1
|
Wang X, Luo X. Precursor Quantitation Methods for Next Generation Food Production. Front Bioeng Biotechnol 2022; 10:849177. [PMID: 35360389 PMCID: PMC8960114 DOI: 10.3389/fbioe.2022.849177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/22/2022] [Indexed: 11/21/2022] Open
Abstract
Food is essential for human survival. Nowadays, traditional agriculture faces challenges in balancing the need of sustainable environmental development and the rising food demand caused by an increasing population. In addition, in the emerging of consumers' awareness of health related issues bring a growing trend towards novel nature-based food additives. Synthetic biology, using engineered microbial cell factories for production of various molecules, shows great advantages for generating food alternatives and additives, which not only relieve the pressure laid on tradition agriculture, but also create a new stage in healthy and sustainable food supplement. The biosynthesis of food components (protein, fats, carbohydrates or vitamins) in engineered microbial cells often involves cellular central metabolic pathways, where common precursors are processed into different proteins and products. Quantitation of the precursors provides information of the metabolic flux and intracellular metabolic state, giving guidance for precise pathway engineering. In this review, we summarized the quantitation methods for most cellular biosynthetic precursors, including energy molecules and co-factors involved in redox-reactions. It will also be useful for studies worked on pathway engineering of other microbial-derived metabolites. Finally, advantages and limitations of each method are discussed.
Collapse
Affiliation(s)
- Xinran Wang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiaozhou Luo
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen Institute of Advanced Technology, Shenzhen, China
| |
Collapse
|
2
|
Liang YF, Liu H, Li H, Gao WY. Determination of the Activity of 1-Deoxy-D-Xylulose 5-Phosphate Synthase by Pre-column Derivatization-HPLC Using 1,2-Diamino-4,5-Methylenedioxybenzene as a Derivatizing Reagent. Protein J 2019; 38:160-166. [PMID: 30707333 DOI: 10.1007/s10930-019-09816-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
α-Ketoacids can be determined by HPLC through pre-column derivatization with 1,2-diamino-4,5-methylenedioxybenzene (DMB) as a derivatizing reagent. Using this method, the specific activity and the steady-state kinetic of 1-deoxy-D-xylulose-5-phosphate synthase (DXS) were measured. Firstly, DXS substrate pyruvate was derivatized with DMB in acidic solution; then the corresponding quinoxalinone was elucidated by LC-ESI-MS and quantified by HPLC-UV. The optimum derivatization conditions were as follows: aqueous medium at pH 1.0, reaction temperature 80 °C, reaction time 60 min, molar ratio of DMB to pyruvate 10:1. The HPLC was run with isocratic elution using the mixture of methanol and water (60:40, v/v) as a mobile phase. The detective limit and the linear correlation range of the method were 0.05 µM and 0.002-1.0 mM (R = 0.994), respectively. The relative standard deviation (RSD) of six determinations was 2.48%. The steady-state kinetic parameters of DXS for pyruvate determined with the method were identical to the reported data. The established method is a practical route for evaluation of DXS activity, especially in the research and development of DXS inhibitors.
Collapse
Affiliation(s)
- Yan-Fei Liang
- National Engineering Research Center for Miniaturized Detection Systems and College of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an, 710069, Shaanxi, China
| | - Hui Liu
- National Engineering Research Center for Miniaturized Detection Systems and College of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an, 710069, Shaanxi, China
| | - Heng Li
- National Engineering Research Center for Miniaturized Detection Systems and College of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an, 710069, Shaanxi, China
| | - Wen-Yun Gao
- National Engineering Research Center for Miniaturized Detection Systems and College of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an, 710069, Shaanxi, China.
| |
Collapse
|
3
|
Mathon C, Barding GA, Larive CK. Separation of ten phosphorylated mono-and disaccharides using HILIC and ion-pairing interactions. Anal Chim Acta 2017; 972:102-110. [DOI: 10.1016/j.aca.2017.03.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/05/2017] [Accepted: 03/09/2017] [Indexed: 10/19/2022]
|
4
|
Liu Z, Rochfort S. Recent progress in polar metabolite quantification in plants using liquid chromatography–mass spectrometry. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2014; 56:816-825. [PMID: 25340205 DOI: 10.1111/jipb.12181] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Metabolite analysis or metabolomics is an important component of systems biology in the post-genomic era. Although separate liquid chromatography (LC) methods for quantification of the major classes of polar metabolites of plants have been available for decades, a single method that enables simultaneous determination of hundreds of polar metabolites is possible only with gas chromatography–mass spectrometry (GC–MS) techniques. The rapid expansion of new LC stationary phases in the market and the ready access of mass spectrometry in many laboratories provides an excellent opportunity for developing LC–MS based methods for multi-target quantification of polar metabolites. Although various LC–MS methods have been developed over the last 10 years with the aim to quantify one or more classes of polar compounds in different matrices, currently there is no consensus LC–MS method that is widely used in plant metabolomics studies. The most promising methods applicable to plant metabolite analysis will be reviewed in this paper and the major problems encountered highlighted. The aim of this review is to provide plant scientists, with limited to moderate experience in analytical chemistry, with up-to-date and simplified information regarding the current status of polar metabolite analysis using LC–MS techniques.
Collapse
|
5
|
Piatkivskyi A, Pyatkivskyy Y, Hurt M, Ryzhov V. Utilisation of gas-phase ion-molecule reactions for differentiation between phospho- and sulfocarbohydrates. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2014; 20:177-183. [PMID: 24895778 DOI: 10.1255/ejms.1270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Gas-phase ion-molecule reactions of four boron-containing neutrals were explored as a means for differentiation between isobaric phospho- and sulfocarbohydrates. Phosphorylation and sulfation impose an addition of 80 Da to the molecular mass, so for low-resolution mass spectrometers compounds that have such modifications will appear at the same nominal mass-to-charge (m/z) ratio. However, the ions of these isobaric species behave differently in ion-molecule reactions. All four evaluated neutral molecules [trimethyl borate (TMB), triethyl borate (TEB), diethylmethoxyborane (DEMB) and diisopropoxymethylborane (DIPMB)] proved to be reactive towards phosphorylated sugars and unreactive towards sulfated carbohydrates. In addition, TMB and TEB were found suitable for distinguishing positional isomers of phosphorylated carbohydrates, while reactions with DEMB and DIPMB were successful in differentiating phosphorylated, sulfated and unmodified deprotonated sugars. Similar reactions in the positive ion mode (alkali cationised) were found to be less conclusive.
