1
|
Willing F, Mhaindarkar V, Hirsch J, Lanz M, Mitton-Fry M, Gubaev A, Klostermeier D. Different propensities for gate opening in gyrases and topoisomerase IV. Nucleic Acids Res 2025; 53:gkaf330. [PMID: 40304180 PMCID: PMC12041858 DOI: 10.1093/nar/gkaf330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 04/09/2025] [Accepted: 04/15/2025] [Indexed: 05/02/2025] Open
Abstract
The bacterial type IIA topoisomerases gyrase and topoisomerase IV (Topo IV) catalyze DNA supercoiling and decatenation (gyrase), or DNA relaxation and decatenation (Topo IV) in ATP-dependent reactions. Most bacteria contain both gyrase and Topo IV, which jointly remove torsional stress during replication: gyrase removes positive supercoils ahead of the replication fork, while Topo IV decatenates pre-catenanes behind the fork and the catenated daughter chromosomes. Some bacteria, including Mycobacterium tuberculosis, contain only a gyrase, which then needs to perform both reactions. The molecular determinants for the predominant activity of type IIA topoisomerases are unclear. We hypothesize that the prevalent activity is connected to the stabilities of the DNA- and C-gates. In a comparative single-molecule FRET study of Bacillus subtilis and M. tuberculosis gyrase and B. subtilis Topo IV, we show that the DNA-gates are less stable than the C-gates in all three enzymes. The stabilities of the DNA-gates of gyrase and Topo IV are similar. Strikingly, the C-gates in both gyrases are highly stable, but the C-gate in Topo IV is markedly less stable. Our results suggest that the stability of the C-gate of type IIA topoisomerases is linked to their activities.
Collapse
Affiliation(s)
- Florian Willing
- University of Muenster, Institute for Physical Chemistry, Corrensstrasse 30, D-48149 Muenster, Germany
| | - Vaibhav P Mhaindarkar
- University of Muenster, Institute for Physical Chemistry, Corrensstrasse 30, D-48149 Muenster, Germany
| | - Jana Hirsch
- University of Muenster, Institute for Physical Chemistry, Corrensstrasse 30, D-48149 Muenster, Germany
| | - Martin A Lanz
- University of Muenster, Institute for Physical Chemistry, Corrensstrasse 30, D-48149 Muenster, Germany
| | - Mark J Mitton-Fry
- The Ohio State University, College of Pharmacy, Division of Medicinal Chemistry and Pharmacognosy, 500 West 12th Avenue, Columbus, OH 43210, United States
| | - Airat Gubaev
- University of Muenster, Institute for Physical Chemistry, Corrensstrasse 30, D-48149 Muenster, Germany
| | - Dagmar Klostermeier
- University of Muenster, Institute for Physical Chemistry, Corrensstrasse 30, D-48149 Muenster, Germany
| |
Collapse
|
2
|
Ottaviani A, Pietrafesa D, Soren BC, Dasari JB, Olsen SSH, Messina B, Demofonti F, Chicarella G, Agama K, Pommier Y, Morozzo della Rocca B, Iacovelli F, Romeo A, Falconi M, Baker BJ, Fiorani P. Unveiling the Mechanism of Action of Palmitic Acid, a Human Topoisomerase 1B Inhibitor from the Antarctic Sponge Artemisina plumosa. Int J Mol Sci 2025; 26:2018. [PMID: 40076642 PMCID: PMC11900379 DOI: 10.3390/ijms26052018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/14/2025] [Accepted: 02/22/2025] [Indexed: 03/14/2025] Open
Abstract
Cancer remains a leading cause of death worldwide, highlighting the urgent need for novel and more effective treatments. Natural products, with their structural diversity, represent a valuable source for the discovery of anticancer compounds. In this study, we screened 750 Antarctic extracts to identify potential inhibitors of human topoisomerase 1 (hTOP1), a key enzyme in DNA replication and repair, and a target of cancer therapies. Bioassay-guided fractionation led to the identification of palmitic acid (PA) as the active compound from the Antarctic sponge Artemisina plumosa, selectively inhibiting hTOP1. Our results demonstrate that PA irreversibly blocks hTOP1-mediated DNA relaxation and specifically inhibits the DNA religation step of the enzyme's catalytic cycle. Unlike other fatty acids, PA exhibited unique specificity, which we confirmed through comparisons with linoleic acid. Molecular dynamics simulations and binding assays further suggest that PA interacts with hTOP1-DNA complexes, enhancing the inhibitory effect in the presence of camptothecin (CPT). These findings identify PA as a hTOP1 inhibitor with potential therapeutic implications, offering a distinct mechanism of action that could complement existing cancer therapies.
Collapse
Affiliation(s)
- Alessio Ottaviani
- Department of Onco-Hematology, Gene and Cell Therapy, Bambino Gesù Children’s Hospital-IRCCS, Via Ferdinando Baldelli 38, 00146 Rome, Italy;
| | - Davide Pietrafesa
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy; (D.P.); (B.C.S.); (J.B.D.); (B.M.); (F.D.); (G.C.); (B.M.d.R.); (F.I.); (A.R.); (M.F.)
| | - Bini Chhetri Soren
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy; (D.P.); (B.C.S.); (J.B.D.); (B.M.); (F.D.); (G.C.); (B.M.d.R.); (F.I.); (A.R.); (M.F.)
| | - Jagadish Babu Dasari
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy; (D.P.); (B.C.S.); (J.B.D.); (B.M.); (F.D.); (G.C.); (B.M.d.R.); (F.I.); (A.R.); (M.F.)
| | - Stine S. H. Olsen
- Department of Chemistry, University of South Florida, USF Sweetgum Ln 12111, Tampa, FL 33620, USA; (S.S.H.O.)
| | - Beatrice Messina
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy; (D.P.); (B.C.S.); (J.B.D.); (B.M.); (F.D.); (G.C.); (B.M.d.R.); (F.I.); (A.R.); (M.F.)
| | - Francesco Demofonti
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy; (D.P.); (B.C.S.); (J.B.D.); (B.M.); (F.D.); (G.C.); (B.M.d.R.); (F.I.); (A.R.); (M.F.)
| | - Giulia Chicarella
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy; (D.P.); (B.C.S.); (J.B.D.); (B.M.); (F.D.); (G.C.); (B.M.d.R.); (F.I.); (A.R.); (M.F.)
| | - Keli Agama
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Convent Drive 37, Bethesda, MD 20892, USA; (K.A.); (Y.P.)
| | - Yves Pommier
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Convent Drive 37, Bethesda, MD 20892, USA; (K.A.); (Y.P.)
| | - Blasco Morozzo della Rocca
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy; (D.P.); (B.C.S.); (J.B.D.); (B.M.); (F.D.); (G.C.); (B.M.d.R.); (F.I.); (A.R.); (M.F.)
| | - Federico Iacovelli
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy; (D.P.); (B.C.S.); (J.B.D.); (B.M.); (F.D.); (G.C.); (B.M.d.R.); (F.I.); (A.R.); (M.F.)
| | - Alice Romeo
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy; (D.P.); (B.C.S.); (J.B.D.); (B.M.); (F.D.); (G.C.); (B.M.d.R.); (F.I.); (A.R.); (M.F.)
| | - Mattia Falconi
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy; (D.P.); (B.C.S.); (J.B.D.); (B.M.); (F.D.); (G.C.); (B.M.d.R.); (F.I.); (A.R.); (M.F.)
| | - Bill J. Baker
- Department of Chemistry, University of South Florida, USF Sweetgum Ln 12111, Tampa, FL 33620, USA; (S.S.H.O.)
| | - Paola Fiorani
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy; (D.P.); (B.C.S.); (J.B.D.); (B.M.); (F.D.); (G.C.); (B.M.d.R.); (F.I.); (A.R.); (M.F.)
- Institute of Translational Pharmacology, National Research Council, CNR, Via del Fosso del Cavaliere 100, 00133 Rome, Italy
| |
Collapse
|
3
|
Collins J, Basarab GS, Chibale K, Osheroff N. Interactions between Zoliflodacin and Neisseria gonorrhoeae Gyrase and Topoisomerase IV: Enzymological Basis for Cellular Targeting. ACS Infect Dis 2024; 10:3071-3082. [PMID: 39082980 PMCID: PMC11320581 DOI: 10.1021/acsinfecdis.4c00438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 08/10/2024]
Abstract
Gyrase and topoisomerase IV are the cellular targets for fluoroquinolones, a critically important class of antibacterial agents used to treat a broad spectrum of human infections. Unfortunately, the clinical efficacy of the fluoroquinolones has been curtailed by the emergence of target-mediated resistance. This is especially true for Neisseria gonorrhoeae, the causative pathogen of the sexually transmitted infection gonorrhea. Spiropyrimidinetriones (SPTs), a new class of antibacterials, were developed to combat the growing antibacterial resistance crisis. Zoliflodacin is the most clinically advanced SPT and displays efficacy against uncomplicated urogenital gonorrhea in human trials. Like fluoroquinolones, the primary target of zoliflodacin in N. gonorrhoeae is gyrase, and topoisomerase IV is a secondary target. Because unbalanced gyrase/topoisomerase IV targeting has facilitated the evolution of fluoroquinolone-resistant bacteria, it is important to understand the underlying basis for the differential targeting of zoliflodacin in N. gonorrhoeae. Therefore, we assessed the effects of this SPT on the catalytic and DNA cleavage activities of N. gonorrhoeae gyrase and topoisomerase IV. In all reactions examined, zoliflodacin displayed higher potency against gyrase than topoisomerase IV. Moreover, zoliflodacin generated more DNA cleavage and formed more stable enzyme-cleaved DNA-SPT complexes with gyrase. The SPT also maintained higher activity against fluoroquinolone-resistant gyrase than topoisomerase IV. Finally, when compared to zoliflodacin, the novel SPT H3D-005722 induced more balanced double-stranded DNA cleavage with gyrase and topoisomerase IV from N. gonorrhoeae, Escherichia coli, and Bacillus anthracis. This finding suggests that further development of the SPT class could yield compounds with a more balanced targeting against clinically important bacterial infections.
Collapse
Affiliation(s)
- Jessica
A. Collins
- Department
of Biochemistry, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Gregory S. Basarab
- Holistic
Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch 7701, South Africa
| | - Kelly Chibale
- Holistic
Drug Discovery and Development (H3D) Centre, and South African Medical
Research Council Drug Discovery and Development Research Unit, Department
of Chemistry and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Neil Osheroff
- Department
of Biochemistry, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
- Department
of Medicine (Hematology/Oncology), Vanderbilt
University School of Medicine, Nashville, Tennessee 37232, United States
| |
Collapse
|
4
|
Oviatt A, Gibson EG, Huang J, Mattern K, Neuman KC, Chan PF, Osheroff N. Interactions between Gepotidacin and Escherichia coli Gyrase and Topoisomerase IV: Genetic and Biochemical Evidence for Well-Balanced Dual-Targeting. ACS Infect Dis 2024; 10:1137-1151. [PMID: 38606465 PMCID: PMC11015057 DOI: 10.1021/acsinfecdis.3c00346] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 04/13/2024]
Abstract
Antimicrobial resistance is a global threat to human health. Therefore, efforts have been made to develop new antibacterial agents that address this critical medical issue. Gepotidacin is a novel, bactericidal, first-in-class triazaacenaphthylene antibacterial in clinical development. Recently, phase III clinical trials for gepotidacin treatment of uncomplicated urinary tract infections caused by uropathogens, including Escherichia coli, were stopped for demonstrated efficacy. Because of the clinical promise of gepotidacin, it is important to understand how the compound interacts with its cellular targets, gyrase and topoisomerase IV, from E. coli. Consequently, we determined how gyrase and topoisomerase IV mutations in amino acid residues that are involved in gepotidacin interactions affect the susceptibility of E. coli cells to the compound and characterized the effects of gepotidacin on the activities of purified wild-type and mutant gyrase and topoisomerase IV. Gepotidacin displayed well-balanced dual-targeting of gyrase and topoisomerase IV in E. coli cells, which was reflected in a similar inhibition of the catalytic activities of these enzymes by the compound. Gepotidacin induced gyrase/topoisomerase IV-mediated single-stranded, but not double-stranded, DNA breaks. Mutations in GyrA and ParC amino acid residues that interact with gepotidacin altered the activity of the compound against the enzymes and, when present in both gyrase and topoisomerase IV, reduced the antibacterial activity of gepotidacin against this mutant strain. Our studies provide insights regarding the well-balanced dual-targeting of gyrase and topoisomerase IV by gepotidacin in E. coli.
