1
|
Röltgen K, Rose N, Ruggieri A, Warryn L, Scherr N, Pinho-Nascimento CA, Tamborrini M, Jaenisch T, Pluschke G. Development of Dengue Virus Serotype-Specific NS1 Capture Assays for the Rapid and Highly Sensitive Identification of the Infecting Serotype in Human Sera. THE JOURNAL OF IMMUNOLOGY 2018; 200:3857-3866. [PMID: 29661824 DOI: 10.4049/jimmunol.1701790] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 03/26/2018] [Indexed: 12/29/2022]
Abstract
Dengue fever can be caused by one of four distinct dengue virus (DENV) serotypes that cocirculate in many parts of the world. Point of care serotype-specific nonstructural protein-1 (NS1) capture assays for the rapid serotyping of DENV in human sera would greatly support epidemiological surveillance and potentially also prognosis in individual patients. To ensure both serotype specificity and broad coverage of variants within serotypes, we have applied an innovative approach for the generation and selection of serotype-specific anti-NS1 mAbs. To elicit mAbs against conformational epitopes, NMRI mice were immunized with living HEK 293 transfectants expressing the native target Ags in multiple display on the cell surface. For each serotype, three different NS1 sequence variants were sequentially used for immunization of mice, hybridoma selection, and capture assay development, respectively. Selection of optimal combinations of capturing and detecting mAbs yielded highly sensitive and specific NS1 serotyping ELISAs (st-ELISAs) for the four serotypes. st-ELISA testing of 41 dengue patient sera showed a 100% concordance with the serotype determined by serotype-specific reverse transcriptase real-time quantitative PCR. The respective NS1 variants could be detected for ∼10 d after the onset of illness. Ab-dependent enhancement of DENV infections may be associated with a specific range of pre-existing anti-DENV serological Ab titers. Testing of patient sera with the developed st-ELISAs will not only be useful for epidemiological studies and surveillance, but it may also help to develop and validate assays that can distinguish protective versus enhancing Ab responses for risk assessment for the development of severe dengue disease in individual patients.
Collapse
Affiliation(s)
- Katharina Röltgen
- Molecular Immunology, Swiss Tropical and Public Health Institute, 4002 Basel, Switzerland; .,University of Basel, 4001 Basel, Switzerland
| | - Natalie Rose
- Molecular Immunology, Swiss Tropical and Public Health Institute, 4002 Basel, Switzerland.,University of Basel, 4001 Basel, Switzerland
| | - Alessia Ruggieri
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Louisa Warryn
- Molecular Immunology, Swiss Tropical and Public Health Institute, 4002 Basel, Switzerland.,University of Basel, 4001 Basel, Switzerland
| | - Nicole Scherr
- Molecular Immunology, Swiss Tropical and Public Health Institute, 4002 Basel, Switzerland.,University of Basel, 4001 Basel, Switzerland
| | | | - Marco Tamborrini
- Molecular Immunology, Swiss Tropical and Public Health Institute, 4002 Basel, Switzerland.,University of Basel, 4001 Basel, Switzerland
| | - Thomas Jaenisch
- Department of Infectious Diseases, Section Clinical Tropical Medicine, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Gerd Pluschke
- Molecular Immunology, Swiss Tropical and Public Health Institute, 4002 Basel, Switzerland.,University of Basel, 4001 Basel, Switzerland
| |
Collapse
|
2
|
Rose N, Pinho-Nascimento CA, Ruggieri A, Favuzza P, Tamborrini M, Roth H, Baroni de Moraes MT, Matile H, Jänisch T, Pluschke G, Röltgen K. Generation of monoclonal antibodies against native viral proteins using antigen-expressing mammalian cells for mouse immunization. BMC Biotechnol 2016; 16:83. [PMID: 27876044 PMCID: PMC5120561 DOI: 10.1186/s12896-016-0314-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/01/2016] [Indexed: 01/02/2023] Open
Abstract