Collapse
|
6
|
Banerjee A, Wu Y, Banerjee R, Li Y, Yan H, Sharkey TD. Feedback inhibition of deoxy-D-xylulose-5-phosphate synthase regulates the methylerythritol 4-phosphate pathway. J Biol Chem 2013; 288:16926-16936. [PMID: 23612965 DOI: 10.1074/jbc.m113.464636] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway leads to the biosynthesis of isopentenyl diphosphate (IDP) and dimethylallyl diphosphate (DMADP), the precursors for isoprene and higher isoprenoids. Isoprene has significant effects on atmospheric chemistry, whereas other isoprenoids have diverse roles ranging from various biological processes to applications in commercial uses. Understanding the metabolic regulation of the MEP pathway is important considering the numerous applications of this pathway. The 1-deoxy-D-xylulose-5-phosphate synthase (DXS) enzyme was cloned from Populus trichocarpa, and the recombinant protein (PtDXS) was purified from Escherichia coli. The steady-state kinetic parameters were measured by a coupled enzyme assay. An LC-MS/MS-based assay involving the direct quantification of the end product of the enzymatic reaction, 1-deoxy-D-xylulose 5-phosphate (DXP), was developed. The effect of different metabolites of the MEP pathway on PtDXS activity was tested. PtDXS was inhibited by IDP and DMADP. Both of these metabolites compete with thiamine pyrophosphate for binding with the enzyme. An atomic structural model of PtDXS in complex with thiamine pyrophosphate and Mg(2+) was built by homology modeling and refined by molecular dynamics simulations. The refined structure was used to model the binding of IDP and DMADP and indicated that IDP and DMADP might bind with the enzyme in a manner very similar to the binding of thiamine pyrophosphate. The feedback inhibition of PtDXS by IDP and DMADP constitutes an important mechanism of metabolic regulation of the MEP pathway and indicates that thiamine pyrophosphate-dependent enzymes may often be affected by IDP and DMADP.
Collapse
Affiliation(s)
- Aparajita Banerjee
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - Yan Wu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - Rahul Banerjee
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - Yue Li
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - Honggao Yan
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824.
| | - Thomas D Sharkey
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824.
| |
Collapse
|
7
|
Petruczynik A, Waksmundzka-Hajnos M. Application of hydrophilic interaction chromatography in phytochemical analysis. ACTA CHROMATOGR 2013. [DOI: 10.1556/achrom.25.2013.1.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Patel MK, Davis BG. Control of Phosphoryl Migratory Transesterifications Allows Regioselecive Access to Sugar Phosphates. Org Lett 2013; 15:346-9. [DOI: 10.1021/ol303271z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Mitul K. Patel
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, U.K
| | - Benjamin G. Davis
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, U.K
| |
Collapse
|
9
|
HU Y, WANG XJ, LI H, GAO WY. Determination of Steady-State Kinetic Parameters of 1-Deoxy-D-xylulose-5-phosphate Synthase by Pre-column Derivatization High Performance Liquid Chromatography Using 2,4-Dinitrophenylhydrazine as Derivative Reagent. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2012. [DOI: 10.1016/s1872-2040(11)60595-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Hinterwirth H, Lämmerhofer M, Preinerstorfer B, Gargano A, Reischl R, Bicker W, Trapp O, Brecker L, Lindner W. Selectivity issues in targeted metabolomics: Separation of phosphorylated carbohydrate isomers by mixed-mode hydrophilic interaction/weak anion exchange chromatography. J Sep Sci 2010; 33:3273-82. [DOI: 10.1002/jssc.201000412] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
11
|
Moni L, Ciogli A, D'Acquarica I, Dondoni A, Gasparrini F, Marra A. Synthesis of Sugar-Based Silica Gels by Copper-Catalysed Azide-Alkyne Cycloaddition via a Single-Step Azido-Activated Silica Intermediate and the Use of the Gels in Hydrophilic Interaction Chromatography. Chemistry 2010; 16:5712-22. [DOI: 10.1002/chem.201000106] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
12
|
Ross KL, Dalluge JJ. Liquid chromatography/tandem mass spectrometry of glycolytic intermediates: deconvolution of coeluting structural isomers based on unique product ion ratios. Anal Chem 2009; 81:4021-6. [PMID: 19354282 DOI: 10.1021/ac9004698] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A method has been developed for rapid quantification of nine glycolytic intermediates using ultraperformance liquid chromatography/electrospray-tandem mass spectrometry (UPLC/ESI-MS/MS) to monitor the metabolism of glucose during microbial fermentation. Because comprehensive chromatographic separation is not required, analysis time is significantly less than traditional ion exchange liquid chromatography assays or enzymatic assays. Complete glycolytic intermediate analysis by LC/MS/MS can be achieved in less than 7 min per sample. Quantification is accomplished using isotopically labeled glucose, glucose-6-phosphate, and pyruvate as internal standards. In addition, a method to deconvolute peak areas of coeluting structural isomers based on unique product ion ratios has been developed to allow accurate quantification of the individual isomers 2-phosphoglycerate and 3-phosphoglycerate, as well as glucose-6-phosphate and fructose-6-phosphate. Intrasample precisions for glycolytic intermediate measurements in cell-free extracts using this method vary between 0.9% and 11.8%, averaging 3.5% (RSD). Calibration curves are linear over the range 0.1-100 microg/mL, and detection limits are estimated at 2-49 ng/mL. Spike recoveries in cell extracts vary from 53% to 127% averaging 91%. This method has the potential to demonstrate correlation of glycolytic intermediate flux to microbial production profiles toward acceleration of the bioprocess development cycle.