Collapse
Affiliation(s)
- Alexandria
A. Oviatt
- Department
of Biochemistry, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Elizabeth G. Gibson
- Department
of Biochemistry, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Jianzhong Huang
- Infectious
Diseases Research Unit, GlaxoSmithKline, Collegeville, Pennsylvania 19426, United States
| | - Karen Mattern
- Infectious
Diseases Research Unit, GlaxoSmithKline, Collegeville, Pennsylvania 19426, United States
| | - Keir C. Neuman
- Laboratory
of Single Molecule Biophysics, National
Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20982, United States
| | - Pan F. Chan
- Infectious
Diseases Research Unit, GlaxoSmithKline, Collegeville, Pennsylvania 19426, United States
| | - Neil Osheroff
- Department
of Biochemistry, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
- Department
of Medicine (Hematology/Oncology), Vanderbilt
University School of Medicine, Nashville, Tennessee 37232, United States
- VA
Tennessee
Valley Healthcare System, Nashville, Tennessee 37212, United States
| |
Collapse
|
5
|
Collins J, Osheroff N. Gyrase and Topoisomerase IV: Recycling Old Targets for New Antibacterials to Combat Fluoroquinolone Resistance. ACS Infect Dis 2024; 10:1097-1115. [PMID: 38564341 PMCID: PMC11019561 DOI: 10.1021/acsinfecdis.4c00128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024]
Abstract
Beyond their requisite functions in many critical DNA processes, the bacterial type II topoisomerases, gyrase and topoisomerase IV, are the targets of fluoroquinolone antibacterials. These drugs act by stabilizing gyrase/topoisomerase IV-generated DNA strand breaks and by robbing the cell of the catalytic activities of these essential enzymes. Since their clinical approval in the mid-1980s, fluoroquinolones have been used to treat a broad spectrum of infectious diseases and are listed among the five "highest priority" critically important antimicrobial classes by the World Health Organization. Unfortunately, the widespread use of fluoroquinolones has been accompanied by a rise in target-mediated resistance caused by specific mutations in gyrase and topoisomerase IV, which has curtailed the medical efficacy of this drug class. As a result, efforts are underway to identify novel antibacterials that target the bacterial type II topoisomerases. Several new classes of gyrase/topoisomerase IV-targeted antibacterials have emerged, including novel bacterial topoisomerase inhibitors, Mycobacterium tuberculosis gyrase inhibitors, triazaacenaphthylenes, spiropyrimidinetriones, and thiophenes. Phase III clinical trials that utilized two members of these classes, gepotidacin (triazaacenaphthylene) and zoliflodacin (spiropyrimidinetrione), have been completed with positive outcomes, underscoring the potential of these compounds to become the first new classes of antibacterials introduced into the clinic in decades. Because gyrase and topoisomerase IV are validated targets for established and emerging antibacterials, this review will describe the catalytic mechanism and cellular activities of the bacterial type II topoisomerases, their interactions with fluoroquinolones, the mechanism of target-mediated fluoroquinolone resistance, and the actions of novel antibacterials against wild-type and fluoroquinolone-resistant gyrase and topoisomerase IV.
Collapse
Affiliation(s)
- Jessica
A. Collins
- Department
of Biochemistry, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Neil Osheroff
- Department
of Biochemistry, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
- Department
of Medicine (Hematology/Oncology), Vanderbilt
University School of Medicine, Nashville, Tennessee 37232, United States
| |
Collapse
|
6
|
Bandak AF, Blower TR, Nitiss KC, Shah V, Nitiss J, Berger J. Using energy to go downhill-a genoprotective role for ATPase activity in DNA topoisomerase II. Nucleic Acids Res 2024; 52:1313-1324. [PMID: 38038260 PMCID: PMC10853770 DOI: 10.1093/nar/gkad1157] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/10/2023] [Accepted: 11/24/2023] [Indexed: 12/02/2023] Open
Abstract
Type II topoisomerases effect topological changes in DNA by cutting a single duplex, passing a second duplex through the break, and resealing the broken strand in an ATP-coupled reaction cycle. Curiously, most type II topoisomerases (topos II, IV and VI) catalyze DNA transformations that are energetically favorable, such as the removal of superhelical strain; why ATP is required for such reactions is unknown. Here, using human topoisomerase IIβ (hTOP2β) as a model, we show that the ATPase domains of the enzyme are not required for DNA strand passage, but that their loss elevates the enzyme's propensity for DNA damage. The unstructured C-terminal domains (CTDs) of hTOP2β strongly potentiate strand passage activity in ATPase-less enzymes, as do cleavage-prone mutations that confer hypersensitivity to the chemotherapeutic agent etoposide. The presence of either the CTD or the mutations lead ATPase-less enzymes to promote even greater levels of DNA cleavage in vitro, as well as in vivo. By contrast, aberrant cleavage phenotypes of these topo II variants is significantly repressed when the ATPase domains are present. Our findings are consistent with the proposal that type II topoisomerases acquired ATPase function to maintain high levels of catalytic activity while minimizing inappropriate DNA damage.
Collapse
Affiliation(s)
- Afif F Bandak
- Johns Hopkins University School of Medicine, Department of Biophysics and Biophysical Chemistry, Baltimore, MD 21205, USA
| | - Tim R Blower
- Johns Hopkins University School of Medicine, Department of Biophysics and Biophysical Chemistry, Baltimore, MD 21205, USA
| | - Karin C Nitiss
- Pharmaceutical Sciences Department, University of Illinois College of Pharmacy, 1601 Parkview Avenue, Rockford, IL 61107, USA
- Biomedical Sciences Department, University of Illinois College of Medicine, 1601 Parkview Avenue, Rockford, IL 61107, USA
| | - Viraj Shah
- Pharmaceutical Sciences Department, University of Illinois College of Pharmacy, 1601 Parkview Avenue, Rockford, IL 61107, USA
- Biomedical Sciences Department, University of Illinois College of Medicine, 1601 Parkview Avenue, Rockford, IL 61107, USA
| | - John L Nitiss
- Pharmaceutical Sciences Department, University of Illinois College of Pharmacy, 1601 Parkview Avenue, Rockford, IL 61107, USA
| | - James M Berger
- Johns Hopkins University School of Medicine, Department of Biophysics and Biophysical Chemistry, Baltimore, MD 21205, USA
| |
Collapse
|
7
|
Dauda SE, Collins JA, Byl JAW, Lu Y, Yalowich JC, Mitton-Fry MJ, Osheroff N. Actions of a Novel Bacterial Topoisomerase Inhibitor against Neisseria gonorrhoeae Gyrase and Topoisomerase IV: Enhancement of Double-Stranded DNA Breaks. Int J Mol Sci 2023; 24:12107. [PMID: 37569485 PMCID: PMC10419083 DOI: 10.3390/ijms241512107] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Novel bacterial topoisomerase inhibitors (NBTIs) are an emerging class of antibacterials that target gyrase and topoisomerase IV. A hallmark of NBTIs is their ability to induce gyrase/topoisomerase IV-mediated single-stranded DNA breaks and suppress the generation of double-stranded breaks. However, a previous study reported that some dioxane-linked amide NBTIs induced double-stranded DNA breaks mediated by Staphylococcus aureus gyrase. To further explore the ability of this NBTI subclass to increase double-stranded DNA breaks, we examined the effects of OSUAB-185 on DNA cleavage mediated by Neisseria gonorrhoeae gyrase and topoisomerase IV. OSUAB-185 induced single-stranded and suppressed double-stranded DNA breaks mediated by N. gonorrhoeae gyrase. However, the compound stabilized both single- and double-stranded DNA breaks mediated by topoisomerase IV. The induction of double-stranded breaks does not appear to correlate with the binding of a second OSUAB-185 molecule and extends to fluoroquinolone-resistant N. gonorrhoeae topoisomerase IV, as well as type II enzymes from other bacteria and humans. The double-stranded DNA cleavage activity of OSUAB-185 and other dioxane-linked NBTIs represents a paradigm shift in a hallmark characteristic of NBTIs and suggests that some members of this subclass may have alternative binding motifs in the cleavage complex.
Collapse
Affiliation(s)
- Soziema E. Dauda
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jessica A. Collins
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jo Ann W. Byl
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Yanran Lu
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Jack C. Yalowich
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 42310, USA
| | - Mark J. Mitton-Fry
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Neil Osheroff
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Medicine (Hematology/Oncology), Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- VA Tennessee Valley Healthcare System, Nashville, TN 37212, USA
| |
Collapse
|
8
|
Bandak AF, Blower TR, Nitiss KC, Shah V, Nitiss JL, Berger JM. Using energy to go downhill - a genoprotective role for ATPase activity in DNA topoisomerase II. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.27.546777. [PMID: 37425896 PMCID: PMC10327052 DOI: 10.1101/2023.06.27.546777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Type II topoisomerases effect topological changes in DNA by cutting a single duplex, passing a second duplex through the break, and resealing the broken strand in an ATP-coupled reaction. Curiously, most type II topoisomerases (topos II, IV, and VI) catalyze DNA transformations that are energetically favorable, such as the removal of superhelical strain; why ATP is required for such reactions is unknown. Here, using human topoisomerase II β (hTOP2β) as a model, we show that the ATPase domains of the enzyme are not required for DNA strand passage, but that their loss leads to increased DNA nicking and double strand break formation by the enzyme. The unstructured C-terminal domains (CTDs) of hTOP2β strongly potentiate strand passage activity in the absence of the ATPase regions, as do cleavage-prone mutations that confer hypersensitivity to the chemotherapeutic agent etoposide. The presence of either the CTD or the mutations lead ATPase-less enzymes to promote even greater levels of DNA cleava in ge vitro , as well as in vivo . By contrast, the aberrant cleavage phenotypes of these topo II variants is significantly repressed when the ATPase domains are restored. Our findings are consistent with the proposal that type II topoisomerases acquired an ATPase function to maintain high levels of catalytic activity while minimizing inappropriate DNA damage.
Collapse
|
9
|
Sutormin D, Galivondzhyan A, Gafurov A, Severinov K. Single-nucleotide resolution detection of Topo IV cleavage activity in the Escherichia coli genome with Topo-Seq. Front Microbiol 2023; 14:1160736. [PMID: 37089538 PMCID: PMC10117906 DOI: 10.3389/fmicb.2023.1160736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/16/2023] [Indexed: 04/08/2023] Open
Abstract
Topoisomerase IV (Topo IV) is the main decatenation enzyme in Escherichia coli; it removes catenation links that are formed during DNA replication. Topo IV binding and cleavage sites were previously identified in the E. coli genome with ChIP-Seq and NorfIP. Here, we used a more sensitive, single-nucleotide resolution Topo-Seq procedure to identify Topo IV cleavage sites (TCSs) genome-wide. We detected thousands of TCSs scattered in the bacterial genome. The determined cleavage motif of Topo IV contained previously known cleavage determinants (−4G/+8C, −2A/+6 T, −1 T/+5A) and additional, not observed previously, positions −7C/+11G and −6C/+10G. TCSs were depleted in the Ter macrodomain except for two exceptionally strong non-canonical cleavage sites located in 33 and 38 bp from the XerC-box of the dif-site. Topo IV cleavage activity was increased in Left and Right macrodomains flanking the Ter macrodomain and was especially high in the 50–60 kb region containing the oriC origin of replication. Topo IV enrichment was also increased downstream of highly active transcription units, indicating that the enzyme is involved in relaxation of transcription-induced positive supercoiling.
