1
|
Ramalingam M, Jang S, Hwang J, Cho HH, Kim BC, Jeong HS. Neural-induced human adipose tissue-derived stem cell secretome exerts neuroprotection against rotenone-induced Parkinson's disease in rats. Stem Cell Res Ther 2025; 16:193. [PMID: 40254594 PMCID: PMC12010609 DOI: 10.1186/s13287-025-04306-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 04/01/2025] [Indexed: 04/22/2025] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a multifactorial disease that involves genetic and environmental factors, which play an essential role in the pathogenesis of PD. Mesenchymal stem cells release a set of bioactive molecules called "secretome" that regulates intercellular communication and cargo transfer in signaling pathways for PD treatment. Thus, this study aimed to evaluate the neuroprotective effects of neural-induced human adipose tissue-derived stem cell (NI-hADSC)-conditioned medium (NI-hADSC-CM) and its exosomes (NI-hADSC-Exo) in a rotenone (ROT)-induced model of PD in rats. METHODS The NI-hADSC-CM was collected from NI-hADSC after 14 days of neural differentiation, and its NI-hADSC-Exo were isolated using a tangential flow filtration system. ROT (1 mg/kg) was subcutaneously administered for 28 days to establish a model of PD in rats. The treatment of NI-hADSC-CM or NI-hADSC-Exo was intravenously injected on days 15, 18, 21, 24, and 27. Animal behavioral effects were explored via a rotarod test. After 28 days, histological and western blot analyses were performed to investigate the tyrosine hydroxylase (TH), α-synuclein (α-syn) aggregation, and downstream signaling pathways for experimental validation. RESULTS NI-hADSC-Exo improved the motor balance and coordination skills against ROT toxicity. ROT reproduced the pathological features of PD, such as a decrease in TH-positive dopaminergic neurons and an increase in α-syn aggregation and glial fibrillary acidic protein (GFAP)-positive cells. NI-hADSC-CM and NI-hADSC-Exo improved the TH expression, decreased the Triton X-100 soluble and insoluble oligomeric p-S129 α-syn, and influenced the differential reactivity to astrocytes and microglia. Secretome treatment could reverse the ROT-induced damages in the neuronal structural and functional proteins, mitochondrial apoptosis, and caspase cascade. The treatment of NI-hADSC-CM and NI-hADSC-Exo ameliorated the ROT toxicity-induced serine-threonine protein kinase dysregulation and autophagy impairment to clear the aggregated α-syn. CONCLUSIONS NI-hADSC-CM and NI-hADSC-Exo significantly exerted neuroprotection by decreasing α-syn toxicity, inhibiting neuroinflammation and apoptosis, restoring autophagic flux properties, and promoting the neuronal function in ROT-injected rats; however, the influence of these treatments on signaling pathways differed slightly between the midbrain and striatum regions. Targeting α-syn degradation pathways provides a novel strategy to elucidate the beneficial effects of MSC secretome and future safe cell-free treatments for PD.
Collapse
Affiliation(s)
- Mahesh Ramalingam
- Department of Physiology, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea.
| | - Sujeong Jang
- Department of Physiology, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea.
| | - Jinsu Hwang
- Department of Physiology, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea
| | - Hyong-Ho Cho
- Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
| | - Byeong C Kim
- Department of Neurology, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
| | - Han-Seong Jeong
- Department of Physiology, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea.
| |
Collapse
|
2
|
Petzold A. Proteolysis-Based Biomarker Repertoire of the Neurofilament Proteome. J Neurochem 2025; 169:e70023. [PMID: 40066701 PMCID: PMC11894590 DOI: 10.1111/jnc.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 03/15/2025]
Abstract
Neurodegeneration presents a significant challenge in ageing populations, often being detected too late for effective intervention. Biomarkers have shown great potential in addressing this issue, with neurofilament (Nf) proteins emerging as validated biomarkers presently transitioning from research to routine laboratory use. Whilst advances in large-scale quantitative analyses have enabled the targeted study of proteolytic Nf fragments in blood, the complete landscape of the Nf proteolytic breakdown remains unknown. This study presents a comprehensive atlas of the human Nf isoform (Z) degradome, based on the number of known cleavage sites (x). The full scale of the Nf degradome is described by the formula: Z = ((x + 1) × (x + 2)/2) - 1. The resulting neurofilament degradome atlas (NDA) was validated through a triple-layer approach using in vitro data (open access at: https://doi.org/10.5522/04/25689378.v1). The NDA offers valuable applications in biomarker detection, targeted antibody development, exploration of autoimmunity and understanding Nf aggregate formation. Analysis of the Nf degradome reveals novel insights into neurodegenerative diseases by investigating peptide pools affected by genetic mutations in the Nf genome and alterations in proteolytic pathways. The annotated NDA is publicly available as a database resource, supporting advancements in affinity-based biomarker tests through informed peptide selection and minimising biases in label-free approaches. In conclusion, this study highlights the biological significance of a dynamic pool of coexisting proteolytic Nf peptides, providing a framework that can be applied to other proteins.
Collapse
Affiliation(s)
- Axel Petzold
- Queen Square Institute of Neurology, UCL and The National Hospital for Neurology and NeurosurgeryLondonUK
| |
Collapse
|
3
|
Song Q, Zhang H, Kong J, Wong MS, Li HW. A turn-on fluorescent immunosensor for neurodegenerative disease related neurofilament light chain protein. Mikrochim Acta 2025; 192:131. [PMID: 39904887 PMCID: PMC11794385 DOI: 10.1007/s00604-025-06995-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/21/2025] [Indexed: 02/06/2025]
Abstract
Neurodegenerative diseases (NDs) pose significant challenges to both longevity and quality of life, affecting millions worldwide and ranking as a major cause of global morbidity and disability. There is an urgent need for less invasive, cost-effective diagnostic methods that can reliably detect ND-related biomarkers in readily available biofluids such as serum. In response to this need, we have developed an ultra-sensitive assay that utilizes magnetic nanoparticles and a novel, tailor-made turn-on fluorescent probe named F-SPG. This innovative assay enables the detection of neurofilament light chain (NfL) at femtomolar concentrations, with a remarkable detection limit of 24 fM which is at least 18 times more sensitive than the conventional ELISA kits. Our assay's design eliminates the need for traditional secondary antibody in immunoassay, thereby streamlining the diagnostic process. Recoveries exceeding 95% underscore the assay's precision and reliability. It has proven effective in distinguishing Alzheimer's Disease patients from healthy individuals by quantifying serum NfL levels, showcasing its potential as a cost-effective, ultra-sensitive tool for the early screening of neurodegenerative diseases.
Collapse
Affiliation(s)
- Qingting Song
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Hailong Zhang
- Department of Chemistry, Hong Kong Baptist University, Hong Kong, SAR, China
| | - Jia Kong
- Department of Chemistry, Hong Kong Baptist University, Hong Kong, SAR, China
| | - Man Shing Wong
- Department of Chemistry, Hong Kong Baptist University, Hong Kong, SAR, China.
| | - Hung-Wing Li
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, SAR, China.
| |
Collapse
|
4
|
Khalil M, Teunissen CE, Lehmann S, Otto M, Piehl F, Ziemssen T, Bittner S, Sormani MP, Gattringer T, Abu-Rumeileh S, Thebault S, Abdelhak A, Green A, Benkert P, Kappos L, Comabella M, Tumani H, Freedman MS, Petzold A, Blennow K, Zetterberg H, Leppert D, Kuhle J. Neurofilaments as biomarkers in neurological disorders - towards clinical application. Nat Rev Neurol 2024; 20:269-287. [PMID: 38609644 DOI: 10.1038/s41582-024-00955-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2024] [Indexed: 04/14/2024]
Abstract
Neurofilament proteins have been validated as specific body fluid biomarkers of neuro-axonal injury. The advent of highly sensitive analytical platforms that enable reliable quantification of neurofilaments in blood samples and simplify longitudinal follow-up has paved the way for the development of neurofilaments as a biomarker in clinical practice. Potential applications include assessment of disease activity, monitoring of treatment responses, and determining prognosis in many acute and chronic neurological disorders as well as their use as an outcome measure in trials of novel therapies. Progress has now moved the measurement of neurofilaments to the doorstep of routine clinical practice for the evaluation of individuals. In this Review, we first outline current knowledge on the structure and function of neurofilaments. We then discuss analytical and statistical approaches and challenges in determining neurofilament levels in different clinical contexts and assess the implications of neurofilament light chain (NfL) levels in normal ageing and the confounding factors that need to be considered when interpreting NfL measures. In addition, we summarize the current value and potential clinical applications of neurofilaments as a biomarker of neuro-axonal damage in a range of neurological disorders, including multiple sclerosis, Alzheimer disease, frontotemporal dementia, amyotrophic lateral sclerosis, stroke and cerebrovascular disease, traumatic brain injury, and Parkinson disease. We also consider the steps needed to complete the translation of neurofilaments from the laboratory to the management of neurological diseases in clinical practice.
Collapse
Affiliation(s)
- Michael Khalil
- Department of Neurology, Medical University of Graz, Graz, Austria.
| | - Charlotte E Teunissen
- Neurochemistry Laboratory Department of Laboratory Medicine, Amsterdam Neuroscience, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, Netherlands
| | - Sylvain Lehmann
- LBPC-PPC, Université de Montpellier, INM INSERM, IRMB CHU de Montpellier, Montpellier, France
| | - Markus Otto
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Fredrik Piehl
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Tjalf Ziemssen
- Center of Clinical Neuroscience, Department of Neurology, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Stefan Bittner
- Department of Neurology, Focus Program Translational Neuroscience (FTN), and Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Maria Pia Sormani
- Department of Health Sciences, University of Genova, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Thomas Gattringer
- Department of Neurology, Medical University of Graz, Graz, Austria
- Division of Neuroradiology, Vascular and Interventional Radiology, Department of Radiology, Medical University of Graz, Graz, Austria
| | - Samir Abu-Rumeileh
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Simon Thebault
- Multiple Sclerosis Division, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ahmed Abdelhak
- Weill Institute for Neurosciences, Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| | - Ari Green
- Weill Institute for Neurosciences, Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| | - Pascal Benkert
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
| | - Ludwig Kappos
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
| | - Manuel Comabella
- Neurology Department, Multiple Sclerosis Centre of Catalonia, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Hayrettin Tumani
- Department of Neurology, CSF Laboratory, Ulm University Hospital, Ulm, Germany
| | - Mark S Freedman
- Department of Medicine, University of Ottawa, The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Axel Petzold
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Neurology, MS Centre and Neuro-ophthalmology Expertise Centre Amsterdam, Amsterdam Neuroscience, Amsterdam, Netherlands
- Moorfields Eye Hospital, The National Hospital for Neurology and Neurosurgery and the Queen Square Institute of Neurology, UCL, London, UK
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, and Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, P. R. China
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - David Leppert
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
| | - Jens Kuhle
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland.
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland.
| |
Collapse
|
5
|
Wong SH, Petzold A. Remodeling of the neuromuscular junction in myasthenia gravis increases serum neurofilament heavy chain levels. Muscle Nerve 2023. [PMID: 37144900 DOI: 10.1002/mus.27838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 05/06/2023]
Abstract
INTRODUCTION/AIMS In myasthenia gravis, prolonged muscle denervation causes muscle atrophy. We re-visited this observation using a biomarker hypothesis. We tested if serum neurofilament heavy chain levels, a biomarker for axonal degeneration, were elevated in myasthenia gravis. METHODS We enrolled 70 patients with isolated ocular myasthenia gravis and 74 controls recruited from patients in the emergency department. Demographic data were collected alongside serum samples. Serum samples were analyzed by enzyme-linked immunosorbent assay (ELISA) for the neurofilament heavy chain (NfH-SMI35). The statistical analyses included group comparisons, receiver operator characteristic (ROC) curves, area under the curve (AUC), sensitivity, specificity, and positive and negative predictive values. RESULTS Serum neurofilament heavy chain levels were significantly (p < 0.0001) higher in individuals with myasthenia gravis (0.19 ng/mL) than in healthy control subjects (0.07 ng/mL). A ROC AUC optimized cutoff level of 0.06 ng/mL gave a diagnostic sensitivity of 82%, specificity of 76%, positive predictive value of 0.77 and a negative predictive value of 0.81. DISCUSSION The increase of serum neurofilament heavy chain levels in myasthenia gravis is consistent with observations of muscle denervation. We suggest that there is ongoing remodeling of the neuromuscular junction in myasthenia gravis. Longitudinal quantification of neurofilament isoform levels will be needed to investigate the prognostic value and potentially guide treatment decisions.
Collapse
Affiliation(s)
- Sui H Wong
- UCL Institute of Neurology, Department of Neuroimmunology & The National Hospital for Neurology and Neurosurgery, Queen Square, Moorfields Eye Hospital, London, UK
| | - Axel Petzold
- UCL Institute of Neurology, Department of Neuroimmunology & The National Hospital for Neurology and Neurosurgery, Queen Square, Moorfields Eye Hospital, London, UK
| |
Collapse
|
6
|
Petzold A. The 2022 Lady Estelle Wolfson lectureship on neurofilaments. J Neurochem 2022; 163:179-219. [PMID: 35950263 PMCID: PMC9826399 DOI: 10.1111/jnc.15682] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 01/11/2023]
Abstract
Neurofilament proteins (Nf) have been validated and established as a reliable body fluid biomarker for neurodegenerative pathology. This review covers seven Nf isoforms, Nf light (NfL), two splicing variants of Nf medium (NfM), two splicing variants of Nf heavy (NfH),α -internexin (INA) and peripherin (PRPH). The genetic and epigenetic aspects of Nf are discussed as relevant for neurodegenerative diseases and oncology. The comprehensive list of mutations for all Nf isoforms covers Amyotrophic Lateral Sclerosis, Charcot-Marie Tooth disease, Spinal muscular atrophy, Parkinson Disease and Lewy Body Dementia. Next, emphasis is given to the expanding field of post-translational modifications (PTM) of the Nf amino acid residues. Protein structural aspects are reviewed alongside PTMs causing neurodegenerative pathology and human autoimmunity. Molecular visualisations of NF PTMs, assembly and stoichiometry make use of Alphafold2 modelling. The implications for Nf function on the cellular level and axonal transport are discussed. Neurofilament aggregate formation and proteolytic breakdown are reviewed as relevant for biomarker tests and disease. Likewise, Nf stoichiometry is reviewed with regard to in vitro experiments and as a compensatory mechanism in neurodegeneration. The review of Nf across a spectrum of 87 diseases from all parts of medicine is followed by a critical appraisal of 33 meta-analyses on Nf body fluid levels. The review concludes with considerations for clinical trial design and an outlook for future research.