Collapse
Affiliation(s)
- Keri Lyn Ross
- Cargill Global Food Technology Group, Cargill Incorporated, P.O. Box 5702, Minneapolis, Minnesota 55440-5702, USA
| | | |
Collapse
|
13
|
Cruz JA, Emery C, Wüst M, Kramer DM, Lange BM. Metabolite profiling of Calvin cycle intermediates by HPLC-MS using mixed-mode stationary phases. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 55:1047-60. [PMID: 18494852 DOI: 10.1111/j.1365-313x.2008.03563.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
SUMMARY A sensitive and robust mixed-mode high performance liquid chromatography-tandem mass spectrometry method was developed for the qualitative and quantitative determination of sugar phosphates, which are notoriously difficult to separate using reversed-phase materials. Sugar phosphates were separated on a Primesep SB column by gradient elution using aqueous ammonium formate and acetonitrile as mobile phases. Target analytes were identified by their precursor/product ions and retention times. Quantitative analysis was performed in negative ionization/multiple reaction monitoring mode with five different time segments. The method was validated by spiking authentic sugar phosphate standards into complex plant tissue extracts. Standard curves of neat authentic standards and spiked extracts were generated for concentrations in the low picomole to nanomole range, with correlation coefficients of R(2) > 0.991, and the degree of ion suppression in the presence of a plant matrix was calculated for each analyte. Analyte recoveries, which were determined by including known quantities of authentic standards in the sugar phosphate extraction protocol, ranged from 40.0% to 57.4%. The analytical reproducibility was assessed by determining the coefficient of variance based on repeated extractions/measurements (<20%). The utility of our method is demonstrated with two types of applications: profiling of Calvin cycle intermediates in (i) dark-adapted and light-treated tobacco leaves, and in (ii) antisense plants expressing reduced levels of the Calvin cycle enzymes glyceraldehyde-3-phosphate dehydrogenase or ribulose-1,5-bisphosphate carboxylase/oxygenase (comparison with wild-type controls). The broader applicability of our method is illustrated by profiling sugar phosphates extracted from the leaves of five taxonomically diverse plants.
Collapse
Affiliation(s)
- Jeffrey A Cruz
- Institute of Biological Chemistry, Washington State University, Pullman, P.O. 646340, Washington 99164-6340, USA
| | | | | | | | | |
Collapse
|
14
|
Liu H, Yoo HJ, Håkansson K. Characterization of phosphate-containing metabolites by calcium adduction and electron capture dissociation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2008; 19:799-808. [PMID: 18417357 DOI: 10.1016/j.jasms.2008.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 03/13/2008] [Accepted: 03/14/2008] [Indexed: 05/26/2023]
Abstract
Several phosphate-containing metabolites, including nicotinamide adenine dinucleotide (NAD), nicotinamide adenine dinucleotide phosphate (NADP), adenosine 5'-diphosphate ribose (ADP-r), adenosine 5'-triphosphate (ATP), and guanosine 5'-triphosphate (GTP), have been characterized with electron capture dissociation (ECD) and sustained off-resonance irradiation collision-activated dissociation (SORI-CAD) tandem mass spectrometry (MS/MS) in positive-ion mode. Calcium complexation was used to successfully produce abundant doubly charged cationic precursor ions with or without hydration. This approach enabled application of ECD to acidic metabolites for the first time. Fragmentation pathways observed in ECD and SORI-CAD of calcium-adducted phosphate-containing metabolites were complementary. Unique fragmentation was observed in ECD compared to SORI-CAD MS/MS, including ribose cross-ring cleavage for NAD and NADP, and generation of hydrated product ions, including cross-ring fragments, for hydrated ATP and GTP. A combination of ECD and CAD appears promising for maximizing structural information about metabolites.
Collapse
Affiliation(s)
- Haichuan Liu
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | | | | |
Collapse
|
15
|
Antonio C, Larson T, Gilday A, Graham I, Bergström E, Thomas-Oates J. Hydrophilic interaction chromatography/electrospray mass spectrometry analysis of carbohydrate-related metabolites from Arabidopsis thaliana leaf tissue. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2008; 22:1399-407. [PMID: 18384194 DOI: 10.1002/rcm.3519] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
This work describes the development and application of an on-line liquid chromatography/mass spectrometry (LC/MS) method using hydrophilic interaction chromatography (HILIC) coupled to negative ion mode electrospray ionisation ion trap mass spectrometry (ESI-MS) for the analysis of highly polar carbohydrate-related metabolites commonly found in plants, ranging from reducing and non-reducing sugars and sugar alcohols to sugar phosphates. Using this method, separation and detection of a mixture of eight authentic standard compounds containing glucose (Glc), sucrose (Suc), raffinose, verbascose, mannitol, maltitol, glucose-6-phosphate (Glc6P) and trehalose-6-phosphate (Tre6P) were achieved in less than 15 min. The method is rapid, robust, selective, and sensitive, with limits of detection (LODs) ranging from 0.2 microM obtained for neutral sugars, to 1.0 microM obtained for sugar alcohols, and 2.0 microM obtained for negatively charged sugar phosphates. We have studied the negative ion collision-induced dissociation (CID) fragmentation behaviour of the non-reducing raffinose family oligosaccharides (RFOs) raffinose, stachyose, and verbascose. Mainly Bi and Ci glycosidic and Ai cross-ring structurally informative cleavages are observed. We have applied this HILIC/ESI-MS method for the analysis of Arabidopsis thaliana wild-type Columbia-0 (Col-0) and its starchless phosphoglucomutase mutant (pgm1) leaf extracts. The method was used to quantify Glc, Suc, raffinose, and Glc6P in A. thaliana extracts. Data obtained using this HILIC/ESI-MS method were compared with those obtained using a comparable porous graphitic carbon-based LC/ESI-MS method.
Collapse
Affiliation(s)
- Carla Antonio
- Department of Chemistry, University of York, Heslington, York YO10 5DD, UK
| | | | | | | | | | | |
Collapse
|
16
|
Ivanova PT, Milne SB, Byrne MO, Xiang Y, Brown HA. Glycerophospholipid identification and quantitation by electrospray ionization mass spectrometry. Methods Enzymol 2008; 432:21-57. [PMID: 17954212 DOI: 10.1016/s0076-6879(07)32002-8] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Glycerophospholipids are the structural building blocks of the cellular membrane. In addition to creating a protective barrier around the cell, lipids are precursors of intracellular signaling molecules that modulate membrane trafficking and are involved in transmembrane signal transduction. Phospholipids are also increasingly recognized as important participants in the regulation and control of cellular function and disease. Analysis and characterization of lipid species by mass spectrometry (MS) have evolved and advanced with improvements in instrumentation and technology. Key advances, including the development of "soft" ionization techniques for MS such as electrospray ionization (ESI), matrix-assisted laser desorption/ionization (MALDI), and tandem mass spectrometry (MS/MS), have facilitated the analysis of complex lipid mixtures by overcoming the earlier limitations. ESI-MS has become the technique of choice for the analysis of multi-component mixtures of lipids from biological samples due to its exceptional sensitivity and capacity for high throughput. This chapter covers qualitative and quantitative MS methods used for the elucidation of glycerophospholipid identity and quantity in cell or tissue extracts. Sections are included on the extraction, MS analysis, and data analysis of glycerophospholipids and polyphosphoinositides.
