1
|
Gligorijević N, Jovanović Z, Cvijetić I, Šunderić M, Veličković L, Katrlík J, Holazová A, Nikolić M, Minić S. Investigation of the Potential of Selected Food-Derived Antioxidants to Bind and Stabilise the Bioactive Blue Protein C-Phycocyanin from Cyanobacteria Spirulina. Int J Mol Sci 2023; 25:229. [PMID: 38203400 PMCID: PMC10779248 DOI: 10.3390/ijms25010229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Blue C-phycocyanin (C-PC), the major Spirulina protein with innumerable health-promoting benefits, is an attractive colourant and food supplement. A crucial obstacle to its more extensive use is its relatively low stability. This study aimed to screen various food-derived ligands for their ability to bind and stabilise C-PC, utilising spectroscopic techniques and molecular docking. Among twelve examined ligands, the protein fluorescence quenching revealed that only quercetin, coenzyme Q10 and resveratrol had a moderate affinity to C-PC (Ka of 2.2 to 3.7 × 105 M-1). Docking revealed these three ligands bind more strongly to the C-PC hexamer than the trimer, with the binding sites located at the interface of two (αβ)3 trimers. UV/VIS absorption spectroscopy demonstrated the changes in the C-PC absorption spectra in a complex with quercetin and resveratrol compared to the spectra of free protein and ligands. Selected ligands did not affect the secondary structure content, but they induced changes in the tertiary protein structure in the CD study. A fluorescence-based thermal stability assay demonstrated quercetin and coenzyme Q10 increased the C-PC melting point by nearly 5 °C. Our study identified food-derived ligands that interact with C-PC and improve its thermal stability, indicating their potential as stabilising agents for C-PC in the food industry.
Collapse
Affiliation(s)
- Nikola Gligorijević
- University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Department of Chemistry, National Institute of the Republic of Serbia, Studentski trg 12–16, 11000 Belgrade, Serbia;
| | - Zorana Jovanović
- University of Belgrade-Faculty of Chemistry, Center of Excellence for Molecular Food Sciences & Department of Biochemistry, Studentski trg 12–16, 11000 Belgrade, Serbia; (Z.J.); (L.V.)
| | - Ilija Cvijetić
- University of Belgrade-Faculty of Chemistry, Department of Analytical Chemistry, Studentski trg 12–16, 11000 Belgrade, Serbia;
| | - Miloš Šunderić
- University of Belgrade-Institute for the Application of Nuclear Energy (INEP), Banatska 31b, 11000 Belgrade, Serbia;
| | - Luka Veličković
- University of Belgrade-Faculty of Chemistry, Center of Excellence for Molecular Food Sciences & Department of Biochemistry, Studentski trg 12–16, 11000 Belgrade, Serbia; (Z.J.); (L.V.)
| | - Jaroslav Katrlík
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 5807/9, 84538 Bratislava, Slovakia; (J.K.); (A.H.)
| | - Alena Holazová
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 5807/9, 84538 Bratislava, Slovakia; (J.K.); (A.H.)
| | - Milan Nikolić
- University of Belgrade-Faculty of Chemistry, Center of Excellence for Molecular Food Sciences & Department of Biochemistry, Studentski trg 12–16, 11000 Belgrade, Serbia; (Z.J.); (L.V.)
| | - Simeon Minić
- University of Belgrade-Faculty of Chemistry, Center of Excellence for Molecular Food Sciences & Department of Biochemistry, Studentski trg 12–16, 11000 Belgrade, Serbia; (Z.J.); (L.V.)
| |
Collapse
|
2
|
Smith JW, O'Meally RN, Burke SM, Ng DK, Chen JG, Kensler TW, Groopman JD, Cole RN. Global Discovery and Temporal Changes of Human Albumin Modifications by Pan-Protein Adductomics: Initial Application to Air Pollution Exposure. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:595-607. [PMID: 36939690 DOI: 10.1021/jasms.2c00314] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Assessing personal exposure to environmental toxicants is a critical challenge for predicting disease risk. Previously, using human serum albumin (HSA)-based biomonitoring, we reported dosimetric relationships between adducts at HSA Cys34 and ambient air pollutant levels (Smith et al., Chem. Res. Toxicol. 2021, 34, 1183). These results provided the foundation to explore modifications at other sites in HSA to reveal novel adducts of complex exposures. Thus, the Pan-Protein Adductomics (PPA) technology reported here is the next step toward an unbiased, comprehensive characterization of the HSA adductome. The PPA workflow requires <2 μL serum/plasma and uses nanoflow-liquid chromatography, gas-phase fractionation, and overlapping-window data-independent acquisition high-resolution tandem mass spectrometry. PPA analysis of albumin from nonsmoking women exposed to high levels of air pollution uncovered 68 unique location-specific modifications (LSMs) across 21 HSA residues. While nearly half were located at Cys34 (33 LSMs), 35 were detected on other residues, including Lys, His, Tyr, Ser, Met, and Arg. HSA adduct relative abundances spanned a ∼400 000-fold range and included putative products of exogenous (SO2, benzene, phycoerythrobilin) and endogenous (oxidation, lipid peroxidation, glycation, carbamylation) origin, as well as 24 modifications without annotations. PPA quantification revealed statistically significant changes in LSM levels across the 84 days of monitoring (∼3 HSA lifetimes) in the following putative adducts: Cys34 trioxidation, β-methylthiolation, benzaldehyde, and benzene diol epoxide; Met329 oxidation; Arg145 dioxidation; and unannotated Cys34 and His146 adducts. Notably, the PPA workflow can be extended to any protein. Pan-Protein Adductomics is a novel and powerful strategy for untargeted global exploration of protein modifications.
Collapse
Affiliation(s)
- Joshua W Smith
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Robert N O'Meally
- Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Sean M Burke
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Derek K Ng
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, United States
| | - Jian-Guo Chen
- Qidong Liver Cancer Institute, Qidong People's Hospital, Affiliated Qidong Hospital of Nantong University, Qidong, Jiangsu 226200, P. R. China
| | - Thomas W Kensler
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, United States
| | - John D Groopman
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Robert N Cole
- Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, United States
| |
Collapse
|
3
|
Molecular bases of an alternative dual-enzyme system for light color acclimation of marine Synechococcus cyanobacteria. Proc Natl Acad Sci U S A 2021; 118:2019715118. [PMID: 33627406 DOI: 10.1073/pnas.2019715118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Marine Synechococcus cyanobacteria owe their ubiquity in part to the wide pigment diversity of their light-harvesting complexes. In open ocean waters, cells predominantly possess sophisticated antennae with rods composed of phycocyanin and two types of phycoerythrins (PEI and PEII). Some strains are specialized for harvesting either green or blue light, while others can dynamically modify their light absorption spectrum to match the dominant ambient color. This process, called type IV chromatic acclimation (CA4), has been linked to the presence of a small genomic island occurring in two configurations (CA4-A and CA4-B). While the CA4-A process has been partially characterized, the CA4-B process has remained an enigma. Here we characterize the function of two members of the phycobilin lyase E/F clan, MpeW and MpeQ, in Synechococcus sp. strain A15-62 and demonstrate their critical role in CA4-B. While MpeW, encoded in the CA4-B island and up-regulated in green light, attaches the green light-absorbing chromophore phycoerythrobilin to cysteine-83 of the PEII α-subunit in green light, MpeQ binds phycoerythrobilin and isomerizes it into the blue light-absorbing phycourobilin at the same site in blue light, reversing the relationship of MpeZ and MpeY in the CA4-A strain RS9916. Our data thus reveal key molecular differences between the two types of chromatic acclimaters, both highly abundant but occupying distinct complementary ecological niches in the ocean. They also support an evolutionary scenario whereby CA4-B island acquisition allowed former blue light specialists to become chromatic acclimaters, while former green light specialists would have acquired this capacity by gaining a CA4-A island.
Collapse
|
4
|
Nguyen AA, Joseph KL, Bussell AN, Pokhrel S, Karty JA, Kronfel CM, Kehoe DM, Schluchter WM. CpeT is the phycoerythrobilin lyase for Cys-165 on β-phycoerythrin from Fremyella diplosiphon and the chaperone-like protein CpeZ greatly improves its activity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148284. [PMID: 32777305 DOI: 10.1016/j.bbabio.2020.148284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/31/2020] [Accepted: 08/04/2020] [Indexed: 10/23/2022]
Abstract
Bilin lyases are enzymes which ligate linear tetrapyrrole chromophores to specific cysteine residues on light harvesting proteins present in cyanobacteria and red algae. The lyases responsible for chromophorylating the light harvesting protein phycoerythrin (PE) have not been fully characterized. In this study, we explore the role of CpeT, a putative bilin lyase, in the biosynthesis of PE in the cyanobacterium Fremyella diplosiphon. Recombinant protein studies show that CpeT alone can bind phycoerythrobilin (PEB), but CpeZ, a chaperone-like protein, is needed in order to correctly and efficiently attach PEB to the β-subunit of PE. MS analyses of the recombinant β-subunit of PE coexpressed with CpeT and CpeZ show that PEB is attached at Cys-165. Purified phycobilisomes from a cpeT knockout mutant and wild type (WT) samples from F. diplosiphon were analyzed and compared. The cpeT mutant contained much less PE and more phycocyanin than WT cells grown under green light, conditions which should maximize the production of PE. In addition, Northern blot analyses showed that the cpeCDESTR operon mRNAs were upregulated while the cpeBcpeA mRNAs were downregulated in the cpeT mutant strain when compared with WT, suggesting that CpeT may also play a direct or indirect regulatory role in transcription of these operons or their mRNA stability, in addition to its role as a PEB lyase for Cys-165 on β-PE.