Collapse
Affiliation(s)
- Axel Petzold
- Department of NeurodegenerationQueen Square Insitute of Neurology, UCLLondonUK
| |
Collapse
|
7
|
van der Ende EL, Bron EE, Poos JM, Jiskoot LC, Panman JL, Papma JM, Meeter LH, Dopper EGP, Wilke C, Synofzik M, Heller C, Swift IJ, Sogorb-Esteve A, Bouzigues A, Borroni B, Sanchez-Valle R, Moreno F, Graff C, Laforce R, Galimberti D, Masellis M, Tartaglia MC, Finger E, Vandenberghe R, Rowe JB, de Mendonça A, Tagliavini F, Santana I, Ducharme S, Butler CR, Gerhard A, Levin J, Danek A, Otto M, Pijnenburg YAL, Sorbi S, Zetterberg H, Niessen WJ, Rohrer JD, Klein S, van Swieten JC, Venkatraghavan V, Seelaar H. A data-driven disease progression model of fluid biomarkers in genetic frontotemporal dementia. Brain 2022; 145:1805-1817. [PMID: 34633446 PMCID: PMC9166533 DOI: 10.1093/brain/awab382] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/22/2021] [Accepted: 09/09/2021] [Indexed: 11/17/2022] Open
Abstract
Several CSF and blood biomarkers for genetic frontotemporal dementia have been proposed, including those reflecting neuroaxonal loss (neurofilament light chain and phosphorylated neurofilament heavy chain), synapse dysfunction [neuronal pentraxin 2 (NPTX2)], astrogliosis (glial fibrillary acidic protein) and complement activation (C1q, C3b). Determining the sequence in which biomarkers become abnormal over the course of disease could facilitate disease staging and help identify mutation carriers with prodromal or early-stage frontotemporal dementia, which is especially important as pharmaceutical trials emerge. We aimed to model the sequence of biomarker abnormalities in presymptomatic and symptomatic genetic frontotemporal dementia using cross-sectional data from the Genetic Frontotemporal dementia Initiative (GENFI), a longitudinal cohort study. Two-hundred and seventy-five presymptomatic and 127 symptomatic carriers of mutations in GRN, C9orf72 or MAPT, as well as 247 non-carriers, were selected from the GENFI cohort based on availability of one or more of the aforementioned biomarkers. Nine presymptomatic carriers developed symptoms within 18 months of sample collection ('converters'). Sequences of biomarker abnormalities were modelled for the entire group using discriminative event-based modelling (DEBM) and for each genetic subgroup using co-initialized DEBM. These models estimate probabilistic biomarker abnormalities in a data-driven way and do not rely on previous diagnostic information or biomarker cut-off points. Using cross-validation, subjects were subsequently assigned a disease stage based on their position along the disease progression timeline. CSF NPTX2 was the first biomarker to become abnormal, followed by blood and CSF neurofilament light chain, blood phosphorylated neurofilament heavy chain, blood glial fibrillary acidic protein and finally CSF C3b and C1q. Biomarker orderings did not differ significantly between genetic subgroups, but more uncertainty was noted in the C9orf72 and MAPT groups than for GRN. Estimated disease stages could distinguish symptomatic from presymptomatic carriers and non-carriers with areas under the curve of 0.84 (95% confidence interval 0.80-0.89) and 0.90 (0.86-0.94) respectively. The areas under the curve to distinguish converters from non-converting presymptomatic carriers was 0.85 (0.75-0.95). Our data-driven model of genetic frontotemporal dementia revealed that NPTX2 and neurofilament light chain are the earliest to change among the selected biomarkers. Further research should investigate their utility as candidate selection tools for pharmaceutical trials. The model's ability to accurately estimate individual disease stages could improve patient stratification and track the efficacy of therapeutic interventions.
Collapse
Affiliation(s)
- Emma L van der Ende
- Department of Neurology and Alzheimer Center, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Esther E Bron
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Jackie M Poos
- Department of Neurology and Alzheimer Center, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Lize C Jiskoot
- Department of Neurology and Alzheimer Center, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Jessica L Panman
- Department of Neurology and Alzheimer Center, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Janne M Papma
- Department of Neurology and Alzheimer Center, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Lieke H Meeter
- Department of Neurology and Alzheimer Center, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Elise G P Dopper
- Department of Neurology and Alzheimer Center, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Carlo Wilke
- German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, 72076 Tübingen, Germany
| | - Matthis Synofzik
- German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, 72076 Tübingen, Germany
| | - Carolin Heller
- UK Dementia Research Institute at University College London, UCL Institute of Neurology, Queen Square, WC1N 3BG London, UK
| | - Imogen J Swift
- UK Dementia Research Institute at University College London, UCL Institute of Neurology, Queen Square, WC1N 3BG London, UK
| | - Aitana Sogorb-Esteve
- UK Dementia Research Institute at University College London, UCL Institute of Neurology, Queen Square, WC1N 3BG London, UK
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, WC1N 3BG London, UK
| | - Arabella Bouzigues
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, WC1N 3BG London, UK
| | - Barbara Borroni
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, 25121 Brescia, Italy
| | - Raquel Sanchez-Valle
- Alzheimer’s Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clinic, IDIBAPS, University of Barcelona, 08036 Barcelona, Spain
| | - Fermin Moreno
- Cognitive Disorders Unit, Department of Neurology, Donostia University Hospital, San Sebastian, 20014 Gipuzkoa, Spain
- Neuroscience Area, Biodonostia Health Research Institute, San Sebastian, Gipuzkoa, Spain
| | - Caroline Graff
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Bioclinicum, Karolinska Institutet, 17176 Solna, Sweden
- Unit for Hereditary Dementias, Theme Aging, Karolinska University Hospital, 17176 Solna, Sweden
| | - Robert Laforce
- Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques, CHU de Québec, Université Laval, G1Z 1J4 Québec, Canada
| | - Daniela Galimberti
- Centro Dino Ferrari, University of Milan, 20122 Milan, Italy
- Neurodegenerative Diseases Unit, Fondazione IRCCS, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Mario Masellis
- Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, University of Toronto, ON M4N 3M5 Toronto, Canada
| | - Maria Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, M5S 1A8 Toronto, Canada
| | - Elizabeth Finger
- Department of Clinical Neurological Sciences, University of Western Ontario, ON N6A 3K7 London, Ontario, Canada
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| | - James B Rowe
- Cambridge University Centre for Frontotemporal Dementia, University of Cambridge, CB2 0SZ Cambridge, UK
| | | | | | - Isabel Santana
- Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Simon Ducharme
- McConnell Brain Imaging Centre, Montreal Neurological Institute and McGill University Health Centre, McGill University, 3801 Montreal, Québec, Canada
| | - Christopher R Butler
- Nuffield Department of Clinical Neurosciences, Medical Sciences Division, University of Oxford, OX3 9DU Oxford, UK
- Department of Brain Sciences, Imperial College London, SW7 2AZ London, UK
| | - Alexander Gerhard
- Division of Neuroscience and Experimental Psychology, Wolfson Molecular Imaging Centre, University of Manchester, M20 3LJ Manchester, UK
- Department of Nuclear Medicine and Geriatric Medicine, University Hospital Essen, 45 147 Essen, Germany
| | - Johannes Levin
- Neurologische Klinik und Poliklinik, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
- German Center for Neurodegenerative Diseases, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Adrian Danek
- Neurologische Klinik und Poliklinik, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Markus Otto
- Department of Neurology, University of Ulm, 89081 Ulm, Germany
| | - Yolande A L Pijnenburg
- Department of Neurology, Alzheimer Center, Location VU University Medical Center Amsterdam Neuroscience, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Sandro Sorbi
- Department of Neurofarba, University of Florence, 50139 Florence, Italy
| | - Henrik Zetterberg
- UK Dementia Research Institute at University College London, UCL Institute of Neurology, Queen Square, WC1N 3BG London, UK
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, 405 30 Mölndal, Sweden
| | - Wiro J Niessen
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Jonathan D Rohrer
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, WC1N 3BG London, UK
| | - Stefan Klein
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - John C van Swieten
- Department of Neurology and Alzheimer Center, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Vikram Venkatraghavan
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Harro Seelaar
- Department of Neurology and Alzheimer Center, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
8
|
Anad A, Barker MK, Katanga JA, Arfanakis K, Bridges LR, Esiri MM, Isaacs JD, Prpar Mihevc S, Pereira AC, Schneider JA, Hainsworth AH. Vasculocentric Axonal NfH in Small Vessel Disease. J Neuropathol Exp Neurol 2022; 81:182-192. [PMID: 35086142 PMCID: PMC8922195 DOI: 10.1093/jnen/nlab134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Cerebral small vessel disease (SVD) causes lacunar stroke and vascular cognitive impairment in older people. The pathogenic pathways from vessel pathology to parenchymal damage in SVD are unknown. Neurofilaments are axonal structural proteins. Neurofilament-light (NfL) is an emerging biomarker for neurological disease. Here, we examined the high molecular weight form neurofilament-heavy (NfH) and quantified a characteristic pattern of peri-arterial (vasculocentric) NfH labeling. Subcortical frontal and parietal white matter from young adult controls, aged controls, and older people with SVD or severe Alzheimer disease (n = 52) was immunohistochemically labeled for hyperphosphorylated NfH (pNfH). The extent of pNfH immunolabeling and the degree of vasculocentric axonal pNfH were quantified. Axonal pNfH immunolabeling was sparse in young adults but a common finding in older persons (controls, SVD, or AD). Axonal pNfH was often markedly concentrated around small penetrating arteries. This vasculocentric feature was more common in older people with SVD than in those with severe AD (p = 0.004). We conclude that axonal pNfH is a feature of subcortical white matter in aged brains. Vasculocentric axonal pNfH is a novel parenchymal lesion that is co-located with SVD arteriopathy and could be a consequence of vessel pathology.
Collapse
Affiliation(s)
- Adam Anad
- From the Molecular and Clinical Sciences Research Institute, St George’s University of London, London, UK (AA, MKB, JAK, LRB, JDI, ACP, AHH)
| | - Miriam K Barker
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, USA (KA, JAS)
| | - Jessica A Katanga
- From the Molecular and Clinical Sciences Research Institute, St George’s University of London, London, UK (AA, MKB, JAK, LRB, JDI, ACP, AHH)
| | - Konstantinos Arfanakis
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, USA (KA, JAS)
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois, USA (KA)
| | - Leslie R Bridges
- From the Molecular and Clinical Sciences Research Institute, St George’s University of London, London, UK (AA, MKB, JAK, LRB, JDI, ACP, AHH)
- Department of Cellular Pathology, St George’s University Hospitals NHS Foundation Trust, London, UK (LRB)
| | - Margaret M Esiri
- Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK (MME)
| | - Jeremy D Isaacs
- From the Molecular and Clinical Sciences Research Institute, St George’s University of London, London, UK (AA, MKB, JAK, LRB, JDI, ACP, AHH)
- Department of Neurology, St George’s University Hospitals NHS Foundation Trust, London, UK (JDI, ACP, AHH)
| | - Sonja Prpar Mihevc
- Institute for Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia (SPM)
| | - Anthony C Pereira
- From the Molecular and Clinical Sciences Research Institute, St George’s University of London, London, UK (AA, MKB, JAK, LRB, JDI, ACP, AHH)
- Department of Neurology, St George’s University Hospitals NHS Foundation Trust, London, UK (JDI, ACP, AHH)
| | - Julie A Schneider
- From the Molecular and Clinical Sciences Research Institute, St George’s University of London, London, UK (AA, MKB, JAK, LRB, JDI, ACP, AHH)
| | - Atticus H Hainsworth
- From the Molecular and Clinical Sciences Research Institute, St George’s University of London, London, UK (AA, MKB, JAK, LRB, JDI, ACP, AHH)
- Department of Neurology, St George’s University Hospitals NHS Foundation Trust, London, UK (JDI, ACP, AHH)
| |
Collapse
|
9
|
Heckler I, Venkataraman I. Phosphorylated Neurofilament Heavy Chain: A Potential Diagnostic Biomarker in Amyotrophic Lateral Sclerosis. J Neurophysiol 2022; 127:737-745. [PMID: 35138963 DOI: 10.1152/jn.00398.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neuroaxonal damage is a feature of various neurodegenerative diseases including amyotrophic lateral sclerosis (ALS). Phosphorylated neurofilament heavy chain (pNfH) is a cytoskeletal structural protein released as a result of axonal damage into the CSF, and subsequently into the blood. Due to high specificity for neuronal cell damage, pNfH is advantageous over other biomarkers, for ALS disease identification. Here, we review the structure and function of neurofilaments and their role in detection of various neurodegenerative conditions. Additionally, a retrospective meta-analysis was performed to depict the significance of pNfH as a valuable diagnostic and prognostic biomarker in ALS.
Collapse
Affiliation(s)
- Ilana Heckler
- Euroimmun Medizinische Labordiagnostika (EUROIMMUN US), Mountain Lakes, NJ, United States
| | - Iswariya Venkataraman
- Euroimmun Medizinische Labordiagnostika (EUROIMMUN US), Mountain Lakes, NJ, United States
| |
Collapse
|
10
|
Weissert R, Hugosson T, Petzold A. Upregulated Retinal Neurofilament Expression in Experimental Optic Neuritis. Neuroophthalmology 2022; 46:215-219. [PMID: 35859627 PMCID: PMC9291678 DOI: 10.1080/01658107.2022.2025852] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
In optic neuritis (ON), transient thickening of the macular retinal nerve fibre layer (RNFL) can be observed. This optical coherence tomography-based observation is not understood. The axonal diameter correlates with the neurofilament (Nf) protein content, but there are no data on the retinal tissue concentration of Nfs. The myelin-oligodendrocyte-glycoprotein (MOG) induced experimental autoimmune encephalomyelitis (EAE) model was used to investigate the retinas of Brown Norway rats with (i) visual evoked potentials (VEP) confirmed ON, (ii) VEP confirmed absence of ON and (iii) control animals. Twenty retinas were collected from MOG-EAE and control rats 27 days after immunisation. Retinal tissue Nf concentrations per total protein (μg/mg) were significantly higher in MOG-EAE rats with ON (median 4.29, interquartile range [IQR] 3.41-5.97) compared with MOG-EAE rats without ON (1.14, IQR 1.10-1.67) or control rats (0.93, IQR 0.45-4.00). The data suggest that up-regulation of Nf expression in the retinal ganglion cells precedes development of RNFL atrophy and plausibly explains the transient increase of axonal diameter and RNFL thickening.
Collapse
Affiliation(s)
- Robert Weissert
- Department of Neurology, University Hospital of Regensburg, Regensburg, Germany
| | - Therése Hugosson
- Department of Ophthalmology, St Erik Eye Hospital, Stockholm, Sweden,Department of Clinical Sciences, Ophthalmology, Lund University, Lund, Sweden
| | - Axel Petzold
- Queen Square Institute of Neurology, UCL, Department of Neuroimmunology & The National Hospital for Neurology and Neurosurgery, Moorfields Eye Hospital, London, UK,Amsterdam UMC, Locatie VUmc, Departments of Neurology and Ophthalmology, NL, Moorfields Eye Hospital, London, UK,CONTACT Axel PetzoldQueen Square Institute of Neurology, 9th floor, Room 914, Queen Square, London, WC1N 3BG, UK
| |
Collapse
|
11
|
Souza FDS, Freitas NL, Gomes YCP, Torres R, Echevarria-Lima J, da Silva-Filho IL, Leite ACB, de Lima MASD, da Silva MT, Araújo ADQC, Espíndola OM. Following the Clues: Usefulness of Biomarkers of Neuroinflammation and Neurodegeneration in the Investigation of HTLV-1-Associated Myelopathy Progression. Front Immunol 2021; 12:737941. [PMID: 34764955 PMCID: PMC8576432 DOI: 10.3389/fimmu.2021.737941] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
Human T-lymphotropic virus type 1 (HTLV-1)-associated myelopathy/tropical spastic paraparesis (HAM/TSP) is a neurodegenerative disease due to axonal damage of the corticospinal secondary to an inflammatory response against infected T-cells. In the present work, we aimed to evaluate biomarkers of neurodegeneration and neuroinflammation in the definition of HAM/TSP prognosis. Neurofilament light (NfL) and phosphorylated heavy (pNfH) chains, total Tau protein, cellular prion protein (PrPc), inflammatory chemokines, and neopterin were quantified in paired cerebrospinal fluid (CSF) and serum samples from HAM/TSP patients (n=21), HTLV-1 asymptomatic carriers (AC) (n=13), and HTLV-1 seronegative individuals with non-inflammatory non-degenerative neurological disease (normal-pressure hydrocephalus) (n=9) as a control group. HTLV-1 proviral load in peripheral blood mononuclear cells and the expression of chemokine receptors CCR4, CCR5, and CXCR3 in infected CD4+ T-cells (HTLV-1 Tax+ cells) were also assessed. CSF levels of Tau, NfL, and pNfH were similar between groups, but PrPc and neopterin were elevated in HAM/TSP patients. Most individuals in the control group and all HTLV-1 AC had CSF/serum neopterin ratio < 1.0, and two-thirds of HAM/TSP patients had ratio values > 1.0, which positively correlated with the speed of disease progression and pNfH levels, indicating active neuroinflammation. HAM/TSP patients showed high serum levels of CXCR3-binding chemokines (CXCL9, CXCL10, and CXCL11) and elevated CSF levels of CCL2, CCL3, CCL4, CCL17, CXCL5, CXCL10, and CXCL11. Indeed, CXCL10 concentration in CSF of HAM/TSP patients was 5.8-fold and 8.7-fold higher in than in HTLV-1 AC and controls, respectively, and correlated with CSF cell counts. HAM/TSP patients with typical/rapid disease progression had CSF/serum CXCL10 ratio > 1.0 and a higher frequency of CXCR3+Tax+CD4+ T-cells in blood, which indicated a positive gradient for the migration of infected cells and infiltration into the central nervous system. In conclusion, the slow progression of HAM/TSP abrogates the usefulness of biomarkers of neuronal injury for the disease prognosis. Thus, markers of inflammation provide stronger evidence for HAM/TSP progression, particularly the CSF/serum neopterin ratio, which may contribute to overcome differences between laboratory assays.