Collapse
Affiliation(s)
- Pavlina T Ivanova
- Departments of Pharmacology and Chemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | | | | | | | |
Collapse
|
17
|
Ikegami T, Tomomatsu K, Takubo H, Horie K, Tanaka N. Separation efficiencies in hydrophilic interaction chromatography. J Chromatogr A 2008; 1184:474-503. [PMID: 18294645 DOI: 10.1016/j.chroma.2008.01.075] [Citation(s) in RCA: 336] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Revised: 01/30/2008] [Accepted: 01/30/2008] [Indexed: 11/19/2022]
Abstract
Hydrophilic interaction chromatography (HILIC) is important for the separation of highly polar substances including biologically active compounds, such as pharmaceutical drugs, neurotransmitters, nucleosides, nucleotides, amino acids, peptides, proteins, oligosaccharides, carbohydrates, etc. In the HILIC mode separation, aqueous organic solvents are used as mobile phases on more polar stationary phases that consist of bare silica, and silica phases modified with amino, amide, zwitterionic functional group, polyols including saccharides and other polar groups. This review discusses the column efficiency of HILIC materials in relation to solute and stationary phase structures, as well as comparisons between particle-packed and monolithic columns. In addition, a literature review consisting of 2006-2007 data is included, as a follow up to the excellent review by Hemström and Irgum.
Collapse
Affiliation(s)
- Tohru Ikegami
- Department of Biomolecular Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| | | | | | | | | |
Collapse
|
18
|
Antonio C, Larson T, Gilday A, Graham I, Bergström E, Thomas-Oates J. Quantification of sugars and sugar phosphates in Arabidopsis thaliana tissues using porous graphitic carbon liquid chromatography-electrospray ionization mass spectrometry. J Chromatogr A 2007; 1172:170-8. [DOI: 10.1016/j.chroma.2007.10.011] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Revised: 10/02/2007] [Accepted: 10/04/2007] [Indexed: 10/22/2022]
|
19
|
Rodrigues J, Antonio C, Robinson S, Thomas-Oates J. Mass Spectrometry in Glycobiology. METABOLOMICS, METABONOMICS AND METABOLITE PROFILING 2007. [DOI: 10.1039/9781847558107-00210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- João Rodrigues
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Carla Antonio
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Sarah Robinson
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Jane Thomas-Oates
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| |
Collapse
|
20
|
Yoo HJ, Liu H, Håkansson K. Infrared multiphoton dissociation and electron-induced dissociation as alternative MS/MS strategies for metabolite identification. Anal Chem 2007; 79:7858-66. [PMID: 17880105 DOI: 10.1021/ac071139w] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A major challenge encountered in mass spectrometric metabolite analysis is the identification and structural characterization of metabolites. Fourier transform ion cyclotron resonance mass spectrometry is a valuable technique for metabolite structural determination because it provides accurate masses and allows for multiple MS/MS fragmentation strategies, including infrared multiphoton dissociation (IRMPD) and electron-induced dissociation (EID). Collision activated dissociation (CAD) is currently the most commonly used MS/MS technique for metabolite structural characterization. In contrast, IRMPD and EID have had very limited, if any, application for metabolite characterization. Here, we explore IRMPD and EID of phosphate-containing metabolites and compare the resulting fragmentation patterns to those of CAD. Our results show that CAD, IRMPD, and EID provide complementary structural information for phosphate-containing metabolites. Overall, CAD provided the most extensive fragmentation for smaller (<600 Da) phosphate-containing metabolites; however, IRMPD generated more extensive fragmentation for larger (>600 Da) phosphate-containing metabolites, particularly for species containing increased numbers of phosphate groups. EID generally provided complementary fragmentation to CAD and showed extensive fragmentation with relatively evenly abundant product ions, regardless of metabolite size. However, EID fragmentation efficiency is lower than those of CAD and IRMPD.
Collapse
Affiliation(s)
- Hyun Ju Yoo
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, USA
| | | | | |
Collapse
|
21
|
Oldiges M, Lütz S, Pflug S, Schroer K, Stein N, Wiendahl C. Metabolomics: current state and evolving methodologies and tools. Appl Microbiol Biotechnol 2007; 76:495-511. [PMID: 17665194 DOI: 10.1007/s00253-007-1029-2] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Revised: 05/19/2007] [Accepted: 05/21/2007] [Indexed: 01/10/2023]
Abstract
In recent years, metabolomics developed to an accepted and valuable tool in life sciences. Substantial improvements of analytical hardware allow metabolomics to run routinely now. Data are successfully used to investigate genotype-phenotype relations of strains and mutants. Metabolomics facilitates metabolic engineering to optimise mircoorganisms for white biotechnology and spreads to the investigation of biotransformations and cell culture. Metabolomics serves not only as a source of qualitative but also quantitative data of intra-cellular metabolites essential for the model-based description of the metabolic network operating under in vivo conditions. To collect reliable metabolome data sets, culture and sampling conditions, as well as the cells' metabolic state, are crucial. Hence, application of biochemical engineering principles and method standardisation efforts become important. Together with the other more established omics technologies, metabolomics will strengthen its claim to contribute to the detailed understanding of the in vivo function of gene products, biochemical and regulatory networks and, even more ambitious, the mathematical description and simulation of the whole cell in the systems biology approach. This knowledge will allow the construction of designer organisms for process application using biotransformation and fermentative approaches making effective use of single enzymes, whole microbial and even higher cells.
Collapse
Affiliation(s)
- Marco Oldiges
- Institute of Biotechnology 2, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.
| | | | | | | | | | | |
Collapse
|
22
|
Vizán P, Alcarraz-Vizán G, Díaz-Moralli S, Rodríguez-Prados JC, Zanuy M, Centelles JJ, Jáuregui O, Cascante M. Quantification of intracellular phosphorylated carbohydrates in HT29 human colon adenocarcinoma cell line using liquid chromatography-electrospray ionization tandem mass spectrometry. Anal Chem 2007; 79:5000-5. [PMID: 17523595 DOI: 10.1021/ac070170v] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The quantitative understanding of the role of sugar phosphates in regulating tumor energetic metabolism at the proteomic and genomic level is a prerequisite for an efficient rational design in combined drug chemotherapy. Therefore, it is necessary to determine accurately the concentration of the main sugar phosphate pools at the lower concentrations present in the often-limited volume of tumor cell samples. Taking as an example the human adenocarcinoma cell line HT29, we here report a fast and reliable quantitative method based on the use of liquid nitrogen, a weak acid extraction, and liquid chromatography-electrospray ionization tandem mass spectrometry to quantify simultaneously the intracellular concentration of sugar phosphate pools. The method was set up using standard addition curves. Thus, it is possible to identify and quantify hexose phosphate, pentose phosphate, and triose phosphate pools up to 0.02-0.10 ng x microL(-1), depending on the analyte. The method developed was here used for the quantitative study of changes in phosphorylated carbohydrates of central carbon metabolism when high or low glucose concentration conditions are induced in vitro in the HT29 human colon adenocarcinoma cell line.