Collapse
Affiliation(s)
- Adam A Nguyen
- Department of Chemistry, University of New Orleans, New Orleans, LA 70148, USA; Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA
| | - Kes Lynn Joseph
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA
| | - Adam N Bussell
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Suman Pokhrel
- Department of Chemistry, University of New Orleans, New Orleans, LA 70148, USA; Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA
| | - Jonathan A Karty
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Christina M Kronfel
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA
| | - David M Kehoe
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Wendy M Schluchter
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA.
| |
Collapse
|
5
|
Mancini JA, Sheehan M, Kodali G, Chow BY, Bryant DA, Dutton PL, Moser CC. De novo synthetic biliprotein design, assembly and excitation energy transfer. J R Soc Interface 2018; 15:20180021. [PMID: 29618529 PMCID: PMC5938588 DOI: 10.1098/rsif.2018.0021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/13/2018] [Indexed: 12/26/2022] Open
Abstract
Bilins are linear tetrapyrrole chromophores with a wide range of visible and near-visible light absorption and emission properties. These properties are tuned upon binding to natural proteins and exploited in photosynthetic light-harvesting and non-photosynthetic light-sensitive signalling. These pigmented proteins are now being manipulated to develop fluorescent experimental tools. To engineer the optical properties of bound bilins for specific applications more flexibly, we have used first principles of protein folding to design novel, stable and highly adaptable bilin-binding four-α-helix bundle protein frames, called maquettes, and explored the minimal requirements underlying covalent bilin ligation and conformational restriction responsible for the strong and variable absorption, fluorescence and excitation energy transfer of these proteins. Biliverdin, phycocyanobilin and phycoerythrobilin bind covalently to maquette Cys in vitro A blue-shifted tripyrrole formed from maquette-bound phycocyanobilin displays a quantum yield of 26%. Although unrelated in fold and sequence to natural phycobiliproteins, bilin lyases nevertheless interact with maquettes during co-expression in Escherichia coli to improve the efficiency of bilin binding and influence bilin structure. Bilins bind in vitro and in vivo to Cys residues placed in loops, towards the amino end or in the middle of helices but bind poorly at the carboxyl end of helices. Bilin-binding efficiency and fluorescence yield are improved by Arg and Asp residues adjacent to the ligating Cys on the same helix and by His residues on adjacent helices.
Collapse
Affiliation(s)
- Joshua A Mancini
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Molly Sheehan
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Goutham Kodali
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Brian Y Chow
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - P Leslie Dutton
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher C Moser
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
6
|
Rodriguez EA, Tran GN, Gross LA, Crisp JL, Shu X, Lin JY, Tsien RY. A far-red fluorescent protein evolved from a cyanobacterial phycobiliprotein. Nat Methods 2016; 13:763-9. [PMID: 27479328 PMCID: PMC5007177 DOI: 10.1038/nmeth.3935] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 07/01/2016] [Indexed: 12/23/2022]
Abstract
Far-red fluorescent proteins (FPs) are desirable for in vivo imaging because with these molecules less light is scattered, absorbed, or re-emitted by endogenous biomolecules compared with cyan, green, yellow, and orange FPs. We developed a new class of FP from an allophycocyanin α-subunit (APCα). Native APC requires a lyase to incorporate phycocyanobilin. The evolved FP, which we named small ultra-red FP (smURFP), covalently attaches a biliverdin (BV) chromophore without a lyase, and has 642/670-nm excitation-emission peaks, a large extinction coefficient (180,000 M(-1)cm(-1)) and quantum yield (18%), and photostability comparable to that of eGFP. smURFP has significantly greater BV incorporation rate and protein stability than the bacteriophytochrome (BPH) FPs. Moreover, BV supply is limited by membrane permeability, and smURFPs (but not BPH FPs) can incorporate a more membrane-permeant BV analog, making smURFP fluorescence comparable to that of FPs from jellyfish or coral. A far-red and near-infrared fluorescent cell cycle indicator was created with smURFP and a BPH FP.
Collapse
Affiliation(s)
- Erik A Rodriguez
- Department of Pharmacology, University of California, San Diego, La Jolla, California, USA
| | - Geraldine N Tran
- School of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Larry A Gross
- Howard Hughes Medical Institute, La Jolla, California, USA
| | - Jessica L Crisp
- Department of Pharmacology, University of California, San Diego, La Jolla, California, USA
| | - Xiaokun Shu
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, USA
| | - John Y Lin
- School of Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Roger Y Tsien
- Department of Pharmacology, University of California, San Diego, La Jolla, California, USA
- Howard Hughes Medical Institute, La Jolla, California, USA
| |
Collapse
|
7
|
Loughlin PC, Duxbury Z, Mugerwa TTM, Smith PMC, Willows RD, Chen M. Spectral properties of bacteriophytochrome AM1_5894 in the chlorophyll d-containing cyanobacterium Acaryochloris marina. Sci Rep 2016; 6:27547. [PMID: 27282102 PMCID: PMC4901347 DOI: 10.1038/srep27547] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 05/20/2016] [Indexed: 12/12/2022] Open
Abstract
Acaryochloris marina, a unicellular oxygenic photosynthetic cyanobacterium, has uniquely adapted to far-red light-enriched environments using red-shifted chlorophyll d. To understand red-light use in Acaryochloris, the genome of this cyanobacterium was searched for red/far-red light photoreceptors from the phytochrome family, resulting in identification of a putative bacteriophytochrome AM1_5894. AM1_5894 contains three standard domains of photosensory components as well as a putative C-terminal signal transduction component consisting of a histidine kinase and receiver domain. The photosensory domains of AM1_5894 autocatalytically assemble with biliverdin in a covalent fashion. This assembled AM1_5894 shows the typical photoreversible conversion of bacterial phytochromes with a ground-state red-light absorbing (Pr) form with λBV max[Pr] 705 nm, and a red-light inducible far-red light absorbing (Pfr) form with λBV max[Pfr] 758 nm. Surprisingly, AM1_5894 also autocatalytically assembles with phycocyanobilin, involving photoreversible conversion of λPCB max[Pr] 682 nm and λPCB max[Pfr] 734 nm, respectively. Our results suggest phycocyanobilin is also covalently bound to AM1_5894, while mutation of a cysteine residue (Cys11Ser) abolishes this covalent binding. The physiological function of AM1_5894 in cyanobacteria containing red-shifted chlorophylls is discussed.
Collapse
Affiliation(s)
- Patrick C Loughlin
- School of Biological Sciences, University of Sydney, NSW 2006, Australia
| | - Zane Duxbury
- School of Biological Sciences, University of Sydney, NSW 2006, Australia
| | | | - Penelope M C Smith
- School of Biological Sciences, University of Sydney, NSW 2006, Australia
| | - Robert D Willows
- Department of Chemistry and Biomolecular Sciences, Macquarie University, NSW 2109, Australia
| | - Min Chen
- School of Biological Sciences, University of Sydney, NSW 2006, Australia
| |
Collapse
|
8
|
Jullien L, Gautier A. Fluorogen-based reporters for fluorescence imaging: a review. Methods Appl Fluoresc 2015; 3:042007. [PMID: 29148509 DOI: 10.1088/2050-6120/3/4/042007] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Fluorescence bioimaging has recently jumped into a new area of spatiotemporal resolution and sensitivity thanks to synergistic advances in both optical physics and probe/biosensor design. This review focuses on the recent development of genetically encodable fluorescent reporters that bind endogenously present or exogenously applied fluorogenic chromophores (so-called fluorogens) and activate their fluorescence. We highlight the innovative engineering and design that gave rise to these new natural and synthetic fluorescent reporters, and describe some of the emerging applications in imaging and biosensing.
Collapse
Affiliation(s)
- Ludovic Jullien
- École Normale Supérieure-PSL Research University, Department of Chemistry, 24 rue Lhomond, F-75005 Paris, France. Sorbonne Universités, UPMC Univ Paris 06, UMR 8640 PASTEUR, F-75005 Paris, France. CNRS, UMR 8640 PASTEUR, F-75005 Paris, France
| | | |
Collapse
|
9
|
Liu B, Chen S, Zhang L. Functional studies of the gene slr2049 from Synechocystis sp. PCC6803 and its site-directed mutation. Gene 2015; 563:196-202. [PMID: 25791490 DOI: 10.1016/j.gene.2015.03.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 03/09/2015] [Accepted: 03/13/2015] [Indexed: 10/23/2022]
Abstract
Phycobiliprotein is a homologous family of light-harvesting chromoproteins existing in cyanobacteria, red algae and cryptophytes. Phycobiliprotein is made up of phycobilin and its corresponding apophycobiliprotein, and they are covalently linked by the thioether bond with the bilin lyase. Using the software BLAST, we have found gene slr2049 in Synechocystis sp. PCC6803 homologous to the biliprotein lyase gene cpeS. This paper investigates the protein expressed by gene slr2049 to find the enzymatic activity characteristics. We cloned slr2049 and its related genes cpcB, ho1, and pcyA which are linked with the synthesis of phycocyanin. Special amino acid mutagenesis was performed on slr2049 to construct eight mutants slr2049 (H21S), slr2049 (L23S), slr2049 (A24S), slr2049 (F25S), slr2049 (W72L), slr2049 (G84S), slr2049 (R107S) and slr2049 (Y124S). These mutants were ligated with vectors pEDFDuet-1 and pET-23a to construct pCDF-cpcB-slr2049 wild-type, pCDF-cpcB-slr2049 mutants and pET-ho1-pcyA, for the purpose of protein expression and analysis. The results showed that the wild-type and mutants slr2049 (H21S), slr2049 (L23S), slr2049 (F25S), slr2049 (W72L), slr2049 (G84S), and slr2049 (Y124S) can catalyze CpcB to couple on PCB correctly and the products have unique spectral characteristics. However mutants slr2049 (A24S) and slr2049 (R107S) have no spectral characteristics. Thus, it is suggested that alanine at position 24 and arginine at position 107 are the active sites.
Collapse
Affiliation(s)
- Bingjun Liu
- College of Life Science, South-central University for Nationalities, Wuhan 430074, China
| | - Sili Chen
- College of Life Science, South-central University for Nationalities, Wuhan 430074, China.
| | - Lei Zhang
- College of Life Science, South-central University for Nationalities, Wuhan 430074, China
| |
Collapse
|
10
|
Rastogi RP, Sonani RR, Patel AB, Madamwar D. Occurrence of a functionally stable photoharvesting single peptide allophycocyanin α-subunit (16.4 kDa) in the cyanobacterium Nostoc sp. R76DM. RSC Adv 2015. [DOI: 10.1039/c5ra14508b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
We report the occurrence of a functionally stable single peptide APC α-subunit in cyanobacterium Nostoc sp. R76DM.