Collapse
Affiliation(s)
- Flávia dos Santos Souza
- Laboratório de Pesquisa Clínica em Neuroinfecções, Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
- Seção de Imunodiagnóstico, Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Nicole Lardini Freitas
- Laboratório de Pesquisa Clínica em Neuroinfecções, Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Yago Côrtes Pinheiro Gomes
- Laboratório de Pesquisa Clínica em Neuroinfecções, Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Rafael Carvalho Torres
- Plataforma de Imunoanálises, Instituto de Biofísica Carlos Chagas Filho (IBCCF), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Serviço de Citometria de Fluxo, Instituto de Puericultura e Pediatria Martagão Gesteira, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Juliana Echevarria-Lima
- Laboratório de Imunologia Básica e Aplicada, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Isaac Lima da Silva-Filho
- Laboratório de Pesquisa Clínica em Neuroinfecções, Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Ana Claudia Celestino Bezerra Leite
- Laboratório de Pesquisa Clínica em Neuroinfecções, Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Marco Antonio Sales Dantas de Lima
- Laboratório de Pesquisa Clínica em Neuroinfecções, Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
- Serviço de Neurologia, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Marcus Tulius Teixeira da Silva
- Laboratório de Pesquisa Clínica em Neuroinfecções, Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Abelardo de Queiroz Campos Araújo
- Laboratório de Pesquisa Clínica em Neuroinfecções, Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
- Instituto de Neurologia Deolindo Couto (INDC), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Otávio Melo Espíndola
- Laboratório de Pesquisa Clínica em Neuroinfecções, Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| |
Collapse
|
12
|
Yuan A, Nixon RA. Neurofilament Proteins as Biomarkers to Monitor Neurological Diseases and the Efficacy of Therapies. Front Neurosci 2021; 15:689938. [PMID: 34646114 PMCID: PMC8503617 DOI: 10.3389/fnins.2021.689938] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 09/02/2021] [Indexed: 01/01/2023] Open
Abstract
Biomarkers of neurodegeneration and neuronal injury have the potential to improve diagnostic accuracy, disease monitoring, prognosis, and measure treatment efficacy. Neurofilament proteins (NfPs) are well suited as biomarkers in these contexts because they are major neuron-specific components that maintain structural integrity and are sensitive to neurodegeneration and neuronal injury across a wide range of neurologic diseases. Low levels of NfPs are constantly released from neurons into the extracellular space and ultimately reach the cerebrospinal fluid (CSF) and blood under physiological conditions throughout normal brain development, maturation, and aging. NfP levels in CSF and blood rise above normal in response to neuronal injury and neurodegeneration independently of cause. NfPs in CSF measured by lumbar puncture are about 40-fold more concentrated than in blood in healthy individuals. New ultra-sensitive methods now allow minimally invasive measurement of these low levels of NfPs in serum or plasma to track disease onset and progression in neurological disorders or nervous system injury and assess responses to therapeutic interventions. Any of the five Nf subunits - neurofilament light chain (NfL), neurofilament medium chain (NfM), neurofilament heavy chain (NfH), alpha-internexin (INA) and peripherin (PRPH) may be altered in a given neuropathological condition. In familial and sporadic Alzheimer's disease (AD), plasma NfL levels may rise as early as 22 years before clinical onset in familial AD and 10 years before sporadic AD. The major determinants of elevated levels of NfPs and degradation fragments in CSF and blood are the magnitude of damaged or degenerating axons of fiber tracks, the affected axon caliber sizes and the rate of release of NfP and fragments at different stages of a given neurological disease or condition directly or indirectly affecting central nervous system (CNS) and/or peripheral nervous system (PNS). NfPs are rapidly emerging as transformative blood biomarkers in neurology providing novel insights into a wide range of neurological diseases and advancing clinical trials. Here we summarize the current understanding of intracellular NfP physiology, pathophysiology and extracellular kinetics of NfPs in biofluids and review the value and limitations of NfPs and degradation fragments as biomarkers of neurodegeneration and neuronal injury.
Collapse
Affiliation(s)
- Aidong Yuan
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, United States
- Department of Psychiatry, NYU Neuroscience Institute, New York, NY, United States
| | - Ralph A. Nixon
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, United States
- Department of Psychiatry, NYU Neuroscience Institute, New York, NY, United States
- Department of Cell Biology, New York University Grossman School of Medicine, (NYU), Neuroscience Institute, New York, NY, United States
| |
Collapse
|
13
|
Gendron TF, Badi MK, Heckman MG, Jansen-West KR, Vilanilam GK, Johnson PW, Burch AR, Walton RL, Ross OA, Brott TG, Miller TM, Berry JD, Nicholson KA, Wszolek ZK, Oskarsson BE, Sheth KN, Sansing LH, Falcone GJ, Cucchiara BL, Meschia JF, Petrucelli L. Plasma neurofilament light predicts mortality in patients with stroke. Sci Transl Med 2021; 12:12/569/eaay1913. [PMID: 33177179 DOI: 10.1126/scitranslmed.aay1913] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 04/10/2020] [Accepted: 07/29/2020] [Indexed: 12/17/2022]
Abstract
Given the heterogeneity of stroke brain injury, there is a clear need for a biomarker that determines the degree of neuroaxonal injury across stroke types. We evaluated whether blood neurofilament light (NFL) would fulfill this purpose for patients with acute cerebral infarction (ACI; N = 227), aneurysmal subarachnoid hemorrhage (aSAH; N = 58), or nontraumatic intracerebral hemorrhage (ICH; N = 29). We additionally validated our findings in two independent cohorts of patients with ICH (N = 96 and N = 54) given the scarcity of blood biomarker studies for this deadliest stroke type. Compared to healthy individuals (N = 79 and N = 48 for the discovery and validation cohorts, respectively), NFL was higher for all stroke types. NFL associated with radiographic markers of brain tissue damage. It correlated with the extent of early ischemic injury in patients with ACI, hemorrhage severity in patients with aSAH, and intracranial hemorrhage volume in patients with ICH. In all patients, NFL independently correlated with scores from the NIH Stroke Scale, the modified Rankin Scale, and the Mini-Mental State Examination at blood draw, which respectively assess neurological, functional, and cognitive status. Furthermore, higher NFL concentrations independently associated with 3- or 6-month functional disability and higher all-cause mortality. These data support NFL as a uniform method to estimate neuroaxonal injury and forecast mortality regardless of stroke mechanism. As a prognostic biomarker, blood NFL has the potential to assist with planning supportive and rehabilitation services and improving clinical trial efficiency for stroke therapeutics and devices.
Collapse
Affiliation(s)
- Tania F Gendron
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA.,Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Mohammed K Badi
- Department of Neurology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Michael G Heckman
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | | | - Patrick W Johnson
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Alexander R Burch
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Ronald L Walton
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA.,Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL 32224, USA.,Department of Clinical Genomics, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Thomas G Brott
- Department of Neurology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Timothy M Miller
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - James D Berry
- Harvard Medical School, Neurological Clinical Research Institute, Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Katharine A Nicholson
- Harvard Medical School, Neurological Clinical Research Institute, Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | - Kevin N Sheth
- Division of Neurocritical Care and Emergency Neurology, Department of Neurology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Lauren H Sansing
- Division of Vascular Neurology, Department of Neurology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Guido J Falcone
- Division of Neurocritical Care and Emergency Neurology, Department of Neurology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Brett L Cucchiara
- Department of Neurology, University of Pennsylvania and University of Pennsylvania Medical Center, Philadelphia, PA 19104, USA
| | - James F Meschia
- Department of Neurology, Mayo Clinic, Jacksonville, FL 32224, USA.
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA. .,Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL 32224, USA
| |
Collapse
|
14
|
Blood Neurofilament Light Chain: The Neurologist's Troponin? Biomedicines 2020; 8:biomedicines8110523. [PMID: 33233404 PMCID: PMC7700209 DOI: 10.3390/biomedicines8110523] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/19/2022] Open
Abstract
Blood neurofilament light chain (NfL) is a marker of neuro-axonal injury showing promising associations with outcomes of interest in several neurological conditions. Although initially discovered and investigated in the cerebrospinal fluid (CSF), the recent development of ultrasensitive digital immunoassay technologies has enabled reliable detection in serum/plasma, obviating the need for invasive lumbar punctures for longitudinal assessment. The most evidence for utility relates to multiple sclerosis (MS) where it serves as an objective measure of both the inflammatory and degenerative pathologies that characterise this disease. In this review, we summarise the physiology and pathophysiology of neurofilaments before focusing on the technological advancements that have enabled reliable quantification of NfL in blood. As the test case for clinical translation, we then highlight important recent developments linking blood NfL levels to outcomes in MS and the next steps to be overcome before this test is adopted on a routine clinical basis.
Collapse
|
15
|
Lee Y, Lee BH, Yip W, Chou P, Yip BS. Neurofilament Proteins as Prognostic Biomarkers in Neurological Disorders. Curr Pharm Des 2020; 25:4560-4569. [PMID: 31820696 DOI: 10.2174/1381612825666191210154535] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 12/07/2019] [Indexed: 12/13/2022]
Abstract
Neurofilaments: light, medium, and heavy (abbreviated as NF-L, NF-M, and NF-H, respectively), which belong to Type IV intermediate filament family (IF), are neuron-specific cytoskeletal components. Neurofilaments are axonal structural components and integral components of synapses, which are important for neuronal electric signal transmissions along the axons and post-translational modification. Abnormal assembly of neurofilaments is found in several human neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), infantile spinal muscular atrophy (SMA), and hereditary sensory-motor neuropathy (HSMN). In addition, those pathological neurofilament accumulations are known in α-synuclein in Parkinson's disease (PD), Aβ and tau in Alzheimer's disease (AD), polyglutamine in CAG trinucleotide repeat disorders, superoxide dismutase 1 (SOD1), TAR DNA-binding protein 43 (TDP43), neuronal FUS proteins, optineurin (OPTN), ubiquilin 2 (UBQLN2), and dipeptide repeat protein (DRP) in amyotrophic lateral sclerosis (ALS). When axon damage occurs in central nervous disorders, neurofilament proteins are released and delivered into cerebrospinal fluid (CSF), which are then circulated into blood. New quantitative analyses and assay techniques are well-developed for the detection of neurofilament proteins, particularly NF-L and the phosphorylated NF-H (pNF-H) in CSF and serum. This review discusses the potential of using peripheral blood NF quantities and evaluating the severity of damage in the nervous system. Intermediate filaments could be promising biomarkers for evaluating disease progression in different nervous system disorders.
Collapse
Affiliation(s)
- Yichen Lee
- Department of Neurology, National Taiwan University Hospital, Hsinchu Branch, Hsinchu, Taiwan, China
| | - Bo H Lee
- Department of Geriatrics, Northern Beaches Hospital, Frenchs Forest New South Wales, Australia
| | - William Yip
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vacover, BC V6T1Z4, Canada
| | - Pingchen Chou
- Department of Neurology, National Taiwan University Hospital, Hsinchu Branch, Hsinchu, Taiwan, China
| | - Bak-Sau Yip
- Department of Neurology, National Taiwan University Hospital, Hsinchu Branch, Hsinchu, Taiwan, China.,Institute of Biomedical Engineering, National Chiao Tung University, Hsinchu, Taiwan, China
| |
Collapse
|
16
|
Huss A, Senel M, Abdelhak A, Mayer B, Kassubek J, Ludolph AC, Otto M, Tumani H. Longitudinal Serum Neurofilament Levels of Multiple Sclerosis Patients Before and After Treatment with First-Line Immunomodulatory Therapies. Biomedicines 2020; 8:biomedicines8090312. [PMID: 32872144 PMCID: PMC7555392 DOI: 10.3390/biomedicines8090312] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/14/2022] Open
Abstract
Serum neurofilament light chain (NfL) has been shown to correlate with neuroaxonal damage in multiple sclerosis (MS) and various other neurological diseases. While serum NfL is now regularly reported in clinical approval studies, there is a lack of longitudinal data from patients treated with established basic immunotherapies outside of study conditions. In total, 34 patients with early relapsing-remitting MS (RRMS) were included. The follow-up period was 24 months with regular follow-up visits after 3, 6, 9, 12 and 18 months. Therapy with glatiramer acetate was initiated in 20 patients and with interferon-beta in 12 patients. The disease course was monitored by the events of relapses, Expanded Disability Status Scale (EDSS) score and MRI parameters. Overall, serum NfL levels were higher at time points with a current relapse event than at time points without relapse (12.8 pg/mL vs. 9.7 pg/mL, p = 0.011). At follow-up, relapse-free patients showed significantly reduced serum NfL levels starting from 9 months compared to baseline (p < 0.05) and reduced levels after 12 months compared to baseline (p = 0.013) in patients without EDSS progression for 12 months. In this explorative observational study, our data suggest that the longitudinal measurement of serum NfL may be useful in addition to MRI to monitor disease activity and therapy response.
Collapse
Affiliation(s)
- André Huss
- Department of Neurology, University Hospital of Ulm, Oberer Eselsberg 45, 89081 Ulm, Germany; (A.H.); (M.S.); (A.A.); (J.K.); (A.C.L.); (M.O.)
| | - Makbule Senel
- Department of Neurology, University Hospital of Ulm, Oberer Eselsberg 45, 89081 Ulm, Germany; (A.H.); (M.S.); (A.A.); (J.K.); (A.C.L.); (M.O.)
| | - Ahmed Abdelhak
- Department of Neurology, University Hospital of Ulm, Oberer Eselsberg 45, 89081 Ulm, Germany; (A.H.); (M.S.); (A.A.); (J.K.); (A.C.L.); (M.O.)
- Department of Neurology and Stroke, University Hospital of Tübingen, Hoppe-Seyler-Alle 3, 72076 Tübingen, Germany
- Hertie institute of clinical of clinical brain research, University of Tübingen, Hoppe-Seyler-Alle 3, 72076 Tübingen, Germany
| | - Benjamin Mayer
- Institute of Epidemiology and Medical Biometry, Ulm University, Schwabstraße 13, 89075 Ulm, Germany;
| | - Jan Kassubek
- Department of Neurology, University Hospital of Ulm, Oberer Eselsberg 45, 89081 Ulm, Germany; (A.H.); (M.S.); (A.A.); (J.K.); (A.C.L.); (M.O.)
| | - Albert C. Ludolph
- Department of Neurology, University Hospital of Ulm, Oberer Eselsberg 45, 89081 Ulm, Germany; (A.H.); (M.S.); (A.A.); (J.K.); (A.C.L.); (M.O.)
| | - Markus Otto
- Department of Neurology, University Hospital of Ulm, Oberer Eselsberg 45, 89081 Ulm, Germany; (A.H.); (M.S.); (A.A.); (J.K.); (A.C.L.); (M.O.)
| | - Hayrettin Tumani
- Department of Neurology, University Hospital of Ulm, Oberer Eselsberg 45, 89081 Ulm, Germany; (A.H.); (M.S.); (A.A.); (J.K.); (A.C.L.); (M.O.)
- Speciality Clinic of Neurology Dietenbronn, Dietenbronn 7, 88477 Schwendi, Germany
- Correspondence:
| |
Collapse
|
17
|
Preziosa P, Rocca MA, Filippi M. Current state-of-art of the application of serum neurofilaments in multiple sclerosis diagnosis and monitoring. Expert Rev Neurother 2020; 20:747-769. [DOI: 10.1080/14737175.2020.1760846] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Paolo Preziosa
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria A. Rocca
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurophysiology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
18
|
Gordon BA. Neurofilaments in disease: what do we know? Curr Opin Neurobiol 2020; 61:105-115. [PMID: 32151970 PMCID: PMC7198337 DOI: 10.1016/j.conb.2020.02.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/25/2020] [Accepted: 02/03/2020] [Indexed: 12/12/2022]
Abstract
Neurofilaments are proteins selectively expressed in the cytoskeleton of neurons, and increased levels are a marker of damage. Elevated neurofilament levels can serve as a marker of ongoing disease activity as well as a tool to measure response to therapeutic intervention. The potential utility of neurofilaments has drastically increased as recent advances have made it possible to measure levels in both the cerebrospinal fluid and blood. There is mounting evidence that neurofilament light chain (NfL) and phosphorylated neurofilament heavy chain (NfH) are abnormal in a host of neurodegenerative diseases. In this review we examine how both of these proteins behave across diseases and what we know about how these biomarkers relate to in vivo white matter pathology and each other.