Collapse
Affiliation(s)
- Pedro Vizán
- Department of Biochemistry and Molecular Biology, University of Barcelona, Av Diagonal 645, 08028 Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Simultaneous determination of multiple intracellular metabolites in glycolysis, pentose phosphate pathway and tricarboxylic acid cycle by liquid chromatography-mass spectrometry. J Chromatogr A 2007; 1147:153-64. [PMID: 17376459 DOI: 10.1016/j.chroma.2007.02.034] [Citation(s) in RCA: 373] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Revised: 02/02/2007] [Accepted: 02/06/2007] [Indexed: 10/23/2022]
Abstract
A highly selective and sensitive method for identification and quantification of intracellular metabolites involved in central carbon metabolism (including glycolysis, pentose phosphate pathway and tricarboxylic acid cycle) by means of liquid chromatography-tandem quadrupole mass spectrometry (LC-MS/MS) was developed. The volatile ion pair modifier tributylammonium acetate (TBAA) was employed in the mobile phase for simultaneously separation of 29 negatively charged compounds including sugar phosphates, nucleotides, and carboxylic acids on a common C18 reversed-phase column. Method validation results displayed that limits of detection (LODs) calculated according to DIN (German Institute for Standardization) 32645 are mostly below 60 nM, only with the exception of pyruvate and malate. The calibration curves showed excellent linearity mainly over three orders of magnitude with correlation coefficients R(2)>0.9982. This LC-MS/MS method was successfully applied to determine these metabolites in cell extracts of Escherichia coli. Most of the intracellular metabolites were found within the detection range and the relative standard deviations of the measurements were smaller than 5.65% (n=5) for a cell extract sample.
Collapse
|
24
|
Abstract
Separation of polar compounds on polar stationary phases with partly aqueous eluents is by no means a new separation mode in LC. The first HPLC applications were published more than 30 years ago, and were for a long time mostly confined to carbohydrate analysis. In the early 1990s new phases started to emerge, and the practice was given a name, hydrophilic interaction chromatography (HILIC). Although the use of this separation mode has been relatively limited, we have seen a sudden increase in popularity over the last few years, promoted by the need to analyze polar compounds in increasingly complex mixtures. Another reason for the increase in popularity is the widespread use of MS coupled to LC. The partly aqueous eluents high in ACN with a limited need of adding salt is almost ideal for ESI. The applications now encompass most categories of polar compounds, charged as well as uncharged, although HILIC is particularly well suited for solutes lacking charge where coulombic interactions cannot be used to mediate retention. The review attempts to summarize the ongoing discussion on the separation mechanism and gives an overview of the stationary phases used and the applications addressed with this separation mode in LC.
Collapse
|
25
|
Vas G, Conkrite K, Amidon W, Qian Y, Bánki K, Perl A. Study of transaldolase deficiency in urine samples by capillary LC-MS/MS. JOURNAL OF MASS SPECTROMETRY : JMS 2006; 41:463-9. [PMID: 16470722 PMCID: PMC3127395 DOI: 10.1002/jms.1004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Transaldolase (TAL) is a key enzyme of the pentose phosphate pathway (PPP). TAL deficiency is a newly recognized cause of liver cirrhosis. We have developed an ion-pair LC separation combined with negative ion electrospray MS/MS detection method to assess PPP metabolites in urine samples from TAL-deficient mice. Sedoheptulose 7-phosphate (S7P), C5-polyols D-arabitol and D-ribitol, and 6-phosphogluconate (6PG) levels were markedly increased in urine of TAL-deficient mice with respect to those of wild-type and heterozygote littermates. The detection limits of S7P, D-arabitol, and 6PG were 0.15 +/- 0.015 pmol, 3.5 +/- 0.41 pmol, and 0.61 +/- 0.055 pmol, respectively. The limit of quantitation was 0.4 +/- 0.024 nmol/ml for S7P, 1.6 +/- 0.11 nmol/ml for 6PG and 10 +/- 0.7 nmol/ml for D-arabitol. Additional metabolites, hexose 6-phosphates (m/z 259), D-ribose 5-phosphate and D-xylulose 5-phosphate (m/z 229), D-fructose 1,6-diphosphate (m/z 339), C6-polyols (m/z 181) and GSSG (m/z 611), that have been positively identified in mouse urine, showed similar levels in control and TAL-deficient mice.
Collapse
Affiliation(s)
| | | | | | | | | | - András Perl
- Correspondence to: András Perl, SUNY Upstate Medical University, Department of Medicine, 750 East Adams Street, 13210 NY, USA.
| |
Collapse
|
26
|
Antonopoulos A, Favetta P, Jacquinet JC, Lafosse M. Tandem mass spectrometry for the characterisation of sulphated-phosphorylated analogues of the carbohydrate-protein linkage region of proteoglycans. JOURNAL OF MASS SPECTROMETRY : JMS 2005; 40:1628-36. [PMID: 16287030 DOI: 10.1002/jms.941] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Carbohydrate-protein linkage region of proteoglycans is a key oligosaccharide structure because their sulphated and/or phosphorylated analogues control the biosynthesis of glucosaminoglycans or galactosaminoglycans. Therefore, synthesised sulphated and/or phosphorylated analogues were characterised by tandem mass spectrometry in the negative-ion mode. Results demonstrated that the product ion profile was characterised by glycosidic and cross-ring cleavages depending on the position and the type of the charged group (sulphate, phosphate or carboxylate). When the above compounds were sulphated and phosphorylated, the ion found at m/z 79 was the only one that demonstrated a phosphate group on the structure. The data also suggested that when a sodium cation was present in a sulphated and phosphorylated structure, the phosphate group in most cases was neutralised by the sodium cation, and therefore cleaved off the molecule, while the sulphate group was carrying the negative charge.