Collapse
Affiliation(s)
- Rajesh P. Rastogi
- BRD School of Biosciences
- Sardar Patel University
- Vallabh Vidyanagar 388120
- India
| | - Ravi R. Sonani
- BRD School of Biosciences
- Sardar Patel University
- Vallabh Vidyanagar 388120
- India
| | - Avani B. Patel
- BRD School of Biosciences
- Sardar Patel University
- Vallabh Vidyanagar 388120
- India
| | - Datta Madamwar
- BRD School of Biosciences
- Sardar Patel University
- Vallabh Vidyanagar 388120
- India
| |
Collapse
|
11
|
Zhang P, Frankel LK, Bricker TM. Integration of apo-α-phycocyanin into phycobilisomes and its association with FNRL in the absence of the phycocyanin α-subunit lyase (CpcF) in Synechocystis sp. PCC 6803. PLoS One 2014; 9:e105952. [PMID: 25153076 PMCID: PMC4143364 DOI: 10.1371/journal.pone.0105952] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 07/29/2014] [Indexed: 12/27/2022] Open
Abstract
Phycocyanin is an important component of the phycobilisome, which is the principal light-harvesting complex in cyanobacteria. The covalent attachment of the phycocyanobilin chromophore to phycocyanin is catalyzed by the enzyme phycocyanin lyase. The photosynthetic properties and phycobilisome assembly state were characterized in wild type and two mutants which lack holo-α-phycocyanin. Insertional inactivation of the phycocyanin α-subunit lyase (ΔcpcF mutant) prevents the ligation of phycocyanobilin to α-phycocyanin (CpcA), while disruption of the cpcB/A/C2/C1 operon in the CK mutant prevents synthesis of both apo-α-phycocyanin (apo-CpcA) and apo-β-phycocyanin (apo-CpcB). Both mutants exhibited similar light saturation curves under white actinic light illumination conditions, indicating the phycobilisomes in the ΔcpcF mutant are not fully functional in excitation energy transfer. Under red actinic light illumination, wild type and both phycocyanin mutant strains exhibited similar light saturation characteristics. This indicates that all three strains contain functional allophycocyanin cores associated with their phycobilisomes. Analysis of the phycobilisome content of these strains indicated that, as expected, wild type exhibited normal phycobilisome assembly and the CK mutant assembled only the allophycocyanin core. However, the ΔcpcF mutant assembled phycobilisomes which, while much larger than the allophycocyanin core observed in the CK mutant, were significantly smaller than phycobilisomes observed in wild type. Interestingly, the phycobilisomes from the ΔcpcF mutant contained holo-CpcB and apo-CpcA. Additionally, we found that the large form of FNR (FNRL) accumulated to normal levels in wild type and the ΔcpcF mutant. In the CK mutant, however, significantly less FNRL accumulated. FNRL has been reported to associate with the phycocyanin rods in phycobilisomes via its N-terminal domain, which shares sequence homology with a phycocyanin linker polypeptide. We suggest that the assembly of apo-CpcA in the phycobilisomes of ΔcpcF can stabilize FNRL and modulate its function. These phycobilisomes, however, inefficiently transfer excitation energy to Photosystem II.
Collapse
Affiliation(s)
- Pengpeng Zhang
- Department of Biological Sciences, Biochemistry and Molecular Biology Division, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Laurie K. Frankel
- Department of Biological Sciences, Biochemistry and Molecular Biology Division, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Terry M. Bricker
- Department of Biological Sciences, Biochemistry and Molecular Biology Division, Louisiana State University, Baton Rouge, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
12
|
Marx A, David L, Adir N. Piecing Together the Phycobilisome. THE STRUCTURAL BASIS OF BIOLOGICAL ENERGY GENERATION 2014. [DOI: 10.1007/978-94-017-8742-0_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Kronfel CM, Kuzin AP, Forouhar F, Biswas A, Su M, Lew S, Seetharaman J, Xiao R, Everett JK, Ma LC, Acton TB, Montelione GT, Hunt JF, Paul CEC, Dragomani TM, Boutaghou MN, Cole RB, Riml C, Alvey RM, Bryant DA, Schluchter WM. Structural and biochemical characterization of the bilin lyase CpcS from Thermosynechococcus elongatus. Biochemistry 2013; 52:8663-76. [PMID: 24215428 DOI: 10.1021/bi401192z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cyanobacterial phycobiliproteins have evolved to capture light energy over most of the visible spectrum due to their bilin chromophores, which are linear tetrapyrroles that have been covalently attached by enzymes called bilin lyases. We report here the crystal structure of a bilin lyase of the CpcS family from Thermosynechococcus elongatus (TeCpcS-III). TeCpcS-III is a 10-stranded β barrel with two alpha helices and belongs to the lipocalin structural family. TeCpcS-III catalyzes both cognate as well as noncognate bilin attachment to a variety of phycobiliprotein subunits. TeCpcS-III ligates phycocyanobilin, phycoerythrobilin, and phytochromobilin to the alpha and beta subunits of allophycocyanin and to the beta subunit of phycocyanin at the Cys82-equivalent position in all cases. The active form of TeCpcS-III is a dimer, which is consistent with the structure observed in the crystal. With the use of the UnaG protein and its association with bilirubin as a guide, a model for the association between the native substrate, phycocyanobilin, and TeCpcS was produced.
Collapse
Affiliation(s)
- Christina M Kronfel
- Department of Biological Sciences, University of New Orleans , New Orleans, LA 70148, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Boutaghou MN, Kronfel CM, Hernandez LS, Biswas A, Schluchter WM, Cole RB. Direct differentiation of A-ring single attachment versus A- and D-ring double attachment of phycoerythrobilin chromophores to phycobiliproteins using MALDI mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2013; 48:187-192. [PMID: 23378091 DOI: 10.1002/jms.3146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 11/13/2012] [Accepted: 11/20/2012] [Indexed: 06/01/2023]
Abstract
Bilin chromophore attachment to phycobiliproteins is an enzyme-catalyzed post-translational modification process. Bilin-lyases attach a bilin chromophore to their cognate protein through a thioether bond between the chromophore and a cysteine moiety. Bilin chromophores are attached to their phycobiliproteins through the 3(1) carbon of the bilin. Double attachment may also occur, and in this case, carbons 3(1) and 18(1) of the bilin are both forming covalent linkages to cysteine moieties. There is a mass spectrometric limitation when examining tryptic peptides containing two (or more) cysteines if one seeks to ascertain whether chromopeptides are singly or doubly attached. The problem is that singly and doubly attached chromopeptides appear at the same m/z value; thus, up until the present, only NMR analysis has been successful at determining whether the chromophore is singly or doubly attached. We report in this work a new, fast and accurate method for discriminating singly from doubly attached chromophores using MALDI-TOF mass spectrometry. This method was developed from mass spectral analysis of chromopeptides that had undergone in vitro or in vivo attachment of bilin chromophores to phycobiliproteins. Distinction is based on a characteristic neutral loss that appears in the MALDI-TOF mass spectrum only when the bilin is singly attached.
Collapse
Affiliation(s)
- M Nazim Boutaghou
- Department of Chemistry, University of New Orleans, 2000 Lakeshore Dr., New Orleans, LA 70148, USA
| | | | | | | | | | | |
Collapse
|
15
|
Light-mediated control of DNA transcription in yeast. Methods 2012; 58:385-91. [PMID: 22922268 DOI: 10.1016/j.ymeth.2012.08.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 06/27/2012] [Accepted: 08/07/2012] [Indexed: 11/21/2022] Open
Abstract
A variety of methods exist for inducible control of DNA transcription in yeast. These include the use of native yeast promoters or regulatory elements that are responsive to small molecules such as galactose, methionine, and copper, or engineered systems that allow regulation by orthogonal small molecules such as estrogen. While chemically regulated systems are easy to use and can yield high levels of protein expression, they often provide imprecise control over protein levels. Moreover, chemically regulated systems can affect many other proteins and pathways in yeast, activating signaling pathways or physiological responses. Here, we describe several methods for light mediated control of DNA transcription in vivo in yeast. We describe methodology for using a red light and phytochrome dependent system to induce transcription of genes under GAL1 promoter control, as well as blue light/cryptochrome dependent systems to control transcription of genes under GAL1 promoter or LexA operator control. Light is dose dependent, inexpensive to apply, easily delivered, and does not interfere with cellular pathways, and thus has significant advantages over chemical systems.
Collapse
|
16
|
Biswas A, Boutaghou MN, Alvey RM, Kronfel CM, Cole RB, Bryant DA, Schluchter WM. Characterization of the activities of the CpeY, CpeZ, and CpeS bilin lyases in phycoerythrin biosynthesis in Fremyella diplosiphon strain UTEX 481. J Biol Chem 2011; 286:35509-35521. [PMID: 21865169 PMCID: PMC3195565 DOI: 10.1074/jbc.m111.284281] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 08/21/2011] [Indexed: 02/02/2023] Open
Abstract
When grown in green light, Fremyella diplosiphon strain UTEX 481 produces the red-colored protein phycoerythrin (PE) to maximize photosynthetic light harvesting. PE is composed of two subunits, CpeA and CpeB, which carry two and three phycoerythrobilin (PEB) chromophores, respectively, that are attached to specific Cys residues via thioether linkages. Specific bilin lyases are hypothesized to catalyze each PEB ligation. Using a heterologous, coexpression system in Escherichia coli, the PEB ligation activities of putative lyase subunits CpeY, CpeZ, and CpeS were tested on the CpeA and CpeB subunits from F. diplosiphon. Purified His(6)-tagged CpeA, obtained by coexpressing cpeA, cpeYZ, and the genes for PEB synthesis, had absorbance and fluorescence emission maxima at 566 and 574 nm, respectively. CpeY alone, but not CpeZ, could ligate PEB to CpeA, but the yield of CpeA-PEB was lower than achieved with CpeY and CpeZ together. Studies with site-specific variants of CpeA(C82S and C139S), together with mass spectrometric analysis of trypsin-digested CpeA-PEB, revealed that CpeY/CpeZ attached PEB at Cys(82) of CpeA. The CpeS bilin lyase ligated PEB at both Cys(82) and Cys(139) of CpeA but very inefficiently; the yield of PEB ligated at Cys(82) was much lower than observed with CpeY or CpeY/CpeZ. However, CpeS efficiently attached PEB to Cys(80) of CpeB but neither CpeY, CpeZ, nor CpeY/CpeZ could ligate PEB to CpeB.