Collapse
Affiliation(s)
- Dmitry Sutormin
- Skolkovo Institute of Science and Technology, Moscow, Russia
- *Correspondence: Dmitry Sutormin,
| | | | - Azamat Gafurov
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Konstantin Severinov
- Waksman Institute for Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
- Konstantin Severinov,
| |
Collapse
|
10
|
Alfonso EE, Troche R, Deng Z, Annamalai T, Chapagain P, Tse-Dinh YC, Leng F. Potent Inhibition of Bacterial DNA Gyrase by Digallic Acid and Other Gallate Derivatives. ChemMedChem 2022; 17:e202200301. [PMID: 36161274 PMCID: PMC9742164 DOI: 10.1002/cmdc.202200301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/23/2022] [Indexed: 01/14/2023]
Abstract
Bacterial DNA gyrase, an essential enzyme, is a validated target for discovering and developing new antibiotics. Here we screened a pool of polyphenols and discovered that digallic acid is a potent DNA gyrase inhibitor. We also found that several food additives based on gallate, such as dodecyl gallate, potently inhibit bacterial DNA gyrase. Interestingly, the IC50 of these gallate derivatives against DNA gyrase is correlated with the length of hydrocarbon chain connecting to the gallate. These new bacterial DNA gyrase inhibitors are ATP competitive inhibitors of DNA gyrase. Our results also show that digallic acid and certain gallate derivatives potently inhibit E. coli DNA topoisomerase IV. Several gallate derivatives have strong antimicrobial activities against Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA). This study provides a solid foundation for the design and synthesis of gallate-based DNA gyrase inhibitors that may be used to combat antibacterial resistance.
Collapse
Affiliation(s)
- Eddy E Alfonso
- Biomolecular Sciences Institute, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
| | - Rogelio Troche
- Biomolecular Sciences Institute, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
| | - Zifang Deng
- Biomolecular Sciences Institute, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
| | - Thirunavukkarasu Annamalai
- Biomolecular Sciences Institute, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
| | - Prem Chapagain
- Biomolecular Sciences Institute, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
- Department of Physics, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
| | - Yuk-Ching Tse-Dinh
- Biomolecular Sciences Institute, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
| | - Fenfei Leng
- Biomolecular Sciences Institute, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
| |
Collapse
|
11
|
Kondaka K, Gabriel I. Targeting DNA Topoisomerase II in Antifungal Chemotherapy. Molecules 2022; 27:molecules27227768. [PMID: 36431868 PMCID: PMC9698242 DOI: 10.3390/molecules27227768] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Topoisomerase inhibitors have been in use clinically for the treatment of several diseases for decades. Although those enzymes are significant molecular targets in antibacterial and anticancer chemotherapy very little is known about the possibilities to target fungal topoisomerase II (topo II). Raising concern for the fungal infections, lack of effective drugs and a phenomenon of multidrug resistance underlie a strong need to expand the range of therapeutic options. In this review paper, we discussed the usefulness of fungal topo II as a molecular target for new drug discovery. On the basis of previously published data, we described structural and biochemical differences between fungal and human enzymes as well as a molecular basis of differential sensitivity to known anticancer drugs targeting the latter. This review focuses especially on highlighting the differences that may underlie the selectivity of action of new inhibitors. Distinct sites within fungal topo II in comparison with human counterparts are observed and should be further studied to understand the significance of those sites and their possible usage in design of new drugs.
Collapse
Affiliation(s)
| | - Iwona Gabriel
- Correspondence: ; Tel.: +48-58-348-6078; Fax: +48-58-347-1144
| |
Collapse
|
12
|
Dalvie ED, Stacy JC, Neuman KC, Osheroff N. Recognition of DNA Supercoil Handedness during Catenation Catalyzed by Type II Topoisomerases. Biochemistry 2022; 61:2148-2158. [PMID: 36122251 PMCID: PMC9548324 DOI: 10.1021/acs.biochem.2c00370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although the presence of catenanes (i.e., intermolecular tangles) in chromosomal DNA stabilizes interactions between daughter chromosomes, a lack of resolution can have serious consequences for genomic stability. In all species, from bacteria to humans, type II topoisomerases are the enzymes primarily responsible for catenating/decatenating DNA. DNA topology has a profound influence on the rate at which these enzymes alter the superhelical state of the double helix. Therefore, the effect of supercoil handedness on the ability of human topoisomerase IIα and topoisomerase IIβ and bacterial topoisomerase IV to catenate DNA was examined. Topoisomerase IIα preferentially catenated negatively supercoiled over positively supercoiled substrates. This is opposite to its preference for relaxing (i.e., removing supercoils from) DNA and may prevent the enzyme from tangling the double helix ahead of replication forks and transcription complexes. The ability of topoisomerase IIα to recognize DNA supercoil handedness during catenation resides in its C-terminal domain. In contrast to topoisomerase IIα, topoisomerase IIβ displayed little ability to distinguish DNA geometry during catenation. Topoisomerase IV from three bacterial species preferentially catenated positively supercoiled substrates. This may not be an issue, as these enzymes work primarily behind replication forks. Finally, topoisomerase IIα and topoisomerase IV maintain lower levels of covalent enzyme-cleaved DNA intermediates with catenated over monomeric DNA. This allows these enzymes to perform their cellular functions in a safer manner, as catenated daughter chromosomes may be subject to stress generated by the mitotic spindle that could lead to irreversible DNA cleavage.
Collapse
Affiliation(s)
- Esha D. Dalvie
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, United States
| | - Jordan C. Stacy
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, United States
| | - Keir C. Neuman
- Laboratory of Single Molecule Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20982, United States
| | - Neil Osheroff
- Departments of Biochemistry and Medicine (Hematology/Oncology), Vanderbilt University School of Medicine, Nashville, TN 37232, United States; VA Tennessee Valley Healthcare System, Nashville, TN 37212, United States
| |
Collapse
|
13
|
Sinha S, Singh K, Ved A, Hasan SM, Mujeeb S. Therapeutic Journey and Recent Advances in the Synthesis of Coumarin Derivatives. Mini Rev Med Chem 2021; 22:1314-1330. [PMID: 34784861 DOI: 10.2174/1389557521666211116120823] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/27/2021] [Accepted: 09/03/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Coumarin is an oxygen-containing compound in medicinal chemistry. Coumarin plays an important role in both natural systems like plants and also in synthetic medicinal applications as drug molecules. Many structurally different coumarin compounds were found to show a big range of similarity with the vital molecular targets for their pharmacological action and small modifications in their structures resulted insignificant changes in their biological activities. OBJECTIVE This review gives detailed information about the studies of the recent advances in various pharmacological aspects of coumarins. METHOD Various oxygen-containing heterocyclic compounds represented remarkable biological significances. The fused aromatic oxygen-heterocyclic nucleus is able to change its electron density; thus changing the chemical, physical and biological properties respectively due to its multiple binding modes with the receptors, which play crucial role in pharmacological screening of drugs. A number of heterocyclic compounds have been synthesized which have their nucleus derived from various plants and animals. In coumarins, benzene ring is fused with pyrone nucleus which provides stability to the nucleus. Coumarins have shown a wide range of pharmacological activities such as anti-tumour, anti-coagulant, anti-inflammatory, anti-oxidant, antiviral, anti-malarial, anti-HIV and antimicrobial activity etc. Results: Reactive oxygen species like superoxide anion, hydroxyl radical and hydrogen peroxide are a type of unstable molecule that contains oxygen, which reacts with other molecules in the cell during the metabolism process but it may produce cytotoxicity when reactive oxygen species increase in number, by the damage of biological macromolecules. Hydroxyl radical (˙OH), is a strong oxidizing agent and it is responsible for the cytotoxicity by oxygen in different plants, animals and other microbes. coumarin is the oldest and effective compound having antimicrobial activity, anti-inflammatory, antioxidant, antidepressant activity, analgesic, anticonvulsant activity, etc. Naturally existing coumarin compounds act against SARS-CoV-2 by preventing viral replication through the targeting on active site against the Mpro target protein. CONCLUSION This review highlights the different biological activities of coumarin derivatives. In this review we provide an updated summary of the researches which are related to recent advances in biological activities of coumarins analogue and their most recent activities against COVID -19. Natural compounds act as a rich resource for novel drug development against various SARS-CoV-2 viral strains including viruses like herpes simplex virus, influenza virus, human immunodeficiency virus, hepatitis B and C viruses, middle east respiratory syndrome and severe acute respiratory syndrome.
Collapse
Affiliation(s)
- Shweta Sinha
- Faculty of Pharmacy, Integral University, Kursi road, Lucknow-226026 (U.P.). India
| | - Kuldeep Singh
- Faculty of Pharmacy, Integral University, Kursi road, Lucknow-226026 (U.P.). India
| | - Akash Ved
- Goel Institute of Pharmaceutical Sciences, Lucknow -226028 (U.P.). India
| | - Syed Misbahul Hasan
- Faculty of Pharmacy, Integral University, Kursi road, Lucknow-226026 (U.P.). India
| | - Samar Mujeeb
- Hygia Institute of Pharmaceutical Education and Research, Lucknow. India
| |
Collapse
|
14
|
Kumar R, Bahng S, Marians KJ. The MukB-topoisomerase IV interaction mutually suppresses their catalytic activities. Nucleic Acids Res 2021; 50:2621-2634. [PMID: 34747485 PMCID: PMC8934648 DOI: 10.1093/nar/gkab1027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 02/05/2023] Open
Abstract
The bacterial condensin MukB and the cellular chromosomal decatenase, topoisomerase IV interact and this interaction is required for proper condensation and topological ordering of the chromosome. Here, we show that Topo IV stimulates MukB DNA condensation by stabilizing loops in DNA: MukB alone can condense nicked plasmid DNA into a protein–DNA complex that has greater electrophoretic mobility than that of the DNA alone, but both MukB and Topo IV are required for a similar condensation of a linear DNA representing long stretches of the chromosome. Remarkably, we show that rather than MukB stimulating the decatenase activity of Topo IV, as has been argued previously, in stoichiometric complexes of the two enzymes each inhibits the activity of the other: the ParC subunit of Topo IV inhibits the MukF-stimulated ATPase activity of MukB and MukB inhibits both DNA crossover trapping and DNA cleavage by Topo IV. These observations suggest that when in complex on the DNA, Topo IV inhibits the motor function of MukB and the two proteins provide a stable scaffold for chromosomal DNA condensation.
Collapse
Affiliation(s)
- Rupesh Kumar
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Soon Bahng
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Kenneth J Marians
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| |
Collapse
|
15
|
Lu Y, Vibhute S, Li L, Okumu A, Ratigan SC, Nolan S, Papa JL, Mann CA, English A, Chen A, Seffernick JT, Koci B, Duncan LR, Roth B, Cummings JE, Slayden RA, Lindert S, McElroy CA, Wozniak DJ, Yalowich J, Mitton-Fry MJ. Optimization of TopoIV Potency, ADMET Properties, and hERG Inhibition of 5-Amino-1,3-dioxane-Linked Novel Bacterial Topoisomerase Inhibitors: Identification of a Lead with In Vivo Efficacy against MRSA. J Med Chem 2021; 64:15214-15249. [PMID: 34614347 DOI: 10.1021/acs.jmedchem.1c01250] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Novel bacterial topoisomerase inhibitors (NBTIs) are among the most promising new antibiotics in preclinical/clinical development. We previously reported dioxane-linked NBTIs with potent antistaphylococcal activity and reduced hERG inhibition, a key safety liability. Herein, polarity-focused optimization enabled the delineation of clear structure-property relationships for both microsomal metabolic stability and hERG inhibition, resulting in the identification of lead compound 79. This molecule demonstrates potent antibacterial activity against diverse Gram-positive pathogens, inhibition of both DNA gyrase and topoisomerase IV, a low frequency of resistance, a favorable in vitro cardiovascular safety profile, and in vivo efficacy in a murine model of methicillin-resistant Staphylococcus aureus infection.
