarcoma cells and NIH-3T3 fibroblasts demonstrated that Thbs3 is regulated in a cell type-specific manner by a position- and orientation-independent far upstream enhancer located within intron 6 of Mtx. Despite its greater proximity to the transcription start site of Mtx, the Thbs3 enhancer did not have a significant effect on Mtx expression. Two DNA-protein complexes, which were both required for activity, were identified when nuclear extracts were assayed with a probe containing the enhancer sequence. The protein in one of these complexes was identified as Sp1, while the other DNA-protein complex remains uncharacterized. A 6-kilobase pair promoter containing the enhancer was able to direct specific expression of the E. coli lacZ gene in transgenic mice, whereas a 2-kilobase pair promoter that lacked the enhancer was inactive. Thus, despite their close proximity, the genes of the Mtx/Thbs3 gene cluster are regulated independently.
Collapse
Affiliation(s)
- M Collins
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | | | | | | |
Collapse
|
40
|
Urry LA, Whittaker CA, Duquette M, Lawler J, DeSimone DW. Thrombospondins in early Xenopus embryos: dynamic patterns of expression suggest diverse roles in nervous system, notochord, and muscle development. Dev Dyn 1998; 211:390-407. [PMID: 9566958 DOI: 10.1002/(sici)1097-0177(199804)211:4<390::aid-aja10>3.0.co;2-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The thrombospondins (TSPs) are a family of extracellular matrix (ECM) glycoproteins that modulate many cell behaviors including adhesion, migration, and proliferation. Here we report the molecular cloning of the Xenopus homologs of TSP-1 and TSP-3, and the developmental patterns of expression of Xenopus TSP-1, TSP-3, and TSP-4 mRNAs. Xenopus TSP-1 and TSP-3 protein sequences each share approximately 80% amino acid identity with their mammalian counterparts. TSP-1 mRNAs are detectable at low levels in fertilized eggs indicating that this TSP is a maternally deposited transcript. Zygotic expression of TSP-1, TSP-3, and TSP-4 begins at the end of gastrulation and transcripts encoding each protein accumulate through the tadpole stages of development. Whole mount in situ hybridizations reveal that each TSP mRNA is localized in the embryo with distinct, developmentally regulated patterns of expression. TSP-1 mRNAs are detected in a wide range of tissues including the floor plate of the neural tube, epidermis, somites, notochord and, most notably, alternating rhombomeres. Transcripts encoding TSP-3 are expressed in the notochord, floor plate, sensorial layer of the epidermis and sensory epithelia. TSP-4 mRNAs are restricted to somitic mesoderm and skeletal muscle. These data suggest that the TSPs represent a functionally diverse family of ECM proteins with tissue-specific functions during embryogenesis.
Collapse
Affiliation(s)
- L A Urry
- Mills College, Department of Biology, Oakland, California, USA
| | | | | | | | | |
Collapse
|
41
|
Loughlin J, Irven C, Mustafa Z, Briggs MD, Carr A, Lynch SA, Knowlton RG, Cohn DH, Sykes B. Identification of five novel mutations in cartilage oligomeric matrix protein gene in pseudoachondroplasia and multiple epiphyseal dysplasia. Hum Mutat 1998; Suppl 1:S10-7. [PMID: 9452026 DOI: 10.1002/humu.1380110105] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- J Loughlin
- Department of Cellular Science, Institute of Molecular Medicine, University of Oxford, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Kleinman HK, Bernfield M. Regulation of Development: Differentiation and Morphogenesis. Compr Physiol 1997. [DOI: 10.1002/cphy.cp140122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
43
|
Mutation Gln54Leu of the conserved polar residue in the interfacial coiled coil position (d) results in significant stabilization of the original structure of the COMP pentamerization domain. Int J Pept Res Ther 1997. [DOI: 10.1007/bf02442893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
Scott-Drew S, ffrench-Constant C. Expression and function of thrombospondin-1 in myelinating glial cells of the central nervous system. J Neurosci Res 1997; 50:202-14. [PMID: 9373030 DOI: 10.1002/(sici)1097-4547(19971015)50:2<202::aid-jnr9>3.0.co;2-j] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The thrombospondin (TSP) family of extracellular matrix glycoproteins are widely expressed in the developing and adult central nervous system although their function remains poorly defined. We have used cell culture techniques to analyse the expression and function of TSPs in glial cells derived from myelinated regions of the central nervous system. These experiments show that TSP-1 mRNA, but not TSP-2 or TSP-3 mRNA, is expressed by astrocytes from these regions. TSP-1 mRNA levels in astrocytes are under the regulation of growth factors, being increased by TGFbeta1 and decreased by bFGF. Oligodendrocyte precursors do not express TSP-1, TSP-2, or TSP-3 mRNA. Migration of oligodendrocyte precursor cells is stimulated by TSP-1 substrates as measured either by time-lapse microscopy or using a microchemotaxis chamber assay. Taken together, these results suggest that the extracellular matrix molecule TSP-1 plays a role in normal central nervous system development by contributing to the regulation of oligodendrocyte precursor migration.