Collapse
Affiliation(s)
- Avijit Biswas
- Department of Biological Science, University of New Orleans, New Orleans, Louisiana 70148
| | - M Nazim Boutaghou
- Department of Chemistry, University of New Orleans, New Orleans, Louisiana 70148
| | - Richard M Alvey
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Christina M Kronfel
- Department of Biological Science, University of New Orleans, New Orleans, Louisiana 70148
| | - Richard B Cole
- Department of Chemistry, University of New Orleans, New Orleans, Louisiana 70148
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802; Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717
| | - Wendy M Schluchter
- Department of Biological Science, University of New Orleans, New Orleans, Louisiana 70148.
| |
Collapse
|
17
|
Alvey RM, Biswas A, Schluchter WM, Bryant DA. Attachment of noncognate chromophores to CpcA of Synechocystis sp. PCC 6803 and Synechococcus sp. PCC 7002 by heterologous expression in Escherichia coli. Biochemistry 2011; 50:4890-902. [PMID: 21553904 DOI: 10.1021/bi200307s] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Many cyanobacteria use brilliantly pigmented, multisubunit macromolecular structures known as phycobilisomes as antenna to enhance light harvesting for photosynthesis. Recent studies have defined the enzymes that synthesize phycobilin chromophores as well as many of the phycobilin lyase enzymes that attach these chromophores to their cognate apoproteins. The ability of the phycocyanin α-subunit (CpcA) to bind alternative linear tetrapyrrole chromophores was examined through the use of a heterologous expression system in Escherichia coli. E. coli strains produced phycocyanobilin, phytochromobilin, or phycoerythrobilin when they expressed 3Z-phycocyanobilin:ferredoxin oxidoreductase (PcyA), 3Z-phytochromobilin:ferredoxin oxidoreductase (HY2) from Arabidopsis thaliana, or phycoerythrobilin synthase (PebS) from the myovirus P-SSM4, respectively. CpcA from Synechocystis sp. PCC 6803 or Synechococcus sp. PCC 7002 was coexpressed in these strains with the phycocyanin α-subunit phycocyanobilin lyase, CpcE/CpcF, or the phycoerythrocyanin α-subunit phycocyanobilin isomerizing lyase, PecE/PecF, from Noctoc sp. PCC 7120. Both lyases were capable of attaching three different linear tetrapyrrole chromophores to CpcA; thus, up to six different CpcA variants, each with a unique chromophore, could be produced with this system. One of these chromophores, denoted phytoviolobilin, has not yet been observed naturally. The recombinant proteins had unexpected and potentially useful properties, which included very high fluorescence quantum yields and photochemical activity. Chimeric lyases PecE/CpcF and CpcE/PecF were used to show that the isomerizing activity that converts phycocyanobilin to phycoviolobilin resides with PecF and not PecE. Finally, spectroscopic properties of recombinant phycocyanin R-PCIII, in which the CpcA subunits carry a phycoerythrobilin chromophore, are described.
Collapse
Affiliation(s)
- Richard M Alvey
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | |
Collapse
|
18
|
Phycobiliproteins in Prochlorococcus marinus: Biosynthesis of pigments and their assembly into proteins. Eur J Cell Biol 2010; 89:1005-10. [DOI: 10.1016/j.ejcb.2010.06.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
19
|
Liu S, Chen Y, Lu Y, Chen H, Li F, Qin S. Biosynthesis of fluorescent cyanobacterial allophycocyanin trimer in Escherichia coli. PHOTOSYNTHESIS RESEARCH 2010; 105:135-142. [PMID: 20607408 DOI: 10.1007/s11120-010-9574-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2009] [Accepted: 06/14/2010] [Indexed: 05/29/2023]
Abstract
Allophycocyanin (APC), a cyanobacterial photosynthetic phycobiliprotein, functions in energy transfer as a light-harvesting protein. One of the prominent spectroscopic characteristics of APC is a strong red-shift in the absorption and emission maxima when monomers are assembled into a trimer. Previously, holo-APC alpha and beta subunits (holo-ApcA and ApcB) were successfully synthesized in Escherichia coli. In this study, both holo-subunits from Synechocystis sp. PCC 6803 were co-expressed in E. coli, and found to self-assemble into trimers. The recombinant APC trimer was purified by metal affinity and size-exclusion chromatography, and had a native structure identical to native APC, as determined by characteristic spectroscopic measurements, fluorescence quantum yield, tryptic digestion analysis, and molecular weight measurements. Combined with results from a study in which only the monomer was formed, our results indicate that bilin synthesis and the subsequent attachment to apo-subunits are important for the successful assembly of APC trimers. This is the first study to report on the assembly of recombinant ApcA and ApcB into a trimer with native structure. Our study provides a promising method for producing better fluorescent tags, as well as a method to facilitate the genetic analysis of APC trimer assembly and biological function.
Collapse
Affiliation(s)
- Shaofang Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 266071 Qingdao, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
20
|
Biswas A, Vasquez YM, Dragomani TM, Kronfel ML, Williams SR, Alvey RM, Bryant DA, Schluchter WM. Biosynthesis of cyanobacterial phycobiliproteins in Escherichia coli: chromophorylation efficiency and specificity of all bilin lyases from Synechococcus sp. strain PCC 7002. Appl Environ Microbiol 2010; 76:2729-39. [PMID: 20228104 PMCID: PMC2863458 DOI: 10.1128/aem.03100-09] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 03/01/2010] [Indexed: 11/20/2022] Open
Abstract
Phycobiliproteins are water-soluble, light-harvesting proteins that are highly fluorescent due to linear tetrapyrrole chromophores, which makes them valuable as probes. Enzymes called bilin lyases usually attach these bilin chromophores to specific cysteine residues within the alpha and beta subunits via thioether linkages. A multiplasmid coexpression system was used to recreate the biosynthetic pathway for phycobiliproteins from the cyanobacterium Synechococcus sp. strain PCC 7002 in Escherichia coli. This system efficiently produced chromophorylated allophycocyanin (ApcA/ApcB) and alpha-phycocyanin with holoprotein yields ranging from 3 to 12 mg liter(-1) of culture. This heterologous expression system was used to demonstrate that the CpcS-I and CpcU proteins are both required to attach phycocyanobilin (PCB) to allophycocyanin subunits ApcD (alpha(AP-B)) and ApcF (beta(18)). The N-terminal, allophycocyanin-like domain of ApcE (L(CM)(99)) was produced in soluble form and was shown to have intrinsic bilin lyase activity. Lastly, this in vivo system was used to evaluate the efficiency of the bilin lyases for production of beta-phycocyanin.
Collapse
Affiliation(s)
- Avijit Biswas
- Department of Biological Science, University of New Orleans, New Orleans, Louisiana 70148, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Yasmin M. Vasquez
- Department of Biological Science, University of New Orleans, New Orleans, Louisiana 70148, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Tierna M. Dragomani
- Department of Biological Science, University of New Orleans, New Orleans, Louisiana 70148, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Monica L. Kronfel
- Department of Biological Science, University of New Orleans, New Orleans, Louisiana 70148, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Shervonda R. Williams
- Department of Biological Science, University of New Orleans, New Orleans, Louisiana 70148, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Richard M. Alvey
- Department of Biological Science, University of New Orleans, New Orleans, Louisiana 70148, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Donald A. Bryant
- Department of Biological Science, University of New Orleans, New Orleans, Louisiana 70148, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Wendy M. Schluchter
- Department of Biological Science, University of New Orleans, New Orleans, Louisiana 70148, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
| |
Collapse
|
21
|
Tsien RY. Nobel lecture: constructing and exploiting the fluorescent protein paintbox. Integr Biol (Camb) 2010; 2:77-93. [DOI: 10.1039/b926500g] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Roger Y. Tsien
- Howard Hughes Medical Institute and Departments of Pharmacology and Chemistry & Biochemistry, University of California, San Diego 9500 Gilman Drive, La Jolla, CA 92093-0647, USA
| |
Collapse
|
22
|
Schluchter WM, Shen G, Alvey RM, Biswas A, Saunée NA, Williams SR, Mille CA, Bryant DA. Phycobiliprotein biosynthesis in cyanobacteria: structure and function of enzymes involved in post-translational modification. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 675:211-28. [PMID: 20532743 DOI: 10.1007/978-1-4419-1528-3_12] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cyanobacterial phycobiliproteins are brilliantly colored due to the presence of covalently attached chromophores called bilins, linear tetrapyrroles derived from heme. For most phycobiliproteins, these post-translational modifications are catalyzed by enzymes called bilin lyases; these enzymes ensure that the appropriate bilins are attached to the correct cysteine residues with the proper stereochemistry on each phycobiliprotein subunit. Phycobiliproteins also contain a unique, post-translational modification, the methylation of a conserved asparagine (Asn) present at beta-72, which occurs on the beta-subunits of all phycobiliproteins. We have identified and characterized several new families of bilin lyases, which are responsible for attaching PCB to phycobiliproteins as well as the Asn methyl transferase for beta-subunits in Synechococcus sp. PCC 7002 and Synechocystis sp. PCC 6803. All of the enzymes responsible for synthesis of holo-phycobiliproteins are now known for this cyanobacterium, and a brief discussion of each enzyme family and its role in the biosynthesis of phycobiliproteins is presented here. In addition, the first structure of a bilin lyase has recently been solved (PDB ID: 3BDR). This structure shows that the bilin lyases are most similar to the lipocalin protein structural family, which also includes the bilin-binding protein found in some butterflies.
Collapse
Affiliation(s)
- Wendy M Schluchter
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Liu S, Chen H, Qin S, Zhang W, Guan X, Lu Y. Highly soluble and stable recombinant holo-phycocyanin alpha subunit expressed in Escherichia coli. Biochem Eng J 2009. [DOI: 10.1016/j.bej.2009.08.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Kupka M, Zhang J, Fu WL, Tu JM, Böhm S, Su P, Chen Y, Zhou M, Scheer H, Zhao KH. Catalytic mechanism of S-type phycobiliprotein lyase: chaperone-like action and functional amino acid residues. J Biol Chem 2009; 284:36405-36414. [PMID: 19864423 DOI: 10.1074/jbc.m109.056382] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The phycobilin:cysteine 84-phycobiliprotein lyase, CpcS1, catalyzes phycocyanobilin (PCB) and phycoerythrobilin (PEB) attachment at nearly all cysteine 82 binding sites (consensus numbering) of phycoerythrin, phycoerythrocyanin, phycocyanin, and allophycocyanin (Zhao, K. H., Su, P., Tu, J. M., Wang, X., Liu, H., Plöscher, M., Eichacker, L., Yang, B., Zhou, M., and Scheer, H. (2007) Proc. Natl. Acad. Sci. U.S.A. 104, 14300-14305). We now show that CpcS1 binds PCB and PEB rapidly with bi-exponential kinetics (38/119 and 12/8300 ms, respectively). Chromophore binding to the lyase is reversible and much faster than the spontaneous, but low fidelity chromophore addition to the apo-protein in the absence of the lyase. This indicates kinetic control by the enzyme, which then transfers the chromophore to the apo-protein in a slow (tens of minutes) but stereo- and regioselectively corrects the reaction. This mode of action is reminiscent of chaperones but does not require ATP. The amino acid residues Arg-18 and Arg-149 of the lyase are essential for chromophore attachment in vitro and in Escherichia coli, mutations of His-21, His-22, Trp-75, Trp-140, and Arg-147 result in reduced activity (<30% of wild type in vitro). Mutants R147Q and W69M were active but had reduced capacity for PCB binding; additionally, with W69M there was loss of fidelity in chromophore attachment. Imidazole is a non-competitive inhibitor, supporting a bilin-binding function of histidine. Evidence was obtained that CpcS1 also catalyzes exchange of C-beta84-bound PCB in biliproteins by PEB.