Background Due to their rising incidence and progressive geographical spread, infections with mosquito-borne viruses, such as dengue (DENV), chikungunya and zika virus, have developed into major public health challenges. Since all of these viruses may cause similar symptoms and can occur in concurrent epidemics, tools for their differential diagnosis and epidemiological monitoring are of urgent need. Results Here we report the application of a novel strategy to rapidly generate monoclonal antibodies (mAbs) against native viral antigens, exemplified for the DENV nonstructural glycoprotein 1 (NS1). The described system is based on the immunization of mice with transfected mammalian cells expressing the target antigens in multiple displays on their cell surface and thereby presenting them efficiently to the host immune system in their native conformation. By applying this cell-based approach to the DENV NS1 protein of serotypes 1 (D1NS1) and 4 (D4NS1), we were able to rapidly generate panels of DENV NS1 serotype cross-reactive, as well as D1NS1- and D4NS1 serotype-specific mAbs. Our data show that the generated mAbs were capable of recognizing the endogenous NS1 protein in DENV-containing biological samples. Conclusion The use of this novel immunization strategy, allows for a fast and efficient generation of hybridoma cell lines, producing mAbs against native viral antigens. Envisaged applications of the mAbs include the development of test platforms enabling a differentiation of the DENV serotypes and high resolution immunotyping for epidemiological studies. Electronic supplementary material The online version of this article (doi:10.1186/s12896-016-0314-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Natalie Rose
- Swiss Tropical and Public Health Institute, Molecular Immunology, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | | | - Alessia Ruggieri
- Department of Infectious Diseases, University of Heidelberg, Molecular Virology, Heidelberg, Germany
| | - Paola Favuzza
- Swiss Tropical and Public Health Institute, Molecular Immunology, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Marco Tamborrini
- Swiss Tropical and Public Health Institute, Molecular Immunology, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Hanna Roth
- Department of Infectious Diseases, University of Heidelberg, Molecular Virology, Heidelberg, Germany
| | | | - Hugues Matile
- Swiss Tropical and Public Health Institute, Molecular Immunology, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Thomas Jänisch
- Section Clinical Tropical Medicine, Department of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Gerd Pluschke
- Swiss Tropical and Public Health Institute, Molecular Immunology, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Katharina Röltgen
- Swiss Tropical and Public Health Institute, Molecular Immunology, Basel, Switzerland. .,University of Basel, Basel, Switzerland.
| |
Collapse
|
3
|
Dangy JP, Scherr N, Gersbach P, Hug MN, Bieri R, Bomio C, Li J, Huber S, Altmann KH, Pluschke G. Antibody-Mediated Neutralization of the Exotoxin Mycolactone, the Main Virulence Factor Produced by Mycobacterium ulcerans. PLoS Negl Trop Dis 2016; 10:e0004808. [PMID: 27351976 PMCID: PMC4924874 DOI: 10.1371/journal.pntd.0004808] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 06/06/2016] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Mycolactone, the macrolide exotoxin produced by Mycobacterium ulcerans, causes extensive tissue destruction by inducing apoptosis of host cells. In this study, we aimed at the production of antibodies that could neutralize the cytotoxic activities of mycolactone. METHODOLOGY/PRINCIPAL FINDINGS Using the B cell hybridoma technology, we generated a series of monoclonal antibodies with specificity for mycolactone from spleen cells of mice immunized with the protein conjugate of a truncated synthetic mycolactone derivative. L929 fibroblasts were used as a model system to investigate whether these antibodies can inhibit the biological effects of mycolactone. By measuring the metabolic activity of the fibroblasts, we found that anti-mycolactone mAbs can completely neutralize the cytotoxic activity of mycolactone. CONCLUSIONS/SIGNIFICANCE The toxin neutralizing capacity of anti-mycolactone mAbs supports the concept of evaluating the macrolide toxin as vaccine target.