Collapse
Affiliation(s)
- S Scott-Drew
- Wellcome/CRC Institute of Developmental Biology and Cancer, University of Cambridge, United Kingdom
| | | |
Collapse
|
45
|
Winfield SL, Tayebi N, Martin BM, Ginns EI, Sidransky E. Identification of three additional genes contiguous to the glucocerebrosidase locus on chromosome 1q21: implications for Gaucher disease. Genome Res 1997; 7:1020-6. [PMID: 9331372 PMCID: PMC310674 DOI: 10.1101/gr.7.10.1020] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/1997] [Accepted: 08/29/1997] [Indexed: 02/05/2023]
Abstract
Gaucher disease results from the deficiency of the lysosomal enzyme glucocerebrosidase (EC 3.2.1.45). Although the functional gene for glucocerebrosidase (GBA) and its pseudogene (psGBA), located in close proximity on chromosome 1q21, have been studied extensively, the flanking sequence has not been well characterized. The recent identification of human metaxin (MTX) immediately downstream of psGBA prompted a closer analysis of the sequence of the entire region surrounding the GBA gene. We now report the genomic DNA sequence and organization of a 75-kb region around GBA, including the duplicated region containing GBA and MTX. The origin and endpoints of the duplication leading to the pseudogenes for GBA and MTX are now clearly established. We also have identified three new genes within the 32 kb of sequence upstream to GBA, all of which are transcribed in the same direction as GBA. Of these three genes, the gene most distal to GBA is a protein kinase (clk2). The second gene, propin1, has a 1.5-kb cDNA and shares homology to a rat secretory carrier membrane protein 37 (SCAMP37). Finally, cote1, a gene of unknown function lies most proximal to GBA. The possible contributions of these closely arrayed genes to the more atypical presentations of Gaucher disease is now under investigation.
Collapse
Affiliation(s)
- S L Winfield
- Clinical Neuroscience Branch, Intramural Research Program (IRP), National Institute of Mental Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
46
|
Armstrong LC, Komiya T, Bergman BE, Mihara K, Bornstein P. Metaxin is a component of a preprotein import complex in the outer membrane of the mammalian mitochondrion. J Biol Chem 1997; 272:6510-8. [PMID: 9045676 DOI: 10.1074/jbc.272.10.6510] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Metaxin, a novel gene located between the glucocerebrosidase and thrombospondin 3 genes in the mouse, is essential for survival of the postimplantation mouse embryo. In this study, the subcellular location, domain structure, and biochemical function of metaxin were investigated. Anti-recombinant metaxin antibodies recognized 35- and 70-kDa proteins in mitochondria from various tissues; the 35-kDa protein is consistent in size with the predicted translation product of metaxin cDNA. When metaxin cDNA was transfected into COS cells, immunofluorescence staining demonstrated that the protein is located in mitochondria. Metaxin contains a putative mitochondrial outer membrane signal anchor domain at its C terminus, and a truncated form of metaxin lacking this signal anchor domain had a reduced association with mitochondria. In addition, metaxin was highly susceptible to proteases in intact mitochondria. We therefore conclude that metaxin is a mitochondrial protein that extends into the cytosol while anchored into the outer membrane at its C terminus. In its N-terminal region, metaxin shows significant sequence identity to Tom37, a component of the outer membrane portion of the mitochondrial preprotein translocation apparatus in Saccharomyces cerevisiae, but important structural differences, including apparently different mechanisms of targeting to membranes, also exist between the two proteins. Given the similar subcellular locations of metaxin and Tom37, the possible role of metaxin in mitochondrial preprotein import was investigated. Antibodies against metaxin, when preincubated with mitochondria, partially inhibited the uptake of radiolabeled preadrenodoxin into mitochondria. Metaxin is therefore the second mammalian component of the protein translocation apparatus of the mitochondrial outer membrane to be characterized at the molecular level and the first for which an inherited mutation has been described. The early embryonic lethal phenotype of mice lacking metaxin demonstrates that efficient import of proteins into mitochondria is crucial for cellular survival. The characterization of metaxin provides an opportunity to elucidate similarities and possible differences in the mechanisms of protein import between fungi and mammals and in the phenotypes of fungi and mammals lacking mitochondrial import receptors.