Collapse
Affiliation(s)
- Michaela Kupka
- Department Biologie I, Universität München, Menzinger Strasse 67, D-80638 München, Germany
| | - Juan Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wei-Lei Fu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jun-Ming Tu
- Department Biologie I, Universität München, Menzinger Strasse 67, D-80638 München, Germany; State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; College of Life Sciences, Hubei Normal University, Huangshi 435002, Hubei, China
| | - Stephan Böhm
- Department Biologie I, Universität München, Menzinger Strasse 67, D-80638 München, Germany
| | - Ping Su
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; College of Life Sciences, Hubei Normal University, Huangshi 435002, Hubei, China
| | - Yu Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ming Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hugo Scheer
- Department Biologie I, Universität München, Menzinger Strasse 67, D-80638 München, Germany
| | - Kai-Hong Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
25
|
Tsien RY. Constructing and exploiting the fluorescent protein paintbox (Nobel Lecture). Angew Chem Int Ed Engl 2009; 48:5612-26. [PMID: 19565590 DOI: 10.1002/anie.200901916] [Citation(s) in RCA: 316] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Roger Y Tsien
- Howard Hughes Medical Institute and Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0647, USA.
| |
Collapse
|
26
|
|
27
|
Ge B, Sun H, Feng Y, Yang J, Qin S. Functional biosynthesis of an allophycocyan beta subunit in Escherichia coli. J Biosci Bioeng 2009; 107:246-9. [PMID: 19269586 DOI: 10.1016/j.jbiosc.2008.11.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Accepted: 11/06/2008] [Indexed: 11/30/2022]
Abstract
Allophycocyanin is a phycobiliprotein with various biological and pharmacological properties. An expression vector was constructed using CpeS as the bilin lyase for the allophycocyanin beta subunit, resulting in overexpression of a fluorescent allophycocyanin beta-subunit in Escherichia coli. A high-density cell culture was developed using a continuous feeding strategy. After 16 h of culture, the dry cell density reached 21.4 g l(-1), the expression of the allophycocyanin beta-subunit was 0.86 g l(-1) broth, and the relative chromoprotein yield was 81.4%. The recombinant protein showed spectral features similar to native allophycocyanin, which provide an efficient methodology for large-scale production of this valuable fluorescent protein.
Collapse
Affiliation(s)
- Baosheng Ge
- Center for Biotechnology and Bioengineering, China University of Petroleum, Qingdao, Shandong 266555, PR China.
| | | | | | | | | |
Collapse
|
28
|
Rockwell NC, Shang L, Martin SS, Lagarias JC. Distinct classes of red/far-red photochemistry within the phytochrome superfamily. Proc Natl Acad Sci U S A 2009; 106:6123-7. [PMID: 19339496 PMCID: PMC2669357 DOI: 10.1073/pnas.0902370106] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Indexed: 02/01/2023] Open
Abstract
Phytochromes are a widespread family of photosensory proteins first discovered in plants, which measure the ratio of red to far-red light to control many aspects of growth and development. Phytochromes interconvert between red-absorbing P(r) and far-red-absorbing P(fr) states via photoisomerization of a covalently-bound linear tetrapyrrole (bilin) chromophore located in a conserved photosensory core. From recent crystal structures of this core region, it has been inferred that the chromophore structures of P(r) and P(fr) are conserved in most phytochromes. Using circular dichroism spectroscopy and ab initio calculations, we establish that the P(fr) states of the biliverdin-containing bacteriophytochromes DrBphP and PaBphP are structurally dissimilar from those of the phytobilin-containing cyanobacterial phytochrome Cph1. This conclusion is further supported by chromophore substitution experiments using semisynthetic bilin monoamides, which indicate that the propionate side chains perform different functional roles in the 2 classes of phytochromes. We propose that different directions of bilin D-ring rotation account for these distinct classes of red/far-red photochemistry.
Collapse
Affiliation(s)
- Nathan C. Rockwell
- Department of Molecular and Cell Biology, University of California, Davis, CA 95616
| | - Lixia Shang
- Department of Molecular and Cell Biology, University of California, Davis, CA 95616
| | - Shelley S. Martin
- Department of Molecular and Cell Biology, University of California, Davis, CA 95616
| | - J. Clark Lagarias
- Department of Molecular and Cell Biology, University of California, Davis, CA 95616
| |
Collapse
|
29
|
Miller CA, Leonard HS, Pinsky IG, Turner BM, Williams SR, Harrison L, Fletcher AF, Shen G, Bryant DA, Schluchter WM. Biogenesis of phycobiliproteins. III. CpcM is the asparagine methyltransferase for phycobiliprotein beta-subunits in cyanobacteria. J Biol Chem 2008; 283:19293-300. [PMID: 18482977 DOI: 10.1074/jbc.m802734200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
All phycobiliproteins contain a conserved, post-translational modification on asparagine 72 of their beta-subunits. Methylation of this Asn to produce gamma-N-methylasparagine has been shown to increase energy transfer efficiency within the phycobilisome and to prevent photoinhibition. We report here the biochemical characterization of the product of sll0487, which we have named cpcM, from the cyanobacterium Synechocystis sp. PCC 6803. Recombinant apo-phycocyanin and apo-allophycocyanin subunits were used as the substrates for assays with [methyl-3H]S-adenosylmethionine and recombinant CpcM. CpcM methylated the beta-subunits of phycobiliproteins (CpcB, ApcB, and ApcF) and did not methylate the corresponding alpha-subunits (CpcA, ApcA, and ApcD), although they are similar in primary and tertiary structure. CpcM preferentially methylated its CpcB substrate after chromophorylation had occurred at Cys82. CpcM exhibited lower activity on trimeric phycocyanin after complete chromophorylation and oligomerization had occurred. Based upon these in vitro studies, we conclude that this post-translational modification probably occurs after chromophorylation but before trimer assembly in vivo.
Collapse
Affiliation(s)
- Crystal A Miller
- Department of Biological Sciences, University of New Orleans, New Orleans, Louisiana 70148, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Biliproteins are a widespread group of brilliantly coloured photoreceptors characterized by linear tetrapyrrolic chromophores, bilins, which are covalently bound to the apoproteins via relatively stable thioether bonds. Covalent binding stabilizes the chromoproteins and is mandatory for phycobilisome assembly; and, it is also important in biliprotein applications such as fluorescence labelling. Covalent binding has, on the other hand, also considerably hindered biliprotein research because autocatalytic chromophore additions are rare, and information on enzymatic addition by lyases was limited to a single example, an EF-type lyase attaching phycocyanobilin to cysteine-alpha84 of C-phycocyanin. The discovery of new activities for the latter lyases, and of new types of lyases, have reinvigorated research activities in the subject. So far, work has mainly concentrated on cyanobacterial phycobiliproteins. Methodological advances in the process, however, as well as the finding of often large numbers of homologues, opens new possibilities for research on the subsequent assembly/disassembly of the phycobilisome in cyanobacteria and red algae, on the assembly and organization of the cryptophyte light-harvesting system, on applications in basic research such as protein folding, and on the use of phycobiliproteins for labelling.
Collapse
Affiliation(s)
- H Scheer
- Department Biologie I, Universität München, Menzinger Strasse 67, D-80638 München, Germany
| | | |
Collapse
|
31
|
Saunée NA, Williams SR, Bryant DA, Schluchter WM. Biogenesis of phycobiliproteins: II. CpcS-I and CpcU comprise the heterodimeric bilin lyase that attaches phycocyanobilin to CYS-82 OF beta-phycocyanin and CYS-81 of allophycocyanin subunits in Synechococcus sp. PCC 7002. J Biol Chem 2008; 283:7513-22. [PMID: 18199753 DOI: 10.1074/jbc.m708165200] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Synechococcus sp. PCC 7002 genome encodes three genes, denoted cpcS-I, cpcU, cpcV, with sequence similarity to cpeS. CpcS-I copurified with His(6)-tagged (HT) CpcU as a heterodimer, CpcSU. When CpcSU was assayed for bilin lyase activity in vitro with phycocyanobilin (PCB) and apophycocyanin, the reaction product had an absorbance maximum of 622 nm and was highly fluorescent (lambda(max) = 643 nm). In control reactions with PCB and apophycocyanin, the products had absorption maxima at 635 nm and very low fluorescence yields, indicating they contained the more oxidized mesobiliverdin (Arciero, D. M., Bryant, D. A., and Glazer, A. N. (1988) J. Biol. Chem. 263, 18343-18349). Tryptic peptide mapping showed that the CpcSU-dependent reaction product had one major PCB-containing peptide that contained the PCB binding site Cys-82. The CpcSU lyase was also tested with recombinant apoHT-allophycocyanin (aporHT-AP) and PCB in vitro. AporHT-AP formed an ApcA/ApcB heterodimer with an apparent mass of approximately 27 kDa. When aporHT-AP was incubated with PCB and CpcSU, the product had an absorbance maximum of 614 nm and a fluorescence emission maximum at 636 nm, the expected maxima for monomeric holo-AP. When no enzyme or CpcS-I or CpcU was added alone, the products had absorbance maxima between 645 and 647 nm and were not fluorescent. When these reaction products were analyzed by gel electrophoresis and zinc-enhanced fluorescence emission, only the reaction products from CpcSU had PCB attached to both AP subunits. Therefore, CpcSU is the bilin lyase-responsible for attachment of PCB to Cys-82 of CpcB and Cys-81 of ApcA and ApcB.
