1
|
Aggarwal SD, Lloyd AJ, Yerneni SS, Narciso AR, Shepherd J, Roper DI, Dowson CG, Filipe SR, Hiller NL. A molecular link between cell wall biosynthesis, translation fidelity, and stringent response in Streptococcus pneumoniae. Proc Natl Acad Sci U S A 2021; 118:e2018089118. [PMID: 33785594 PMCID: PMC8040666 DOI: 10.1073/pnas.2018089118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Survival in the human host requires bacteria to respond to unfavorable conditions. In the important Gram-positive pathogen Streptococcus pneumoniae, cell wall biosynthesis proteins MurM and MurN are tRNA-dependent amino acyl transferases which lead to the production of branched muropeptides. We demonstrate that wild-type cells experience optimal growth under mildly acidic stressed conditions, but ΔmurMN strain displays growth arrest and extensive lysis. Furthermore, these stress conditions compromise the efficiency with which alanyl-tRNAAla synthetase can avoid noncognate mischarging of tRNAAla with serine, which is toxic to cells. The observed growth defects are rescued by inhibition of the stringent response pathway or by overexpression of the editing domain of alanyl-tRNAAla synthetase that enables detoxification of tRNA misacylation. Furthermore, MurM can incorporate seryl groups from mischarged Seryl-tRNAAlaUGC into cell wall precursors with exquisite specificity. We conclude that MurM contributes to the fidelity of translation control and modulates the stress response by decreasing the pool of mischarged tRNAs. Finally, we show that enhanced lysis of ΔmurMN pneumococci is caused by LytA, and the murMN operon influences macrophage phagocytosis in a LytA-dependent manner. Thus, MurMN attenuates stress responses with consequences for host-pathogen interactions. Our data suggest a causal link between misaminoacylated tRNA accumulation and activation of the stringent response. In order to prevent potential corruption of translation, consumption of seryl-tRNAAla by MurM may represent a first line of defense. When this mechanism is overwhelmed or absent (ΔmurMN), the stringent response shuts down translation to avoid toxic generation of mistranslated/misfolded proteins.
Collapse
Affiliation(s)
- Surya D Aggarwal
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Adrian J Lloyd
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom;
| | | | - Ana Rita Narciso
- Laboratory of Bacterial Cell Surfaces and Pathogenesis, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 1099-085 Oeiras, Portugal
- Unidade de Ciências Biomoleculares Aplicadas (UCIBIO), Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2825-149 Caparica, Portugal
| | - Jennifer Shepherd
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - David I Roper
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Christopher G Dowson
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Sergio R Filipe
- Laboratory of Bacterial Cell Surfaces and Pathogenesis, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 1099-085 Oeiras, Portugal;
- Unidade de Ciências Biomoleculares Aplicadas (UCIBIO), Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2825-149 Caparica, Portugal
| | - N Luisa Hiller
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213;
| |
Collapse
|
2
|
Hendrickx APA, van Schaik W, Willems RJL. The cell wall architecture of Enterococcus faecium: from resistance to pathogenesis. Future Microbiol 2014; 8:993-1010. [PMID: 23902146 DOI: 10.2217/fmb.13.66] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The cell wall of Gram-positive bacteria functions as a surface organelle that continuously interacts with its environment through a plethora of cell wall-associated molecules. Enterococcus faecium is a normal inhabitant of the GI tract of mammals, but has recently become an important etiological agent of hospital-acquired infections in debilitated patients. Insights into the assembly and function of enterococcal cell wall components and their interactions with the host during colonization and infection are essential to explain the worldwide emergence of E. faecium as an important multiantibiotic-resistant nosocomial pathogen. Understanding the biochemistry of cell wall biogenesis and principles of antibiotic resistance at the molecular level may open up new frontiers in research on enterococci, particularly for the development of novel antimicrobial strategies. In this article, we outline the current knowledge on the most important antimicrobial resistance mechanisms that involve peptidoglycan synthesis and the role of cell wall constituents, including lipoteichoic acid, wall teichoic acid, capsular polysaccharides, LPxTG cell wall-anchored surface proteins, WxL-type surface proteins and pili, in the pathogenesis of E. faecium.