Collapse
Affiliation(s)
- Yanran Lu
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Sandip Vibhute
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Linsen Li
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Antony Okumu
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Steven C Ratigan
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Sheri Nolan
- Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jonathan L Papa
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Chelsea A Mann
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Anthony English
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Anna Chen
- Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Justin T Seffernick
- Department of Chemistry and Biochemistry, College of Arts and Sciences, The Ohio State University, Columbus, Ohio 43210, United States
| | - Bryan Koci
- Eurofins Panlabs, St. Charles, Missouri 63304, United States
| | | | - Brieanna Roth
- JMI Laboratories, North Liberty, Iowa 52317, United States
| | - Jason E Cummings
- Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Richard A Slayden
- Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Steffen Lindert
- Department of Chemistry and Biochemistry, College of Arts and Sciences, The Ohio State University, Columbus, Ohio 43210, United States
| | - Craig A McElroy
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Daniel J Wozniak
- Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States.,Department of Microbiology, College of Arts and Sciences, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jack Yalowich
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Mark J Mitton-Fry
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
16
|
Serrano E, Torres R, Alonso JC. Nucleoid-associated Rok differentially affects chromosomal transformation on Bacillus subtilis recombination-deficient cells. Environ Microbiol 2021; 23:3318-3331. [PMID: 33973337 DOI: 10.1111/1462-2920.15562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/05/2021] [Indexed: 11/29/2022]
Abstract
Rok, a Bacillus subtilis nucleoid-associated protein (NAP), negatively regulates competence development and silences xenogeneic genes. We show that rok inactivation increases rpoB482 natural intraspecies chromosomal transformation (CT) and plasmid transformation to a different extent. In ΔaddAB, ΔrecO, recF15, ΔrecU, ΔruvAB or rec+ cells intraspecies CT significantly increases, but the ΔrecD2 mutation reduces, and the ΔrecX, ΔradA or ΔdprA mutation further decreases CT in the Δrok context when compared to rok+ cells. These observations support the idea that rok inactivation, by altering the topology of the recipient DNA, differentially affects the integration of homologous DNA in rec-deficient strains, and in minor extent the competent subpopulation size. The impairment of other NAP (Hbsu or LrpC) also increased intra- and interspecies CT (nonself-DNA, ~8% nucleotide sequence divergence) in rec+ cells, but differentially reduced both types of CTs in certain rec-deficient strains. We describe that rok inactivation significantly stimulates intra and interspecies CT but differentially reduces them in transformation-deficient cells, perhaps by altering the nucleoid architecture. We extend the observation to other NAPs (Hbsu, LrpC).
Collapse
Affiliation(s)
- Ester Serrano
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, Madrid, 28049, Spain
| | - Rubén Torres
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, Madrid, 28049, Spain
| | - Juan C Alonso
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, Madrid, 28049, Spain
| |
Collapse
|
17
|
Lang KS, Merrikh H. Topological stress is responsible for the detrimental outcomes of head-on replication-transcription conflicts. Cell Rep 2021; 34:108797. [PMID: 33657379 PMCID: PMC7986047 DOI: 10.1016/j.celrep.2021.108797] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/14/2020] [Accepted: 02/05/2021] [Indexed: 12/18/2022] Open
Abstract
Conflicts between the replication and transcription machineries have profound effects on chromosome duplication, genome organization, and evolution across species. Head-on conflicts (lagging-strand genes) are significantly more detrimental than codirectional conflicts (leading-strand genes). The fundamental reason for this difference is unknown. Here, we report that topological stress significantly contributes to this difference. We find that head-on, but not codirectional, conflict resolution requires the relaxation of positive supercoils by the type II topoisomerases DNA gyrase and Topo IV, at least in the Gram-positive model bacterium Bacillus subtilis. Interestingly, our data suggest that after positive supercoil resolution, gyrase introduces excessive negative supercoils at head-on conflict regions, driving pervasive R-loop formation. Altogether, our results reveal a fundamental mechanistic difference between the two types of encounters, addressing a long-standing question in the field of replication-transcription conflicts. Lang and Merrikh show that resolution of head-on, but not codirectional, conflicts between replication and transcription machineries requires type II topoisomerases, suggesting that a fundamental difference between the two types of conflicts is supercoil buildup in DNA. Furthermore, they show that supercoil resolution at head-on conflict regions drives R-loop formation.
Collapse
Affiliation(s)
- Kevin S Lang
- Department of Biochemistry, Light Hall, Vanderbilt University, Nashville, TN, USA
| | - Houra Merrikh
- Department of Biochemistry, Light Hall, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
18
|
Ushiyama F, Amada H, Mihara Y, Takeuchi T, Tanaka-Yamamoto N, Mima M, Kamitani M, Wada R, Tamura Y, Endo M, Masuko A, Takata I, Hitaka K, Sugiyama H, Ohtake N. Lead optimization of 8-(methylamino)-2-oxo-1,2-dihydroquinolines as bacterial type II topoisomerase inhibitors. Bioorg Med Chem 2020; 28:115776. [PMID: 33032189 DOI: 10.1016/j.bmc.2020.115776] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/13/2020] [Accepted: 09/15/2020] [Indexed: 11/28/2022]
Abstract
The global increase in multidrug-resistant pathogens has caused severe problems in the treatment of infections. To overcome these difficulties, the advent of a new chemical class of antibacterial drug is eagerly desired. We aimed at creating novel antibacterial agents against bacterial type II topoisomerases, which are well-validated targets. TP0480066 (compound 32) has been identified by using structure-based optimization originated from lead compound 1, which was obtained as a result of our previous lead identification studies. The MIC90 values of TP0480066 against methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococci (VRE), and genotype penicillin-resistant Streptococcus pneumoniae (gPRSP) were 0.25, 0.015, and 0.06 μg/mL, respectively. Hence, TP0480066 can be regarded as a promising antibacterial drug candidate of this chemical class.
Collapse
Affiliation(s)
- Fumihito Ushiyama
- Taisho Pharmaceutical Co., Ltd, 1-403 Yoshino-Cho, Kita-Ku, Saitama 331-9530, Japan.
| | - Hideaki Amada
- Taisho Pharmaceutical Co., Ltd, 1-403 Yoshino-Cho, Kita-Ku, Saitama 331-9530, Japan
| | - Yasuhiro Mihara
- Taisho Pharmaceutical Co., Ltd, 1-403 Yoshino-Cho, Kita-Ku, Saitama 331-9530, Japan
| | - Tomoki Takeuchi
- Taisho Pharmaceutical Co., Ltd, 1-403 Yoshino-Cho, Kita-Ku, Saitama 331-9530, Japan
| | | | - Masashi Mima
- Taisho Pharmaceutical Co., Ltd, 1-403 Yoshino-Cho, Kita-Ku, Saitama 331-9530, Japan
| | - Masafumi Kamitani
- Taisho Pharmaceutical Co., Ltd, 1-403 Yoshino-Cho, Kita-Ku, Saitama 331-9530, Japan
| | - Reiko Wada
- Taisho Pharmaceutical Co., Ltd, 1-403 Yoshino-Cho, Kita-Ku, Saitama 331-9530, Japan
| | - Yunoshin Tamura
- Taisho Pharmaceutical Co., Ltd, 1-403 Yoshino-Cho, Kita-Ku, Saitama 331-9530, Japan
| | - Mayumi Endo
- Taisho Pharmaceutical Co., Ltd, 1-403 Yoshino-Cho, Kita-Ku, Saitama 331-9530, Japan
| | - Aiko Masuko
- Taisho Pharmaceutical Co., Ltd, 1-403 Yoshino-Cho, Kita-Ku, Saitama 331-9530, Japan
| | - Iichiro Takata
- Taisho Pharmaceutical Co., Ltd, 1-403 Yoshino-Cho, Kita-Ku, Saitama 331-9530, Japan
| | - Kosuke Hitaka
- Taisho Pharmaceutical Co., Ltd, 1-403 Yoshino-Cho, Kita-Ku, Saitama 331-9530, Japan
| | - Hiroyuki Sugiyama
- Taisho Pharmaceutical Co., Ltd, 1-403 Yoshino-Cho, Kita-Ku, Saitama 331-9530, Japan
| | - Norikazu Ohtake
- Taisho Pharmaceutical Co., Ltd, 1-403 Yoshino-Cho, Kita-Ku, Saitama 331-9530, Japan
| |
Collapse
|
19
|
Ushiyama F, Amada H, Takeuchi T, Tanaka-Yamamoto N, Kanazawa H, Nakano K, Mima M, Masuko A, Takata I, Hitaka K, Iwamoto K, Sugiyama H, Ohtake N. Lead Identification of 8-(Methylamino)-2-oxo-1,2-dihydroquinoline Derivatives as DNA Gyrase Inhibitors: Hit-to-Lead Generation Involving Thermodynamic Evaluation. ACS OMEGA 2020; 5:10145-10159. [PMID: 32391502 PMCID: PMC7203957 DOI: 10.1021/acsomega.0c00865] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/09/2020] [Indexed: 05/26/2023]
Abstract
DNA gyrase and topoisomerase IV are well-validated pharmacological targets, and quinolone antibacterial drugs are marketed as their representative inhibitors. However, in recent years, resistance to these existing drugs has become a problem, and new chemical classes of antibiotics that can combat resistant strains of bacteria are strongly needed. In this study, we applied our hit-to-lead (H2L) chemistry for the identification of a new chemical class of GyrB/ParE inhibitors by efficient use of thermodynamic parameters. Investigation of the core fragments obtained by fragmentation of high-throughput screening hit compounds and subsequent expansion of the hit fragment was performed using isothermal titration calorimetry (ITC). The 8-(methylamino)-2-oxo-1,2-dihydroquinoline derivative 13e showed potent activity against Escherichia coli DNA gyrase with an IC50 value of 0.0017 μM. In this study, we demonstrated the use of ITC for primary fragment screening, followed by structural optimization to obtain lead compounds, which advanced into further optimization for creating novel antibacterial agents.
Collapse
Affiliation(s)
- Fumihito Ushiyama
- Chemistry
Laboratories, Taisho Pharmaceutical Company
Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama, Saitama 331-9530, Japan
| | - Hideaki Amada
- Chemistry
Laboratories, Taisho Pharmaceutical Company
Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama, Saitama 331-9530, Japan
| | - Tomoki Takeuchi
- Chemistry
Laboratories, Taisho Pharmaceutical Company
Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama, Saitama 331-9530, Japan
| | - Nozomi Tanaka-Yamamoto
- Chemistry
Laboratories, Taisho Pharmaceutical Company
Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama, Saitama 331-9530, Japan
| | - Harumi Kanazawa
- Chemistry
Laboratories, Taisho Pharmaceutical Company
Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama, Saitama 331-9530, Japan
| | - Koichiro Nakano
- Pharmacology
Laboratories, Taisho Pharmaceutical Company
Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama, Saitama 331-9530, Japan
| | - Masashi Mima
- Pharmacology
Laboratories, Taisho Pharmaceutical Company
Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama, Saitama 331-9530, Japan
| | - Aiko Masuko
- Pharmacology
Laboratories, Taisho Pharmaceutical Company
Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama, Saitama 331-9530, Japan
| | - Iichiro Takata
- Pharmacology
Laboratories, Taisho Pharmaceutical Company
Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama, Saitama 331-9530, Japan
| | - Kosuke Hitaka
- Pharmacology
Laboratories, Taisho Pharmaceutical Company
Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama, Saitama 331-9530, Japan
| | - Kunihiko Iwamoto
- Pharmacology
Laboratories, Taisho Pharmaceutical Company
Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama, Saitama 331-9530, Japan
| | - Hiroyuki Sugiyama
- Pharmacology
Laboratories, Taisho Pharmaceutical Company
Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama, Saitama 331-9530, Japan
| | - Norikazu Ohtake
- Chemistry
Laboratories, Taisho Pharmaceutical Company
Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama, Saitama 331-9530, Japan
| |
Collapse
|
20
|
Identifying Small Molecules That Promote Quasipalindrome-Associated Template-Switch Mutations in Escherichia coli. G3-GENES GENOMES GENETICS 2020; 10:1809-1815. [PMID: 32220953 PMCID: PMC7202029 DOI: 10.1534/g3.120.401106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
DNA can assemble into non-B form structures that stall replication and cause genomic instability. One such secondary structure results from an inverted DNA repeat that can assemble into hairpin and cruciform structures during DNA replication. Quasipalindromes (QP), imperfect inverted repeats, are sites of mutational hotspots. Quasipalindrome-associated mutations (QPMs) occur through a template-switch mechanism in which the replicative polymerase stalls at a QP site and uses the nascent strand as a template instead of the correct template strand. This mutational event causes the QP to become a perfect or more perfect inverted repeat. Since it is not fully understood how template-switch events are stimulated or repressed, we designed a high-throughput screen to discover drugs that affect these events. QP reporters were engineered in the Escherichia coli lacZ gene to allow us to study template-switch events specifically. We tested 700 compounds from the NIH Clinical Collection through a disk diffusion assay and identified 11 positive hits. One of the hits was azidothymidine (zidovudine, AZT), a thymidine analog and DNA chain terminator. The other ten were found to be fluoroquinolone antibiotics, which induce DNA-protein crosslinks. This work shows that our screen is useful in identifying small molecules that affect quasipalindrome-associated template-switch mutations. We are currently assessing more small molecule libraries and applying this method to study other types of mutations.