Collapse
Affiliation(s)
- Aristotelis Antonopoulos
- UMR 6005 CNRS, Institut de Chimie Organique et Analytique, ICOA, Université d'Orléans, BP 6759, 45067 Orléans Cedex 2, France
| | | | | | | |
Collapse
|
27
|
Villas-Bôas SG, Mas S, Akesson M, Smedsgaard J, Nielsen J. Mass spectrometry in metabolome analysis. MASS SPECTROMETRY REVIEWS 2005; 24:613-46. [PMID: 15389842 DOI: 10.1002/mas.20032] [Citation(s) in RCA: 362] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
In the post-genomic era, increasing efforts have been made to describe the relationship between the genome and the phenotype in cells and organisms. It has become clear that even a complete understanding of the state of the genes, messages, and proteins in a living system does not reveal its phenotype. Therefore, researchers have started to study the metabolome (or the metabolic complement of functional genomics). Within this context, mass spectrometry (MS) has increasingly occupied a central position in the methodologies developed for determination of the metabolic state. This review is mainly focused on the status of MS in the metabolome field, trying to direct the reader to the main approaches for analysis of metabolites, reviewing basic methodologies in sample preparation, and the most recent MS techniques introduced. Apart from the description of the different methods, this review will try to state a general comparison between the several different techniques that involve MS and metabolite analysis, and will highlight their limitations and preferred applicability.
Collapse
Affiliation(s)
- Silas G Villas-Bôas
- Center for Microbial Biotechnology, BioCentrum-DTU, Technical University of Denmark, Building 223, DK-2800 Kgs. Lyngby, Denmark
| | | | | | | | | |
Collapse
|
28
|
Dragani LK, Berrie CP, Corda D, Rotilio D. Analysis of glycerophosphoinositol by liquid chromatography–electrospray ionisation tandem mass spectrometry using a β-cyclodextrin-bonded column. J Chromatogr B Analyt Technol Biomed Life Sci 2004; 802:283-9. [PMID: 15018789 DOI: 10.1016/j.jchromb.2003.12.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2003] [Revised: 11/25/2003] [Accepted: 12/03/2003] [Indexed: 10/26/2022]
Abstract
Glycerophosphoinositol (GroPIns) has been demonstrated to have important roles in many intracellular regulatory processes. GroPIns has been analysed for many years by anion-exchange HPLC after radiolabelling of cells in culture, but no method has been developed, to our knowledge, for the direct detection and quantitation of the unlabelled compound in such biological samples. Here is reported a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the direct quantitative analysis of GroPIns that can indeed be applied to cell extracts. Analyses were performed on a beta-cyclodextrin-bonded HPLC column using a binary mobile phase of acetonitrile and 20 mM ammonium formate in water, which allowed direct on-line detection by tandem mass spectrometry in negative electrospray ionisation (ESI) mode. The method was applied to the quantitative analysis of GroPIns in selected rat cell lines after a two-phase acid extraction of cultured cells using external calibration. The potential matrix signal suppression effects were investigated by the parallel quantitation of GroPIns in extracts of selected cultured cell lines with both external calibration and the standard additions method. The accuracy data obtained demonstrated the feasibility of external calibration, so allowing a simpler and less time-consuming approach than that of the standard additions method.
Collapse
Affiliation(s)
- Luana K Dragani
- G. Paone Environmental Health Center, Mario Negri Institute for Pharmacological Research, Consorzio Mario Negri Sud, Via Nazionale, Santa Maria Imbaro, 66030 Chieti, Italy.
| | | | | | | |
Collapse
|
29
|
Gao H, Petzold CJ, Leavell MD, Leary JA. Investigation of ion/molecule reactions as a quantification method for phosphorylated positional isomers. an FT-ICR approach. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2003; 14:916-924. [PMID: 12892915 DOI: 10.1016/s1044-0305(03)00401-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A rapid and accurate method of quantifying positional isomeric mixtures of phosphorylated hexose and N-acetylhexosamine monosacchrides by using gas-phase ion/molecule reactions coupled with FT-ICR mass spectrometry is described. Trimethyl borate, the reagent gas, reacts readily with the singly charged negative ions of phosphorylated monosaccharides to form two stable product ions corresponding to the loss of one or two neutral molecules of methanol from the original adduct. Product distribution in the ion/molecule reaction spectra differs significantly for isomers phosphorylated in either the 1- or the 6-position. As a result, the percents of total ion current of these product ions for a mixture of the two isomers vary with its composition. In order to determine the percentage of each isomer in an unknown mixture, a multicomponent quantification method is utilized in which the percents of total ion current of the two product ions for each pure monosaccharide phosphate and the mixture are used in a two-equation, two-unknown system. The applicability of this method is demonstrated by successfully quantifying mock mixtures of four different isomeric pairs: Glucose-1-phosphate and glucose-6-phosphate; mannose-1-phosphate and mannose-6-phosphate; galactose-1-phosphate and galactose-6-phosphate; N-acetylglucosamine-1-phosphate and N-acetylglucosamine-6-phosphate. The effects of mixture concentrations and ion/molecule reaction conditions on the quantification are also discussed. Our results demonstrate that this assay is a fast, sensitive, and robust method to quantify isomeric mixtures of phosphorylated monosaccharides.
Collapse
Affiliation(s)
- Hong Gao
- Department of Chemistry, University of California at Berkeley, Berkeley, California 94720, USA
| | | | | | | |
Collapse
|
30
|
Leavell MD, Leary JA. Probing isomeric differences of phosphorylated carbohydrates through the use of ion/molecule reactions and FT-ICR MS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2003; 14:323-331. [PMID: 12686479 DOI: 10.1016/s1044-0305(03)00067-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Through the use of ion/molecule reactions and tandem mass spectrometry, phosphate position is assigned in both phosphorylated monosaccharides and oligosaccharides. In previous work phosphate moieties of monosaccharides were stabilized under collisional activation, by first derivatizing the deprotonated monosaccharide with trimethyl borate through an ion/molecule reaction, and the phosphate position determined through marker ions generated in tandem mass spectra. In this work, the methodology is extended to larger phosphorylated oligomers employing chlorotrimethylsilane (TMSCl) as the ion/molecule reagent. Phosphorylated monosaccharides were first investigated to determine diagnostic ions for phosphate linkage in monomeric standards. It was observed that the diagnostic ions showed both linkage and some monosaccharide stereochemical information. Furthermore, it was observed that TMS addition stabilized the phosphate moiety under collisionally activated conditions. Upon identification of the diagnostic ions, the methodology was applied to lactose-1-phosphate. It was found that TMSCl, stabilized the phosphate moiety upon collisional activation, and furthermore, the phosphate linkage could be determined through tandem mass spectrometric analysis. As a further extrapolation to biologically relevant problems, the methodology was applied to a lipophosphoglycan analog from the protozoan parasite Leishmania. This sample contains bridging phosphates which were converted to terminal phosphates through collision induced dissociation. The sample was then analyzed in the same manner as lactose-1-phosphate, yielding phosphate linkage information and stereochemical information. This study showed that, using the developed methodology, phosphate linkage can be determined from both monosaccharides and larger oligosaccharides; furthermore it is applicable to samples in which the phosphates are either terminating or bridging.