Collapse
Affiliation(s)
- Nicolle A Saunée
- Department of Biological Sciences, University of New Orleans, New Orleans, Louisiana 70148, USA
| | | | | | | |
Collapse
|
32
|
Zhao KH, Zhang J, Tu JM, Böhm S, Plöscher M, Eichacker L, Bubenzer C, Scheer H, Wang X, Zhou M. Lyase activities of CpcS- and CpcT-like proteins from Nostoc PCC7120 and sequential reconstitution of binding sites of phycoerythrocyanin and phycocyanin beta-subunits. J Biol Chem 2007; 282:34093-103. [PMID: 17895251 DOI: 10.1074/jbc.m703038200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Genes all5292 (cpcS2) and alr0617 (cpcS1) in the cyanobacterium Nostoc PCC7120 are homologous to the biliprotein lyase cpcS, and genes all5339 (cpcT1) and alr0647 (cpcT2) are homologous to the lyase cpcT. The functions of the encoded proteins were screened in vitro and in a heterologous Escherichia coli system with plasmids conferring biosynthesis of the phycocyanobilin chromophore and of the acceptor proteins beta-phycoerythrocyanin (PecB) or beta-phycocyanin (CpcB). CpcT1 is a regioselective biliprotein lyase attaching phycocyanobilin exclusively to cysteine beta155 but does not discriminate between CpcB and PecB. The in vitro reconstitutions required no cofactors, and kinetic constants were determined for CpcT1 under in vitro conditions. No lyase activity was found for the lyase homologues CpcS2 and CpcT2, but complexes are formed in vitro between CpcT1 and CpcS1, CpcT2, or PecE (subunit of phycoviolobilin:alpha-phycoerythrocyanin isomerase lyase). The genes coding the inactive homologues, cpcS2 and cpcT2, are transcribed in N-starved Nostoc. In sequential binding experiments with CpcT1 and CpcS1, a chromophore at cysteine 84 inhibited the subsequent attachment to cysteine 155, whereas the inverse sequence generates subunits carrying both chromophores.
Collapse
Affiliation(s)
- Kai-Hong Zhao
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Zhao KH, Su P, Tu JM, Wang X, Liu H, Plöscher M, Eichacker L, Yang B, Zhou M, Scheer H. Phycobilin:cystein-84 biliprotein lyase, a near-universal lyase for cysteine-84-binding sites in cyanobacterial phycobiliproteins. Proc Natl Acad Sci U S A 2007; 104:14300-5. [PMID: 17726096 PMCID: PMC1955460 DOI: 10.1073/pnas.0706209104] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phycobilisomes, the light-harvesting complexes of cyanobacteria and red algae, contain two to four types of chromophores that are attached covalently to seven or more members of a family of homologous proteins, each carrying one to four binding sites. Chromophore binding to apoproteins is catalyzed by lyases, of which only few have been characterized in detail. The situation is complicated by nonenzymatic background binding to some apoproteins. Using a modular multiplasmidic expression-reconstitution assay in Escherichia coli with low background binding, phycobilin:cystein-84 biliprotein lyase (CpeS1) from Anabaena PCC7120, has been characterized as a nearly universal lyase for the cysteine-84-binding site that is conserved in all biliproteins. It catalyzes covalent attachment of phycocyanobilin to all allophycocyanin subunits and to cysteine-84 in the beta-subunits of C-phycocyanin and phycoerythrocyanin. Together with the known lyases, it can thereby account for chromophore binding to all binding sites of the phycobiliproteins of Anabaena PCC7120. Moreover, it catalyzes the attachment of phycoerythrobilin to cysteine-84 of both subunits of C-phycoerythrin. The only exceptions not served by CpeS1 among the cysteine-84 sites are the alpha-subunits from phycocyanin and phycoerythrocyanin, which, by sequence analyses, have been defined as members of a subclass that is served by the more specialized E/F type lyases.
Collapse
Affiliation(s)
- Kai-Hong Zhao
- Colleges of *Life Science and Technology and
- To whom correspondence may be addressed. E-mail: or
| | - Ping Su
- Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China; and
| | - Jun-Ming Tu
- Colleges of *Life Science and Technology and
- Department Biologie I–Botanik, Universität München, Menzinger Strasse 67, D-80638 Munich, Germany
| | - Xing Wang
- Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China; and
| | - Hui Liu
- Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China; and
| | - Matthias Plöscher
- Department Biologie I–Botanik, Universität München, Menzinger Strasse 67, D-80638 Munich, Germany
| | - Lutz Eichacker
- Department Biologie I–Botanik, Universität München, Menzinger Strasse 67, D-80638 Munich, Germany
| | - Bei Yang
- Colleges of *Life Science and Technology and
| | - Ming Zhou
- Colleges of *Life Science and Technology and
- Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China; and
| | - Hugo Scheer
- Department Biologie I–Botanik, Universität München, Menzinger Strasse 67, D-80638 Munich, Germany
- To whom correspondence may be addressed. E-mail: or
| |
Collapse
|
34
|
Böhm S, Endres S, Scheer H, Zhao KH. Biliprotein chromophore attachment: chaperone-like function of the PecE subunit of alpha-phycoerythrocyanin lyase. J Biol Chem 2007; 282:25357-66. [PMID: 17595164 DOI: 10.1074/jbc.m702669200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Biliproteins are post-translationally modified by chromophore addition. In phycoerythrocyanin, the heterodimeric lyase PecE/F covalently attaches phycocyanobilin (PCB) to cysteine-alpha84 of the apoprotein PecA, with concomitant isomerization to phycoviolobilin. We found that: (a) PecA adds autocatalytically PCB, yielding a low absorbance, low fluorescence PCB.PecA adduct, termed P645 according to its absorption maximum; (b) In the presence of PecE, a high absorbance, high fluorescence PCB.PecA adduct is formed, termed P641; (c) PecE is capable of transforming P645 to P641; (d) When in stop-flow experiments, PecA and PecE were preincubated before chromophore addition, a red-shifted intermediate (P650, tau=32 ms) was observed followed by a second, which was blue-shifted (P605, tau=0.5 s), and finally a third (P638, tau=14 s) that yielded the adduct (P641, tau=20 min); (e) The reaction was slower, and P605 was missing, if PecA and PecE were not preincubated; (f) Gel filtration gave no evidence of a stable complex between PecA and PecE; however, complex formation is induced by adding PCB; and (g) A red-shifted intermediate was also formed, but more slowly, with phycoerythrobilin, and denaturation showed that this is not yet covalently bound. We conclude, therefore, that PecA and PecE form a weak complex that is stabilized by PCB, that the first reaction step involves a conformational change and/or protonation of PCB, and that PecE has a chaperone-like function on the chromoprotein.
Collapse
Affiliation(s)
- Stephan Böhm
- Department Biologie I, Bereich Botanik, Universität München, München D-80638, Germany
| | | | | | | |
Collapse
|
35
|
von Stetten D, Seibeck S, Michael N, Scheerer P, Mroginski MA, Murgida DH, Krauss N, Heyn MP, Hildebrandt P, Borucki B, Lamparter T. Highly conserved residues Asp-197 and His-250 in Agp1 phytochrome control the proton affinity of the chromophore and Pfr formation. J Biol Chem 2006; 282:2116-23. [PMID: 17121858 DOI: 10.1074/jbc.m608878200] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mutants H250A and D197A of Agp1 phytochrome from Agrobacterium tumefaciens were prepared and investigated by different spectroscopic and biochemical methods. Asp-197 and His-250 are highly conserved amino acids and are part of the hydrogen-bonding network that involves the chromophore. Both substitutions cause a destabilization of the protonated chromophore in the Pr state as revealed by resonance Raman and UV-visible absorption spectroscopy. Titration experiments demonstrate a lowering of the pK(a) from 11.1 (wild type) to 8.8 in H250A and 7.2 in D197A. Photoconversion of the mutants does not lead to the Pfr state. H250A is arrested in a meta-Rc-like state in which the chromophore is deprotonated. For H250A and the wild-type protein, deprotonation of the chromophore in meta-Rc is coupled to the release of a proton to the external medium, whereas the subsequent proton re-uptake, linked to the formation of the Pfr state in the wild-type protein, is not observed for H250A. No transient proton exchange with the external medium occurs in D197A, suggesting that Asp-197 may be the proton release group. Both mutants do not undergo the photo-induced protein structural changes that in the wild-type protein are detectable by size exclusion chromatography. These conformational changes are, therefore, attributed to the meta-Rc --> Pfr transition and most likely coupled to the transient proton re-uptake. The present results demonstrate that Asp-197 and His-250 are essential for stabilizing the protonated chromophore structure in the parent Pr state, which is required for the primary photochemical process, and for the complete photo-induced conversion to the Pfr state.
Collapse
Affiliation(s)
- David von Stetten
- Institut für Chemie, Technische Universität Berlin, Sekretariat PC14, Strasse des 17 Juni 135, D-10623 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Isailovic D, Sultana I, Phillips GJ, Yeung ES. Formation of fluorescent proteins by the attachment of phycoerythrobilin to R-phycoerythrin alpha and beta apo-subunits. Anal Biochem 2006; 358:38-50. [PMID: 16979575 PMCID: PMC1633713 DOI: 10.1016/j.ab.2006.08.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2006] [Revised: 07/10/2006] [Accepted: 08/10/2006] [Indexed: 11/17/2022]
Abstract
Formation of fluorescent proteins was explored after incubation of recombinant apo-subunits of phycobiliprotein R-phycoerythrin with phycoerythrobilin chromophore. Alpha and beta apo-subunit genes of R-phycoerythrin from red algae Polisiphonia boldii were cloned in plasmid pET-21d(+). Hexahistidine-tagged alpha and beta apo-subunits were expressed in Escherichia coli. Although expressed apo-subunits formed inclusion bodies, fluorescent holo-subunits were constituted after incubation of E. coli cells with phycoerythrobilin. Holo-subunits contained both phycoerythrobilin and urobilin chromophores. Fluorescence and differential interference contrast microscopy showed polar location of holo-subunit inclusion bodies in bacterial cells. Cells containing fluorescent holo-subunits were several times brighter than control cells as found by fluorescence microscopy and flow cytometry. The addition of phycoerythrobilin to cells did not show cytotoxic effects, in contrast to expression of proteins in inclusion bodies. In an attempt to improve solubility, R-phycoerythrin apo-subunits were fused to maltose-binding protein and incubated with phycoerythrobilin both in vitro and in vivo. Highly fluorescent soluble fusion proteins containing phycoerythrobilin as the sole chromophore were formed. Fusion proteins were localized by fluorescence microscopy either throughout E. coli cells or at cell poles. Flow cytometry showed that cells containing fluorescent fusion proteins were up to 10 times brighter than control cells. Results indicate that fluorescent proteins formed by attachment of phycoerythrobilin to expressed apo-subunits of phycobiliproteins can be used as fluorescent probes for analysis of cells by microscopy and flow cytometry. A unique property of these fluorescent reporters is their utility in both properly folded (soluble) subunits and subunits aggregated in inclusion bodies.