Collapse
Affiliation(s)
- Jean-Pierre Dangy
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Nicole Scherr
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Philipp Gersbach
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland
| | - Melanie N. Hug
- Roche Innovation Center, Chemical Biology, Basel, Switzerland
| | - Raphael Bieri
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Claudio Bomio
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland
| | - Jun Li
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland
| | - Sylwia Huber
- Roche Innovation Center, Chemical Biology, Basel, Switzerland
| | - Karl-Heinz Altmann
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland
| | - Gerd Pluschke
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- * E-mail:
| |
Collapse
|
4
|
Silbereisen A, Tamborrini M, Wittwer M, Schürch N, Pluschke G. Development of a bead-based Luminex assay using lipopolysaccharide specific monoclonal antibodies to detect biological threats from Brucella species. BMC Microbiol 2015; 15:198. [PMID: 26438077 PMCID: PMC4595103 DOI: 10.1186/s12866-015-0534-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 09/25/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Brucella, a Gram-negative bacterium, is classified as a potential bioterrorism agent mainly due to the low dose needed to cause infection and the ability to transmit the bacteria via aerosols. Goats/sheep, cattle, pigs, dogs, sheep and rodents are infected by B. melitensis, B. abortus, B. suis, B. canis, B. ovis and B. neotomae, respectively, the six classical Brucella species. Most human cases are caused by B. melitensis and B. abortus. Our aim was to specifically detect Brucellae with 'smooth' lipopolysaccharide (LPS) using a highly sensitive monoclonal antibody (mAb) based immunological assay. METHODS To complement molecular detection systems for potential bioterror agents, as required by international biodefense regulations, sets of mAbs were generated by B cell hybridoma technology and used to develop immunological assays. The combination of mAbs most suitable for an antigen capture assay format was identified and an immunoassay using the Luminex xMAP technology was developed. RESULTS MAbs specific for the LPS O-antigen of Brucella spp. were generated by immunising mice with inactivated B. melitensis or B. abortus cells. Most mAbs recognised both B. melitensis and B. abortus and antigen binding was not impeded by inactivation of the bacterial cells by γ irradiation, formalin or heat treatment, a step required to analyse the samples immunologically under biosafety level two conditions. The Luminex assay recognised all tested Brucella species with 'smooth' LPS with detection limits of 2×10(2) to 8×10(4) cells per mL, depending on the species tested. Milk samples spiked with Brucella spp. cells were identified successfully using the Luminex assay. In addition, the bead-based immunoassay was integrated into a multiplex format, allowing for simultaneous, rapid and specific detection of Brucella spp., Bacillus anthracis, Francisella tularensis and Yersinia pestis within a single sample. CONCLUSION Overall, the robust Luminex assay should allow detection of Brucella spp. in both natural outbreak and bio-threat situations.
Collapse
Affiliation(s)
- Angelika Silbereisen
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland. .,University of Basel, Basel, Switzerland.
| | - Marco Tamborrini
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland. .,University of Basel, Basel, Switzerland.
| | - Matthias Wittwer
- Federal Office for Civil Protection, Spiez Laboratory, Spiez, Switzerland.
| | - Nadia Schürch
- Federal Office for Civil Protection, Spiez Laboratory, Spiez, Switzerland.
| | - Gerd Pluschke
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland. .,University of Basel, Basel, Switzerland.