Collapse
|
21
|
Azam MA, Thathan J, Jupudi S. Pharmacophore modeling, atom based 3D-QSAR, molecular docking and molecular dynamics studies on Escherichia coli ParE inhibitors. Comput Biol Chem 2019; 84:107197. [PMID: 31901788 DOI: 10.1016/j.compbiolchem.2019.107197] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/20/2019] [Accepted: 12/22/2019] [Indexed: 10/25/2022]
Abstract
ATP dependent ParE enzyme is as an attractive target for the development of antibacterial agents. Atom based 3D-QSAR model AADHR.187 was developed based on the thirty eight Escherichia coli ParE inhibitors. The generated model showed statistically significant coefficient of determinations for the training (R2 = 0.985) and test (R2 = 0.86) sets. The cross-validated correlation coefficient (q2) was 0.976. The utility of the generated model was validated by the enrichment study. The model was also validated with structurally diverse external test set of ten compounds. Contour plot analysis of the generated model unveiled the chemical features necessary for the E. coli ParE enzyme inhibition. Extra-precision docking result revealed that hydrogen bonding and ionic interactions play a major role in ParE protein-ligand binding. Binding free energy was computed for the data set inhibitors to validate the binding affinity. A 30-ns molecular dynamics simulation showed high stability and effective binding of inhibitor 34 within the active site of ParE enzyme. Using the best fitted model AADHR.187, pharmacophore-based high-throughput virtual screening was performed to identify virtual hits. Based on the above studies three new molecules are proposed as E. coli ParE inhibitors with high binding affinity and favourable ADME properties.
Collapse
Affiliation(s)
- Mohammed Afzal Azam
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Ooty, 643001, Tamil Nadu, India(1).
| | - Janarthanan Thathan
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Ooty, 643001, Tamil Nadu, India(1)
| | - Srikanth Jupudi
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Ooty, 643001, Tamil Nadu, India(1)
| |
Collapse
|
22
|
Couturier M, Gadelle D, Forterre P, Nadal M, Garnier F. The reverse gyrase TopR1 is responsible for the homeostatic control of DNA supercoiling in the hyperthermophilic archaeon Sulfolobus solfataricus. Mol Microbiol 2019; 113:356-368. [PMID: 31713907 DOI: 10.1111/mmi.14424] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/06/2019] [Accepted: 11/10/2019] [Indexed: 11/28/2022]
Abstract
Maintaining an appropriate DNA topology with DNA-based processes (DNA replication, transcription and recombination) is crucial for all three domains of life. In bacteria, the homeostatic regulation for controlling DNA supercoiling relies on antagonistic activities of two DNA topoisomerases, TopoI and gyrase. In hyperthermophilic crenarchaea, the presence of such a regulatory system is suggested as two DNA topoisomerases, TopoVI and reverse gyrase, catalyze antagonistic activities. To test this hypothesis, we estimated and compared the number of the TopoVI with that of the two reverse gyrases, TopR1 and TopR2, in Sulfolobus solfataricus cells maintained either at 80 or at 88°C, or reciprocally shifted from one temperature to the other. From the three DNA topoisomerases, TopR1 is the only one exhibiting significant quantitative variations in response to the up- and down-shifts. In addition, the corresponding intrinsic activities of these three DNA topoisomerases were tested in vitro at both temperatures. Although temperature modulates the three DNA topoisomerases activities, TopR1 is the sole topoisomerase able to function at high temperature. Altogether, results presented in this study demonstrate, for the first time, that the DNA topological state of a crenarchaeon is regulated via a homeostatic control, which is mainly mediated by the fine-tuning of TopR1.
Collapse
Affiliation(s)
- Mohea Couturier
- Institut de Génétique et Microbiologie, UMR 8621 CNRS-Université Paris-Sud, Orsay Cedex, France
| | - Danièle Gadelle
- Institut de Génétique et Microbiologie, UMR 8621 CNRS-Université Paris-Sud, Orsay Cedex, France
| | - Patrick Forterre
- Institut de Génétique et Microbiologie, UMR 8621 CNRS-Université Paris-Sud, Orsay Cedex, France
| | - Marc Nadal
- Institut de Génétique et Microbiologie, UMR 8621 CNRS-Université Paris-Sud, Orsay Cedex, France.,Institut Jacques Monod, UMR 8621 CNRS-Université Paris Diderot, Paris Cedex 13, France
| | - Florence Garnier
- Institut de Génétique et Microbiologie, UMR 8621 CNRS-Université Paris-Sud, Orsay Cedex, France.,Institut Jacques Monod, UMR 8621 CNRS-Université Paris Diderot, Paris Cedex 13, France.,Biology Department, Université Versailles St-Quentin, Versailles, France
| |
Collapse
|
23
|
Gibson EG, Oviatt AA, Cacho M, Neuman KC, Chan PF, Osheroff N. Bimodal Actions of a Naphthyridone/Aminopiperidine-Based Antibacterial That Targets Gyrase and Topoisomerase IV. Biochemistry 2019; 58:4447-4455. [PMID: 31617352 PMCID: PMC7450530 DOI: 10.1021/acs.biochem.9b00805] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Gyrase and topoisomerase IV are the targets of fluoroquinolone antibacterials. However, the rise in antimicrobial resistance has undermined the clinical use of this important drug class. Therefore, it is critical to identify new agents that maintain activity against fluoroquinolone-resistant strains. One approach is to develop non-fluoroquinolone drugs that also target gyrase and topoisomerase IV but interact differently with the enzymes. This has led to the development of the "novel bacterial topoisomerase inhibitor" (NBTI) class of antibacterials. Despite the clinical potential of NBTIs, there is a relative paucity of data describing their mechanism of action against bacterial type II topoisomerases. Consequently, we characterized the activity of GSK126, a naphthyridone/aminopiperidine-based NBTI, against a variety of Gram-positive and Gram-negative bacterial type II topoisomerases, including gyrase from Mycobacterium tuberculosis and gyrase and topoisomerase IV from Bacillus anthracis and Escherichia coli. GSK126 enhanced single-stranded DNA cleavage and suppressed double-stranded cleavage mediated by these enzymes. It was also a potent inhibitor of gyrase-catalyzed DNA supercoiling and topoisomerase IV-catalyzed decatenation. Thus, GSK126 displays a similar bimodal mechanism of action across a variety of species. In contrast, GSK126 displayed a variable ability to overcome fluoroquinolone resistance mutations across these same species. Our results suggest that NBTIs elicit their antibacterial effects by two different mechanisms: inhibition of gyrase/topoisomerase IV catalytic activity or enhancement of enzyme-mediated DNA cleavage. Furthermore, the relative importance of these two mechanisms appears to differ from species to species. Therefore, we propose that the mechanistic basis for the antibacterial properties of NBTIs is bimodal in nature.
Collapse
Affiliation(s)
- Elizabeth G. Gibson
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, United States
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, United States
| | - Alexandria A. Oviatt
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, United States
| | - Monica Cacho
- Department of Diseases of the Developing World, GlaxoSmithKline, Parque Tecnológico de Madrid, Calle de Severo Ochoa, 2, 28760 Tres Cantos, Madrid, Spain
| | - Keir C. Neuman
- Laboratory of Single Molecule Biophysics, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20982, United States
| | - Pan F. Chan
- Infectious Diseases Discovery, Medicines Opportunities Research Unit, GlaxoSmithKline, Collegeville, PA 19426, United States
| | - Neil Osheroff
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, United States
- Department of Medicine (Hematology/Oncology), Vanderbilt University School of Medicine, Nashville, TN 37232, United States
- VA Tennessee Valley Healthcare System, Nashville, TN 37212, United States
| |
Collapse
|
24
|
Discovery of Novel Triazole-Containing Pyrazole Ester Derivatives as Potential Antibacterial Agents. Molecules 2019; 24:molecules24071311. [PMID: 30987179 PMCID: PMC6480153 DOI: 10.3390/molecules24071311] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 02/13/2019] [Accepted: 04/01/2019] [Indexed: 11/23/2022] Open
Abstract
To develop new antibacterial agents, a series of novel triazole-containing pyrazole ester derivatives were designed and synthesized and their biological activities were evaluated as potential topoisomerase II inhibitors. Compound 4d exhibited the most potent antibacterial activity with Minimum inhibitory concentration (MIC) alues of 4 µg/mL, 2 µg/mL, 4 µg/mL, and 0.5 µg/mL against Staphylococcus aureus, Listeria monocytogenes, Escherichia coli, and Salmonella gallinarum, respectively. The in vivo enzyme inhibition assay 4d displayed the most potent topoisomerase II (IC50 = 13.5 µg/mL) and topoisomerase IV (IC50 = 24.2 µg/mL) inhibitory activity. Molecular docking was performed to position compound 4d into the topoisomerase II active site to determine the probable binding conformation. In summary, compound 4d may serve as potential topoisomerase II inhibitor.
Collapse
|
25
|
Pattabiraman V, Katz LS, Chen JC, McCullough AE, Trees E. Genome wide characterization of enterotoxigenic Escherichia coli serogroup O6 isolates from multiple outbreaks and sporadic infections from 1975-2016. PLoS One 2018; 13:e0208735. [PMID: 30596673 PMCID: PMC6312315 DOI: 10.1371/journal.pone.0208735] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 11/22/2018] [Indexed: 02/07/2023] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) are an important cause of diarrhea globally, particularly among children under the age of five in developing countries. ETEC O6 is the most common ETEC serogroup, yet the genome wide population structure of isolates of this serogroup is yet to be determined. In this study, we have characterized 40 ETEC O6 isolates collected between 1975–2016 by whole genome sequencing (WGS) and by phenotypic antimicrobial susceptibility testing. To determine the relatedness of isolates, we evaluated two methods—whole genome high-quality single nucleotide polymorphism (whole genome-hqSNP) and core genome SNP analyses using Lyve-SET and Parsnp respectively. All isolates were tested for antimicrobial susceptibility using a panel of 14 antibiotics. ResFinder 2.1 and a custom quinolone resistance determinants workflow were used for resistance determinant detection. VirulenceFinder 1.5 was used for prediction of the virulence genes. Thirty-seven isolates clustered into three major clades (I, II, III) by whole genome-hqSNP and core genome SNP analyses, while three isolates included in the whole genome-hqSNP analysis only did not cluster with clades I-III by both analyses and formed a distantly related outgroup, designated clade IV. Median number of pairwise whole genome-hqSNPs in clonal ETEC O6 outbreaks ranged from 0 to 5. Of the 40 isolates tested for antimicrobial susceptibility, 18 isolates were pansusceptible. Twenty-two isolates were resistant to at least one antibiotic, nine of which were multidrug resistant. Phenotypic antimicrobial resistance (AR) correlated with AR determinants in 22 isolates. Thirty-two isolates harbored both enterotoxin virulence genes while the remaining 8 isolates had only one of the two virulence genes. In summary, whole genome-hqSNP and core genome SNP analyses from this study revealed similar evolutionary relationships and an overall diversity of ETEC O6 isolates independent of time of isolation. Less than 5 pairwise hqSNPs between ETEC O6 isolates is circumstantially indicative of an outbreak cluster. Findings from this study will be a basis for quicker outbreak detection and control by efficient subtyping by WGS.