Collapse
Affiliation(s)
- Brian A Gordon
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, MO, USA; Psychological & Brain Sciences, Washington University in St. Louis, MO, USA.
| |
Collapse
|
19
|
Alifirova VM, Kamenskikh EM, Koroleva ES. [Evaluation of serum neurofilament light chains levels for diagnosis, treatment monitoring and prognosis in multiple sclerosis]. Zh Nevrol Psikhiatr Im S S Korsakova 2020; 119:7-13. [PMID: 31934983 DOI: 10.17116/jnevro2019119107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Pathophysiological processes in multiple sclerosis frequently not diagnosed by clinicians become available for analysis only on the basis of paraclinical data (biomarkers). Nowadays neurofilament light chain can be defined as a promising biomarker for multiple sclerosis (MS). Neurofilaments are a structural part of normal neuronal processes consisting of light, intermediate and heavy chains. However, a damage of neurons such as neurodegeneration or axonal damage causes the escape of neurofilaments into extracellular space. Cutting-edge highly sensitive methods make it possible to detect neurofilament light chains not only in the cerebrospinal fluid but also in the blood serum thus opening the opportunities to utilize them in routine diagnosis in clinical practice. This review comprises existing data on the possible opportunities for research of serum neurofilament light chains in terms of exacerbations, effectiveness of basic therapy, assessment of individual disability, the atrophy of central nervous system structures. Also, there is some information on comparison of two methods: routine MRI of the brain with the contrast agents and detection of serum neurofilament light chains.
Collapse
Affiliation(s)
| | | | - E S Koroleva
- Siberian State Medical University, Tomsk, Russia
| |
Collapse
|
20
|
Alirezaei Z, Pourhanifeh MH, Borran S, Nejati M, Mirzaei H, Hamblin MR. Neurofilament Light Chain as a Biomarker, and Correlation with Magnetic Resonance Imaging in Diagnosis of CNS-Related Disorders. Mol Neurobiol 2020; 57:469-491. [PMID: 31385229 PMCID: PMC6980520 DOI: 10.1007/s12035-019-01698-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/09/2019] [Indexed: 12/11/2022]
Abstract
The search for diagnostic and prognostic biomarkers for neurodegenerative conditions is of high importance, since these disorders may present difficulties in differential diagnosis. Biomarkers with high sensitivity and specificity are required. Neurofilament light chain (NfL) is a unique biomarker related to axonal damage and neural cell death, which is elevated in a number of neurological disorders, and can be detected in cerebrospinal fluid (CSF), as well as blood, serum, or plasma samples. Although the NfL concentration in CSF is higher than that in blood, blood measurement may be easier in practice due to its lesser invasiveness, reproducibility, and convenience. Many studies have investigated NfL in both CSF and serum/plasma as a potential biomarker of neurodegenerative disorders. Neuroimaging biomarkers can also potentially improve detection of CNS-related disorders at an early stage. Magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) are sensitive techniques to visualize neuroaxonal loss. Therefore, investigating the combination of NfL levels with indices extracted from MRI and DTI scans could potentially improve diagnosis of CNS-related disorders. This review summarizes the evidence for NfL being a reliable biomarker in the early detection and disease management in several CNS-related disorders. Moreover, we highlight the correlation between MRI and NfL and ask whether they can be combined.
Collapse
Affiliation(s)
- Zahra Alirezaei
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Hossein Pourhanifeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Sarina Borran
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Nejati
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 40 Blossom Street, Boston, MA, 02114, USA.
| |
Collapse
|
21
|
Petzold A, Braithwaite T, van Oosten BW, Balk L, Martinez-Lapiscina EH, Wheeler R, Wiegerinck N, Waters C, Plant GT. Case for a new corticosteroid treatment trial in optic neuritis: review of updated evidence. J Neurol Neurosurg Psychiatry 2020; 91:9-14. [PMID: 31740484 PMCID: PMC6952848 DOI: 10.1136/jnnp-2019-321653] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/20/2019] [Accepted: 10/16/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Axel Petzold
- Expertise Centrum Neuro-ophthalmology, Departments of Neurology & Ophthalmology, Amsterdam UMC, Amsterdam, The Netherlands .,Moorfields Eye Hospital, The National Hospital for Neurology and Neurosurgery, UCL Institute of Neurology, London, UK
| | - Tasanee Braithwaite
- Neuro-ophthalmology, Moorfields Eye Hospital and The National Hospital for Neurology & Neurosurgery, London, UK
| | | | - Lisanne Balk
- Neurology, VU University Medical Center, Amsterdam, The Netherlands
| | - Elena H Martinez-Lapiscina
- Center of Neuroimmunology and Service of Neurology, Clinic Barcelona Hospital University, Barcelona, Spain
| | | | - Nils Wiegerinck
- )Patient Organisation (Neuro-ophthalmology), Lisbon, Portugal
| | - Christiaan Waters
- Neuro-ophthalmologie Vereniging Nederland (KvK nummer 66260140), Amsterdam, Netherlands
| | - Gordon T Plant
- ,National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, St. Thomas Hospital, Moorfields Eye Hospital, London, UK
| |
Collapse
|
22
|
Petzold A, Lu CH, Groves M, Gobom J, Zetterberg H, Shaw G, O’Connor S. Protein aggregate formation permits millennium-old brain preservation. J R Soc Interface 2020; 17:20190775. [PMID: 31910770 PMCID: PMC7014809 DOI: 10.1098/rsif.2019.0775] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 12/03/2019] [Indexed: 01/09/2023] Open
Abstract
Human proteins have not been reported to survive in free nature, at ambient temperature, for long periods. Particularly, the human brain rapidly dissolves after death due to auto-proteolysis and putrefaction. The here presented discovery of 2600-year-old brain proteins from a radiocarbon dated human brain provides new evidence for extraordinary long-term stability of non-amyloid protein aggregates. Immunoelectron microscopy confirmed the preservation of neurocytoarchitecture in the ancient brain, which appeared shrunken and compact compared to a modern brain. Resolution of intermediate filaments (IFs) from protein aggregates took 2-12 months. Immunoassays on micro-dissected brain tissue homogenates revealed the preservation of the known protein topography for grey and white matter for type III (glial fibrillary acidic protein, GFAP) and IV (neurofilaments, Nfs) IFs. Mass spectrometry data could be matched to a number of peptide sequences, notably for GFAP and Nfs. Preserved immunogenicity of the prehistoric human brain proteins was demonstrated by antibody generation (GFAP, Nfs, myelin basic protein). Unlike brain proteins, DNA was of poor quality preventing reliable sequencing. These long-term data from a unique ancient human brain demonstrate that aggregate formation permits for the preservation of brain proteins for millennia.
Collapse
Affiliation(s)
- Axel Petzold
- Department of Neuroinflammation and National Hospital for Neurology and Neurosurgery, UCL Institute of Neurology, UCLH, Queen Square, London WC1N 3BG, UK
- Moorfields Eye Hospital, City Road, London EC1V 2PD, UK
- Department of Neurology, Neuroscience Campus Amsterdam, Amsterdam, The Netherlands
- Department of Ophthalmology, Neuroscience Campus Amsterdam, Amsterdam, The Netherlands
| | - Ching-Hua Lu
- Neurology, School of Medicine, China Medical University and Hospital, Taichung City, Taiwan
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Mike Groves
- Division of Neuropathology, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Johan Gobom
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg and Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg and Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- UK Dementia Research Institute at UCL, London WC1E 6BT, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Gerry Shaw
- EnCor Biotechnology Inc., 4949 SW 41st Boulevard, Ste 40., Gainesville, FL 32608, USA
| | - Sonia O’Connor
- Archaeological and Forensic Sciences, University of Bradford, Richmond Road, Bradford, West Yorkshire BD7 1DP, UK
| |
Collapse
|
23
|
Petzold A, Woodhall M, Khaleeli Z, Tobin WO, Pittock SJ, Weinshenker BG, Vincent A, Waters P, Plant GT. Aquaporin-4 and myelin oligodendrocyte glycoprotein antibodies in immune-mediated optic neuritis at long-term follow-up. J Neurol Neurosurg Psychiatry 2019; 90:1021-1026. [PMID: 31118222 DOI: 10.1136/jnnp-2019-320493] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 12/13/2022]
Abstract
OBJECTIVES To re-evaluate serum samples from our 2007 cohort of patients with single-episode isolated ON (SION), recurrent isolated ON (RION), chronic relapsing inflammatory optic neuropathy (CRION), multiple sclerosis-associated ON (MSON) and neuromyelitis optica (NMO). METHODS We re-screened 103/114 patients with available serum on live cell-based assays (CBA) for aquaporin-4 (AQP4)-M23-IgG and myelin-oligodendrocyte glycoprotein (MOG)-α1-IgG. Further testing included oligoclonal bands, serum levels of glial fibrillar acidic and neurofilament proteins and S100B. We show the impact of updated serology on these patients. RESULTS Reanalysis of our original cohort revealed that AQP4-IgG seropositivity increased from 56% to 75% for NMO, 5% to 22% for CRION, 6% to 7% for RION, 0% to 7% for MSON and 5% to 6% for SION. MOG-IgG1 was identified in 25% of RION, 25% of CRION, 10% of SION, 0% of MSON and 0% of NMO. As a result, patients have been reclassified incorporating their autoantibody status. Presenting visual acuity was significantly worse in patients who were AQP4-IgG seropositive (p=0.034), but there was no relationship between antibody seropositivity and either ON relapse rate or visual acuity outcome. CONCLUSIONS The number of patients with seronegative CRION and RION has decreased due to improved detection of autoantibodies over the past decade. It remains essential that the clinical phenotype guides both antibody testing and clinical management. Careful monitoring of the disease course is key when considering whether to treat with prophylactic immune suppression.
Collapse
Affiliation(s)
- Axel Petzold
- Neuroinflammation & Neuro-ophthalmology, UCL Institute of Neurology, The National Hospital for Neurology and Neurosurgery UCLH & Moorfields Eye Hospital, London, UK .,Expertise Centre Neuro-ophthalmology, Departments of Neurology and Ophthalmology, Amsterdam UMC-Locatie VUMC, Amsterdam, Noord-Holland, The Netherlands
| | - Mark Woodhall
- Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Z Khaleeli
- Neurology, The National Hospital for Neurology and Neurosurgery UCLH, St. Thomas Hospital & Moorfields Eye Hospital, London, UK
| | - W Oliver Tobin
- Departments of Neurology, Immunology & Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Sean J Pittock
- Departments of Neurology, Immunology & Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - B G Weinshenker
- Departments of Neurology, Immunology & Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Angela Vincent
- Nuffield Department of Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Patrick Waters
- Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Gordon T Plant
- Neurology, The National Hospital for Neurology and Neurosurgery UCLH, St. Thomas Hospital & Moorfields Eye Hospital, London, UK
| |
Collapse
|
24
|
De Schaepdryver M, Goossens J, Jeromin A, Brix B, Van Damme P, Poesen K. Analytical performance of a CE-marked immunoassay to quantify phosphorylated neurofilament heavy chains. Clin Chem Lab Med 2019; 57:e199-e202. [PMID: 30710472 DOI: 10.1515/cclm-2018-1004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 12/16/2018] [Indexed: 11/15/2022]
Affiliation(s)
- Maxim De Schaepdryver
- Department of Neurosciences, Laboratory for Molecular Neurobiomarker Research, KU Leuven (University of Leuven), Leuven, Belgium.,Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Janne Goossens
- Department of Neurosciences, Laboratory for Molecular Neurobiomarker Research, KU Leuven (University of Leuven), Leuven, Belgium
| | | | | | - Philip Van Damme
- Department of Neurosciences, Laboratory of Neurobiology, KU Leuven (University of Leuven) and Center for Brain and Disease Research VIB Leuven, Leuven, Belgium.,Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Koen Poesen
- Department of Neurosciences, Laboratory for Molecular Neurobiomarker Research, KU Leuven (University of Leuven), Leuven, Belgium.,Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
25
|
Ehler J, Petzold A, Wittstock M, Kolbaske S, Gloger M, Henschel J, Heslegrave A, Zetterberg H, Lunn MP, Rommer PS, Grossmann A, Sharshar T, Richter G, Nöldge-Schomburg G, Sauer M. The prognostic value of neurofilament levels in patients with sepsis-associated encephalopathy - A prospective, pilot observational study. PLoS One 2019; 14:e0211184. [PMID: 30677080 PMCID: PMC6345472 DOI: 10.1371/journal.pone.0211184] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/08/2019] [Indexed: 12/20/2022] Open
Abstract
Sepsis-associated encephalopathy (SAE) contributes to mortality and neurocognitive impairment of sepsis patients. Neurofilament (Nf) light (NfL) and heavy (NfH) chain levels as biomarkers for neuroaxonal injury were not evaluated in cerebrospinal fluid (CSF) and plasma of patients with sepsis-associated encephalopathy (SAE) before. We conducted a prospective, pilot observational study including 20 patients with septic shock and five patients without sepsis serving as controls. The assessment of SAE comprised a neuropsychiatric examination, electroencephalography (EEG), magnetic resonance imaging (MRI) and delirium screening methods including the confusion assessment method for the ICU (CAM-ICU) and the intensive care delirium screening checklist (ICDSC). CSF Nf measurements in sepsis patients and longitudinal plasma Nf measurements in all participants were performed on days 1, 3 and 7 after study inclusion. Plasma NfL levels increased in sepsis patients over time (p = 0.0063) and remained stable in patients without sepsis. Plasma NfL values were significantly higher in patients with SAE (p = 0.011), significantly correlated with the severity of SAE represented by ICDSC values (R = 0.534, p = 0.022) and correlated with a poorer functional outcome after 100 days (R = -0.535, p = 0.0003). High levels of CSF Nf were measured in SAE patients. CSF NfL levels were higher in non-survivors (p = 0.012) compared with survivors and correlated with days until death (R = -0.932, p<0.0001) and functional outcome after 100 days (R = -0.749, p<0.0001). The present study showed for the first time that Nf levels provide complementary prognostic information in SAE patients indicating a higher chance of death and poorer functional/cognitive outcome in survivors.
Collapse
Affiliation(s)
- Johannes Ehler
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Rostock, Rostock, Germany
- Department of Neuroimmunology, Institute of Neurology, University College London, London, United Kingdom
- * E-mail:
| | - Axel Petzold
- Department of Neuroimmunology, Institute of Neurology, University College London, London, United Kingdom
- Moorfields Eye Hospital, The National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Matthias Wittstock
- Department of Neurology, University Medical Center Rostock, Rostock, Germany
| | - Stephan Kolbaske
- Department of Neurology, University Medical Center Rostock, Rostock, Germany
| | - Martin Gloger
- Department of Internal Medicine, Intensive Care Unit, University Medical Center Rostock, Rostock, Germany
| | - Jörg Henschel
- Department of Internal Medicine, Intensive Care Unit, University Medical Center Rostock, Rostock, Germany
| | - Amanda Heslegrave
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, United Kingdom
- UK Dementia Research Institute at University College London, London, United Kingdom
| | - Henrik Zetterberg
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, United Kingdom
- UK Dementia Research Institute at University College London, London, United Kingdom
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Michael P. Lunn
- Department of Neuroimmunology, Institute of Neurology, University College London, London, United Kingdom
| | - Paulus S. Rommer
- Department of Neurology, Medical University Vienna, Vienna, Austria
| | - Annette Grossmann
- Institute for Diagnostic and Interventional Radiology, University Medical Center Rostock, Rostock, Germany
| | - Tarek Sharshar
- Department of Neuro-anesthesiology and Intensive Care Medicine, Saint-Anne Teaching Hospital, Paris-Decartes University, Paris, France
- Laboratory of Human Histopathology and Animal Models, Institut Pasteur, Paris, France
| | - Georg Richter
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Rostock, Rostock, Germany
| | - Gabriele Nöldge-Schomburg
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Rostock, Rostock, Germany
| | - Martin Sauer
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Rostock, Rostock, Germany
| |
Collapse
|
26
|
Poesen K, Van Damme P. Diagnostic and Prognostic Performance of Neurofilaments in ALS. Front Neurol 2019; 9:1167. [PMID: 30713520 PMCID: PMC6345692 DOI: 10.3389/fneur.2018.01167] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 12/17/2018] [Indexed: 01/03/2023] Open
Abstract
There is a need for biomarkers for amyotrophic lateral sclerosis (ALS), to support the diagnosis of the disease, to predict disease progression and to track disease activity and treatment responses. Over the last decade multiple studies have investigated the potential of neurofilament levels, both in cerebrospinal fluid and blood, as biomarker for ALS. The most widely studied neurofilament subunits are neurofilament light chain (NfL) and phosphorylated neurofilament heavy chain (pNfH). Neurofilament levels are reflecting neuronal injury and therefore potentially of value in ALS and other neurological disorders. In this mini-review, we summarize and discuss the available evidence about neurofilaments as diagnostic and prognostic biomarker for human ALS.