| |
Collapse
|
5
|
Dreyer A, Röltgen K, Dangy JP, Ruf MT, Scherr N, Bolz M, Tobias NJ, Moes C, Vettiger A, Stinear TP, Pluschke G. Identification of the Mycobacterium ulcerans protein MUL_3720 as a promising target for the development of a diagnostic test for Buruli ulcer. PLoS Negl Trop Dis 2015; 9:e0003477. [PMID: 25668636 PMCID: PMC4344477 DOI: 10.1371/journal.pntd.0003477] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 12/13/2014] [Indexed: 11/29/2022] Open
Abstract
Buruli ulcer (BU) caused by Mycobacterium ulcerans is a devastating skin disease, occurring mainly in remote West African communities with poor access to health care. Early case detection and subsequent antibiotic treatment are essential to counteract the progression of the characteristic chronic ulcerative lesions. Since the accuracy of clinical BU diagnosis is limited, laboratory reconfirmation is crucial. However, currently available diagnostic techniques with sufficient sensitivity and specificity require infrastructure and resources only accessible at a few reference centres in the African endemic countries. Hence, the development of a simple, rapid, sensitive and specific point-of-care diagnostic tool is one of the major research priorities for BU. In this study, we have identified a previously unknown M. ulcerans protein, MUL_3720, as a promising target for antigen capture-based detection assays. We show that MUL_3720 is highly expressed by M. ulcerans and has no orthologs in other prevalent pathogenic mycobacteria. We generated a panel of anti-MUL_3720 antibodies and used them to confirm a cell wall location for MUL_3720. These antibodies could also specifically detect M. ulcerans in infected human tissue samples as well as in lysates of infected mouse footpads. A bacterial 2-hybrid screen suggested a potential role for MUL_3720 in cell wall biosynthesis pathways. Finally, we demonstrate that a combination of MUL_3720 specific antibody reagents in a sandwich-ELISA format has sufficient sensitivity to make them suitable for the development of antigen capture-based diagnostic tests for BU. According to the recommendations of the World Health Organization, the clinical diagnosis of BU should be reconfirmed by at least two laboratory techniques. However, out of the four currently available tests, three (PCR, histopathology and cultivation of M. ulcerans) can only be performed at centralized reference laboratories; the fourth (microscopic detection of acid fast bacilli) lacks the required sensitivity and specificity. Therefore, a simple tool for early diagnosis of the disease, which can be implemented in rural health care facilities of the endemic countries, is of urgent need. In this study we aimed at the identification of M. ulcerans proteins as potential targets for the development of a simple and rapid diagnostic antigen detection assay. Among 36 proteins, MUL_3720 best met the predefined criteria of being highly expressed by M. ulcerans and not having orthologs in other pathogenic mycobacterial species prevalent in the endemic regions. Here we generated monoclonal and polyclonal antibodies against this protein and carried out pilot studies for the development of an antigen capture-based diagnostic test.
Collapse
Affiliation(s)
- Anita Dreyer
- Swiss Tropical and Public Health Institute, Molecular Immunology, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Katharina Röltgen
- Swiss Tropical and Public Health Institute, Molecular Immunology, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Jean Pierre Dangy
- Swiss Tropical and Public Health Institute, Molecular Immunology, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Marie Thérèse Ruf
- Swiss Tropical and Public Health Institute, Molecular Immunology, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Nicole Scherr
- Swiss Tropical and Public Health Institute, Molecular Immunology, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Miriam Bolz
- Swiss Tropical and Public Health Institute, Molecular Immunology, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Nicholas Jay Tobias
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Australia
| | - Charles Moes
- Swiss Tropical and Public Health Institute, Molecular Immunology, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Andrea Vettiger
- Swiss Tropical and Public Health Institute, Molecular Immunology, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Timothy Paul Stinear
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Australia
| | - Gerd Pluschke
- Swiss Tropical and Public Health Institute, Molecular Immunology, Basel, Switzerland
- University of Basel, Basel, Switzerland
- * E-mail:
| |
Collapse
|
6
|
Anthrax spore detection by a luminex assay based on monoclonal antibodies that recognize anthrose-containing oligosaccharides. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 17:1446-51. [PMID: 20660139 DOI: 10.1128/cvi.00205-10] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The similarity of endospore surface antigens between bacteria of the Bacillus cereus group complicates the development of selective antibody-based anthrax detection systems. The surface of B. anthracis endospores exposes a tetrasaccharide containing the monosaccharide anthrose. Anti-tetrasaccharide monoclonal antibodies (MAbs) and anti-anthrose-rhamnose disaccharide MAbs were produced and tested for their fine specificities in a direct spore enzyme-linked immunosorbent assay (ELISA) with inactivated spores of a broad spectrum of B. anthracis strains and related species of the Bacillus genus. Although the two sets of MAbs had different fine specificities, all of them recognized the tested B. anthracis strains and showed only a limited cross-reactivity with two B. cereus strains. The MAbs were further tested for their ability to be implemented in a highly sensitive and specific bead-based Luminex assay. This assay detected spores from different B. anthracis strains and two cross-reactive B. cereus strains, correlating with the results obtained in direct spore ELISA. The Luminex assay (detection limit 10(3) to 10(4) spores per ml) was much more sensitive than the corresponding sandwich ELISA. Although not strictly specific for B. anthracis spores, the developed Luminex assay represents a useful first-line screening tool for the detection of B. anthracis spores.