Collapse
Affiliation(s)
- L C Armstrong
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | |
Collapse
|
47
|
Chen H, Strickland DK, Mosher DF. Metabolism of thrombospondin 2. Binding and degradation by 3t3 cells and glycosaminoglycan-variant Chinese hamster ovary cells. J Biol Chem 1996; 271:15993-9. [PMID: 8663244 DOI: 10.1074/jbc.271.27.15993] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Thrombospondin 1 (TSP1) and thrombospondin 2 (TSP2) are members of the thrombospondin family that have a similar structural organization but somewhat different functional activities. Iodinated recombinant mouse TSP2 bound to NIH 3T3 cells and was internalized and degraded through a chloroquine-inhibitable pathway. TSP2 degradation was saturable, specific, and similar to the kinetics of degradation of TSP1. Human platelet TSP1, recombinant mouse TSP1, and recombinant mouse TSP2 cross-competed with one another for degradation by 3T3 cells. Degradation of TSP2 was less sensitive to inhibition by heparin than degradation of TSP1. This is in agreement with differences in heparin-binding affinity of the two TSPs. Degradation of TSP2 was slower in cultures of Chinese hamster ovary (CHO) cells lacking heparan sulfate proteoglycans than in wild type CHO cells or in cultures of 3T3 cells treated with heparitinase than in untreated 3T3 cells. Degradation of TSP2 was inhibited by antibodies against the low density lipoprotein receptor-related protein (LRP) or by the 39-kDa receptor-associated protein, a known antagonist of LRP. This study indicates that TSP2 and TSP1 are metabolized by a common internalization and degradation pathway involving heparan sulfate proteoglycan and LRP. Competition for this pathway is a possible mechanism whereby cells can control the levels and ratio of TSP1 and TSP2 in the extracellular milieu.
Collapse
Affiliation(s)
- H Chen
- Department of Medicine, University of Wisconsin, Madison, 53706, USA
| | | | | |
Collapse
|
48
|
Chen H, Aeschlimann D, Nowlen J, Mosher DF. Expression and initial characterization of recombinant mouse thrombospondin 1 and thrombospondin 3. FEBS Lett 1996; 387:36-41. [PMID: 8654563 DOI: 10.1016/0014-5793(96)00460-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
To analyze the function of TSP family members, we have expressed and purified mouse TSP1 and TSP3 encoded by recombinant baculoviruses in Spodoptera frugiperda cells and compared these TSPs to mouse TSP2 prepared in a similar way. Yields of purified TSP1 and TSP3 were 5-15 and 2-4 micrograms, respectively, per ml of conditioned medium. Mature, secreted mouse T41 and TSP3 had the previously predicted NH2-terminal sequences of DHVKDTSFDLFSI, and SQDLQVIDLLT, respectively. Analysis by SDS-PAGE and rotary shadowing electron microscopy indicated that TSP1 and TSP2 are disulfide bonded trimers whereas TSP3 is a disulfide-bonded pentamer. Binding assays with 45Ca2+ as ligand and immobilized TSP1, TSP2 and TSP3 demonstrated that all three TSPs are calcium-binding proteins. These results are consistent with previous studies of TSP structure and demonstrate that Spodoptera cells process and secrete TSPs having the same subunit organizations and structure as the native vertebrate molecules.