Collapse
Affiliation(s)
- Koen Poesen
- Department of Neurosciences, Laboratory for Molecular Neurobiomarker Research, KU Leuven, Leuven, Belgium.,Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Philip Van Damme
- Laboratory of Neurobiology, Department of Neurosciences, KU Leuven and Center for Brain & Disease Research VIB Leuven, Leuven, Belgium.,Department of Neurology, Neuromuscular Reference Centre, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
27
|
Petzold A. The relevance of buffer system ionic strength in immunoassay development. J Immunol Methods 2018; 465:27-30. [PMID: 30543827 DOI: 10.1016/j.jim.2018.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/26/2018] [Accepted: 11/26/2018] [Indexed: 10/27/2022]
Abstract
The best validated immunoassays for neurodegeneration have been developed for class III and IV intermediate filaments. There are a number of unique biochemical features of the intrinsically unstructured polyampholytic tail regions of these proteins which affect domain structure and thereby affinity and epitope recognition of antibodies used in immunoassays. Here one of these intermediate filaments, the neurofilament heavy chain, is chosen to demonstrate the effect of the ionic strength of a buffer system on the analytical signal to noise ratio. Higher ionic strengths gave better results. Next, a dose-dependent effect is demonstrated for barbitone to increase epitope recognition and protein quantification. The described effects of the buffer systems may be found helpful for future immunoassay developments.
Collapse
Affiliation(s)
- Axel Petzold
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, United Kingdom.
| |
Collapse
|
28
|
Khalil M, Teunissen CE, Otto M, Piehl F, Sormani MP, Gattringer T, Barro C, Kappos L, Comabella M, Fazekas F, Petzold A, Blennow K, Zetterberg H, Kuhle J. Neurofilaments as biomarkers in neurological disorders. Nat Rev Neurol 2018; 14:577-589. [DOI: 10.1038/s41582-018-0058-z] [Citation(s) in RCA: 767] [Impact Index Per Article: 109.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
29
|
Casha S, Rice T, Stirling DP, Silva C, Gnanapavan S, Giovannoni G, Hurlbert RJ, Yong VW. Cerebrospinal Fluid Biomarkers in Human Spinal Cord Injury from a Phase II Minocycline Trial. J Neurotrauma 2018; 35:1918-1928. [DOI: 10.1089/neu.2018.5899] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Steve Casha
- Hotchkiss Brain Institute and the Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Tiffany Rice
- Department of Anesthesia, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - David P. Stirling
- Hotchkiss Brain Institute and the Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
- KY Spinal Injury Research Center, University of Louisville, Louisville, Kentucky
| | - Claudia Silva
- Hotchkiss Brain Institute and the Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Sharmilee Gnanapavan
- Department of Neuroscience and Trauma, Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - Gavin Giovannoni
- Department of Neuroscience and Trauma, Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - R. John Hurlbert
- Hotchkiss Brain Institute and the Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
- Division of Neurosurgery, University of Arizona, Tucson, Arizona
| | - V. Wee Yong
- Hotchkiss Brain Institute and the Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
30
|
Abstract
Diseases of the central nervous system that are caused by an underlying vascular pathology typically result in either hemorrhage or ischemia. Most prominent entities include spontaneous subarachnoid hemorrhage, spontaneous intracerebral hemorrhage, and ischemic stroke. For anatomic reasons, cerebrospinal fluid (CSF) qualifies as body fluid for the exploration of biomarkers in these disorders. Even though in subarachnoid hemorrhage a few CSF parameters have been established for routine diagnostic purposes, there is still an unmet need and broad interest in the identification of molecules that would allow further insight into disease mechanisms and supplement patients' medical care. This chapter provides an overview on what is presently known about CSF biomarkers in spontaneous subarachnoid hemorrhage, spontaneous intracerebral hemorrhage, and ischemic stroke. We recapitulate current evidence on established diagnostic tests, discuss the role of various CSF molecules in the pathophysiology of these diseases, and illuminate their potential use in future clinical practice. Furthermore, we address methodologic aspects as well as shortcomings of research in this field.
Collapse
Affiliation(s)
- Harald Hegen
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria.
| | - Michael Auer
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | | |
Collapse
|
31
|
|
32
|
Ehler J, Barrett LK, Taylor V, Groves M, Scaravilli F, Wittstock M, Kolbaske S, Grossmann A, Henschel J, Gloger M, Sharshar T, Chretien F, Gray F, Nöldge-Schomburg G, Singer M, Sauer M, Petzold A. Translational evidence for two distinct patterns of neuroaxonal injury in sepsis: a longitudinal, prospective translational study. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2017; 21:262. [PMID: 29058589 PMCID: PMC5653470 DOI: 10.1186/s13054-017-1850-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 09/28/2017] [Indexed: 12/14/2022]
Abstract
Background Brain homeostasis deteriorates in sepsis, giving rise to a mostly reversible sepsis-associated encephalopathy (SAE). Some survivors experience chronic cognitive dysfunction thought to be caused by permanent brain injury. In this study, we investigated neuroaxonal pathology in sepsis. Methods We conducted a longitudinal, prospective translational study involving (1) experimental sepsis in an animal model; (2) postmortem studies of brain from patients with sepsis; and (3) a prospective, longitudinal human sepsis cohort study at university laboratory and intensive care units (ICUs). Thirteen ICU patients with septic shock, five ICU patients who died as a result of sepsis, fourteen fluid-resuscitated Wistar rats with fecal peritonitis, eleven sham-operated rats, and three human and four rat control subjects were included. Immunohistologic and protein biomarker analysis were performed on rat brain tissue at baseline and 24, 48, and 72 h after sepsis induction and in sham-treated rats. Immunohistochemistry was performed on human brain tissue from sepsis nonsurvivors and in control patients without sepsis. The clinical diagnostics of SAE comprised longitudinal clinical data collection and magnetic resonance imaging (MRI) and electroencephalographic assessments. Statistical analyses were performed using SAS software (version 9.4; SAS Institute, Inc., Cary, NC, USA). Because of non-Gaussian distribution, the nonparametric Wilcoxon test general linear models and the Spearman correlation coefficient were used. Results In postmortem rat and human brain samples, neurofilament phosphoform, β-amyloid precursor protein, β-tubulin, and H&E stains distinguished scattered ischemic lesions from diffuse neuroaxonal injury in septic animals, which were absent in controls. These two patterns of neuroaxonal damage were consistently found in septic but not control human postmortem brains. In experimental sepsis, the time from sepsis onset correlated with tissue neurofilament levels (R = 0.53, p = 0.045) but not glial fibrillary acidic protein. Of 13 patients with sepsis who had clinical features of SAE, MRI detected diffuse axonal injury in 9 and ischemia in 3 patients. Conclusions Ischemic and diffuse neuroaxonal injury to the brain in experimental sepsis, human postmortem brains, and in vivo MRI suggest these two distinct lesion types to be relevant. Future studies should be focused on body fluid biomarkers to detect and monitor brain injury in sepsis. The relationship of neurofilament levels with time from sepsis onset may be of prognostic value. Trial registration ClinicalTrials.gov, NCT02442986. Registered on May 13, 2015. Electronic supplementary material The online version of this article (doi:10.1186/s13054-017-1850-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Johannes Ehler
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Rostock, Rostock, Germany
| | - Lucinda K Barrett
- Bloomsbury Institute of Intensive Care Medicine, University College London, London, UK
| | - Valerie Taylor
- Bloomsbury Institute of Intensive Care Medicine, University College London, London, UK
| | - Michael Groves
- Department of Pathology, UCL Institute of Neurology, University College London, London, UK
| | - Francesco Scaravilli
- Department of Pathology, UCL Institute of Neurology, University College London, London, UK
| | - Matthias Wittstock
- Department of Neurology, University Medical Center Rostock, Rostock, Germany
| | - Stephan Kolbaske
- Department of Neurology, University Medical Center Rostock, Rostock, Germany
| | - Annette Grossmann
- Institute for Diagnostic and Interventional Radiology, University Medical Center Rostock, Rostock, Germany
| | - Jörg Henschel
- Department of Internal Medicine, Intensive Care Unit, University Medical Center Rostock, Rostock, Germany
| | - Martin Gloger
- Department of Internal Medicine, Intensive Care Unit, University Medical Center Rostock, Rostock, Germany
| | - Tarek Sharshar
- General Intensive Care Medicine, Assistance Publique - Hôpitaux de Paris, Raymond Poincaré Hospital, University of Versailles Saint-Quentin en Yvelines, Paris, France
| | - Fabrice Chretien
- General Intensive Care Medicine, Assistance Publique - Hôpitaux de Paris, Raymond Poincaré Hospital, University of Versailles Saint-Quentin en Yvelines, Paris, France
| | - Francoise Gray
- General Intensive Care Medicine, Assistance Publique - Hôpitaux de Paris, Raymond Poincaré Hospital, University of Versailles Saint-Quentin en Yvelines, Paris, France
| | - Gabriele Nöldge-Schomburg
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Rostock, Rostock, Germany
| | - Mervyn Singer
- Bloomsbury Institute of Intensive Care Medicine, University College London, London, UK
| | - Martin Sauer
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Rostock, Rostock, Germany
| | - Axel Petzold
- Department of Neuroimmunology, UCL Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK.
| |
Collapse
|
33
|
Intan-Shameha A, Divers TJ, Morrow JK, Graves A, Olsen E, Johnson AL, Mohammed HO. Phosphorylated neurofilament H (pNF-H) as a potential diagnostic marker for neurological disorders in horses. Res Vet Sci 2017; 114:401-405. [DOI: 10.1016/j.rvsc.2017.07.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 07/08/2017] [Accepted: 07/16/2017] [Indexed: 10/19/2022]
|
34
|
Longitudinal Assessment of Transorbital Sonography, Visual Acuity, and Biomarkers for Inflammation and Axonal Injury in Optic Neuritis. DISEASE MARKERS 2017; 2017:5434310. [PMID: 29085182 PMCID: PMC5612304 DOI: 10.1155/2017/5434310] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 08/17/2017] [Indexed: 01/20/2023]
Abstract
Background and Objective To investigate the relationship between optic nerve sheath diameter, optic nerve diameter, visual acuity and osteopontin, and neurofilament heavy chain in patients with acute optic neuritis. Patients and Methods Sonographic and visual acuity assessment and biomarker measurements were executed in 23 patients with unilateral optic neuritis and in 19 sex- and age-matched healthy controls. Results ONSD was thicker on the affected side at symptom onset (median 6.3 mm; interquartile range 6.0–6.5) than after 12 months (5.3 mm; 4.9–5.6; p < 0.001) or than in controls (5.2 mm; 4.8–5.5; p < 0.001). OND was significantly increased in the affected side (3.4 mm; 2.9–3.8) compared to healthy controls (2.7 mm; 2.5–2.9; p < 0.001) and was thicker at baseline than after 12 months (2.8 mm; 2.7–3.0; p < 0.01). Visual acuity improved significantly after 12 months (1.00; 0.90–1.00) compared to onset of symptoms (0.80; 0.40–1.00; p < 0.001). OPN levels were significantly higher in patients at presentation (median 6.44 ng/ml; 2.05–10.06) compared to healthy controls (3.21 ng/ml, 1.34–4.34; p < 0.03). Concentrations of NfH were significantly higher in patients than in controls. Conclusion ONSD and OND are increased in the affected eye. OPN and NfH are elevated in patients, confirming the presence of any underlying inflammation and axonal injury.
Collapse
|
35
|
Dubuisson N, Puentes F, Giovannoni G, Gnanapavan S. Science is 1% inspiration and 99% biomarkers. Mult Scler 2017; 23:1442-1452. [PMID: 28537780 DOI: 10.1177/1352458517709362] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neurodegeneration plays a key role in multiple sclerosis (MS) contributing to long-term disability in patients. The prognosis is, however, unpredictable coloured by complex disease mechanisms which can only be clearly appreciated using biomarkers specific to pathobiology of the underlying process. Here, we describe six promising neurodegenerative biomarkers in MS (neurofilament proteins, neurofilament antibodies, tau, N-acetylaspartate, chitinase and chitinase-like proteins and osteopontin), critically evaluating the evidence using a modified Bradford Hill criteria.
Collapse
Affiliation(s)
- Nicolas Dubuisson
- Department of Neuroscience and Trauma, Blizard Institute, Queen Mary University of London, London, UK
| | - Fabiola Puentes
- Department of Neuroscience and Trauma, Blizard Institute, Queen Mary University of London, London, UK
| | - Gavin Giovannoni
- Department of Neuroscience and Trauma, Blizard Institute, Queen Mary University of London, London, UK
| | - Sharmilee Gnanapavan
- Department of Neuroscience and Trauma, Blizard Institute, Queen Mary University of London, London, UK
| |
Collapse
|
36
|
Toedebusch CM, Bachrach MD, Garcia VB, Johnson GC, Katz ML, Shaw G, Coates JR, Garcia ML. Cerebrospinal Fluid Levels of Phosphorylated Neurofilament Heavy as a Diagnostic Marker of Canine Degenerative Myelopathy. J Vet Intern Med 2017; 31:513-520. [PMID: 28186658 PMCID: PMC5354061 DOI: 10.1111/jvim.14659] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 12/05/2016] [Accepted: 12/22/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND No definitive, antemortem diagnostic test for canine degenerative myelopathy (DM) is available. Phosphorylated neurofilament heavy (pNF-H) is a promising biomarker for nervous system diseases. HYPOTHESIS/OBJECTIVE Cerebrospinal fluid (CSF) and serum pNF-H is a detectable biological marker for diagnosis of canine DM. ANIMALS Fifty-three DM-affected, 27 neurologically normal, 7 asymptomatic at-risk, and 12 DM mimic dogs. METHODS Archived CSF and serum pNF-H concentrations were determined by a commercially available ELISA. A receiver-operating characteristic (ROC) curve was generated with CSF values. RESULTS Compared with old control dogs, median CSF pNF-H concentration was increased in all stages of DM; old dogs 5.1 ng/mL (interquartile range [IQR] 1.4-9.3) versus DM stage 1 23.9 ng/mL (IQR 20.8-29.6; P < .05) versus DM stage 2 36.8 ng/mL (IQR 22.9-51.2; P < .0001) versus DM stage 3 25.2 ng/mL (IQR 20.2-61.8; P < .001) versus DM stage 4 38.0 ng/mL (IQR 11.6-59.9; P < .01). Degenerative myelopathy stage 1 dogs had increased median CSF pNF-H concentrations compared with asymptomatic, at-risk dogs (3.4 ng/mL [IQR 1.5-10.9; P < .01]) and DM mimics (6.6 ng/mL [IQR 3.0-12.3; P < .01]). CSF pNF-H concentration >20.25 ng/mL was 80.4% sensitive (confidence interval [CI] 66.09-90.64%) and 93.6% specific (CI 78.58-99.21%) for DM. Area under the ROC curve was 0.9467 (CI 0.92-0.9974). No differences in serum pNF-H concentration were found between control and DM-affected dogs. CONCLUSIONS AND CLINICAL IMPORTANCE pNF-H concentration in CSF is a sensitive biomarker for diagnosis of DM. Although there was high specificity for DM in this cohort, further study should focus on a larger cohort of DM mimics, particularly other central and peripheral axonopathies.