Collapse
Affiliation(s)
- M D Leavell
- Department of Chemistry, University of California at Berkeley, 94720, USA
| | | |
Collapse
|
31
|
Han YS, Sabbioni C, van der Heijden R, Verpoorte R. High-performance liquid chromatography assay for 1-deoxy-D-xylulose 5-phosphate synthase activity using fluorescence detection. J Chromatogr A 2003; 986:291-6. [PMID: 12597635 DOI: 10.1016/s0021-9673(02)02016-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A high-performance liquid chromatography assay for activity of 1-deoxy-D-xylulose 5-phosphate synthase, an early enzyme in the recently discovered 2-C-methyl-D-erythritol-4-phosphate pathway, was developed. In this assay, the enzymatic product 1-deoxy-D-xylulose was first derivatized with a fluorescent reagent 2-anthranilic acid, followed by separation using HPLC on a Nova-Pak phenyl column with a mobile phase containing CH3CN-water-1-butylamine-tetrahydrofuran-H3PO4 (2:97:0.125:0.5:0.25, v/v). The eluate was monitored by fluorescence detection at an excitation wavelength of 320 nm and an emission wavelength of 425 nm for quantitation of the fluorescent derivative. A linear response was obtained between 5 and 200 ng of 1-deoxy-D-xylulose. This assay was successfully applied to measure the 1-deoxy-D-xylulose 5-phosphate synthase activity in a recombinant E. coli overexpressing dxs gene. It demonstrated that this assay is simple, sensitive and selective compared to the methods used at present.
Collapse
Affiliation(s)
- Ying-Shan Han
- Division of Pharmacognosy, Leiden/Amsterdam Center for Drug Research, Gorlaeus Laboratories, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | | | | | | |
Collapse
|
32
|
Macásek F, Brúder P, Patakyová A, Búriová E. Atmospheric pressure electrospray ionization mass spectra of glucose and 2-fluorodeoxyglucose for quantitative analysis of 2-fluorodeoxyglucose by high-performance liquid chromatography. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2003; 9:129-137. [PMID: 12748396 DOI: 10.1255/ejms.529] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
2-Fluoro-2-deoxy-D-glucose (FDG) labeled by fluorine-18 is the most widely used radiopharmaceutical for positron emission tomography (PET). For high-performance liquid chromatography (HPLC)/MS assay and quality control, the mass spectra of FDG and glucose (Glc) in organic + water solutions were studied by flow injection analysis (FIA) and in a chromatographic eluate. In acetonitrile (MeCN) + 0.025% ammonium formate (NH(4)HCO(2)) solvent (80 : 20), electrospray ionisation (ESI) of glucose-FDG provides M.NH(4)(+) and 2M.Na(+) (M = Glc or FDG) as the most intense positive ions. Formation of the latter ions and also of M.MeCN.Na(+) and 2MeCN. Na(+) is typical of the presence of NaCl in the ESI inlet. The positive ions include heavier ions corresponding to the impurities separated by HPLC and also to the cross-ring fragmentation of complexes (2FDG. aMeCNX)L, where a = 0 or 1, L is either Na(+) or NH(4)(+) and X is a fragmented pyranose or anhydropyranose residue. The second most abundant Glc negative ion is m/z = 359 which was interpreted as (2GlcH(+))(). The negative-ion spectrum of FDG has dominating lines due to FDG.HCO(2)() ions at m/z 227 and also (2FDGH(+))() at m/z 363. The m/z 363 signal is suppressed in the presence of NaCl at a molar ratio of 4 : 1 to NH(4)HCO(2), while the ions at m/z 217 and 219, i.e. FDG.Cl(), become three times more intense than FDG.HCO(2)(). The latter ion appears to be most suitable as an analytical signal for chemical analysis of FDG at m/z 226 and 227. Limits of FDG quantitation (LOQ) of 19 ng and 21 ng were found for the 200(+) and 227() ion signals, respectively, and are wholly adequate for verification of total FDG content in radiopharmaceuticals.
Collapse
Affiliation(s)
- F Macásek
- Department of Nuclear Chemistry, Faculty of Natural Sciences, Comenius University, SK-84215 Bratislava, Slovakia.
| | | | | | | |
Collapse
|
33
|
Li Y, Ogata Y, Freeze HH, Scott CR, Turecek F, Gelb MH. Affinity capture and elution/electrospray ionization mass spectrometry assay of phosphomannomutase and phosphomannose isomerase for the multiplex analysis of congenital disorders of glycosylation types Ia and Ib. Anal Chem 2003; 75:42-8. [PMID: 12530817 DOI: 10.1021/ac0205053] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report a new application of affinity capture-elution electrospray mass spectrometry (ACESI-MS) to assay the enzymes phosphomannomutase (PMM) and phosphomannose isomerase (PMI), which when deficient cause congenital disorders of glycosylation CDG-type Ia and type Ib, respectively. The novel feature of this mass-spectrometry-based assay is that it allows one to distinguish and quantify enzymatic products that are isomeric with their substrates that are present simultaneously in complex mixtures, such as cultured human cell homogenates. This is achieved by coupled assays in which the PMM and PMI primary products are in vitro subjected to another enzymatic reaction with yeast transketolase that changes the mass of the products to be detected by mass spectrometry. The affinity purification procedure is fully automated, and the mass spectrometric analysis is multiplexed in a fashion that is suitable for high-throughput applications.
Collapse
Affiliation(s)
- Yijun Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | |
Collapse
|
34
|
Leavell MD, Kruppa GH, Leary JA. Analysis of phosphate position in hexose monosaccharides using ion-molecule reactions and SORI-CID on an FT-ICR mass spectrometer. Anal Chem 2002; 74:2608-11. [PMID: 12069245 DOI: 10.1021/ac020054m] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Through the use of ion-molecule reactions and SORI-CID, the phosphate position in hexose phosphate monosaccharides has been determined in the negative ion mode. Trimethyl borate was used as a reagent gas and was found to react readily with the phosphorylated hexose monosaccharides. After reaction of the reagent gas with the hexose phosphate, ion activation of the precursor by SORI-CID yielded different MS/MS spectra. Different diagnostic ions were generated for the two isomers, thus enabling differentiation and linkage position determination of the phosphate moiety.