Collapse
Affiliation(s)
- Antoni P A Hendrickx
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | |
Collapse
|
3
|
Škedelj V, Perdih A, Brvar M, Kroflič A, Dubbée V, Savage V, O'Neill AJ, Solmajer T, Bešter-Rogač M, Blanot D, Hugonnet JE, Magnet S, Arthur M, Mainardi JL, Stojan J, Zega A. Discovery of the first inhibitors of bacterial enzyme d-aspartate ligase from Enterococcus faecium (Aslfm). Eur J Med Chem 2013; 67:208-20. [DOI: 10.1016/j.ejmech.2013.06.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 06/01/2013] [Accepted: 06/02/2013] [Indexed: 01/24/2023]
|
4
|
Cava F, Lam H, de Pedro MA, Waldor MK. Emerging knowledge of regulatory roles of D-amino acids in bacteria. Cell Mol Life Sci 2010; 68:817-31. [PMID: 21161322 PMCID: PMC3037491 DOI: 10.1007/s00018-010-0571-8] [Citation(s) in RCA: 248] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 09/24/2010] [Accepted: 10/14/2010] [Indexed: 12/24/2022]
Abstract
The d-enantiomers of amino acids have been thought to have relatively minor functions in biological processes. While l-amino acids clearly predominate in nature, d-amino acids are sometimes found in proteins that are not synthesized by ribosomes, and d-Ala and d-Glu are routinely found in the peptidoglycan cell wall of bacteria. Here, we review recent findings showing that d-amino acids have previously unappreciated regulatory roles in the bacterial kingdom. Many diverse bacterial phyla synthesize and release d-amino acids, including d-Met and d-Leu, which were not previously known to be made. These noncanonical d-amino acids regulate cell wall remodeling in stationary phase and cause biofilm dispersal in aging bacterial communities. Elucidating the mechanisms by which d-amino acids govern cell wall remodeling and biofilm disassembly will undoubtedly reveal new paradigms for understanding how extracytoplasmic processes are regulated as well as lead to development of novel therapeutics.
Collapse
Affiliation(s)
- Felipe Cava
- Channing Laboratory, Brigham and Women's Hospital, Harvard Medical School, and Howard Hughes Medical Institute, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
5
|
Patti GJ, Chen J, Schaefer J, Gross ML. Characterization of structural variations in the peptidoglycan of vancomycin-susceptible Enterococcus faecium: understanding glycopeptide-antibiotic binding sites using mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2008; 19:1467-75. [PMID: 18692403 PMCID: PMC2613859 DOI: 10.1016/j.jasms.2008.06.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Revised: 06/20/2008] [Accepted: 06/21/2008] [Indexed: 05/23/2023]
Abstract
Enterococcus faecium, an opportunistic pathogen that causes a significant number of hospital-acquired infections each year, presents a serious clinical challenge because an increasing number of infections are resistant to the so-called antibiotic of last resort, vancomycin. Vancomycin and other new glycopeptide derivatives target the bacterial cell wall, thereby perturbing its biosynthesis. To help determine the modes of action of glycopeptide antibiotics, we have developed a bottom-up mass spectrometry approach complemented by solid-state nuclear magnetic resonance (NMR) to elucidate important structural characteristics of vancomycin-susceptible E. faecium peptidoglycan. Using accurate-mass measurements and integrating ion-current chromatographic peaks of digested peptidoglycan, we identified individual muropeptide species and approximated the relative amount of each. Even though the organism investigated is susceptible to vancomycin, only 3% of the digested peptidoglycan has the well-known D-Ala-D-Ala vancomycin-binding site. The data are consistent with a previously proposed template model of cell-wall biosynthesis where D-Ala-D-Ala stems that are not cross-linked are cleaved in mature peptidoglycan. Additionally, our mass-spectrometry approach allowed differentiation and quantification of muropeptide species seen as unresolved chromatographic peaks. Our method provides an estimate of the extent of muropeptides containing O-acetylation, amidation, hydroxylation, and the number of species forming cyclic imides. The varieties of muropeptides on which the modifications are detected suggest that significant processing occurs in mature peptidoglycan where several enzymes are active in editing cell-wall structure.
Collapse
Affiliation(s)
- Gary J Patti
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, USA
| | | | | | | |
Collapse
|
6
|
Veiga P, Piquet S, Maisons A, Furlan S, Courtin P, Chapot-Chartier MP, Kulakauskas S. Identification of an essential gene responsible for d-Asp incorporation in the Lactococcus lactis peptidoglycan crossbridge. Mol Microbiol 2006; 62:1713-24. [PMID: 17083466 DOI: 10.1111/j.1365-2958.2006.05474.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Bacteria such as Lactococcus lactis have D-aspartate (D-Asp) or its amidated derivative D-asparagine (D-Asn), in their peptidoglycan (PG) interpeptide crossbridge. We performed a subtractive genome analysis to identify L. lactis gene yxbA, orthologues of which being present only in bacteria containing D-amino acids in their PG crossbridge, but absent from those that instead insert L-amino acids or glycine. Inactivation of yxbA required a complementing Streptococcus pneumoniae murMN genes, which express enzymes that incorporate L-Ser-L-Ala or L-Ala-L-Ala in the PG crossbridge. Our results show that (i) yxbA encodes D-Asp ligase responsible for incorporation of D-Asp in the PG crossbridge, and we therefore renamed it as aslA, (ii) it is an essential gene, which makes its product a potential target for specific antimicrobials, (iii) the absence of D-Asp may be complemented by L-Ser-L-Ala or L-Ala-L-Ala in the L. lactis PG, indicating that the PG synthesis machinery is not selective for the side-chain residues, and (iv) lactococcal strains having L-amino acids in their PG crossbridge display defects in cell wall integrity, but are able to efficiently anchor cell wall proteins, indicating relative flexibility of lactococcal transpeptidation reactions with respect to changes in PG sidechain composition.