Collapse
Affiliation(s)
- C M Toedebusch
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri-Columbia, Columbia, MO
| | - M D Bachrach
- Division of Biological Sciences, Bond Life Sciences Center, University of Missouri-Columbia, Columbia, MO
| | - V B Garcia
- Division of Biological Sciences, Bond Life Sciences Center, University of Missouri-Columbia, Columbia, MO
| | - G C Johnson
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri-Columbia, Columbia, MO
| | - M L Katz
- Mason Eye Institute, School of Medicine, University of Missouri-Columbia, Columbia, MO
| | - G Shaw
- EnCor Biotechnology Inc, Gainesville, FL
| | - J R Coates
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri-Columbia, Columbia, MO
| | - M L Garcia
- Division of Biological Sciences, Bond Life Sciences Center, University of Missouri-Columbia, Columbia, MO
| |
Collapse
|
37
|
Effect of amitriptyline treatment on neurofilament-H protein in an experimental model of depression. Brain Res Bull 2017; 128:1-6. [DOI: 10.1016/j.brainresbull.2016.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 10/19/2016] [Accepted: 11/01/2016] [Indexed: 02/04/2023]
|
38
|
Li D, Shen D, Tai H, Cui L. Neurofilaments in CSF As Diagnostic Biomarkers in Motor Neuron Disease: A Meta-Analysis. Front Aging Neurosci 2016; 8:290. [PMID: 27965574 PMCID: PMC5126108 DOI: 10.3389/fnagi.2016.00290] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/16/2016] [Indexed: 11/13/2022] Open
Abstract
Objective: Neurofilaments in CSF are promising biomarkers which might help in the diagnosis of motor neuron disease (MND). We aim to assess the diagnostic value of neurofilaments in CSF for MND. Methods: Pubmed, Emabase, and Web of Science were searched for relevant studies systematically. Articles in English that evaluated the utility of neurofilaments in CSF in the diagnosis of MND were included. Data were extracted by two independent investigators. Diagnostic indexes for neurofilament light chain (NFL) and phosphorylated neurofilament heavy chain (pNFH) were calculated separately. Stata 12.0 software with a bivariate mixed-effects model was used to summarize the diagnostic indexes from eligible studies. Results: Five studies on NFL and eight studies on pNFH met inclusion criteria. For NFL, the pooled sensitivity and specificity were 81% (95% confidence interval [CI], 72–88%) and 85% (95% CI, 76–91%), respectively; the positive likelihood ratio (PLR) and negative likelihood ratio (NLR) were 5.5 (95% CI, 3.1–9.8) and 0.22 (95% CI, 0.14–0.35), respectively; the summary diagnostic odds ratio (DOR) was 25 (95% CI, 9–70), and the area under summary receiver operator characteristic curve (AUC) was 0.90 (95% CI, 0.87–0.92). For pNFH, the pooled sensitivity, specificity, PLR and NLR were 85% (95% CI, 80–88%), 85% (95% CI, 77–90%), 5.5 (95% CI, 3.6–8.4), and 0.18 (95% CI, 0.13–0.25), respectively; the DOR was 30 (95% CI, 16–58), and the AUC was 0.91 (95% CI, 0.88–0.93). Conclusion: Neurofilaments in CSF have a high value in the diagnosis of MND, though the optimal cutoff value remains to be further investigated.
Collapse
Affiliation(s)
- Dawei Li
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing, China
| | - Dongchao Shen
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing, China
| | - Hongfei Tai
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing, China
| | - Liying Cui
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China; Neuroscience Center, Chinese Academy of Medical SciencesBeijing, China
| |
Collapse
|
39
|
Neurofilaments as Biomarkers for Amyotrophic Lateral Sclerosis: A Systematic Review and Meta-Analysis. PLoS One 2016; 11:e0164625. [PMID: 27732645 PMCID: PMC5061412 DOI: 10.1371/journal.pone.0164625] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 09/28/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND To allow early diagnosis and monitoring of disease progression, there is a need for biomarkers in amyotrophic lateral sclerosis (ALS). Neurofilaments (NF) are emerging protein biomarkers in other neurological diseases, and are of possible use in ALS. OBJECTIVE The aim of this study is to evaluate the utility of NF levels as blood or cerebrospinal fluid (CSF) biomarker in patients with ALS. METHODS A systematic search of Pubmed, Embase and Scopus was performed. Methodological quality assessment was applied to refine the final search results. Meta-analysis of the data was performed. RESULTS Level of NF heavy chain and light chains were significantly elevated in the CSF of ALS patients compared to healthy controls/controls without parenchymal central nervous system (CNS) involvement and ALS mimic disease patients. NF light chain level in CSF was higher in ALS patients than in neurological patients with CNS involvement (SMD = 1.352, P = 0.01). NF light chain concentration in blood was higher in ALS patients than healthy controls/controls without CNS involvement (SMD = 1.448, P<0.0001). NF heavy chain levels in CSF were negatively correlated disease duration and ALSFRS-R ((r = -0.447, P<0.0001; r = -0.486, P<0.0001). NF light chain levels in CSF were negatively correlated with disease duration (r = -0.273, P = 0.011). CONCLUSION NF heavy and light chain levels have potential use as a marker of neural degeneration in ALS, but are not specific for the disease, and are more likely to be used as measures of disease progression.
Collapse
|
40
|
Arrambide G, Espejo C, Eixarch H, Villar LM, Alvarez-Cermeño JC, Picón C, Kuhle J, Disanto G, Kappos L, Sastre-Garriga J, Pareto D, Simon E, Comabella M, Río J, Nos C, Tur C, Castilló J, Vidal-Jordana A, Galán I, Arévalo MJ, Auger C, Rovira A, Montalban X, Tintore M. Neurofilament light chain level is a weak risk factor for the development of MS. Neurology 2016; 87:1076-84. [PMID: 27521440 PMCID: PMC5027802 DOI: 10.1212/wnl.0000000000003085] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 04/14/2016] [Indexed: 11/30/2022] Open
Abstract
Objective: To determine the prognostic value of selected biomarkers in clinically isolated syndromes (CIS) for conversion to multiple sclerosis (MS) and disability accrual. Methods: Data were acquired from 2 CIS cohorts. The screening phase evaluated patients developing clinically definite MS (CIS-CDMS) and patients who remained as CIS during a 2-year minimum follow-up (CIS-CIS). We determined levels of neurofascin, semaphorin 3A, fetuin A, glial fibrillary acidic protein, and neurofilament light (NfL) and heavy chains in CSF (estimated mean [95% confidence interval; CI]). We evaluated associations between biomarker levels, conversion, disability, and magnetic resonance parameters. In the replication phase, we determined NfL levels (n = 155) using a 900 ng/L cutoff. Primary endpoints in uni- and multivariate analyses were CDMS and 2010 McDonald MS. Results: The only biomarker showing significant differences in the screening was NfL (CIS-CDMS 1,553.1 [1,208.7–1,897.5] ng/L and CIS-CIS 499.0 [168.8–829.2] ng/L, p < 0.0001). The strongest associations were with brain parenchymal fraction change (rs = −0.892) and percentage brain volume change (rs = −0.842) at 5 years. NfL did not correlate with disability. In the replication phase, more NfL-positive patients, according to the cutoff, evolved to MS. Every 100-ng/L increase in NfL predicted CDMS (hazard ratio [HR] = 1.009, 95% CI 1.005–1.014) and McDonald MS (HR = 1.009, 95% CI 1.005–1.013), remaining significant for CDMS in the multivariate analysis (adjusted HR = 1.005, 95% CI 1.000–1.011). This risk was lower than the presence of oligoclonal bands or T2 lesions. Conclusions: NfL is a weak independent risk factor for MS. Its role as an axonal damage biomarker may be more relevant as suggested by its association with medium-term brain volume changes.
Collapse
Affiliation(s)
- Georgina Arrambide
- From Servei de Neurologia-Neuroimmunologia (G.A., C.E., H.E., J.S.-G., E.S., M.C., J.R., C.N., C.T., J.C., A.V.-J., I.G., M.J.A., X.M., M.T.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona; Universitat Autònoma de Barcelona (G.A., C.E., H.E., J.S.-G., E.S., M.C., J.R., C.N., C.T., J.C., A.V.-J., I.G., X.M., M.T.), Bellaterra; Departments of Neurology and Immunology (L.M.V., J.C.A.-C., C.P.), Multiple Sclerosis Unit, Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain; Department of Neurology (J.K., L.K.), University Hospital Basel; Neurocentre of Southern Switzerland (G.D.), Ospedale Civico, Lugano, Switzerland; and Magnetic Resonance Unit (IDI) (D.P., C.A., A.R.), Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Carmen Espejo
- From Servei de Neurologia-Neuroimmunologia (G.A., C.E., H.E., J.S.-G., E.S., M.C., J.R., C.N., C.T., J.C., A.V.-J., I.G., M.J.A., X.M., M.T.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona; Universitat Autònoma de Barcelona (G.A., C.E., H.E., J.S.-G., E.S., M.C., J.R., C.N., C.T., J.C., A.V.-J., I.G., X.M., M.T.), Bellaterra; Departments of Neurology and Immunology (L.M.V., J.C.A.-C., C.P.), Multiple Sclerosis Unit, Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain; Department of Neurology (J.K., L.K.), University Hospital Basel; Neurocentre of Southern Switzerland (G.D.), Ospedale Civico, Lugano, Switzerland; and Magnetic Resonance Unit (IDI) (D.P., C.A., A.R.), Hospital Universitari Vall d'Hebron, Barcelona, Spain.
| | - Herena Eixarch
- From Servei de Neurologia-Neuroimmunologia (G.A., C.E., H.E., J.S.-G., E.S., M.C., J.R., C.N., C.T., J.C., A.V.-J., I.G., M.J.A., X.M., M.T.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona; Universitat Autònoma de Barcelona (G.A., C.E., H.E., J.S.-G., E.S., M.C., J.R., C.N., C.T., J.C., A.V.-J., I.G., X.M., M.T.), Bellaterra; Departments of Neurology and Immunology (L.M.V., J.C.A.-C., C.P.), Multiple Sclerosis Unit, Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain; Department of Neurology (J.K., L.K.), University Hospital Basel; Neurocentre of Southern Switzerland (G.D.), Ospedale Civico, Lugano, Switzerland; and Magnetic Resonance Unit (IDI) (D.P., C.A., A.R.), Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Luisa M Villar
- From Servei de Neurologia-Neuroimmunologia (G.A., C.E., H.E., J.S.-G., E.S., M.C., J.R., C.N., C.T., J.C., A.V.-J., I.G., M.J.A., X.M., M.T.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona; Universitat Autònoma de Barcelona (G.A., C.E., H.E., J.S.-G., E.S., M.C., J.R., C.N., C.T., J.C., A.V.-J., I.G., X.M., M.T.), Bellaterra; Departments of Neurology and Immunology (L.M.V., J.C.A.-C., C.P.), Multiple Sclerosis Unit, Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain; Department of Neurology (J.K., L.K.), University Hospital Basel; Neurocentre of Southern Switzerland (G.D.), Ospedale Civico, Lugano, Switzerland; and Magnetic Resonance Unit (IDI) (D.P., C.A., A.R.), Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - José C Alvarez-Cermeño
- From Servei de Neurologia-Neuroimmunologia (G.A., C.E., H.E., J.S.-G., E.S., M.C., J.R., C.N., C.T., J.C., A.V.-J., I.G., M.J.A., X.M., M.T.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona; Universitat Autònoma de Barcelona (G.A., C.E., H.E., J.S.-G., E.S., M.C., J.R., C.N., C.T., J.C., A.V.-J., I.G., X.M., M.T.), Bellaterra; Departments of Neurology and Immunology (L.M.V., J.C.A.-C., C.P.), Multiple Sclerosis Unit, Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain; Department of Neurology (J.K., L.K.), University Hospital Basel; Neurocentre of Southern Switzerland (G.D.), Ospedale Civico, Lugano, Switzerland; and Magnetic Resonance Unit (IDI) (D.P., C.A., A.R.), Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Carmen Picón
- From Servei de Neurologia-Neuroimmunologia (G.A., C.E., H.E., J.S.-G., E.S., M.C., J.R., C.N., C.T., J.C., A.V.-J., I.G., M.J.A., X.M., M.T.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona; Universitat Autònoma de Barcelona (G.A., C.E., H.E., J.S.-G., E.S., M.C., J.R., C.N., C.T., J.C., A.V.-J., I.G., X.M., M.T.), Bellaterra; Departments of Neurology and Immunology (L.M.V., J.C.A.-C., C.P.), Multiple Sclerosis Unit, Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain; Department of Neurology (J.K., L.K.), University Hospital Basel; Neurocentre of Southern Switzerland (G.D.), Ospedale Civico, Lugano, Switzerland; and Magnetic Resonance Unit (IDI) (D.P., C.A., A.R.), Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Jens Kuhle
- From Servei de Neurologia-Neuroimmunologia (G.A., C.E., H.E., J.S.-G., E.S., M.C., J.R., C.N., C.T., J.C., A.V.-J., I.G., M.J.A., X.M., M.T.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona; Universitat Autònoma de Barcelona (G.A., C.E., H.E., J.S.-G., E.S., M.C., J.R., C.N., C.T., J.C., A.V.-J., I.G., X.M., M.T.), Bellaterra; Departments of Neurology and Immunology (L.M.V., J.C.A.-C., C.P.), Multiple Sclerosis Unit, Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain; Department of Neurology (J.K., L.K.), University Hospital Basel; Neurocentre of Southern Switzerland (G.D.), Ospedale Civico, Lugano, Switzerland; and Magnetic Resonance Unit (IDI) (D.P., C.A., A.R.), Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Giulio Disanto
- From Servei de Neurologia-Neuroimmunologia (G.A., C.E., H.E., J.S.-G., E.S., M.C., J.R., C.N., C.T., J.C., A.V.-J., I.G., M.J.A., X.M., M.T.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona; Universitat Autònoma de Barcelona (G.A., C.E., H.E., J.S.-G., E.S., M.C., J.R., C.N., C.T., J.C., A.V.-J., I.G., X.M., M.T.), Bellaterra; Departments of Neurology and Immunology (L.M.V., J.C.A.-C., C.P.), Multiple Sclerosis Unit, Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain; Department of Neurology (J.K., L.K.), University Hospital Basel; Neurocentre of Southern Switzerland (G.D.), Ospedale Civico, Lugano, Switzerland; and Magnetic Resonance Unit (IDI) (D.P., C.A., A.R.), Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Ludwig Kappos
- From Servei de Neurologia-Neuroimmunologia (G.A., C.E., H.E., J.S.-G., E.S., M.C., J.R., C.N., C.T., J.C., A.V.-J., I.G., M.J.A., X.M., M.T.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona; Universitat Autònoma de Barcelona (G.A., C.E., H.E., J.S.-G., E.S., M.C., J.R., C.N., C.T., J.C., A.V.-J., I.G., X.M., M.T.), Bellaterra; Departments of Neurology and Immunology (L.M.V., J.C.A.-C., C.P.), Multiple Sclerosis Unit, Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain; Department of Neurology (J.K., L.K.), University Hospital Basel; Neurocentre of Southern Switzerland (G.D.), Ospedale Civico, Lugano, Switzerland; and Magnetic Resonance Unit (IDI) (D.P., C.A., A.R.), Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Jaume Sastre-Garriga
- From Servei de Neurologia-Neuroimmunologia (G.A., C.E., H.E., J.S.-G., E.S., M.C., J.R., C.N., C.T., J.C., A.V.-J., I.G., M.J.A., X.M., M.T.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona; Universitat Autònoma de Barcelona (G.A., C.E., H.E., J.S.-G., E.S., M.C., J.R., C.N., C.T., J.C., A.V.-J., I.G., X.M., M.T.), Bellaterra; Departments of Neurology and Immunology (L.M.V., J.C.A.-C., C.P.), Multiple Sclerosis Unit, Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain; Department of Neurology (J.K., L.K.), University Hospital Basel; Neurocentre of Southern Switzerland (G.D.), Ospedale Civico, Lugano, Switzerland; and Magnetic Resonance Unit (IDI) (D.P., C.A., A.R.), Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Deborah Pareto