Collapse
Affiliation(s)
- Vaishnavi Pattabiraman
- Centers for Disease Control and Prevention, Atlanta, GA, United States of America
- * E-mail:
| | - Lee S. Katz
- Centers for Disease Control and Prevention, Atlanta, GA, United States of America
- Center for Food Safety, College of Agricultural and Environmental Sciences, University of Georgia, Griffin, GA, United States of America
| | - Jessica C. Chen
- Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | | | - Eija Trees
- Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| |
Collapse
|
26
|
Lv XH, Liu H, Ren ZL, Wang W, Tang F, Cao HQ. Design, synthesis and biological evaluation of novel flavone Mannich base derivatives as potential antibacterial agents. Mol Divers 2018; 23:299-306. [PMID: 30168050 DOI: 10.1007/s11030-018-9873-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 08/25/2018] [Indexed: 01/11/2023]
Abstract
A series of novel Mannich base derivatives of flavone containing benzylamine moiety was synthesized using the Mannich reaction. The results of antifungal activity are not ideal, but its antifungal effect has a certain increase compared to flavonoids. After that, four bacteria were used to test antibacterial experiments of these compounds; compound 5g (MIC = 0.5, 0.125 mg/L) showed significant inhibitory activity against Staphylococcus aureus and Salmonella gallinarum compared with novobiocin (MIC = 2, 0.25 mg/L). Compound 5s exhibited broad spectrum antibacterial activity (MIC = 1, 0.5, 2, 0.05 mg/L) against four bacteria. The selected compounds 5g and 5s exhibit potent inhibition against Topo II and Topo IV with IC50 values (0.25-16 mg/L). Molecular docking model showed that the compounds 5g and 5s can bind well to the target by interacting with amino acid residues. It will provide some valuable information for the commercial antibacterial agents.
Collapse
Affiliation(s)
- Xian-Hai Lv
- School of Science, Anhui Agricultural University, Hefei, 230036, People's Republic of China
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Hao Liu
- School of Science, Anhui Agricultural University, Hefei, 230036, People's Republic of China
| | - Zi-Li Ren
- School of Plant Protection, Anhui Agricultural University, Hefei, 230036, People's Republic of China
| | - Wei Wang
- School of Science, Anhui Agricultural University, Hefei, 230036, People's Republic of China
| | - Feng Tang
- International Center for Bamboo and Rattan, 8 Fu Tong East Street, Beijing, 100714, People's Republic of China.
| | - Hai-Qun Cao
- School of Plant Protection, Anhui Agricultural University, Hefei, 230036, People's Republic of China.
| |
Collapse
|
27
|
Liu H, Ren ZL, Wang W, Gong JX, Chu MJ, Ma QW, Wang JC, Lv XH. Novel coumarin-pyrazole carboxamide derivatives as potential topoisomerase II inhibitors: Design, synthesis and antibacterial activity. Eur J Med Chem 2018; 157:81-87. [PMID: 30075404 DOI: 10.1016/j.ejmech.2018.07.059] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 07/19/2018] [Accepted: 07/25/2018] [Indexed: 11/18/2022]
Abstract
The identification of novel Topoisomerase II (Topo II) inhibitors is one of the most attractive directions in the field of bactericide research and development. In our ongoing efforts to pursue the class of inhibitors, six series of 70 novel coumarin-pyrazole carboxamide derivatives were designed and synthesized. As a result of the evaluation against four destructive bacteria, including Staphylococcus aureus, Listeria monocytogenes, Escherichia coli and Salmonella. Compound 8III-k (MIC = 0.25 mg/L) showed considerable inhibitory activity than ciprofloxacin (MIC = 0.5 mg/L) against Escherichia coli and 8V-c (MIC = 0.05 mg/L) exhibited excellent antibacterial activity than ciprofloxacin (MIC = 0.25 mg/L) against Salmonella. The selected compounds (8III-k, 8V-c and 8V-k) exhibit potent inhibition against Topo II and Topo IV with IC50 values (9.4-25 mg/L). Molecular docking model showed that the compounds 8V-c and 8V-k can bind well to the target by interacting with amino acid residues. It will provide some valuable information for the commercial Topo II inhibiting bactericides.
Collapse
Affiliation(s)
- Hao Liu
- School of Science, Anhui Agricultural University, 230036, Hefei, People's Republic of China
| | - Zi-Li Ren
- School of Science, Anhui Agricultural University, 230036, Hefei, People's Republic of China
| | - Wei Wang
- School of Science, Anhui Agricultural University, 230036, Hefei, People's Republic of China
| | - Jie-Xiu Gong
- School of Science, Anhui Agricultural University, 230036, Hefei, People's Republic of China
| | - Ming-Jie Chu
- School of Science, Anhui Agricultural University, 230036, Hefei, People's Republic of China
| | - Quan-Wei Ma
- School of Science, Anhui Agricultural University, 230036, Hefei, People's Republic of China
| | - Jie-Chun Wang
- School of Science, Anhui Agricultural University, 230036, Hefei, People's Republic of China
| | - Xian-Hai Lv
- School of Science, Anhui Agricultural University, 230036, Hefei, People's Republic of China; State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, 210093, Nanjing, People's Republic of China.
| |
Collapse
|
28
|
Khan T, Sankhe K, Suvarna V, Sherje A, Patel K, Dravyakar B. DNA gyrase inhibitors: Progress and synthesis of potent compounds as antibacterial agents. Biomed Pharmacother 2018; 103:923-938. [DOI: 10.1016/j.biopha.2018.04.021] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 03/24/2018] [Accepted: 04/03/2018] [Indexed: 12/22/2022] Open
|
29
|
Samadpour AN, Merrikh H. DNA gyrase activity regulates DnaA-dependent replication initiation in Bacillus subtilis. Mol Microbiol 2018; 108:115-127. [PMID: 29396913 DOI: 10.1111/mmi.13920] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2018] [Indexed: 01/08/2023]
Abstract
In bacteria, initiation of DNA replication requires the DnaA protein. Regulation of DnaA association and activity at the origin of replication, oriC, is the predominant mechanism of replication initiation control. One key feature known to be generally important for replication is DNA topology. Although there have been some suggestions that topology may impact replication initiation, whether this mechanism regulates DnaA-mediated replication initiation is unclear. We found that the essential topoisomerase, DNA gyrase, is required for both proper binding of DnaA to oriC as well as control of initiation frequency in Bacillus subtilis. Furthermore, we found that the regulatory activity of gyrase in initiation is specific to DnaA and oriC. Cells initiating replication from a DnaA-independent origin, oriN, are largely resistant to gyrase inhibition by novobiocin, even at concentrations that compromise survival by up to four orders of magnitude in oriC cells. Furthermore, inhibition of gyrase does not impact initiation frequency in oriN cells. Additionally, deletion or overexpression of the DnaA regulator, YabA, significantly modulates sensitivity to gyrase inhibition, but only in oriC and not oriN cells. We propose that gyrase is a negative regulator of DnaA-dependent replication initiation from oriC, and that this regulatory mechanism is required for cell survival.
Collapse
Affiliation(s)
- A N Samadpour
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - H Merrikh
- Department of Microbiology, University of Washington, Seattle, WA, USA.,Department of Genome Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
30
|
Abstract
DNA topoisomerases are proven therapeutic targets of antibacterial agents. Quinolones, especially fluoroquinolones, are the most successful topoisomerase-targeting antibacterial drugs. These drugs target type IIA topoisomerases in bacteria. Recent structural and biochemical studies on fluoroquinolones have provided the molecular basis for both their mechanism of action, as well as the molecular basis of bacterial resistance. Due to the development of drug resistance, including fluoroquinolone resistance, among bacterial pathogens, there is an urgent need to discover novel antibacterial agents. Recent advances in topoisomerase inhibitors may lead to the development of novel antibacterial drugs that are effective against fluoroquinolone-resistant pathogens. They include type IIA topoisomerase inhibitors that either interact with the GyrB/ParE subunit or form nick-containing ternary complexes. In addition, several topoisomerase I inhibitors have recently been identified. Thus, DNA topoisomerases remain important targets of antibacterial agents.
Collapse
|
31
|
Li T, Guo J, Zhang H. Design and examination of potent pseudosubstrate-based oligonucleotide inhibitors against bacterial topoisomerase IV. Bioorg Med Chem Lett 2017; 27:4817-4822. [PMID: 29017783 DOI: 10.1016/j.bmcl.2017.09.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/16/2017] [Accepted: 09/27/2017] [Indexed: 11/28/2022]
Abstract
Topoisomerase IV is an enzyme that is mainly responsible for unwinding interlocked DNA strands at the final stage of prokaryotic DNA replication. Due to its exclusivity in prokaryotes, topoisomerase IV has been identified as a validated target for quinolone-based antibiotics in the past years for treating bacterial infection. In consideration that bacterial resistance to such antibiotics has occurred constantly, several newly designed pseudosubstrate oligonucleotides as DNA topoisomerase IV inhibitors have been examined during our recent investigations. Among them, the nick-, gap- and mismatched base pair-containing oligonucleotides displayed significantly high inhibitory effects toward topoisomerase IV. It is our anticipation that the outcomes of our current studies could be beneficial for the future development of pseudosubstrate-based enzyme inhibitors as well as new types of antibiotics.
Collapse
Affiliation(s)
- Tyler Li
- Lexington High School, 251 Waltham Street, Lexington, MA 02421, USA
| | - Juanjuan Guo
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Hao Zhang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore.
| |
Collapse
|
32
|
Kumar R, Nurse P, Bahng S, Lee CM, Marians KJ. The MukB-topoisomerase IV interaction is required for proper chromosome compaction. J Biol Chem 2017; 292:16921-16932. [PMID: 28842485 DOI: 10.1074/jbc.m117.803346] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/14/2017] [Indexed: 11/06/2022] Open
Abstract
The bacterial condensin MukB and the cellular decatenating enzyme topoisomerase IV interact. This interaction stimulates intramolecular reactions catalyzed by topoisomerase IV, supercoiled DNA relaxation, and DNA knotting but not intermolecular reactions such as decatenation of linked DNAs. We have demonstrated previously that MukB condenses DNA by sequestering negative supercoils and stabilizing topologically isolated loops in the DNA. We show here that the MukB-topoisomerase IV interaction stabilizes MukB on DNA, increasing the extent of DNA condensation without increasing the amount of MukB bound to the DNA. This effect does not require the catalytic activity of topoisomerase IV. Cells carrying a mukB mutant allele that encodes a protein that does not interact with topoisomerase IV exhibit severe nucleoid decompaction leading to chromosome segregation defects. These findings suggest that the MukB-topoisomerase IV complex may provide a scaffold for DNA condensation.