Collapse
Affiliation(s)
- H Chen
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, 53076, USA
| | | | | | | |
Collapse
|
49
|
Lafeuillade B, Pellerin S, Keramidas M, Danik M, Chambaz EM, Feige JJ. Opposite regulation of thrombospondin-1 and corticotropin-induced secreted protein/thrombospondin-2 expression by adrenocorticotropic hormone in adrenocortical cells. J Cell Physiol 1996; 167:164-72. [PMID: 8698834 DOI: 10.1002/(sici)1097-4652(199604)167:1<164::aid-jcp19>3.0.co;2-b] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Corticotropin-induced secreted protein (CISP) is a trimeric glycoprotein secreted by primary cultures of bovine adrenortical cells in response to adrenocorticotropic hormone (ACTH). This protein was recently purified in our laboratory, and its N-terminal amino-acid sequence revealed a significant similarity with thrombospondin-2 (TSP2). We report here the nucleotide sequence of a 386 bp RT-PCR fragment specific for CISP. The deduced protein sequence shares 84% identity with the N-terminal portion of mature human TSP2, suggesting that CISP is its bovine counterpart. Northern analysis of adrenocortical cell RNA using the above cDNA fragment as a probe revealed a 6.0 kb CISP/TSP2 mRNA whose abundance was increased nearly fivefold following a 24 h cell treatment with 10(-7) M ACTH. Under the same conditions, the expression of TSP1 mRNA was reduced by tenfold. The protein levels of TSP1 and CISP/TSP2 varied accordingly with their respective mRNA levels, as shown by immunoprecipitation and immunofluorescence experiments. Taken together, these data show that ACTH induces a dramatic shift in the pattern of adrenocortical cell thrombospondin expression from TSP1 to CISP/TSP2. This observation suggests that these two members of the thrombospondin family exert distinct biological functions in the adrenal cortex. This hypothesis is further supported by the observation that anti-CISP antibodies inhibit the maintenance of the morphological changes of bovine adrenocortical cells induced by ACTH, whereas anti-TSP1 antibodies do not.
Collapse
Affiliation(s)
- B Lafeuillade
- Département de Biologie Moléculaire et Structurale, Centre d'Etudes Nucleaires de Grenoble, France
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
The three-dimensional structure of the assembly domain of the cartilage oligomeric matrix protein (COMP) has been modeled. The model demonstrates a parallel five-stranded coiled coil and fits well with a large amount of experimental data that describe the oligomerization state, the alpha-helical conformation, the helix directionality and the properties of the (abcdefg)n repeat sequence containing apolar residues at (a) and (d) positions. Comparison of the pentamer model with the known dimer, trimer, and tetramer coiled coils revealed interactions that could mediate the switch to the formation of the pentamer coiled coil. The most distinctive feature of the pentamer model involves ion pair interactions. Charged side chains of the pentamer can form (f-g), (f-b'), and (e-c') interhelical ion pairs, which are neither experimentally observed nor modeled in the di-, tri-, and tetramers. A polar glutamine residue could be adopted at an interior (d) position of the modeled structure due to the formation of a symmetrical network of buried hydrogen bonds between five such glutamines. The pentamer model contains an axial cavity that can accept water molecules. Conformational analysis was carried out in an attempt to determine the three-dimensional structure of the disulfide bonded C-terminal region of the pentamer. Recent data on crystallization of the COMP assembly domain (Efimov et al., Proteins 24:259-262, 1996) indicate that the prediction can be tested experimentally in the near future.
Collapse
Affiliation(s)
- A V Kajava
- Swiss Institute for Experimental Cancer Research, Epalinges, Lausanne, Switzerland
| |
Collapse
|