Collapse
Affiliation(s)
| | - Ishrat Sultana
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, Iowa, 50011
| | - Gregory J. Phillips
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, Iowa, 50011
| | | |
Collapse
|
37
|
Zhao KH, Wu D, Zhang L, Zhou M, Böhm S, Bubenzer C, Scheer H. Chromophore attachment in phycocyanin. Functional amino acids of phycocyanobilin--alpha-phycocyanin lyase and evidence for chromophore binding. FEBS J 2006; 273:1262-74. [PMID: 16519690 DOI: 10.1111/j.1742-4658.2006.05149.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Covalent attachment of phycocyanobilin (PCB) to the alpha-subunit of C-phycocyanin, CpcA, is catalysed by the heterodimeric PCB : CpcA lyase, CpcE/F [Fairchild CD, Zhao J, Zhou J, Colson SE, Bryant DA & Glazer AN (1992) Proc Natl Acad Sci USA89, 7017-7021]. CpcE and CpcF of the cyanobacterium, Mastigocladus laminosus PCC 7603, form a 1 : 1 complex. Lyase-mutants were constructed to probe functional domains. When in CpcE (276 residues) the N terminus was truncated beyond the R33YYAAWWL motif, or the C terminus beyond amino acid 237, the enzyme became inactive. Activity decreases to 20% when C-terminal truncations went beyond L275, which is a key residue: the K(m) of CpcE(L275D) and (L276D) increased by 61% and 700%, k(cat)/K(m) decreased 3- and 83-fold, respectively. The enzyme also lost activity when in CpcF (213 residues) the 20 N-terminal amino acids were truncated; truncation of 53 C-terminal amino acids inhibited complex formation with CpcE, possibly due to misfolding. According to chemical modifications, one accessible arginine and one accessible tryptophan are essential for CpcE activity, and one carboxylate for CpcF. Both subunits bind PCB, as assayed by Ni2+ affinity chromatography, SDS/PAGE and Zn2+-induced fluorescence. The bound PCB could be transferred to CpcA to yield alpha-CPC. The PCB transfer capacity correlates with the activity of the lyase, indicating that PCB bound to CpcE/F is an intermediate of the enzymatic reaction. A catalytic mechanism is proposed, in which a CpcE/F complex binds PCB and adjusts via a salt bridge the conformation of PCB, which is then transferred to CpcA.
Collapse
Affiliation(s)
- Kai-Hong Zhao
- College of Life Science and Technology, Huazhong University of Science and Technology, Hubei, China.
| | | | | | | | | | | | | |
Collapse
|
38
|
Shen G, Saunée NA, Williams SR, Gallo EF, Schluchter WM, Bryant DA. Identification and characterization of a new class of bilin lyase: the cpcT gene encodes a bilin lyase responsible for attachment of phycocyanobilin to Cys-153 on the beta-subunit of phycocyanin in Synechococcus sp. PCC 7002. J Biol Chem 2006; 281:17768-78. [PMID: 16644722 DOI: 10.1074/jbc.m602563200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Synechococcus sp. PCC 7002 and all other cyanobacteria that synthesize phycocyanin have a gene, cpcT, that is paralogous to cpeT, a gene of unknown function affecting phycoerythrin synthesis in Fremyella diplosiphon. A cpcT null mutant contains 40% less phycocyanin than wild type and produces smaller phycobilisomes with red-shifted absorbance and fluorescence emission maxima. Phycocyanin from the cpcT mutant has an absorbance maximum at 634 nm compared with 626 nm for the wild type. The phycocyanin beta-subunit from the cpcT mutant has slightly smaller apparent molecular weight on SDS-PAGE. Purified phycocyanins from the cpcT mutant and wild type were cleaved with formic acid, and the products were analyzed by SDS-PAGE. No phycocyanobilin chromophore was bound to the peptide containing Cys-153 derived from the phycocyanin beta-subunit of the cpcT mutant. Recombinant CpcT was used to perform in vitro bilin addition assays with apophycocyanin (CpcA/CpcB) and phycocyanobilin. Depending on the source of phycocyanobilin, reaction products with CpcT had absorbance maxima between 597 and 603 nm as compared with 638 nm for the control reactions, in which mesobiliverdin becomes covalently bound. After trypsin digestion and reverse phase high performance liquid chromatography, the CpcT reaction product produced one major phycocyanobilin-containing peptide. This peptide had a retention time identical to that of the tryptic peptide that includes phycocyanobilin-bound, cysteine 153 of wild-type phycocyanin. The results from characterization of the cpcT mutant as well as the in vitro biochemical assays demonstrate that CpcT is a new phycocyanobilin lyase that specifically attaches phycocyanobilin to Cys-153 of the phycocyanin beta-subunit.
Collapse
Affiliation(s)
- Gaozhong Shen
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | | | |
Collapse
|
39
|
Zhao KH, Su P, Li J, Tu JM, Zhou M, Bubenzer C, Scheer H. Chromophore attachment to phycobiliprotein beta-subunits: phycocyanobilin:cysteine-beta84 phycobiliprotein lyase activity of CpeS-like protein from Anabaena Sp. PCC7120. J Biol Chem 2006; 281:8573-81. [PMID: 16452471 DOI: 10.1074/jbc.m513796200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The gene alr0617, from the cyanobacterium Anabaena sp. PCC7120, which is homologous to cpeS from Gloeobacter violaceus PCC 7421, Fremyella diplosiphon (Calothrix PCC7601), and Synechococcus sp. WH8102, and to cpcS from Synechococcus sp. PCC7002, was overexpressed in Escherichia coli. CpeS acts as a phycocyanobilin: Cys-beta84-phycobiliprotein lyase that can attach, in vitro and in vivo, phycocyanobilin (PCB) to cysteine-beta84 of the apo-beta-subunits of C-phycocyanin (CpcB) and phycoerythrocyanin (PecB). We found the following: (a) In vitro, CpeS attaches PCB to native CpcB and PecB, and to their C155I-mutants, but not to the C84S mutants. Under optimal conditions (150 mm NaCl and 500 mm potassium phosphate, 37 degrees C, and pH 7.5), no cofactors are required, and the lyase had a Km(PCB) = 2.7 and 2.3 microm, and a kcat = 1.7 x 10(-5) and 1.1 x 10(-5) s(-1) for PCB attachment to CpcB (C155I) and PecB (C155I), respectively; (b) Reconstitution products had absorption maxima at 619 and 602 nm and fluorescence emission maxima at 643 and 629 nm, respectively; and (c) PCB-CpcB(C155I) and PCB-PecB(C155I), with the same absorption and fluorescence maxima, were also biosynthesized heterologously in vivo, when cpeS was introduced into E. coli with cpcB(C155I) or pecB(C155I), respectively, together with genes ho1 (encoding heme oxygenase) and pcyA (encoding PCB:ferredoxin oxidoreductase), thereby further proving the lyase function of CpeS.
Collapse
Affiliation(s)
- Kai-Hong Zhao
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China
| | | | | | | | | | | | | |
Collapse
|
40
|
Adir N, Dines M, Klartag M, McGregor A, Melamed-Frank M. Assembly and Disassembly of Phycobilisomes. MICROBIOLOGY MONOGRAPHS 2006. [DOI: 10.1007/7171_020] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
41
|
Knipp B, Müller M, Metzler-Nolte N, Balaban TS, Braslavsky SE, Schaffner K. NMR Verification of Helical Conformations of Phycocyanobilin in Organic Solvents. Helv Chim Acta 2004. [DOI: 10.1002/hlca.19980810509] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
42
|
Zhao KH, Zhu JP, Deng MG, Zhou M, Storf M, Parbel A, Scheer H. Photochromic chromopeptides derived from phycoerythrocyanin: biophysical and biochemical characterization. Photochem Photobiol Sci 2003; 2:741-8. [PMID: 12911221 DOI: 10.1039/b303233g] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Truncated chromopeptides have been prepared from the small photo- and redox-switchable biliprotein alpha-phycoerythrocyanin (alpha-PEC). The native chromoprotein consists of a C-terminal globin domain containing the chromophore and the regulatory cysteins 98 and 99, and a two-helix (X,Y) N-terminal domain responsible for aggregation. Digestion with chymotrypsin-free trypsin leads to three chromopeptides, (N-30, N-33 and N-35), basically lacking the two N-terminal helices X and Y. The photo- and redox chemistry of the major product (N-33) is identical, qualitatively and quantitatively, to that of native alpha-PEC. A series of N- and C-terminally truncated polypeptides were expressed in E. coli and subjected to autocatalytic and enzymatic reconstitution with phycocyanobilin. Enzymatic reconstitution was possible with N-terminally truncated polypeptides up to 45 aa, while neither a more extensively shortened (N-63) peptide, nor two C-terminally shortened polypeptides could be reconstituted. All chromopeptides recovered from enzymatic reconstitution contained the native phycoviolobilin chromophore and showed the photochemical and redox reactivity of alpha-PEC, albeit quantitatively reduced in the N-45 chromopeptide.
Collapse
Affiliation(s)
- Kai-Hong Zhao
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P.R. China
| | | | | | | | | | | | | |
Collapse
|
43
|
|
44
|
Zhao KH, Wu D, Wang L, Zhou M, Storf M, Bubenzer C, Strohmann B, Scheer H. Characterization of phycoviolobilin phycoerythrocyanin-alpha 84-cystein-lyase-(isomerizing) from Mastigocladus laminosus. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:4542-50. [PMID: 12230566 DOI: 10.1046/j.1432-1033.2002.03148.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cofactor requirements and enzyme kinetics have been studied of the novel, dual-action enzyme, the isomerizing phycoviolobilin phycoerythrocyanin-alpha84-cystein-lyase(PVB-PEC-lyase) from Mastigocladus laminosus, which catalyses both the covalent attachment of phycocyanobilin to PecA, the apo-alpha-subunit of phycoerythrocyanin, and its isomerization to phycoviolobilin. Thiols and the divalent metals, Mg2+ or Mn2+, were required, and the reaction was aided by the detergent, Triton X-100. Phosphate buffer inhibits precipitation of the proteins present in the reconstitution mixture, but at the same time binds the required metal. Kinetic constants were obtained for both substrates, the chromophore (Km = 12-16 micro m, depending on [PecA], kcat approximately 1.2 x 10-4.s-1) and the apoprotein (Km = 2.4 micro m at 14 micro m PCB, kcat = 0.8 x 10-4.s-1). The kinetic analysis indicated that the reconstitution reaction proceeds by a sequential mechanism. By a combination of untagged and His-tagged subunits, evidence was obtained for a complex formation between PecE and PecF (subunits of PVB-PEC-lyase), and by experiments with single subunits for the prevalent function of PecE in binding and PecF in isomerizing the chromophore.