- From Servei de Neurologia-Neuroimmunologia (G.A., C.E., H.E., J.S.-G., E.S., M.C., J.R., C.N., C.T., J.C., A.V.-J., I.G., M.J.A., X.M., M.T.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona; Universitat Autònoma de Barcelona (G.A., C.E., H.E., J.S.-G., E.S., M.C., J.R., C.N., C.T., J.C., A.V.-J., I.G., X.M., M.T.), Bellaterra; Departments of Neurology and Immunology (L.M.V., J.C.A.-C., C.P.), Multiple Sclerosis Unit, Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain; Department of Neurology (J.K., L.K.), University Hospital Basel; Neurocentre of Southern Switzerland (G.D.), Ospedale Civico, Lugano, Switzerland; and Magnetic Resonance Unit (IDI) (D.P., C.A., A.R.), Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Eva Simon
- From Servei de Neurologia-Neuroimmunologia (G.A., C.E., H.E., J.S.-G., E.S., M.C., J.R., C.N., C.T., J.C., A.V.-J., I.G., M.J.A., X.M., M.T.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona; Universitat Autònoma de Barcelona (G.A., C.E., H.E., J.S.-G., E.S., M.C., J.R., C.N., C.T., J.C., A.V.-J., I.G., X.M., M.T.), Bellaterra; Departments of Neurology and Immunology (L.M.V., J.C.A.-C., C.P.), Multiple Sclerosis Unit, Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain; Department of Neurology (J.K., L.K.), University Hospital Basel; Neurocentre of Southern Switzerland (G.D.), Ospedale Civico, Lugano, Switzerland; and Magnetic Resonance Unit (IDI) (D.P., C.A., A.R.), Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Manuel Comabella
- From Servei de Neurologia-Neuroimmunologia (G.A., C.E., H.E., J.S.-G., E.S., M.C., J.R., C.N., C.T., J.C., A.V.-J., I.G., M.J.A., X.M., M.T.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona; Universitat Autònoma de Barcelona (G.A., C.E., H.E., J.S.-G., E.S., M.C., J.R., C.N., C.T., J.C., A.V.-J., I.G., X.M., M.T.), Bellaterra; Departments of Neurology and Immunology (L.M.V., J.C.A.-C., C.P.), Multiple Sclerosis Unit, Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain; Department of Neurology (J.K., L.K.), University Hospital Basel; Neurocentre of Southern Switzerland (G.D.), Ospedale Civico, Lugano, Switzerland; and Magnetic Resonance Unit (IDI) (D.P., C.A., A.R.), Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Jordi Río
- From Servei de Neurologia-Neuroimmunologia (G.A., C.E., H.E., J.S.-G., E.S., M.C., J.R., C.N., C.T., J.C., A.V.-J., I.G., M.J.A., X.M., M.T.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona; Universitat Autònoma de Barcelona (G.A., C.E., H.E., J.S.-G., E.S., M.C., J.R., C.N., C.T., J.C., A.V.-J., I.G., X.M., M.T.), Bellaterra; Departments of Neurology and Immunology (L.M.V., J.C.A.-C., C.P.), Multiple Sclerosis Unit, Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain; Department of Neurology (J.K., L.K.), University Hospital Basel; Neurocentre of Southern Switzerland (G.D.), Ospedale Civico, Lugano, Switzerland; and Magnetic Resonance Unit (IDI) (D.P., C.A., A.R.), Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Carlos Nos
- From Servei de Neurologia-Neuroimmunologia (G.A., C.E., H.E., J.S.-G., E.S., M.C., J.R., C.N., C.T., J.C., A.V.-J., I.G., M.J.A., X.M., M.T.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona; Universitat Autònoma de Barcelona (G.A., C.E., H.E., J.S.-G., E.S., M.C., J.R., C.N., C.T., J.C., A.V.-J., I.G., X.M., M.T.), Bellaterra; Departments of Neurology and Immunology (L.M.V., J.C.A.-C., C.P.), Multiple Sclerosis Unit, Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain; Department of Neurology (J.K., L.K.), University Hospital Basel; Neurocentre of Southern Switzerland (G.D.), Ospedale Civico, Lugano, Switzerland; and Magnetic Resonance Unit (IDI) (D.P., C.A., A.R.), Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Carmen Tur
- From Servei de Neurologia-Neuroimmunologia (G.A., C.E., H.E., J.S.-G., E.S., M.C., J.R., C.N., C.T., J.C., A.V.-J., I.G., M.J.A., X.M., M.T.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona; Universitat Autònoma de Barcelona (G.A., C.E., H.E., J.S.-G., E.S., M.C., J.R., C.N., C.T., J.C., A.V.-J., I.G., X.M., M.T.), Bellaterra; Departments of Neurology and Immunology (L.M.V., J.C.A.-C., C.P.), Multiple Sclerosis Unit, Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain; Department of Neurology (J.K., L.K.), University Hospital Basel; Neurocentre of Southern Switzerland (G.D.), Ospedale Civico, Lugano, Switzerland; and Magnetic Resonance Unit (IDI) (D.P., C.A., A.R.), Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Joaquín Castilló
- From Servei de Neurologia-Neuroimmunologia (G.A., C.E., H.E., J.S.-G., E.S., M.C., J.R., C.N., C.T., J.C., A.V.-J., I.G., M.J.A., X.M., M.T.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona; Universitat Autònoma de Barcelona (G.A., C.E., H.E., J.S.-G., E.S., M.C., J.R., C.N., C.T., J.C., A.V.-J., I.G., X.M., M.T.), Bellaterra; Departments of Neurology and Immunology (L.M.V., J.C.A.-C., C.P.), Multiple Sclerosis Unit, Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain; Department of Neurology (J.K., L.K.), University Hospital Basel; Neurocentre of Southern Switzerland (G.D.), Ospedale Civico, Lugano, Switzerland; and Magnetic Resonance Unit (IDI) (D.P., C.A., A.R.), Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Angela Vidal-Jordana
- From Servei de Neurologia-Neuroimmunologia (G.A., C.E., H.E., J.S.-G., E.S., M.C., J.R., C.N., C.T., J.C., A.V.-J., I.G., M.J.A., X.M., M.T.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona; Universitat Autònoma de Barcelona (G.A., C.E., H.E., J.S.-G., E.S., M.C., J.R., C.N., C.T., J.C., A.V.-J., I.G., X.M., M.T.), Bellaterra; Departments of Neurology and Immunology (L.M.V., J.C.A.-C., C.P.), Multiple Sclerosis Unit, Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain; Department of Neurology (J.K., L.K.), University Hospital Basel; Neurocentre of Southern Switzerland (G.D.), Ospedale Civico, Lugano, Switzerland; and Magnetic Resonance Unit (IDI) (D.P., C.A., A.R.), Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Ingrid Galán
- From Servei de Neurologia-Neuroimmunologia (G.A., C.E., H.E., J.S.-G., E.S., M.C., J.R., C.N., C.T., J.C., A.V.-J., I.G., M.J.A., X.M., M.T.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona; Universitat Autònoma de Barcelona (G.A., C.E., H.E., J.S.-G., E.S., M.C., J.R., C.N., C.T., J.C., A.V.-J., I.G., X.M., M.T.), Bellaterra; Departments of Neurology and Immunology (L.M.V., J.C.A.-C., C.P.), Multiple Sclerosis Unit, Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain; Department of Neurology (J.K., L.K.), University Hospital Basel; Neurocentre of Southern Switzerland (G.D.), Ospedale Civico, Lugano, Switzerland; and Magnetic Resonance Unit (IDI) (D.P., C.A., A.R.), Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Maria J Arévalo
- From Servei de Neurologia-Neuroimmunologia (G.A., C.E., H.E., J.S.-G., E.S., M.C., J.R., C.N., C.T., J.C., A.V.-J., I.G., M.J.A., X.M., M.T.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona; Universitat Autònoma de Barcelona (G.A., C.E., H.E., J.S.-G., E.S., M.C., J.R., C.N., C.T., J.C., A.V.-J., I.G., X.M., M.T.), Bellaterra; Departments of Neurology and Immunology (L.M.V., J.C.A.-C., C.P.), Multiple Sclerosis Unit, Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain; Department of Neurology (J.K., L.K.), University Hospital Basel; Neurocentre of Southern Switzerland (G.D.), Ospedale Civico, Lugano, Switzerland; and Magnetic Resonance Unit (IDI) (D.P., C.A., A.R.), Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Cristina Auger
- From Servei de Neurologia-Neuroimmunologia (G.A., C.E., H.E., J.S.-G., E.S., M.C., J.R., C.N., C.T., J.C., A.V.-J., I.G., M.J.A., X.M., M.T.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona; Universitat Autònoma de Barcelona (G.A., C.E., H.E., J.S.-G., E.S., M.C., J.R., C.N., C.T., J.C., A.V.-J., I.G., X.M., M.T.), Bellaterra; Departments of Neurology and Immunology (L.M.V., J.C.A.-C., C.P.), Multiple Sclerosis Unit, Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain; Department of Neurology (J.K., L.K.), University Hospital Basel; Neurocentre of Southern Switzerland (G.D.), Ospedale Civico, Lugano, Switzerland; and Magnetic Resonance Unit (IDI) (D.P., C.A., A.R.), Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Alex Rovira
- From Servei de Neurologia-Neuroimmunologia (G.A., C.E., H.E., J.S.-G., E.S., M.C., J.R., C.N., C.T., J.C., A.V.-J., I.G., M.J.A., X.M., M.T.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona; Universitat Autònoma de Barcelona (G.A., C.E., H.E., J.S.-G., E.S., M.C., J.R., C.N., C.T., J.C., A.V.-J., I.G., X.M., M.T.), Bellaterra; Departments of Neurology and Immunology (L.M.V., J.C.A.-C., C.P.), Multiple Sclerosis Unit, Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain; Department of Neurology (J.K., L.K.), University Hospital Basel; Neurocentre of Southern Switzerland (G.D.), Ospedale Civico, Lugano, Switzerland; and Magnetic Resonance Unit (IDI) (D.P., C.A., A.R.), Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Xavier Montalban
- From Servei de Neurologia-Neuroimmunologia (G.A., C.E., H.E., J.S.-G., E.S., M.C., J.R., C.N., C.T., J.C., A.V.-J., I.G., M.J.A., X.M., M.T.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona; Universitat Autònoma de Barcelona (G.A., C.E., H.E., J.S.-G., E.S., M.C., J.R., C.N., C.T., J.C., A.V.-J., I.G., X.M., M.T.), Bellaterra; Departments of Neurology and Immunology (L.M.V., J.C.A.-C., C.P.), Multiple Sclerosis Unit, Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain; Department of Neurology (J.K., L.K.), University Hospital Basel; Neurocentre of Southern Switzerland (G.D.), Ospedale Civico, Lugano, Switzerland; and Magnetic Resonance Unit (IDI) (D.P., C.A., A.R.), Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Mar Tintore
- From Servei de Neurologia-Neuroimmunologia (G.A., C.E., H.E., J.S.-G., E.S., M.C., J.R., C.N., C.T., J.C., A.V.-J., I.G., M.J.A., X.M., M.T.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona; Universitat Autònoma de Barcelona (G.A., C.E., H.E., J.S.-G., E.S., M.C., J.R., C.N., C.T., J.C., A.V.-J., I.G., X.M., M.T.), Bellaterra; Departments of Neurology and Immunology (L.M.V., J.C.A.-C., C.P.), Multiple Sclerosis Unit, Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain; Department of Neurology (J.K., L.K.), University Hospital Basel; Neurocentre of Southern Switzerland (G.D.), Ospedale Civico, Lugano, Switzerland; and Magnetic Resonance Unit (IDI) (D.P., C.A., A.R.), Hospital Universitari Vall d'Hebron, Barcelona, Spain.
| |
Collapse
|
41
|
Li S, Ren Y, Zhu W, Yang F, Zhang X, Huang X. Phosphorylated neurofilament heavy chain levels in paired plasma and CSF of amyotrophic lateral sclerosis. J Neurol Sci 2016; 367:269-74. [DOI: 10.1016/j.jns.2016.05.062] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 05/10/2016] [Accepted: 05/31/2016] [Indexed: 12/01/2022]
|
42
|
Petzold A, Steenwijk MD, Eikelenboom JM, Wattjes MP, Uitdehaag BMJ. Elevated CSF neurofilament proteins predict brain atrophy: A 15-year follow-up study. Mult Scler 2016; 22:1154-62. [DOI: 10.1177/1352458516645206] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/26/2016] [Indexed: 11/15/2022]
Abstract
Background: Body fluid and structural imaging biomarkers give information on neurodegeneration. The relationship over time is not known in multiple sclerosis. Objective: To investigate the temporal relationship of elevated cerebrospinal fluid (CSF) neurofilament (Nf) protein levels, a biomarker for axonal loss, with magnetic resonance imaging (MRI) atrophy measures. Methods: In patients with multiple sclerosis, CSF Nf heavy chain (NfH) phosphoform levels were quantified at baseline and dichotomised into ‘normal’ and ‘high’. Atrophy was assessed by MRI at baseline and 15-year follow-up using SIENAX and FreeSurfer software. Results: High baseline CSF NfH SMI35 levels predicted pronounced atrophy at 15-year follow-up (odds ratio (OR): 36, p < 0.01), in the absence of baseline brain atrophy (OR: 28, p < 0.05), for the averaged MRI normalised brain volume (1.44 L vs 1.33 L, p < 0.05), normalised grey matter volume (0.77 L vs 0.69 L, p < 0.01) and putamen (12.7 mL vs 10.7 mL, p < 0.05). Region-specific calculations including the spinal cord showed that a power of >80% is reached with 14–50 patients. Conclusion: These data suggest that high CSF NfH levels are an early predictor of later brain and spinal cord atrophy using structural imaging biomarkers and can be investigated in reasonably sized patient cohorts.
Collapse
Affiliation(s)
- Axel Petzold
- Department of Neurology and Ophthalmology, VUmc MS Center Amsterdam, VU University Medical Center, Neuroscience Campus, Amsterdam, The Netherlands/Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Martijn D Steenwijk
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands/Department of Physics and Medical Technology, VU University Medical Center, Amsterdam, The Netherlands
| | | | - Mike P Wattjes
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Bernard MJ Uitdehaag
- Department of Neurology, VUmc MS Center Amsterdam, VU University Medical Center, Neuroscience Campus, Amsterdam, The Netherlands
| |
Collapse
|
43
|
Brettschneider J, Petzold A, Junker A, Tumani H. Axonal damage markers in the cerebrospinal fluid of patients with clinically isolated syndrome improve predicting conversion to definite multiple sclerosis. Mult Scler 2016; 12:143-8. [PMID: 16629417 DOI: 10.1191/135248506ms1263oa] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Clinically isolated syndrome (CIS) represents the earliest phase of multiple sclerosis (MS). This study tested whether biomarkers for axonal degeneration can improve upon sensitivity and specificity of magnetic resonance imaging (MRI) parameters in predicting conversion from CIS to MS. Patients with CIS ( n=52), relapsing-remitting MS (RRMS, n=38) and age-matched controls ( n=25) were included. Cerebrospinal fluid (CSF) levels of tau and neurofilaments (NfHSMI35) were measured using ELISA. The MRI T2-lesion load and the Expanded Disability Status Scale (EDSS) were recorded. CSF tau and NfHSMI35 were elevated in CIS compared to controls (p<0.05). RRMS patients with acute relapse had higher NfHSMI35 levels than stable patients. Tau and NfHSMI35 levels correlated with EDSS in CIS and RRMS. In RRMS, the number of T2-lesions correlated with tau levels ( R=0.53, P=0.01). The sensitivity predicting the conversion from CIS to MS was higher for the combination of CSF markers (either tau or NfHSMI35 elevated) than for MRI (40 versus 34%), but could be further increased to 60% if CSF and MRI criteria were combined. Similarly, the combination of tau and NfHSMI35 showed higher specificity (94%) than MRI (82%). Tau and NfHSMI35 are valuable biomarkers for axonal damage in the CIS patients. Predicting conversion from CIS to MS can be improved if CSF markers are combined with MRI.