Collapse
|
7
|
Tamborrini M, Oberli M, Werz D, Schürch N, Frey J, Seeberger P, Pluschke G. Immuno-detection of anthrose containing tetrasaccharide in the exosporium ofBacillus anthracisandBacillus cereusstrains. J Appl Microbiol 2009; 106:1618-28. [DOI: 10.1111/j.1365-2672.2008.04129.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Diaz D, Döbeli H, Yeboah-Manu D, Mensah-Quainoo E, Friedlein A, Soder N, Rondini S, Bodmer T, Pluschke G. Use of the immunodominant 18-kiloDalton small heat shock protein as a serological marker for exposure to Mycobacterium ulcerans. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2006; 13:1314-21. [PMID: 17021247 PMCID: PMC1694454 DOI: 10.1128/cvi.00254-06] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
While it is well established that proximity to wetlands is a risk factor for contracting Buruli ulcer, it is not clear what proportion of a population living in an area where the etiologic agent, Mycobacterium ulcerans, is endemic is actually exposed to this disease. Immunological cross-reactivity among mycobacterial species complicates the development of a specific serological test. Among immunodominant proteins recognized by a panel of anti-M. ulcerans monoclonal antibodies, the M. ulcerans homologue of the M. leprae 18-kDa small heat shock protein (shsp) was identified. Since this shsp has no homologues in M. bovis and M. tuberculosis, we evaluated its use as a target antigen for a serological test. Anti-18-kDa shsp antibodies were frequently found in the sera of Buruli ulcer patients and of healthy household contacts but rarely found in controls from regions where the infection is not endemic. The results indicate that only a small proportion of M. ulcerans-infected individuals contract the clinical disease.
Collapse
Affiliation(s)
- Diana Diaz
- Molecular Immunology, Swiss Tropical Institute, CH 4002 Basel, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Ren L, Zou X, Smith JA, Brüggemann M. Silencing of the immunoglobulin heavy chain locus by removal of all eight constant-region genes in a 200-kb region. Genomics 2004; 84:686-95. [PMID: 15475246 DOI: 10.1016/j.ygeno.2004.06.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2004] [Accepted: 06/16/2004] [Indexed: 11/19/2022]
Abstract
Silencing or removal of individual C (constant)-region genes and/or adjacent control sequences did not generate fully deficient Ig (immunoglobulin)- mice. A reason is that different C genes share many functional tasks and most importantly are individually capable of ensuring lymphocyte differentiation. Nevertheless, incomplete arrests in B-cell development were found, most pronounced at the onset of H-chain expression. Here we show that removal of 200 kb accommodating all C genes, Cmu-Cdelta-Cgamma3-Cgamma1-Cgamma2b-Cgamma2a-Cepsilon-Calpha, stops antibody production. For this two loxP targeting constructs were introduced into the most 5' C gene and the distal alpha 3' enhancer. Cre-loxP-mediated in vivo deletion was accompanied by extensive germ-line mosaicism, which could be separated by breeding. Homozygous C-gene deletion mice did not express Ig H or L chains and flow cytometry revealed a complete block in B-cell development. However, C-gene removal did not affect DNA rearrangement processes following locus activation, as recombination efficacy appears to be similar to what is found in normal mice.