Collapse
|
35
|
Analysis of glycolytic intermediates in Saccharomyces cerevisiae using anion exchange chromatography and electrospray ionization with tandem mass spectrometric detection. Anal Chim Acta 2002. [DOI: 10.1016/s0003-2670(02)00240-4] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
36
|
Feurle J, Espinosa E, Eckstein S, Pont F, Kunzmann V, Fournié JJ, Herderich M, Wilhelm M. Escherichia coli produces phosphoantigens activating human gamma delta T cells. J Biol Chem 2002; 277:148-54. [PMID: 11675382 DOI: 10.1074/jbc.m106443200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human Vgamma9delta2 T lymphocytes are suggested to play an important role in the immune response to various microbial pathogens. In contrast to alphabeta T cells, gammadelta T lymphocytes recognize small, non-protein, phosphate-bearing antigens (phosphoantigens) in a major histocompatibility complex-independent manner. Four different phosphoantigens termed TUBag1 to TUBag4 with a common 3-formyl-1-butyl-pyrophosphate moiety and isopentenyl-pyrophosphate have been isolated and identified from mycobacteria. However, natural occurring gammadelta T cell ligands from other bacterial species were not characterized so far. Here, we describe the structural identification of the two compounds responsible for the gammadelta T cell-stimulating capacity of Escherichia coli as similar to the mycobacterial phosphoantigens 3-formyl-1-butyl-pyrophosphate and its M(r) 275 homologue TUBag2. In addition, E. coli phosphoantigens exert bioactivities on gammadelta T cells with similar potencies to the mycobacterial phosphoantigens at 5-15 nm concentration. Furthermore, our results clearly prove that the deoxyxylulose 5-phophate pathway (also referred to as Rohmer metabolic route of isoprenoid biosynthesis) is essential for the biosynthesis of the phosphoantigens in E. coli. Because this pathway is absent from human cells, it proves an ideal target for focusing efficiently the antimicrobial selectivity of human gammadelta T lymphocytes.
Collapse
Affiliation(s)
- Juliane Feurle
- Medizinische Poliklinik der Universitaet Wuerzburg, Klinikstrasse 6-8, 97070 Wuerzburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Buchholz A, Takors R, Wandrey C. Quantification of intracellular metabolites in Escherichia coli K12 using liquid chromatographic-electrospray ionization tandem mass spectrometric techniques. Anal Biochem 2001; 295:129-37. [PMID: 11488613 DOI: 10.1006/abio.2001.5183] [Citation(s) in RCA: 184] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The quantitative comprehension of microbial metabolic networks is a prerequisite for an efficient rational strain improvement ("metabolic engineering"). It is therefore necessary to accurately determine the concentration of a large number of reactants (i.e., metabolites, nucleotides, cofactors) in order to understand "in vivo" reaction kinetics. Quantification of intracellular concentrations of glycolytic intermediates and nucleotides in Escherichia coli K12 using a perchloric acid extraction and an LC-ESI-MS method was achieved. Intracellular metabolites (e.g., glucose 6-phosphate, fructose 1,6-bisphosphate, 6-phospho gluconate, acetyl-CoA, adenine nucleotides) were quantified under defined (glucose-limited steady-state) growth conditions. The method was verified by comparing the intracellular metabolite concentrations measured via LC-ESI-MS with enzymatic determinations. It is thus possible to identify and quantify more than 15 intracellular metabolites in parallel with a minimal amount of sample volume.
Collapse
Affiliation(s)
- A Buchholz
- Institute of Biotechnology 2, Research Centre Juelich, 52425 Juelich, Germany
| | | | | |
Collapse
|
38
|
Sun D, Che J, Lu W, Zheng X. Heats of adsorption of some organic compounds on beta-cyclodextrin determined by gas-solid chromatography. J Chromatogr A 1999; 864:293-8. [PMID: 10669297 DOI: 10.1016/s0021-9673(99)01003-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Isosteric adsorptive enthalpies have been derived from the temperature dependence of retention volumes determined by eluted pulse gas-solid chromatography. The heat data were obtained for systems using more than 20 organic liquids as adsorbates, and beta-cyclodextrin as adsorbent. The experimental results have been discussed in the light of intermolecular force between molecules of adsorbate and adsorbent.
Collapse
Affiliation(s)
- D Sun
- Institute of Catalysis, Zhejiang University, Hangzhou, China
| | | | | | | |
Collapse
|
39
|
Jomaa H, Feurle J, Lühs K, Kunzmann V, Tony HP, Herderich M, Wilhelm M. Vgamma9/Vdelta2 T cell activation induced by bacterial low molecular mass compounds depends on the 1-deoxy-D-xylulose 5-phosphate pathway of isoprenoid biosynthesis. FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY 1999; 25:371-8. [PMID: 10497868 DOI: 10.1111/j.1574-695x.1999.tb01362.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Isopentenyl diphosphate (IPP), an important precursor of isoprenoid biosynthesis in prokaryotic and eukaryotic organisms, has been shown to activate Vgamma9/Vdelta2 T cells, the major subset of human gammadelta T cells. The biosynthesis of IPP has been first described as the acetate/mevalonate pathway. Recently, 1-deoxy-D-xylulose 5-phosphate (DOXP) and 2-C-methyl-D-erythritol 4-phosphate have been shown to be key metabolites in the DOXP pathway also leading to the formation of IPP in some eubacteria such as Escherichia coli. Here we report that the low molecular mass fraction of extracts from bacteria using the DOXP pathway induces Vgamma9/Vdelta2 T cell activation, while analogous preparations from bacteria using the classical mevalonate pathway fail to do so. Addition of 1-deoxy-D-xylulose potentiates the ability of E. coli extracts to activate Vgamma9/Vdelta2 T cells. As the amounts of IPP present in the bacterial preparations are not sufficient to induce significant Vgamma9/Vdelta2 T cell activation, our data suggest that compounds other than IPP associated with the DOXP pathway are responsible for Vgamma9/Vdelta2 T cell activation.
Collapse
Affiliation(s)
- H Jomaa
- Medizinische Poliklinik, University of Würzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
40
|
IKEGUCHI Y, NAKAMURA H. Postcolumn Fluorometric Determination of Water-Soluble Organic Phosphates by High-Performance Liquid Chromatography. ANAL SCI 1999. [DOI: 10.2116/analsci.15.1163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Yoshihiko IKEGUCHI
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Science University of Tokyo
| | - Hiroshi NAKAMURA
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Science University of Tokyo
| |
Collapse
|