Collapse
Affiliation(s)
- Rupesh Kumar
- From the Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Pearl Nurse
- From the Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Soon Bahng
- From the Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Chong M Lee
- From the Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Kenneth J Marians
- From the Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| |
Collapse
|
33
|
Gubaev A, Weidlich D, Klostermeier D. DNA gyrase with a single catalytic tyrosine can catalyze DNA supercoiling by a nicking-closing mechanism. Nucleic Acids Res 2016; 44:10354-10366. [PMID: 27557712 PMCID: PMC5137430 DOI: 10.1093/nar/gkw740] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/20/2016] [Accepted: 08/12/2016] [Indexed: 01/10/2023] Open
Abstract
The topological state of DNA is important for replication, recombination and transcription, and is regulated in vivo by DNA topoisomerases. Gyrase introduces negative supercoils into DNA at the expense of ATP hydrolysis. It is the accepted view that gyrase achieves supercoiling by a strand passage mechanism, in which double-stranded DNA is cleaved, and a second double-stranded segment is passed through the gap, converting a positive DNA node into a negative node. We show here that gyrase with only one catalytic tyrosine that cleaves a single strand of its DNA substrate can catalyze DNA supercoiling without strand passage. We propose an alternative mechanism for DNA supercoiling via nicking and closing of DNA that involves trapping, segregation and relaxation of two positive supercoils. In contrast to DNA supercoiling, ATP-dependent relaxation and decatenation of DNA by gyrase lacking the C-terminal domains require both tyrosines and strand passage. Our results point towards mechanistic plasticity of gyrase and might pave the way for finding novel and specific mechanism-based gyrase inhibitors.
Collapse
Affiliation(s)
- Airat Gubaev
- University of Muenster, Institute for Physical Chemistry, Corrensstrasse 30, D-48149 Muenster, Germany
| | - Daniela Weidlich
- University of Muenster, Institute for Physical Chemistry, Corrensstrasse 30, D-48149 Muenster, Germany
| | - Dagmar Klostermeier
- University of Muenster, Institute for Physical Chemistry, Corrensstrasse 30, D-48149 Muenster, Germany
| |
Collapse
|
34
|
Coelho J, Ferreira F, Martins C, Leitão A. Functional characterization and inhibition of the type II DNA topoisomerase coded by African swine fever virus. Virology 2016; 493:209-16. [PMID: 27060564 DOI: 10.1016/j.virol.2016.03.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 03/24/2016] [Accepted: 03/26/2016] [Indexed: 11/26/2022]
Abstract
DNA topoisomerases are essential for DNA metabolism and while their role is well studied in prokaryotes and eukaryotes, it is less known for virally-encoded topoisomerases. African swine fever virus (ASFV) is a nucleo-cytoplasmic large DNA virus that infects Ornithodoros ticks and all members of the family Suidae, representing a global threat for pig husbandry with no effective vaccine nor treatment. It was recently demonstrated that ASFV codes for a type II topoisomerase, highlighting a possible target for control of the virus. In this work, the ASFV DNA topoisomerase II was expressed in Saccharomyces cerevisiae and found to efficiently decatenate kDNA and to processively relax supercoiled DNA. Optimal conditions for its activity were determined and its sensitivity to a panel of topoisomerase poisons and inhibitors was evaluated. Overall, our results provide new knowledge on viral topoisomerases and on ASFV, as well as a possible target for the control of this virus.
Collapse
Affiliation(s)
- João Coelho
- CIISA, Faculdade de Medicina Veterinária, ULisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal.
| | - Fernando Ferreira
- CIISA, Faculdade de Medicina Veterinária, ULisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Carlos Martins
- CIISA, Faculdade de Medicina Veterinária, ULisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Alexandre Leitão
- CIISA, Faculdade de Medicina Veterinária, ULisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal.
| |
Collapse
|
35
|
Designing a Single-Molecule Biophysics Tool for Characterising DNA Damage for Techniques that Kill Infectious Pathogens Through DNA Damage Effects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 915:115-27. [PMID: 27193541 DOI: 10.1007/978-3-319-32189-9_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Antibiotics such as the quinolones and fluoroquinolones kill bacterial pathogens ultimately through DNA damage. They target the essential type IIA topoisomerases in bacteria by stabilising the normally transient double-strand break state which is created to modify the supercoiling state of the DNA. Here we discuss the development of these antibiotics and their method of action. Existing methods for DNA damage visualisation, such as the comet assay and immunofluorescence imaging can often only be analysed qualitatively and this analysis is subjective. We describe a putative single-molecule fluorescence technique for quantifying DNA damage via the total fluorescence intensity of a DNA origami tile fully saturated with an intercalating dye, along with the optical requirements for how to implement these into a light microscopy imaging system capable of single-molecule millisecond timescale imaging. This system promises significant improvements in reproducibility of the quantification of DNA damage over traditional techniques.
Collapse
|
36
|
Lin TY, Nagano S, Gardiner Heddle J. Functional Analyses of the Toxoplasma gondii DNA Gyrase Holoenzyme: A Janus Topoisomerase with Supercoiling and Decatenation Abilities. Sci Rep 2015; 5:14491. [PMID: 26412236 PMCID: PMC4585971 DOI: 10.1038/srep14491] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 08/19/2015] [Indexed: 12/29/2022] Open
Abstract
A number of important protozoan parasites including those responsible for toxoplasmosis and malaria belong to the phylum Apicomplexa and are characterised by their possession of a relict plastid, the apicoplast. Being required for survival, apicoplasts are potentially useful drug targets and their attractiveness is increased by the fact that they contain “bacterial” gyrase, a well-established antibacterial drug target. We have cloned and purified the gyrase proteins from the apicoplast of Toxoplasma gondii (the cause of toxoplasmosis), reconstituted the functional enzyme and succeeded in characterising it. We discovered that the enzyme is inhibited by known gyrase inhibitors and that, as well as the expected supercoiling activity, it is also able to decatenate DNA with high efficiency. This unusual dual functionality may be related to the apparent lack of topoisomerase IV in the apicoplast.
Collapse
Affiliation(s)
- Ting-Yu Lin
- Heddle Initiative Research Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Soshichiro Nagano
- Heddle Initiative Research Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | | |
Collapse
|
37
|
Narayanan S, Janakiraman B, Kumar L, Radhakrishnan SK. A cell cycle-controlled redox switch regulates the topoisomerase IV activity. Genes Dev 2015; 29:1175-87. [PMID: 26063575 PMCID: PMC4470285 DOI: 10.1101/gad.257030.114] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Narayanan et al. show in C. crescentus that NstA acts by binding to the ParC DNA-binding subunit of topoisomerase IV and inhibits its decatenation activity. They also uncover a dynamic oscillation of the intracellular redox state during the cell cycle, which correlates with and controls NstA activity. Topoisomerase IV (topo IV), an essential factor during chromosome segregation, resolves the catenated chromosomes at the end of each replication cycle. How the decatenating activity of the topo IV is regulated during the early stages of the chromosome cycle despite being in continuous association with the chromosome remains poorly understood. Here we report a novel cell cycle-regulated protein in Caulobacter crescentus, NstA (negative switch for topo IV decatenation activity), that inhibits the decatenation activity of the topo IV during early stages of the cell cycle. We demonstrate that in C. crescentus, NstA acts by binding to the ParC DNA-binding subunit of topo IV. Most importantly, we uncover a dynamic oscillation of the intracellular redox state during the cell cycle, which correlates with and controls NstA activity. Thus, we propose that predetermined dynamic intracellular redox fluctuations may act as a global regulatory switch to control cellular development and cell cycle progression and may help retain pathogens in a suitable cell cycle state when encountering redox stress from the host immune response.
Collapse
Affiliation(s)
- Sharath Narayanan
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram 695016, Kerala, India
| | - Balaganesh Janakiraman
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram 695016, Kerala, India
| | - Lokesh Kumar
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram 695016, Kerala, India
| | - Sunish Kumar Radhakrishnan
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram 695016, Kerala, India
| |
Collapse
|
38
|
Azam MA, Thathan J, Jubie S. Dual targeting DNA gyrase B (GyrB) and topoisomerse IV (ParE) inhibitors: A review. Bioorg Chem 2015; 62:41-63. [PMID: 26232660 DOI: 10.1016/j.bioorg.2015.07.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 07/19/2015] [Accepted: 07/20/2015] [Indexed: 01/03/2023]
Abstract
GyrB and ParE are type IIA topoisomerases and found in most bacteria. Its function is vital for DNA replication, repair and decatenation. The highly conserved ATP-binding subunits of DNA GyrB and ParE are structurally related and have been recognized as prime candidates for the development of dual-targeting antibacterial agents with broad-spectrum potential. However, no natural product or small molecule inhibitors targeting ATPase catalytic domain of both GyrB and ParE enzymes have succeeded in the clinic. Moreover, no inhibitors of these enzymes with broad-spectrum antibacterial activity against Gram-negative pathogens have been reported. Availability of high resolution crystal structures of GyrB and ParE made it possible for the design of many different classes of inhibitors with dual mechanism of action. Among them benzimidazoles, benzothiazoles, thiazolopyridines, imidiazopyridazoles, pyridines, indazoles, pyrazoles, imidazopyridines, triazolopyridines, pyrrolopyrimidines, pyrimidoindoles as well as related structures are disclosed in literatures. Unfortunately most of these inhibitors are found to be active against Gram-positive pathogens. In the present review we discuss about studies on novel dual targeting ATPase inhibitors.
Collapse
Affiliation(s)
- Mohammed Afzal Azam
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy (A Constituent College of JSS University, Mysore), Udhagamandalam 643001, Tamil Nadu, India.
| | - Janarthanan Thathan
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy (A Constituent College of JSS University, Mysore), Udhagamandalam 643001, Tamil Nadu, India
| | - Selvaraj Jubie
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy (A Constituent College of JSS University, Mysore), Udhagamandalam 643001, Tamil Nadu, India
| |
Collapse
|
39
|
Bisacchi GS, Manchester JI. A New-Class Antibacterial-Almost. Lessons in Drug Discovery and Development: A Critical Analysis of More than 50 Years of Effort toward ATPase Inhibitors of DNA Gyrase and Topoisomerase IV. ACS Infect Dis 2015; 1:4-41. [PMID: 27620144 DOI: 10.1021/id500013t] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The introduction into clinical practice of an ATPase inhibitor of bacterial DNA gyrase and topoisomerase IV (topo IV) would represent a new-class agent for the treatment of resistant bacterial infections. Novobiocin, the only historical member of this class, established the clinical proof of concept for this novel mechanism during the late 1950s, but its use declined rapidly and it was eventually withdrawn from the market. Despite significant and prolonged effort across the biopharmaceutical industry to develop other agents of this class, novobiocin remains the only ATPase inhibitor of gyrase and topo IV ever to progress beyond Phase I. In this review, we analyze the historical attempts to discover and develop agents within this class and highlight factors that might have hindered those efforts. Within the last 15 years, however, our technical understanding of the molecular details of the inhibition of the gyrase and topo IV ATPases, the factors governing resistance development to such inhibitors, and our knowledge of the physical properties required for robust clinical drug candidates have all matured to the point wherein the industry may now address this mechanism of action with greater confidence. The antibacterial spectrum within this class has recently been extended to begin to include serious Gram negative pathogens such as Pseudomonas aeruginosa, Acinetobacter baumannii, and Klebsiella pneumoniae. In spite of this recent technical progress, adverse economics associated with antibacterial R&D over the last 20 years has diminished industry's ability to commit the resources and perseverance needed to bring new-class agents to launch. Consequently, a number of recent efforts in the ATPase class have been derailed by organizational rather than scientific factors. Nevertheless, within this context we discuss the unique opportunity for the development of ATPase inhibitors of gyrase and topo IV as new-class antibacterial agents with broad spectrum potential.
Collapse
Affiliation(s)
- Gregory S. Bisacchi
- AstraZeneca, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - John I. Manchester
- AstraZeneca, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| |
Collapse
|
40
|
Abstract
DNA topoisomerases are enzymes that control the topology of DNA in all cells. There are two types, I and II, classified according to whether they make transient single- or double-stranded breaks in DNA. Their reactions generally involve the passage of a single- or double-strand segment of DNA through this transient break, stabilized by DNA-protein covalent bonds. All topoisomerases can relax DNA, but DNA gyrase, present in all bacteria, can also introduce supercoils into DNA. Because of their essentiality in all cells and the fact that their reactions proceed via DNA breaks, topoisomerases have become important drug targets; the bacterial enzymes are key targets for antibacterial agents. This article discusses the structure and mechanism of topoisomerases and their roles in the bacterial cell. Targeting of the bacterial topoisomerases by inhibitors, including antibiotics in clinical use, is also discussed.