Collapse
Affiliation(s)
- Liming Ren
- Laboratory of Developmental Immunology, The Babraham Institute, Babraham, Cambridge CB2 4AT, United Kingdom
| | | | | | | |
Collapse
|
10
|
Daubenberger CA, Tisdale EJ, Curcic M, Diaz D, Silvie O, Mazier D, Eling W, Bohrmann B, Matile H, Pluschke G. The N'-terminal domain of glyceraldehyde-3-phosphate dehydrogenase of the apicomplexan Plasmodium falciparum mediates GTPase Rab2-dependent recruitment to membranes. Biol Chem 2003; 384:1227-37. [PMID: 12974391 DOI: 10.1515/bc.2003.135] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Spatial and temporal distribution of the glycolytic enzymes glyceraldehyde-3-phosphate dehydrogenase (pfGAPDH) and aldolase (pfAldolase) of Plasmodium falciparum were investigated using specific mAbs and indirect immunofluorescence analysis (IFA). Both glycolytic enzymes were co-localized during ring and trophozoite stages of both liver and asexual blood stage parasites. During schizogony, pfGAPDH became associated with the periphery of the parasites and eventually accumulated in the apical region of merozoites, while pfAldolase showed no segregation. Subcellular fractionation experiments demonstrated that pfGAPDH was found in both the membrane-containing pellet and the supernatant fraction of parasite lysates. In contrast, pfAldolase was only found in the supernatant fraction. A quantitative binding assay showed that pfGAPDH could be recruited to HeLa cell microsomal membranes in response to mammalian GTPase Rab2, indicating that Rab2-dependent recruitment of cytosolic components to membranes is conserved in evolution. Two overlapping fragments of pfGAPDH (residues 1-192 and 133-337) were evaluated in the microsomal binding assay. We found that the N'-terminal fragment competitively inhibited Rab2-stimulated pfGAPDH recruitment. Thus, the domain mediating the evolutionarily conserved Rab2-dependent membrane recruitment is located in the N'-terminus of GAPDH. Together, these results suggest that pfGAPDH exerts non-glycolytic function(s) in P. falciparum, possibly including a role in vesicular transport and biogenesis of apical organelles.
Collapse
Affiliation(s)
- Claudia A Daubenberger
- Molecular Immunology, Swiss Tropical Institute, Socinstr. 57, CH-4002 Basel, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Helg A, Mueller MS, Joss A, Pöltl-Frank F, Stuart F, Robinson JA, Pluschke G. Comparison of analytical methods for the evaluation of antibody responses against epitopes of polymorphic protein antigens. J Immunol Methods 2003; 276:19-31. [PMID: 12738356 DOI: 10.1016/s0022-1759(03)00075-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Surface exposed protein antigens of the malaria parasite Plasmodium falciparum frequently harbor multiple dimorphic amino acid positions. These are associated with parasite immune evasion and represent a major obstacle for subunit vaccine design. Here, we have analyzed the flexibility of the humoral immune response against a semiconserved sequence (YX(44)LFX(47)KEKMX(52)L) of the key malaria blood stage vaccine candidate merozoite surface protein-1 (MSP-1). Monoclonal antibodies (mAbs) raised against one of the six described natural sequence variants of MSP-1(43-53) were analyzed for cross-reactivity with the other allelic forms, which differ in one to three positions from the immunizing sequence. Enzyme-linked immunosorbent assay (ELISA) and surface plasmon resonance (SPR) spectroscopy demonstrated marked differences in mAb binding avidity to the variant sequences and isothermal titration calorimetry (ITC) provided evidence for a very low affinity of some of the interactions. In immunofluorescence analysis (IFA) and Western blotting analysis, the mAbs nevertheless stained all analyzed parasite clones expressing MSP-1(43-53) variant sequences. When used for the evaluation of humoral immune responses in clinical malaria vaccine trials, these two commonly used methods may thus not be suitable to distinguish biologically functional high affinity antibody responses from irrelevant low-affinity cross-reactivities.