Collapse
MESH Headings
- Aspartic Acid/chemistry
- Aspartic Acid/metabolism
- Bacterial Proteins/chemistry
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Blotting, Western
- Cell Division/genetics
- Cell Division/physiology
- Cell Wall/chemistry
- Cell Wall/metabolism
- Chromatography, High Pressure Liquid
- Gene Order
- Genes, Bacterial
- Genes, Essential
- Genome, Bacterial
- In Situ Hybridization, Fluorescence
- Lactococcus lactis/genetics
- Lactococcus lactis/metabolism
- Lactococcus lactis/ultrastructure
- Microscopy, Electron, Transmission
- Mutation
- Operon
- Peptidoglycan/chemistry
- Peptidoglycan/metabolism
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
Collapse
Affiliation(s)
- Patrick Veiga
- Unité Bactéries Lactiques et Pathogènes Opportunistes, INRA, 78352 Jouy-en-Josas Cedex France
| | | | | | | | | | | | | |
Collapse
|
7
|
Bellais S, Arthur M, Dubost L, Hugonnet JE, Gutmann L, van Heijenoort J, Legrand R, Brouard JP, Rice L, Mainardi JL. Aslfm, the D-aspartate ligase responsible for the addition of D-aspartic acid onto the peptidoglycan precursor of Enterococcus faecium. J Biol Chem 2006; 281:11586-94. [PMID: 16510449 DOI: 10.1074/jbc.m600114200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
D-aspartate ligase has remained the last unidentified peptide bond-forming enzyme in the peptidoglycan assembly pathway of Gram-positive bacteria. Here we show that a two-gene cluster of Enterococcus faecium encodes aspartate racemase (Racfm) and ligase (Aslfm) for incorporation of D-Asp into the side chain of the peptidoglycan precursor. Aslfm was identified as a new member of the ATP-grasp protein superfamily, which includes a diverse set of enzymes catalyzing ATP-dependent carboxylate-amine ligation reactions. Aslfm specifically ligated the beta-carboxylate of D-Asp to the epsilon-amino group of L-Lys in the nucleotide precursor UDP-N-acetylmuramyl-pentapeptide. D-iso-asparagine was not a substrate of Aslfm, indicating that the presence of this amino acid in the peptidoglycan of E. faecium results from amidation of the alpha-carboxyl of D-Asp after its addition to the precursor. Heterospecific expression of the genes encoding Racfm and Aslfm in Enterococcus faecalis led to production of stem peptides substituted by D-Asp instead of L-Ala2, providing evidence for the in vivo specificity and function of these enzymes. Strikingly, sequencing of the cross-bridges revealed that substitution of L-Ala2 by D-Asp is tolerated by the d,d-transpeptidase activity of the penicillin-binding proteins both in the acceptor and in the donor substrates. The Aslfm ligase appears as an attractive target for the development of narrow spectrum antibiotics active against multiresistant E. faecium.
Collapse
|
8
|
Arbeloa A, Hugonnet JE, Sentilhes AC, Josseaume N, Dubost L, Monsempes C, Blanot D, Brouard JP, Arthur M. Synthesis of Mosaic Peptidoglycan Cross-bridges by Hybrid Peptidoglycan Assembly Pathways in Gram-positive Bacteria. J Biol Chem 2004; 279:41546-56. [PMID: 15280360 DOI: 10.1074/jbc.m407149200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The peptidoglycan cross-bridges of Staphylococcus aureus, Enterococcus faecalis, and Enterococcus faecium consist of the sequences Gly(5), l-Ala(2), and d-Asx, respectively. Expression of the fmhB, femA, and femB genes of S. aureus in E. faecalis led to the production of peptidoglycan precursors substituted by mosaic side chains that were efficiently used by the penicillin-binding proteins for cross-bridge formation. The Fem transferases were specific for incorporation of glycyl residues at defined positions of the side chains in the absence of any additional S. aureus factors such as tRNAs used for amino acid activation. The PBPs of E. faecalis displayed a broad substrate specificity because mosaic side chains containing from 1 to 5 residues and Gly instead of l-Ala at the N-terminal position were used for peptidoglycan cross-linking. Low affinity PBP2a of S. aureus conferred beta-lactam resistance in E. faecalis and E. faecium, thereby indicating that there was no barrier to heterospecific expression of resistance caused by variations in the structure of peptidoglycan precursors. Thus, conservation of the structure of the peptidoglycan cross-bridges in members of the same species reflects the high specificity of the enzymes for side chain synthesis, although this is not essential for the activity of the PBPs.
Collapse
Affiliation(s)
- Ana Arbeloa
- INSERM E0004, Laboratoire de Recherche Moléculaire sur les Antibiotiques, 15 rue de l'Ecole de Médecine, 75270 Paris, cedex 06, France
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
|
10
|
Peptide Bond Formation in Non-ribosomal Systems. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 1978. [DOI: 10.1007/978-3-642-66856-2_2] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
11
|
Biosynthesis and Cross-Linking of the γ-Glutamylglycine-containing Peptidoglycan of Vegetative Cells of Sporosarcina ureae. J Biol Chem 1974. [DOI: 10.1016/s0021-9258(19)42758-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|