Collapse
|
41
|
|
42
|
Feng L, Maddox MM, Alam MZ, Tsutsumi LS, Narula G, Bruhn DF, Wu X, Sandhaus S, Lee RB, Simmons CJ, Tse-Dinh YC, Hurdle JG, Lee RE, Sun D. Synthesis, structure-activity relationship studies, and antibacterial evaluation of 4-chromanones and chalcones, as well as olympicin A and derivatives. J Med Chem 2014; 57:8398-420. [PMID: 25238443 PMCID: PMC4207537 DOI: 10.1021/jm500853v] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
![]()
On
the basis of recently reported abyssinone II and olympicin A, a series
of chemically modified flavonoid phytochemicals were synthesized and
evaluated against Mycobacterium tuberculosis and
a panel of Gram-positive and -negative bacterial pathogens. Some of
the synthesized compounds exhibited good antibacterial activities
against Gram-positive pathogens including methicillin resistant Staphylococcus aureus with minimum inhibitory concentration
as low as 0.39 μg/mL. SAR analysis revealed that the 2-hydrophobic
substituent and the 4-hydrogen bond donor/acceptor of the 4-chromanone
scaffold together with the hydroxy groups at 5- and 7-positions enhanced
antibacterial activities; the 2′,4′-dihydroxylated A
ring and the lipophilic substituted B ring of chalcone derivatives
were pharmacophoric elements for antibacterial activities. Mode of
action studies performed on selected compounds revealed that they
dissipated the bacterial membrane potential, resulting in the inhibition
of macromolecular biosynthesis; further studies showed that selected
compounds inhibited DNA topoisomerase IV, suggesting complex mechanisms
of actions for compounds in this series.
Collapse
Affiliation(s)
- Li Feng
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo , 34 Rainbow Drive, Hilo, Hawaii 96720, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Dadzie I, Ni B, Gong M, Ying Z, Zhang H, Sheng X, Xu S, Huang X. Identification and characterization of a cis antisense RNA of the parC gene encoding DNA topoisomerase IV of Salmonella enterica serovar Typhi. Res Microbiol 2014; 165:439-46. [DOI: 10.1016/j.resmic.2014.05.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 05/07/2014] [Indexed: 10/25/2022]
|
44
|
NBTI 5463 is a novel bacterial type II topoisomerase inhibitor with activity against gram-negative bacteria and in vivo efficacy. Antimicrob Agents Chemother 2014; 58:2657-64. [PMID: 24566174 DOI: 10.1128/aac.02778-13] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The need for new antibiotics that address serious Gram-negative infections is well recognized. Our efforts with a series of novel bacterial type II topoisomerase inhibitors (NBTIs) led to the discovery of NBTI 5463, an agent with improved activity over other NBTIs against Gram-negative bacteria, in particular against Pseudomonas aeruginosa (F. Reck, D. E. Ehmann, T. J. Dougherty, J. V. Newman, S. Hopkins, G. Stone, N. Agrawal, P. Ciaccio, J. McNulty, H. Barthlow, J. O'Donnell, K. Goteti, J. Breen, J. Comita-Prevoir, M. Cornebise, M. Cronin, C. J. Eyermann, B. Geng, G. R. Carr, L. Pandarinathan, X. Tang, A. Cottone, L. Zhao, N. Bezdenejnih-Snyder, submitted for publication). In the present work, NBTI 5463 demonstrated promising activity against a broad range of Gram-negative pathogens. In contrast to fluoroquinolones, the compound did not form a double-strand DNA cleavable complex with Escherichia coli DNA gyrase and DNA, but it was a potent inhibitor of both DNA gyrase and E. coli topoisomerase IV catalytic activities. In studies with P. aeruginosa, NBTI 5463 was bactericidal. Resistant mutants arose at a low rate, and the mutations were found exclusively in the nfxB gene, a regulator of the MexCD-OprJ efflux system. Levofloxacin-selected resistance mutations in GyrA did not result in decreased susceptibility to NBTI 5463. Animal infection studies demonstrated that NBTI 5463 was efficacious in mouse models of lung, thigh, and ascending urinary tract infections.
Collapse
|
45
|
The SMC complex MukBEF recruits topoisomerase IV to the origin of replication region in live Escherichia coli. mBio 2014; 5:e01001-13. [PMID: 24520061 PMCID: PMC3950513 DOI: 10.1128/mbio.01001-13] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The Escherichia coli structural maintenance of chromosome (SMC) complex, MukBEF, and topoisomerase IV (TopoIV) interact in vitro through a direct contact between the MukB dimerization hinge and the C-terminal domain of ParC, the catalytic subunit of TopoIV. The interaction stimulates catalysis by TopoIV in vitro. Using live-cell quantitative imaging, we show that MukBEF directs TopoIV to ori, with fluorescent fusions of ParC and ParE both forming cellular foci that colocalize with those formed by MukBEF throughout the cell cycle and in cells unable to initiate DNA replication. Removal of MukBEF leads to loss of fluorescent ParC/ParE foci. In the absence of functional TopoIV, MukBEF forms multiple foci that are distributed uniformly throughout the nucleoid, whereas multiple catenated oris cluster at midcell. Once functional TopoIV is restored, the decatenated oris segregate to positions that are largely coincident with the MukBEF foci, thereby providing support for a mechanism by which MukBEF acts in chromosome segregation by positioning newly replicated and decatenated oris. Additional evidence for such a mechanism comes from the observation that in TopoIV-positive (TopoIV(+)) cells, newly replicated oris segregate rapidly to the positions of MukBEF foci. Taken together, the data implicate MukBEF as a key component of the DNA segregation process by acting in concert with TopoIV to promote decatenation and positioning of newly replicated oris. IMPORTANCE Mechanistic understanding of how newly replicated bacterial chromosomes are segregated prior to cell division is incomplete. In this work, we provide in vivo experimental support for the view that topoisomerase IV (TopoIV), which decatenates newly replicated sister duplexes as a prelude to successful segregation, is directed to the replication origin region of the Escherichia coli chromosome by the SMC (structural maintenance of chromosome) complex, MukBEF. We provide in vivo data that support the demonstration in vitro that the MukB interaction with TopoIV stimulates catalysis by TopoIV. Finally, we show that MukBEF directs the normal positioning of sister origins after their replication and during their segregation. Overall, the data support models in which the coordinate and sequential action of TopoIV and MukBEF plays an important role during bacterial chromosome segregation.
Collapse
|
46
|
Molecular basis for the differential quinolone susceptibility of mycobacterial DNA gyrase. Antimicrob Agents Chemother 2014; 58:2013-20. [PMID: 24419347 DOI: 10.1128/aac.01958-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
DNA gyrase is a type II topoisomerase that catalyzes the introduction of negative supercoils in the genomes of eubacteria. Fluoroquinolones (FQs), successful as drugs clinically, target the enzyme to trap the gyrase-DNA complex, leading to the accumulation of double-strand breaks in the genome. Mycobacteria are less susceptible to commonly used FQs. However, an 8-methoxy-substituted FQ, moxifloxacin (MFX), is a potent antimycobacterial, and a higher susceptibility of mycobacterial gyrase to MFX has been demonstrated. Although several models explain the mechanism of FQ action and gyrase-DNA-FQ interaction, the basis for the differential susceptibility of mycobacterial gyrase to various FQs is not understood. We have addressed the basis of the differential susceptibility of the gyrase and revisited the mode of action of FQs. We demonstrate that FQs bind both Escherichia coli and Mycobacterium tuberculosis gyrases in the absence of DNA and that the addition of DNA enhances the drug binding. The FQs bind primarily to the GyrA subunit of mycobacterial gyrase, while in E. coli holoenzyme is the target. The binding of MFX to GyrA of M. tuberculosis correlates with its effectiveness as a better inhibitor of the enzyme and its efficacy in cell killing.
Collapse
|
47
|
Mayer C, Janin YL. Non-quinolone inhibitors of bacterial type IIA topoisomerases: a feat of bioisosterism. Chem Rev 2013; 114:2313-42. [PMID: 24313284 DOI: 10.1021/cr4003984] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Claudine Mayer
- Unité de Microbiologie Structurale, Département de Biologie Structurale et Chimie, Institut Pasteur , 25 rue du Dr. Roux, 75724 Paris Cedex 15, France
| | | |
Collapse
|
48
|
Oyamada Y, Yamagishi JI, Kihara T, Yoshida H, Wachi M, Ito H. Mechanism of Inhibition of DNA Gyrase by ES-1273, a Novel DNA Gyrase Inhibitor. Microbiol Immunol 2013; 51:977-84. [DOI: 10.1111/j.1348-0421.2007.tb03994.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Yoshihiro Oyamada
- Pharmacology Research Laboratories; Dainippon Sumitomo Pharma Co., Ltd.; Suita Osaka 564-0053 Japan
| | - Jun-ichi Yamagishi
- Technology Research & Development Center; Dainippon Sumitomo Pharma Co., Ltd.; Osaka Osaka 553-0001 Japan
| | - Takahiro Kihara
- Genomic Science Laboratories; Dainippon Sumitomo Pharma Co., Ltd.; Osaka Osaka 554-0022 Japan
| | - Hiroaki Yoshida
- Pharmacology Research Laboratories; Dainippon Sumitomo Pharma Co., Ltd.; Suita Osaka 564-0053 Japan
| | - Masaaki Wachi
- Department of Bioengineering; Tokyo Institute of Technology; Yokohama Kanagawa 226-8501 Japan
| | - Hideaki Ito
- Pharmacology Research Laboratories; Dainippon Sumitomo Pharma Co., Ltd.; Suita Osaka 564-0053 Japan
| |
Collapse
|
49
|
Vos SM, Stewart NK, Oakley MG, Berger JM. Structural basis for the MukB-topoisomerase IV interaction and its functional implications in vivo. EMBO J 2013; 32:2950-62. [PMID: 24097060 PMCID: PMC3832749 DOI: 10.1038/emboj.2013.218] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 09/11/2013] [Indexed: 01/07/2023] Open
Abstract
Chromosome partitioning in Escherichia coli is assisted by two interacting proteins, topoisomerase (topo) IV and MukB. MukB stimulates the relaxation of negative supercoils by topo IV; to understand the mechanism of their action and to define this functional interplay, we determined the crystal structure of a minimal MukB-topo IV complex to 2.3 Å resolution. The structure shows that the so-called 'hinge' region of MukB forms a heterotetrameric assembly with a C-terminal DNA binding domain (CTD) on topo IV's ParC subunit. Biochemical studies show that the hinge stimulates topo IV by competing for a site on the CTD that normally represses activity on negatively supercoiled DNA, while complementation tests using mutants implicated in the interaction reveal that the cellular dependency on topo IV derives from a joint need for both strand passage and MukB binding. Interestingly, the configuration of the MukB·topo IV complex sterically disfavours intradimeric interactions, indicating that the proteins may form oligomeric arrays with one another, and suggesting a framework by which MukB and topo IV may collaborate during daughter chromosome disentanglement.
Collapse
Affiliation(s)
- Seychelle M Vos
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | | | - Martha G Oakley
- Department of Chemistry, Indiana University, Bloomington, IN, USA
| | - James M Berger
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA,Department of Molecular and Cell Biology, California Institute of Quantitative Biosciences, University of California at Berkeley, 374D Stanley Hall, Berkeley, CA 94720, USA. Tel.:+1 510 643 9483; Fax:+1 510 666 2768; E-mail:
| |
Collapse
|
50
|
Cheng G, Hao H, Dai M, Liu Z, Yuan Z. Antibacterial action of quinolones: From target to network. Eur J Med Chem 2013; 66:555-62. [DOI: 10.1016/j.ejmech.2013.01.057] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Revised: 01/23/2013] [Accepted: 01/26/2013] [Indexed: 11/27/2022]
|