Collapse
Affiliation(s)
- A Helg
- Swiss Tropical Institute, Socinstrasse 57, CH 4002, Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
12
|
Daubenberger CA, Diaz D, Curcic M, Mueller MS, Spielmann T, Certa U, Lipp J, Pluschke G. Identification and characterization of a conserved, stage-specific gene product of Plasmodium falciparum recognized by parasite growth inhibitory antibodies. Infect Immun 2003; 71:2173-81. [PMID: 12654839 PMCID: PMC152076 DOI: 10.1128/iai.71.4.2173-2181.2003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have identified a novel conserved protein of Plasmodium falciparum, designated D13, that is stage-specifically expressed in asexual blood stages of the parasite. The predicted open reading frame (ORF) D13 contains 863 amino acids with a calculated molecular mass of 99.7 kDa and displays a repeat region composed of pentapeptide motives. Northern blot analysis with lysates of synchronized blood stage parasites showed that D13 is highly expressed at the mRNA level during schizogony. The first N'-terminal 138 amino acids of D13 were expressed in Escherichia coli and the purified protein was used to generate anti-D13 monoclonal antibodies (MAbs). Using total lysates of blood stage parasites and Western blot analysis, these MAbs stained one single band of approximately 100 kDa, corresponding to the predicted molecular mass of ORF D13. Western blot analysis demonstrated further that D13 is expressed during schizogony, declines rapidly in early ring stages and is undetectable in trophozoites. D13 protein is localized in individual merozoites in a distinct area, as demonstrated by indirect immunofluorescence analysis. After subcellular fractionation, D13 was confined to the pelleted fraction of the parasite lysate and its extraction by alkaline carbonate buffer treatment indicated that D13 is not a membrane-integral protein. Inclusion of certain anti-D13 MAbs into in vitro cultures of blood stage parasites resulted in considerable reduction in parasite growth. The N'-terminal domain encompassing 158 amino acids is 94 and 95%, respectively, identical at the amino acid level between Plasmodium knowlesi, Plasmodium yoelii, and P. falciparum. In summary, we describe a novel stage-specifically expressed, highly conserved gene product of P. falciparum that is recognized by parasite growth inhibitory antibodies.
Collapse
Affiliation(s)
- Claudia A Daubenberger
- Molecular Immunology, Swiss Tropical Institute, Socinstrasse 57, 4002 Basel, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Moreno R, Pöltl-Frank F, Stüber D, Matile H, Mutz M, Weiss NA, Pluschke G. Rhoptry-associated protein 1-binding monoclonal antibody raised against a heterologous peptide sequence inhibits Plasmodium falciparum growth in vitro. Infect Immun 2001; 69:2558-68. [PMID: 11254620 PMCID: PMC98192 DOI: 10.1128/iai.69.4.2558-2568.2001] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Monoclonal antibodies (MAbs) specific for Plasmodium falciparum rhoptry-associated protein 1 (RAP-1) were generated and tested for inhibition of parasite growth in vitro. The majority of indirect immunofluorescence assay (IFA)-positive MAbs raised against recombinant RAP-1 positions 23 to 711 (rRAP-1(23-711)) recognized epitopes located in the immunodominant N-terminal third of RAP-1. MAbs specific for the building block 35.1 of the synthetic peptide malaria vaccine SPf66 also yielded an IFA staining pattern characteristic for rhoptry-associated proteins and reacted specifically with rRAP-1 and parasite-derived RAP-1 molecules p67 and p82. Cross-reactivity with RAP-1 was blocked by the 35.1 peptide. Epitope mapping with truncated rRAP-1 molecules and overlapping peptides identified the linear RAP-1 sequence Y218KYSL222 as a target of the anti-35.1 MAbs. This sequence lacks primary sequence similarity with the 35.1 peptide (YGGPANKKNAG). Cross-reactivity of the anti-35.1 MAbs thus appears to be associated with conformational rather than sequence homology. While the anti-35.1 MAb SP8.18 exhibited parasite growth-inhibitory activity, none of the tested anti-rRAP-1(23-711) MAbs inhibited parasite growth, independently of their fine specificity for the RAP-1 sequences at positions 33 to 42, 213 to 222, 243 to 247, 280 to 287, or 405 to 446. The growth-inhibitory activity of MAb SP8.18 was, however, accelerated by noninhibitory anti-RAP-1 MAbs. Results demonstrate that in addition to fine specificity, other binding parameters are also crucial for the inhibitory potential of an antibody.
Collapse
Affiliation(s)
- R Moreno
- Swiss Tropical Institute, CH-4002 Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|