Collapse
Affiliation(s)
- Kai-Hong Zhao
- College of Life Science and Technology Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Tooley AJ, Cai YA, Glazer AN. Biosynthesis of a fluorescent cyanobacterial C-phycocyanin holo-alpha subunit in a heterologous host. Proc Natl Acad Sci U S A 2001; 98:10560-5. [PMID: 11553806 PMCID: PMC58505 DOI: 10.1073/pnas.181340998] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The entire pathway for the synthesis of a fluorescent holophycobiliprotein subunit from a photosynthetic cyanobacterium (Synechocystis sp. PCC6803) was reconstituted in Escherichia coli. Cyanobacterial genes encoding enzymes required for the conversion of heme to the natural chromophore 3Z-phycocyanobilin, namely, heme oxygenase 1 and 3Z-phycocyanobilin:ferredoxin oxidoreductase, were expressed from a plasmid under control of the hybrid trp-lac (trc) promoter. Genes for the apoprotein (C-phycocyanin alpha subunit; cpcA) and the heterodimeric lyase (cpcE and cpcF) that catalyzes chromophore attachment were expressed from the trc promoter on a second plasmid. Upon induction, recombinant E. coli used the cellular pool of heme to produce holo-CpcA with spectroscopic properties qualitatively and quantitatively similar to those of the same protein produced endogenously in cyanobacteria. About a third of the apo-CpcA was converted to holo-CpcA. No significant bilin addition took place in a similarly engineered E. coli strain that lacks cpcE and cpcF. This approach should permit incisive analysis of many remaining questions in phycobiliprotein biosynthesis. These studies also demonstrate the feasibility of generating constructs of these proteins in situ for use as fluorescent protein probes in living cells.
Collapse
Affiliation(s)
- A J Tooley
- Department of Molecular and Cell Biology, University of California, 142 LSA no. 3200, Berkeley, CA 94720-3200, USA
| | | | | |
Collapse
|
46
|
Cai YA, Murphy JT, Wedemayer GJ, Glazer AN. Recombinant phycobiliproteins. Recombinant C-phycocyanins equipped with affinity tags, oligomerization, and biospecific recognition domains. Anal Biochem 2001; 290:186-204. [PMID: 11237320 DOI: 10.1006/abio.2000.4979] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A family of specific cloning vectors was constructed to express in the cyanobacterium Anabaena sp. PCC7120 recombinant C-phycocyanin subunits with one or more different tags, including the 6xHis tag, oligomerization domains, and the streptavidin-binding Strep2 tag. Such tagged alpha or beta subunits of Anabaena sp. PCC7120 C-phycocyanin formed stoichiometric complexes in vivo with appropriate wild-type subunits to give constructs with the appropriate oligomerization state and normal posttranslational modifications and with spectroscopic properties very similar to those of unmodified phycocyanin. All of these constructs were incorporated in vivo into the rod substructures of the light-harvesting complex, the phycobilisome. The C-terminal 114-residue portion of the Anabaena sp. PCC7120 biotin carboxyl carrier protein (BCCP114) was cloned and overexpressed and was biotinylated up to 20% in Escherichia coli and 40% in wild-type Anabaena sp. His-tagged phycocyanin beta--BCCP114 constructs expressed in Anabaena sp. were >30% biotinylated. In such recombinant phycocyanins equipped with stable trimerization domains, >75% of the fusion protein was specifically bound to streptavidin- or avidin-coated beads. Thus, the methods described here achieve in vivo production of stable oligomeric phycobiliprotein constructs equipped with affinity purification tags and biospecific recognition domains usable as fluorescent labels without further chemical manipulation.
Collapse
Affiliation(s)
- Y A Cai
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3200, USA
| | | | | | | |
Collapse
|
47
|
Zhao KH, Deng MG, Zheng M, Zhou M, Parbel A, Storf M, Meyer M, Strohmann B, Scheer H. Novel activity of a phycobiliprotein lyase: both the attachment of phycocyanobilin and the isomerization to phycoviolobilin are catalyzed by the proteins PecE and PecF encoded by the phycoerythrocyanin operon. FEBS Lett 2000; 469:9-13. [PMID: 10708746 DOI: 10.1016/s0014-5793(00)01245-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The structure of phycoviolobilin, the photoactive chromophore of alpha-phycoerythrocyanin, is incompatible with a chromophore ligation to the apoprotein via SH-addition (cysteine) to a Delta3, 3(1)-double bond of the phycobilin. The two putative phycoerythrocyanin lyase genes of Mastigocladus laminosus, pecE and pecF, were overexpressed in Escherichia coli. Their action has been studied on the addition reaction of phycocyanobilin to apo-alpha-phycoerythrocyanin (PecA). In the absence of the components of alpha-PEC-phycoviolobilin lyase PecE and PecF, or in the presence of only one of them, phycocyanobilin binds covalently to PecA forming a fluorescent chromoprotein with a red-shifted absorption (lambda(max)=641 nm) and low photoactivity (<10%). In the presence of both PecE and PecF, a chromoprotein forms which by its absorption (lambda(max)=565 nm) and high photoreversible photochromism (100% type I) has been identified as integral alpha-phycoerythrocyanin. We conclude that PecE and PecF jointly catalyze not only the addition of phycocyanobilin to PecA, but also its isomerization to the native phycoviolobilin chromophore.
Collapse
Affiliation(s)
- K H Zhao
- College of Life Sciences, Wuhan University, Wuhan, PR China.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Dolganov N, Grossman AR. A polypeptide with similarity to phycocyanin alpha-subunit phycocyanobilin lyase involved in degradation of phycobilisomes. J Bacteriol 1999; 181:610-7. [PMID: 9882677 PMCID: PMC93417 DOI: 10.1128/jb.181.2.610-617.1999] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To optimize the utilization of photosynthate and avoid damage that can result from the absorption of excess excitation energy, photosynthetic organisms must rapidly modify the synthesis and activities of components of the photosynthetic apparatus in response to environmental cues. During nutrient-limited growth, cyanobacteria degrade their light-harvesting complex, the phycobilisome, and dramatically reduce the rate of photosynthetic electron transport. In this report, we describe the isolation and characterization of a cyanobacterial mutant that does not degrade its phycobilisomes during either sulfur or nitrogen limitation and exhibits an increased ratio of phycocyanin to chlorophyll during nutrient-replete growth. The mutant phenotype was complemented by a gene encoding a polypeptide with similarities to polypeptides that catalyze covalent bond formation between linear tetrapyrrole chromophores and subunits of apophycobiliproteins. The complementing gene, designated nblB, is expressed at approximately the same level in cells grown in nutrient-replete medium and medium devoid of either sulfur or nitrogen. These results suggest that the NblB polypeptide may be a constitutive part of the machinery that coordinates phycobilisome degradation with environmental conditions.
Collapse
Affiliation(s)
- N Dolganov
- Department of Plant Biology, The Carnegie Institution of Washington, Stanford, California 94305, USA
| | | |
Collapse
|
49
|
Lamparter T, Mittmann F, Gärtner W, Börner T, Hartmann E, Hughes J. Characterization of recombinant phytochrome from the cyanobacterium Synechocystis. Proc Natl Acad Sci U S A 1997; 94:11792-7. [PMID: 9342316 PMCID: PMC23587 DOI: 10.1073/pnas.94.22.11792] [Citation(s) in RCA: 144] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The complete sequence of the Synechocystis chromosome has revealed a phytochrome-like sequence that yielded an authentic phytochrome when overexpressed in Escherichia coli. In this paper we describe this recombinant Synechocystis phytochrome in more detail. Islands of strong similarity to plant phytochromes were found throughout the cyanobacterial sequence whereas C-terminal homologies identify it as a likely sensory histidine kinase, a family to which plant phytochromes are related. An approximately 300 residue portion that is important for plant phytochrome function is missing from the Synechocystis sequence, immediately in front of the putative kinase region. The recombinant apoprotein is soluble and can easily be purified to homogeneity by affinity chromatography. Phycocyanobilin and similar tetrapyrroles are covalently attached within seconds, an autocatalytic process followed by slow conformational changes culminating in red-absorbing phytochrome formation. Spectral absorbance characteristics are remarkably similar to those of plant phytochromes, although the conformation of the chromophore is likely to be more helical in the Synechocystis phytochrome. According to size-exclusion chromatography the native recombinant apoproteins and holoproteins elute predominantly as 115- and 170-kDa species, respectively. Both tend to form dimers in vitro and aggregate under low salt conditions. Nevertheless, the purity and solubility of the recombinant gene product make it a most attractive model for molecular studies of phytochrome, including x-ray crystallography.
Collapse
Affiliation(s)
- T Lamparter
- Institut für Pflanzenphysiologie und Mikrobiologie, Freie Universität, Königin-Luise-Strasse 12-16, D-14195 Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
50
|
Schluchter WM, Glazer AN. Characterization of cyanobacterial biliverdin reductase. Conversion of biliverdin to bilirubin is important for normal phycobiliprotein biosynthesis. J Biol Chem 1997; 272:13562-9. [PMID: 9153203 DOI: 10.1074/jbc.272.21.13562] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The Synechocystis sp. PCC 6803 gene (bvdR) encoding biliverdin reductase was amplified by the polymerase chain reaction, cloned, and overexpressed in Escherichia coli as the native form and as a 6-histidine-tagged amino-terminal fusion. The latter form of the enzyme was purified by affinity chromatography and shown to have the appropriate molecular weight by electrospray mass spectrometry. Both forms of the enzyme reduced biliverdin IXalpha using NADPH or NADH, with NADPH as the preferred reductant. The His-tagged enzyme has a Km for biliverdin of 1.3 microM. The pH optimum for the NADPH-dependent activity is 5.8, whereas that for rat biliverdin reductase is at pH 8.7. Absorbance spectra and high performance liquid chromatography retention times of the reaction product reaction match those of authentic bilirubin, the product of the reduction of biliverdin by the mammalian enzymes. These results provide the first evidence for the formation of bilirubin in bacteria. Fully segregated Synechocystis sp. PCC 6803 bvdR interposon mutants produce approximately 85% of the normal amount of phycobilisome cores containing allophycocyanin and other phycocyanobilin-bearing core polypeptides, but no detectable phycocyanin. Thus, surprisingly, the blockage of the conversion of biliverdin to bilirubin interferes with normal phycobiliprotein biosynthesis in cyanobacteria. Possible interpretations of this finding are presented.
Collapse
Affiliation(s)
- W M Schluchter
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3206, USA
| | | |
Collapse
|