Collapse
|
44
|
Lim ET, Grant D, Pashenkov M, Keir G, Thompson EJ, Söderström M, Giovannoni G. Cerebrospinal fluid levels of brain specific proteins in optic neuritis. Mult Scler 2016; 10:261-5. [PMID: 15222688 DOI: 10.1191/1352458504ms1020oa] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
This study evaluates levels of cerebrospinal fluid (C SF) brain-specific proteins (BSP) in subjects with optic neuritis (O N) who are at high risk of progression to multiple sclerosis (MS). Forty-one subjects had acute O N and 17 subjects with other neurological diseases (OND) served as controls. Twenty-o ne subjects with O N had white matter lesions on magnetic resonance imaging (MRI) and intrathecal synthesis of oligoclonal IgG bands (OB) consistent with being at high risk of progression to MS; eight of whom later were diagnosed with clinically definite MS (C DMS). Levels of S100B, ferritin and two neurofilament heavy chain phosphoforms (NfHSMI34 and NfHSMI35) were analysed using ELISA technique. A putative index of ‘axonal health’ was expressed as a ratio of NfHSMI34 to NfHSMI35. NfHSMI34 and the NfHSMI34:SMI35 were significantly elevated in subjects with O N compared to controls. No significant differences in levels of C SF BSP were seen between O N subjects with C DMS plus those at high risk of progression to MS and O N subjects with normal MRI and negative C SF analysis. In conclusion, there is evidence of axonal damage in subjects who present with O N, which is independent of the diagnosis of C DMS.
Collapse
Affiliation(s)
- E T Lim
- Department of Neuroinflammation, Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | | | | | | | | | | | | |
Collapse
|
45
|
Oeckl P, Jardel C, Salachas F, Lamari F, Andersen PM, Bowser R, de Carvalho M, Costa J, van Damme P, Gray E, Grosskreutz J, Hernández-Barral M, Herukka SK, Huss A, Jeromin A, Kirby J, Kuzma-Kozakiewicz M, Amador MDM, Mora JS, Morelli C, Muckova P, Petri S, Poesen K, Rhode H, Rikardsson AK, Robberecht W, Rodríguez Mahillo AI, Shaw P, Silani V, Steinacker P, Turner MR, Tüzün E, Yetimler B, Ludolph AC, Otto M. Multicenter validation of CSF neurofilaments as diagnostic biomarkers for ALS. Amyotroph Lateral Scler Frontotemporal Degener 2016; 17:404-13. [DOI: 10.3109/21678421.2016.1167913] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Patrick Oeckl
- Department of Neurology, Ulm University Hospital, 89081 Ulm, Germany
| | - Claude Jardel
- Department of Metabolic Biochemistry, Hôpitaux universitaires Pitié Salpétrière-Charles Foix, 75651 Paris, France,
| | - François Salachas
- Paris ALS Reference Center, Neurological Diseases Department, Hôpitaux universitaires La Pitié Salpêtrière-Charles Foix, 75651 Paris, France,
| | - Foudil Lamari
- Department of Metabolic Biochemistry, Hôpitaux universitaires Pitié Salpétrière-Charles Foix, 75651 Paris, France,
| | | | - Robert Bowser
- Iron Horse Diagnostics, Inc., 85255 Scottsdale, Arizona, USA,
- Divisions of Neurology and Neurobiology, Barrow Neurological Institute, 85013 Phoenix, Arizona, USA,
| | - Mamede de Carvalho
- Faculty of Medicine - Instituto de Medicina Molecular, University of Lisbon, 1649-028 Lisbon, Portugal,
| | - Júlia Costa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal,
| | - Philip van Damme
- University Hospitals Leuven, Department of Neurology, 3000 Leuven, Belgium,
- KU Leuven - University of Leuven, Department of Neurosciences, VIB - Vesalius Research Center, Experimental Neurology - Laboratory of Neurobiology, Leuven, Belgium,
| | - Elizabeth Gray
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU Oxford, UK,
| | | | | | - Sanna-Kaisa Herukka
- Department of Neurology, University of Eastern Finland and Kuopio University Hospital, 70211 Kuopio, Finland,
| | - André Huss
- Department of Neurology, Ulm University Hospital, 89081 Ulm, Germany
| | - Andreas Jeromin
- Iron Horse Diagnostics, Inc., 85255 Scottsdale, Arizona, USA,
| | - Janine Kirby
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, S10 2HQ Sheffield, UK,
| | | | - Maria del Mar Amador
- Paris ALS Reference Center, Neurological Diseases Department, Hôpitaux universitaires La Pitié Salpêtrière-Charles Foix, 75651 Paris, France,
| | - Jesús S. Mora
- ALS Unit, Hospital Carlos III, Madrid, 28029 Madrid, Spain,
| | - Claudia Morelli
- IRCCS Istituto Auxologico Italiano, Department of Neurology and Laboratory of Neuroscience, 20149 Milano, Italy,
| | - Petra Muckova
- Institute of Biochemistry I, Jena University Hospital, 07743 Jena, Germany,
| | - Susanne Petri
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany,
| | - Koen Poesen
- Laboratory of molecular neurobiomarker research, University of Leuven and Laboratory Medicine, University Hospitals of Leuven, 3000 Leuven, Belgium,
| | - Heidrun Rhode
- Institute of Biochemistry I, Jena University Hospital, 07743 Jena, Germany,
| | | | - Wim Robberecht
- KU Leuven - University of Leuven, Department of Neurosciences, VIB - Vesalius Research Center, Experimental Neurology - Laboratory of Neurobiology, Leuven, Belgium,
| | | | - Pamela Shaw
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, S10 2HQ Sheffield, UK,
| | - Vincenzo Silani
- IRCCS Istituto Auxologico Italiano, Department of Neurology and Laboratory of Neuroscience, 20149 Milano, Italy,
- Department “Dino Ferrari” Center, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milano, Italy
| | - Petra Steinacker
- Department of Neurology, Ulm University Hospital, 89081 Ulm, Germany
| | - Martin R. Turner
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU Oxford, UK,
| | - Erdem Tüzün
- Neuroscience Department, Institute of Experimental Medical Research, Istanbul University, 34393 Istanbul, Turkey, and
| | - Berrak Yetimler
- Neuroscience Department, Institute of Experimental Medical Research, Istanbul University, 34393 Istanbul, Turkey, and
| | - Albert C. Ludolph
- Department of Neurology, Ulm University Hospital, 89081 Ulm, Germany
| | - Markus Otto
- Department of Neurology, Ulm University Hospital, 89081 Ulm, Germany
| |
Collapse
|
46
|
Limberg M, Disanto G, Barro C, Kuhle J. Neurofilament Light Chain Determination from Peripheral Blood Samples. Methods Mol Biol 2016; 1304:93-98. [PMID: 25687302 DOI: 10.1007/7651_2015_206] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The loss of neurological function is closely related to axonal damage. Neurofilament subunits are concentrated in neurons and axons and have emerged as promising biomarkers for neurodegeneration. Electrochemiluminescence (ECL) based assays are known to be of superior sensitivity and require less sample volume than conventional ELISAs. Here, we describe a highly sensitive ECL based immunoassay for quantification of neurofilament light chain (NfL) in blood and CSF.
Collapse
Affiliation(s)
- Marguerite Limberg
- Neurology, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
| | | | | | | |
Collapse
|
47
|
Benatar M, Boylan K, Jeromin A, Rutkove SB, Berry J, Atassi N, Bruijn L. ALS biomarkers for therapy development: State of the field and future directions. Muscle Nerve 2015; 53:169-82. [PMID: 26574709 DOI: 10.1002/mus.24979] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2015] [Indexed: 12/11/2022]
Abstract
Biomarkers have become the focus of intense research in the field of amyotrophic lateral sclerosis (ALS), with the hope that they might aid therapy development efforts. Notwithstanding the discovery of many candidate biomarkers, none have yet emerged as validated tools for drug development. In this review we present a nuanced view of biomarkers based on the perspective of the Food and Drug Administration; highlight the distinction between discovery and validation; describe existing and emerging resources; review leading biological fluid-based, electrophysiological, and neuroimaging candidates relevant to therapy development efforts; discuss lessons learned from biomarker initiatives in related neurodegenerative diseases; and outline specific steps that we, as a field, might take to hasten the development and validation of biomarkers that will prove useful in enhancing efforts to develop effective treatments for ALS patients. Most important among these is the proposal to establish a federated ALS Biomarker Consortium in which all interested and willing stakeholders may participate with equal opportunity to contribute to the broader mission of biomarker development and validation.
Collapse
Affiliation(s)
- Michael Benatar
- Department of Neurology, University of Miami, Miami, Florida, USA, 33136
| | - Kevin Boylan
- Department of Neurology, Mayo Clinic Jacksonville, Jacksonville, Florida, USA
| | | | - Seward B Rutkove
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - James Berry
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Nazem Atassi
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | |
Collapse
|
48
|
Abstract
Existing clinical outcomes of disease activity, including relapse rates, are inherently insensitive to the underlying pathological process in MS. Moreover, it is extremely difficult to measure clinical disability in patients, which is often a retrospective assessment, and definitely not within the time frame of a clinical trial. Biomarkers , conversely are more specific for a pathologic process and if used correctly can prove invaluable in the diagnosis, stratification and monitoring of disease activity, including any subclinical activity which is not visible to the naked eye. In this chapter, we discuss the development of neurofilaments as surrogate outcomes of disability in MS. The validation and qualification are vital steps in biomarker development and to gaining acceptance in scientific community, and the pitfalls leading up to this are also discussed.
Collapse
|
49
|
Schrewe L, Lill CM, Liu T, Salmen A, Gerdes LA, Guillot-Noel L, Akkad DA, Blaschke P, Graetz C, Hoffjan S, Kroner A, Demir S, Böhme A, Rieckmann P, ElAli A, Hagemann N, Hermann DM, Cournu-Rebeix I, Zipp F, Kümpfel T, Buttmann M, Zettl UK, Fontaine B, Bertram L, Gold R, Chan A. Investigation of sex-specific effects of apolipoprotein E on severity of EAE and MS. J Neuroinflammation 2015; 12:234. [PMID: 26669675 PMCID: PMC4681148 DOI: 10.1186/s12974-015-0429-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 09/04/2015] [Indexed: 12/20/2022] Open
Abstract
Background Despite pleiotropic immunomodulatory effects of apolipoprotein E (apoE) in vitro, its effects on the clinical course of experimental autoimmune encephalomyelitis (EAE) and multiple sclerosis (MS) are still controversial. As sex hormones modify immunomodulatory apoE functions, they may explain contentious findings. This study aimed to investigate sex-specific effects of apoE on disease course of EAE and MS. Methods MOG35-55 induced EAE in female and male apoE-deficient mice was assessed clinically and histopathologically. apoE expression was investigated by qPCR. The association of the MS severity score (MSSS) and APOE rs429358 and rs7412 was assessed across 3237 MS patients using linear regression analyses. Results EAE disease course was slightly attenuated in male apoE-deficient (apoE−/−) mice compared to wildtype mice (cumulative median score: apoE−/− = 2 [IQR 0.0–4.5]; wildtype = 4 [IQR 1.0–5.0]; n = 10 each group, p = 0.0002). In contrast, EAE was more severe in female apoE−/− mice compared to wildtype mice (cumulative median score: apoE−/− = 3 [IQR 2.0–4.5]; wildtype = 3 [IQR 0.0–4.0]; n = 10, p = 0.003). In wildtype animals, apoE expression during the chronic EAE phase was increased in both females and males (in comparison to naïve animals; p < 0.001). However, in MS, we did not observe a significant association between MSSS and rs429358 or rs7412, neither in the overall analyses nor upon stratification for sex. Conclusions apoE exerts moderate sex-specific effects on EAE severity. However, the results in the apoE knock-out model are not comparable to effects of polymorphic variants in the human APOE gene, thus pinpointing the challenge of translating findings from the EAE model to the human disease. Electronic supplementary material The online version of this article (doi:10.1186/s12974-015-0429-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- L Schrewe
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Gudrunstr. 56, Bochum, 44791, Germany.
| | - C M Lill
- Platform for Genome Analytics, Institutes of Neurogenetics & Integrative and Experimental Genomics, University of Lübeck, Lübeck, Germany. .,Department of Neurology, Focus Program Translational Neuroscience, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany. .,Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany.
| | - T Liu
- Max Planck Institute for Human Development, Berlin, Germany.
| | - A Salmen
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Gudrunstr. 56, Bochum, 44791, Germany.
| | - L A Gerdes
- Institute for Clinical Neuroimmunology, Medical Campus Grosshadern, Ludwig Maximilian University, Munich, Germany.
| | - L Guillot-Noel
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France.
| | - D A Akkad
- Department of Human Genetics, Ruhr-University Bochum, Bochum, Germany.
| | - P Blaschke
- Department of Neurology, University of Rostock, Rostock, Germany.
| | - C Graetz
- Department of Neurology, Focus Program Translational Neuroscience, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| | - S Hoffjan
- Department of Human Genetics, Ruhr-University Bochum, Bochum, Germany.
| | - A Kroner
- Centre for Research in Neuroscience, The Research Institute of the McGill University Health Center, 1650 Cedar Avenue, Montreal, QC, H3G 1A4, Canada. .,Department of Neurology, University of Würzburg, Würzburg, Germany.
| | - S Demir
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Gudrunstr. 56, Bochum, 44791, Germany.
| | - A Böhme
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Gudrunstr. 56, Bochum, 44791, Germany.
| | - P Rieckmann
- Department of Neurology, University of Würzburg, Würzburg, Germany.
| | - A ElAli
- Neuroscience Axis, Research Center of CHU de Québec-CHUL, Department of Psychiatry and Neuroscience, Faculty of Medicine, Laval University, Québec City, QC, Canada. .,Department of Vascular Neurology and Dementia, University of Duisburg-Essen, Essen, Germany.
| | - N Hagemann
- Department of Vascular Neurology and Dementia, University of Duisburg-Essen, Essen, Germany.
| | - D M Hermann
- Department of Vascular Neurology and Dementia, University of Duisburg-Essen, Essen, Germany.
| | - I Cournu-Rebeix
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France.
| | - F Zipp
- Department of Neurology, Focus Program Translational Neuroscience, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| | - T Kümpfel
- Institute for Clinical Neuroimmunology, Medical Campus Grosshadern, Ludwig Maximilian University, Munich, Germany.
| | - M Buttmann
- Department of Neurology, University of Würzburg, Würzburg, Germany.
| | - U K Zettl
- Department of Neurology, University of Rostock, Rostock, Germany.
| | - B Fontaine
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France. .,AP-HP, Hôpital de la Pitié Salpêtrière, Département des maladies du système nerveux, F-75013, Paris, France.
| | - L Bertram
- Platform for Genome Analytics, Institutes of Neurogenetics & Integrative and Experimental Genomics, University of Lübeck, Lübeck, Germany. .,Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany. .,School of Public Health, Faculty of Medicine, Imperial College of Science, Technology and Medicine, London, UK.
| | - R Gold
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Gudrunstr. 56, Bochum, 44791, Germany.
| | - A Chan
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Gudrunstr. 56, Bochum, 44791, Germany.
| |
Collapse
|
50
|
Diagnostic Value of Serum Levels of GFAP, pNF-H, and NSE Compared With Clinical Findings in Severity Assessment of Human Traumatic Spinal Cord Injury. Spine (Phila Pa 1976) 2015; 40:E823-30. [PMID: 25341992 DOI: 10.1097/brs.0000000000000654] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN An analytical cohort study. OBJECTIVE This study aimed to evaluate severity of traumatic spinal cord injury (SCI) based on the serum levels of phosphorylated form of heavy subunit of neurofilament (pNF-H), neuron-specific enolase (NSE), and glial fibrillary acidic protein (GFAP), which are axonal, neural cell body, and glial cell injury markers, respectively. SUMMARY OF BACKGROUND DATA Prior studies have reported elevated serum levels of pNF-H, NSE, and GFAP as biomarkers for the detection of traumatic SCI in animals. However, in this study, these biomarkers were studied in humans and with an extended level of timing. METHODS The study included 35 patients with SCI with a mean age of 36.5 years. All patients were evaluated using the American Spinal Injury Association Impairment Scale, followed by examinations including radiography and spinal computed tomography for determining the injury level. Serum levels of NSE, pNF-H, and GFAP were determined using enzyme-linked immunosorbent assay. RESULTS The mean serum level of GFAP was significantly higher in patients with SCI than in the control group. Mean serum levels of pNF-H and NSE were significantly higher during 24 and 48 hours after injury in patients with SCI than in the control group. The serum level of GFAP was appropriate for estimating the severity of SCI in the first 24 hours after injury. CONCLUSION Our findings suggest that increased serum levels of GFAP, NSE, and pNF-H can be used for the diagnosis and degree of SCI severity in trauma patients. During 48 hours after injury, estimation of serum levels of pNF-H, NSE, and GFAP, combined with neurological testing, could predict the presence of SCI and severity prior to spinal computed tomography and surgical or conservative interventions. LEVEL OF EVIDENCE 2.
Collapse
|